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AB S TRACT

We present a computer code written in C that is designed to simulate structure formation from

collisionless matter. The code is purely grid-based and uses a recursively refined Cartesian

grid to solve Poisson’s equation for the potential, rather than obtaining the potential from a

Green’s function. Refinements can have arbitrary shapes and in practice closely follow the

complex morphology of the density field that evolves. The time-step shortens by a factor of 2

with each successive refinement.

Competing approaches to N-body simulation are discussed from the point of view of the

basic theory of N-body simulation. It is argued that an appropriate choice of softening length e

is of great importance and that e should be at all points an appropriate multiple of the local

interparticle separation. Unlike tree and P3M codes, multigrid codes automatically satisfy this

requirement. We show that at early times and low densities in cosmological simulations, e

needs to be significantly smaller relative to the interparticle separation than in virialized

regions. Tests of the ability of the code’s Poisson solver to recover the gravitational fields of

both virialized haloes and Zel’dovich waves are presented, as are tests of the code’s ability to

reproduce analytic solutions for plane-wave evolution. The times required to conduct a

LCDM cosmological simulation for various configurations are compared with the times

required to complete the same simulation with the ART, AP3M and GADGET codes. The

power spectra, halo mass functions and halo–halo correlation functions of simulations

conducted with different codes are compared.

The code is available from http://www-thphys.physics.ox.ac.uk/users/MLAPM.
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1 INTRODUCTION

Over the last two and a half decades great strides have been taken

in understanding the origin of the large-scale structure of the

Universe, and the formation of galaxies. A picture has emerged in

which contemporary structures have evolved by gravitational

amplification of seed inhomogeneities that are likely of quantum

origin. This picture ties together measurements of the cosmic

background radiation, estimates of the primordial abundances of

the light elements, measurements of the clustering of galaxies and,

to a more limited extent, the characteristic properties of individual

galaxies.

This picture rests on some important assumptions that have yet

to be convincingly verified. The most important of these is that

baryons contribute only a small fraction of the mean energy density

in the Universe, the bulk being made up of some combination of

vacuum energy and dark matter. Dark matter plays a central role in

structure formation because only gravity couples it to the cosmic

background radiation, so it is already free to cluster in the

radiation-dominated era, when baryons are effectively locked to

the relatively incompressible radiation fluid. Consequently, at the

era of decoupling, when the observable baryons are at last able to

cluster, they quickly fall into ready-made structures in the dark-

matter density field.

Since dark matter does not interact electromagnetically, it is

either collisionless, or very nearly so (Spergel & Steinhardt 2000),

and it usually modelled under the assumption that it is completely

collisionless. Consequently, the governing equations that one needs

to solve in order to follow the evolution of dark matter are the

coupled collisionless Boltzmann and Poisson equations. The

standard technique for solving this system is N-body simulation.

The purpose of this paper is to present a new code, written in C, for

carrying out such simulations in a cosmological context.

Section 2 explains why we think it is important to add another

N-body code to the significant numbers of codes that are already

available for cosmological simulations. Section 3 reviews thePE-mail: a.knebe1@physics.ox.ac.uk
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fundamental principles of N-body simulations in order to clarify

the spatial resolution that is appropriate with a given number of

particles. Readers who are already convinced of the value of our

code, and are confident that they understand what an N-body code

does, can skip straight to Section 4, which describes how our

multigrid Poisson solver works. Section 5 describes our algorithm

for advancing particles with multiple time-steps. Section 6

describes and tests the time-integration scheme employed.

Section 7 presents timing data and energy-conservation data for

realistic LCDM simulations. We close with a discussion of our

main results in Section 8.

2 WHY ANOTHER N -BODY CODE?

Since the pioneering simulations in the 1970s (e.g. Peebles 1970;

Haggerty & Janin 1974; Press & Schechter 1974; White 1976;

Aarseth, Turner & Gott 1979), a great deal of effort has gone into

producing powerful N-body codes for cosmological simulations.

The first simulations evaluated the forces on particles by direct

summation of the Newtonian interaction between particle pairs, but

this is dreadfully inefficient with more than a thousand particles.

Tree codes (Appel 1985; Barnes & Hut 1986; Dehnen 2000)

radically reduce the cost by grouping distant particles into

aggregates, and then summing over such aggregates rather than

over individual particles. Particle–mesh (PM) codes (Hohl 1978;

Hockney & Eastwood 1988) estimate the density on a grid and then

use discrete Fourier transforms (DFTs) to convolve the density

with the Green’s function. This technique greatly facilitates the

imposition of periodic boundary conditions but suffers from the

limitation that the use of DFTs mandates the use of a regular grid,

and such a grid cannot adequately represent a highly clustered

distribution of particles: if in a low-density region there are a

reasonable number of particles in each cell, high-density regions

will be under-resolved; conversely, if in a high-density region there

are a reasonable number of particles in a cell and in low-density

regions nearly all cells will be empty. Empty cells are problematic

algorithmically (the density is not really zero at their locations) and

represent an unacceptable waste of computer memory.

In a particle–particle–particle–mesh (P3M) code, a PM

calculation that uses a coarse grid yields the long-range component

of the forces, while direct summation of additional forces from

near neighbours completes the calculation (Efstathiou et al. 1985;

Hockney & Eastwood 1988). As clustering develops, large

numbers of particles accumulate in a few cells of a P3M code’s

coarse grid, and the direct summation part of the calculation

becomes prohibitively costly. In an adaptive P3M (AP3M) code this

situation is remedied by replacing the direct summation in a region

of high density by an additional P3M calculation, in which a fine grid

covers only the dense region (Couchman 1991; Couchman, Thomas

& Pearce 1995). When clustering reaches the point at which the

direct sum of this daughter calculation becomes costly, it is itself

partially replaced by a P3M calculation, and so on indefinitely.

The grid of a P3M code is used only to find the long-range

component of the force. With a sufficiently adaptive grid the entire

force can be calculated on the grid. Immediately apparent advan-

tages of adaptive grids are that they naturally admit (i) periodic

boundary conditions, (ii) adaptive softening and (iii) individual

time-steps. Moreover, they provide a framework in which to do

grid-based hydrodynamics.

In view of the potential of adaptive-grid technology, several

groups have tried it for cosmological simulations. Gnedin (1995)

and Pen (1998) start with a Cartesian grid and let it distort so as to

increase resolution in some regions. This procedure has the

drawback of producing significantly non-cubical cells. Norman &

Bryan (1998) enhance the resolution of a basic Cartesian grid by

placing finer grids over dense regions. These refinements have to

be cubical, and cannot be overlapping. Consequently, large

numbers of small grids would be required to closely follow a

highly irregular density distribution of the type that gravitational

clustering generates (cf. Fig. 12 later).

We have developed a code, MLAPM, that starts from a regular

Cartesian grid and recursively refines cells such that subgrids can

have arbitrary geometry (subject to each cell being cubical).

MLAPM, which uses a multigrid algorithm to solve Poisson’s

equation, is in many ways similar to the adaptive refinement tree

(ART) code of Kravtsov, Klypin & Khokhlov (1997) and Kravtsov

(1999) which also utilizes recursively placed refinements of

arbitrary shape as the simulation evolves. In Section 7 we compare

the performance of the two codes. A significant difference between

the two codes is that ART, but not MLAPM, organizes cells into a

tree structure – hence its name.1 We believe that the adaptive

multigrid approach is an important one that should be developed

independently by more than one group.

Currently large cosmological N-body simulations are being run

with tree, AP3M and multigrid codes. Three considerations will

determine which technology has the biggest impact in the future.

One is the importance of adaptive softening discussed below.

Another is ease of parallelization, since we are entering an era in

which massively parallel computers lie within the budgets of single

research groups. The final consideration is the ease of including

baryons in cosmological simulations. If dark matter exists and is

collisionless, we have a fair idea of how it will cluster. Our

understanding of galaxy formation is, by contrast, very incomplete,

and the future of numerical cosmology lies with simulations that

include baryons.

Our poor understanding of galaxy formation arises in part

because baryons, being dissipative, cluster much more strongly

than dark matter, and galaxies form from the most strongly

clustered component. Hence exquisite spatial resolution is required

to simulate galaxy formation. Several groups are currently working

on ways to include gas dynamics in cosmological simulations. (See

Frenk et al. 1999 for a recent comparison of such codes.) Some use

the grid-less approach of smooth particle hydrodynamics (SPH;

Gingold & Monaghan 1977; Lucy 1977), but many use a grid-

based scheme. In developing a grid-based Poisson solver we are in

part motivated by the thought that once the substantial investment

required to establish a dynamical grid has been made, it will be

comparatively straightforward to extend the code to include grid-

based hydrodynamics.

3 THEORETICAL BASIS OF N -BODY

SIMULATION

3.1 Standard N-body simulation

When used to model the dynamics of a collisionless system, an

N-body code solves the collisionless Boltzmann equation by the

method of characteristics (e.g. Leeuwin, Combes & Binney 1993).

The characteristics, on which the phase-space density f is

constant, are the possible trajectories of particles in the system’s

gravitational potential, F. Their integration requires repeated

1However, its principles are entirely different from those of a conventional

Barnes–Hut tree code.
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solution of the Poisson equation

72F ¼ 4pGr; ð1Þ

where r is related to the mass of the simulation, M, and its phase-

space probability density, f, by

rðxÞ ¼ M

ð

d3vf ðx;vÞ: ð2Þ

The integral in equation (2) is evaluated by Monte Carlo sampling

of velocity space. That is, one exploits the theorem that for a wide

range of functions g we have

ð

dz gðzÞ ¼ lim
N!1

1

N

X

N

i¼1

gðziÞ/ f sðziÞ; ð3Þ

where the zi are N points distributed through the domain of

integration with density fs(z), the latter being normalized such that
Ð

dz f s ¼ 1. We define a function Wk(x) such that outside the kth

cell it vanishes and its integral over the cell equals unity. Then we

express the mean density in the kth cell as

rk ¼ M

ð

d3x d3vWkðxÞf ðx;vÞ ¼ lim
N!1

M

N

X

N

i¼1

WkðxiÞ
f ðxi;viÞ

f sðxi;viÞ
:

ð4Þ

In a conventional N-body simulation, the initial conditions of the

particles are chosen with probability density f, so f s ¼ f initially.

Since f and fs are constant along orbits, the two functions remain

equal, and the sum in equation (4) reduces to the weighted number

of particles in the kth cell:

rk ¼ lim
N!1

M

N

X

N

i¼1

WkðxiÞ: ð5Þ

3.2 Cosmological N-body simulations

There is usually a significant difference between a cosmological

N-body simulation and the conventional paradigm just presented in

that in these simulations the initial conditions do not randomly

sample phase space with probability density f. The standard

procedure is to place the particles at rest at the nodes of a regular

lattice, and then to displace them slightly in position and velocity

according to the Zel’dovich approximation (Efstathiou et al. 1985).

In these circumstances, the density is given by the Jacobian of the

transformation from Lagrangian to Eulerian coordinates:

rðxÞ ¼ r0
›ðqÞ

›ðxÞ
; ð6Þ

where r0 is the mean cosmic density and q is the Lagrangian

coordinate. Consequently, the particles are at all times on a uniform

lattice in q-space. If the density has the band-limited form

r ¼
X

|k|,K

r̂k expðik : xÞ; ð7Þ

then it is straightforward to show that one can exactly recover 3N

Fourier amplitudes from the coordinates of N particles which are

distributed on a uniform lattice in q and a slightly distorted lattice

in x (Appendix A). By contrast, if we randomly sampled the

density field r(x) with N particles, and then tried to recover r from

the particle coordinates, the Fourier coefficients of the recovered

density would be significantly in error for larger values of |k|.

Once particles have moved far from their initial positions x ¼ q,

equation (6) ceases to be useful. We then argue that at very high

redshift, when the comoving distribution function was

f ðx; vÞ ¼ f 0dðvÞ, with f0 a constant, the particles uniformly

sampled f in the sense that they lay at rest on a uniform grid in x.

The constancy of f along orbits implies that the particles always

uniformly sample the part of phase space in which f – 0, and we

can estimate r from equation (5) as in a conventional N-body

simulation.

The fact that we have two fundamentally different ways of

determining density in a cosmological simulation is generally

obscured because Poisson’s equation is side-stepped in favour of

Poisson’s integral for the gravitational force,

FðxÞ ¼ 2GM

ð

d3x0 d3v0f ðx0;v0Þ
x2 x0

|x2 x0 |3=2
: ð8Þ

It is now assumed without detailed enquiry, that the particles are

distributed with probability density f, so that the integral can be

approximated as

FðxÞ ¼
GM

N

X

N

i¼1

Gðx2 xiÞ; ð9Þ

where in a naive application of the theory of Monte Carlo

integration the Green’s function G would be GðxÞ ¼ 2x/ |x|3=2. In

practice a more complex form of G is used because the integrand is

singular at x ¼ x0 and one wishes to avoid a large variance in the

estimates of the integral yielded by different random distributions

of points. Dehnen (2001) discusses the merits of various possible

forms of G that all satisfy the general requirement

GðxÞ!
2

x

|x|3=2
for |x| large;

0 for |x| ! 0 :

8

>

<

>

:

ð10Þ

Let e be the ‘softening’ radius within which G deviates

significantly from the inverse-square law. Cosmological simulators

generally consider that e should be as small as it can be, and in any

case less than the interparticle separation in the initial state. To our

knowledge the correctness of this proposition has not been

demonstrated in the literature. On the contrary, Knebe et al. (2000)

have shown that great care has to be taken when choosing the

softening length if unphysical two-particle scattering events are to

be avoided. The discussion above shows that there are really two

questions, namely, what value of e yields the best approximation to

the forces (i) at early times, when equation (6) is valid and (ii) in

the virialized regime when equation (5) applies? We have seen that

in the first regime the density field can be determined right down to

the scale of the interparticle separation. Hence, small values of e

are appropriate in this regime. In the virialized regime, the

fractional uncertainty in the density on the scale of a cell that

contains n particles is ,n 21/2. Hence, in this regime e should

exceed the interparticle separation by some factor. We determine

appropriate values of e below.

4 MLAPM’S POISSON SOLVER

MLAPM does not use a Green’s function to sum interparticle

forces, but estimates the density on an adaptive grid and then

employs a finite-difference approximation to solve Poisson’s

equation subject to periodic boundary conditions. The entire

computational domain is covered by a hierarchy of ‘domain grids’

that have 2n cells on a side. The finest domain grid has at least as
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many cells as there are particles in the simulation, and the coarsest

grid has two cells on a side. If the density in any cell is found to

exceed a density threshold, which corresponds to rref with one to

eight particles per cell, the cell is subdivided as described below.

Cells obtained on this subdivision can be further subdivided, and so

on indefinitely. This subdivision process, which can generate grids

of arbitrary geometry, is described in more detail in Section 4.2.

To define and navigate such complex grids, several data struc-

tures are required, which we now describe. The general scheme

closely follows the precepts of Brandt (1977). Functions are

provided both for the creation and destruction of these structures.

With each cell we associate a data structure called a ‘node’,

which stores the values for the centre of the cell of dynamically

interesting quantities:

density

NODE potential

forces

pointer to first particle

Since there will be more nodes than particles, they need to be

defined in a way that minimizes memory requirements. Moreover,

so far as possible, we arrange for nodes that are adjacent physically

to occupy adjacent locations in computer memory. This has the

dual advantage of minimizing cache misses and of enabling

neighbours to be found by incrementing or decrementing pointers.

Hence we do not follow Kravtsov et al. (1997) in arranging nodes

as fully-threaded oct-trees. Instead we gather nodes into xQUADs.

An xQUAD is a line of nodes that follow each other parallel to the

x-axis. With it we associate these numbers:

pointer to first node

xQUAD x-coordinate of the first node

number of nodes

pointer to next xQUAD

Since the memory for the nodes described by this QUAD is

allocated as one block, this information is sufficient to access

directly any node in the QUAD and to determine its x-coordinate.

The pointer to the next xQUAD similarly enables one to reach

nodes further down the axis in a few steps.

Just as nodes are gathered into xQUADs, so xQUADs are

gathered into yQUADs. Thus a yQUAD is a series of contiguous

xQUADs and gives one access to a plane2 of nodes. With a yQUAD

we associate these numbers:

(i) pointer to first xQUAD

yQUAD (ii) y-coordinate of first xQUAD

(iii) length of yQUAD

(iv) pointer to next yQUAD

A zQUAD is a similar linked list of yQUADs, so it contains these

numbers:

(i) pointer to first yQUAD

zQUAD (ii) z-coordinate of first yQUAD

(iii) length of zQUAD

(iv) pointer to next zQUAD

Fig. 1 indicates how a two-dimensional, adaptive grid is organized

using QUADs. All (virtual) nodes of a grid are shown, with the

nodes in use (refined region) represented by filled circles. Memory

is assigned only for these nodes (and the supporting QUAD

structures). As soon as a node is encountered that does not need to

be refined, the xQUAD stops and its ‘next’-pointer is set to the next

xQUAD; if this is the last xQUAD, the pointer is set to NULL. The

same scheme applies to the relation between xQUADs and

yQUADs, and to the relation between yQUADs and zQUADs. In

particular, when a series of xQUADs is contiguous in the sense that

there is at least one xQUAD for every value of y in some range, the

storage for the xQUADs with the smallest x-coordinates at each y is

2Brandt calls a yQUAD a CQUAD.

Figure 1.QUAD structured grid used within MLAPM sketched for two dimensions. Circles mark nodes, open ones being virtual. QUADs are indicated by lists

in brackets.
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allocated in a block. Similarly, storage for contiguous yQUADs

with the smallest y-coordinates at given z is allocated in a block.

Computation of the forces involves several sweeps through the

nodes. In each such sweep one loops through the linked list of all

zQUADs to locate each yQUAD, and within each yQUAD one runs

through the list of xQUADs, and within each xQUAD one runs

through the list of nodes. Consequently, when referencing a node

one always knows which xQUAD, yQUAD and zQUAD it lies in.

This information and the coherent storage of adjacent xQUADs and

yQUADs allows one to find neighbours as follows. For example,

suppose we want to find the neighbour that has y smaller by a grid

spacing. Then we decrement by one the current value of the pointer

in the loop over xQUADs to locate the xQUAD nearest the y-axis at

the required value of y. Then we loop over the list of xQUADs at

whose head this QUAD stands, until we find the xQUAD that

contains the neighbour we are seeking.

The highest-level structure in MLAPM is a GRID. This gathers

together a variety of information about a particular level of

refinement:

(i) pointer to first zQUAD

(ii) number of nodes per dimension

(iii) distance between adjacent nodes

GRID (iv) critical density

(v) mass to density conversion factor

(vi) residuals

(vii) cosmic expansion factor

…

The crucial entries in this structure are the pointer to the first

zQUAD and the number of (virtual) nodes. However, additional

useful bookkeeping data is stored here, such as the grid spacing,

and the critical density for refinement. The roles of several of these

quantities will become clear later.

The data structure associated with a particle is this:

(i) position

PARTICLE (ii) momentum

(iii) pointer to next particle

Each particle is assigned to a node, usually the finest node that

contains it. The list of particles of a node is maintained as a

standard linked list. These linked lists are sorted with respect to the

x-coordinate.

4.1 Memory requirements

Since cosmological simulations are often limited by available

memory rather than processor time, it is important to keep track of

memory requirements. Here we assume that each floating-point

number requires one word of storage (usually 4 bytes) and each

pointer two words.

The storage requirement is dominated by particles, which

require eight words each, and nodes, which require seven words

each. If the finest domain grid has 2L nodes on a side, between them

the domain grids contain 23L 1…1 26 ¼ 8
7
ð23L 2 8Þ nodes and

thus require almost exactly the same number of words ð23ðL11ÞÞ as

do 23L particles.

Each QUAD requires just six words of storage and there are very

many fewer quads than nodes, so their storage requirement is

unimportant.

4.2 Refinements

A node is refined if its density exceeds a predetermined threshold

that varies from grid to grid, and de-refined whenever it falls below

that value. However, around each high-density region some

additional nodes are refined, to provide a ‘buffer zone’. These

buffer zones ensure that the resolution of the grid changes only

gradually even if the density is discontinuous. In detail, a node is

refined if either its density, or the density of any of the 26

surrounding nodes exceeds the density threshold. Consequently, as

MLAPM marches through the grid deciding whether to refine

nodes, it is continually testing the density of nodes that lie ahead of

its current position, since the current node must be refined if any of

them lie above the density threshold. Careful programming is

required to avoid wasting time by testing nodes twice. Notice that a

refined node such as that shown in the centre of Fig. 2 can be called

into existence by virtue of the coarse node to its right or to its left

exceeding the density threshold, so we do not speak of ‘parent’ and

‘child’ nodes.

An important difference between our refinement scheme and

that of the ART code is that some of our refined nodes are cospatial

with coarse nodes (see Appendix B), whereas in the ART code all

refined nodes are symmetrically distributed within the parent

coarse node. Our refinement scheme is the natural one to adopt if

one is simply solving partial differential equations. When particles

are involved, it does lead to additional complexity, however,

because with our scheme refined nodes that are not cospatial with

coarse nodes, we have cells that overlap the cells of more than one

coarse node – see Fig. 2.

The edges of refinements always include cospatial nodes of the

parent grid (e.g. Appendix B). Nodes that lie on the boundary of a

refinement have a different role from ones in the interior. First they

carry the boundary conditions subject to which Poisson’s equation

is solved in the interior of the refined grid. That is, the potential on

a refinement’s boundary nodes is obtained by interpolation from

the embedding coarse grid and held constant as the potential at

interior points is adjusted towards a solution of Poisson’s equation

as described in Section 4.4. The second role of boundary nodes is to

carry values used in the determination of the forces on particles in

the refinement – the determination of these forces involves both

numerical differentiation and interpolation.

4.3 Particle assignment

Generally, each particle is placed in the linked list of the finest node

within whose cell it lies. Exceptions to this rule occur when a

particle enters a refinement during a call to STEP (see Section 6)

and on the boundaries of refinements, where refined nodes exist

only to provide values of the potential and forces. These nodes do

not acquire particles.

Figure 2. Fine-grid cells often overlap more than one coarse-grid cell.

Consequently, the fine-grid node at the centre may owe its existence to

either of the two coarse-grid nodes exceeding the density threshold.

fine grid nodes:

coarse grid nodes:

MLAPM: a C code for cosmological simulations 849
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After testing the nearest-grid-point (NGP), cloud-in-cell (CIC)

and triangular-shaped-cloud (TSC) mass-assignment schemes

(Hockney & Eastwood 1988) we adopted the TSC mass-

assignment scheme. In both the CIC and TSC schemes a particle

contributes to the density in more than one node. Particular care

has to be exercised at the edges of refinements if the integral of the

density is to equal the total mass of the particles.

A particle in the interior of a refinement only contributes to the

density at refined nodes. When the density at cospatial coarse

nodes is required, it is set equal to a weighted mean of the densities

on a number of nearby fine nodes. Brandt (1977) calls this the

operation of taking a weighted mean ‘restriction’. The operator that

accomplishes it has to be matched to the mass-assignment scheme,

so that one obtains the same coarse-grid densities by restriction

from a fine grid as one would have obtained if there had been no

refinement and particles had been assigned to the coarse grid.

The restriction operator is also matched to an interpolation

operator that is used to estimate quantities on a fine grid from their

values on the embedding coarse grid. Brandt calls this the

‘prolongation’ operator. The matching is such that if values are

prolonged from coarse to fine and then restricted back to the coarse

grid, they do not change.

Intricate bookkeeping is required when particles are transferred

between grids on the creation of a refinement – some details are

given in Appendix B.

4.4 Relaxation procedure

Poisson’s equation is solved using a variant of the multigrid

technique (Brandt 1977; Press et al. 1992). In essence one relaxes a

trial potential to an approximate solution of Poisson’s equation by

repeatedly updating the potential according to

Fi;j;k ¼
1
6
ðFi11;j;k 1Fi21;j;k 1Fi;j11;k 1Fi;j21;k 1Fi;j;k11

1Fi;j;k21 2 ri;j;kD
2
Þ; ð11Þ

where D is the grid spacing. There are several possible orderings of

the points (i, j, k) at which these updates are made. We use ‘red-

black’ ordering, so called because it involves first updating F on

every other node on the grid, as on the red squares of a chess board,

and then updating the other half of the nodes, equivalent to the

black squares on a chess board.

This algorithm rapidly eliminates errors in the trial potential

which fluctuate on the scale of the grid, but eliminates errors with

longer-range fluctuations much more slowly. The multigrid

technique involves using a coarser grid to seek a correction in

the event that convergence is slow.

We start the iteration process on the finest domain grid, usually

with the potential from the last time-step. This is iterated to

convergence, if necessary with use of the coarser grids. (On the

coarsest, 23, grid the difference equations are solved analytically.)

Once we have a solution on the domain grid, we prolong it to any

refinements and iterate on the refinements. Each refinement poses

an independent boundary-value problem. In general these

problems cannot be posed on a coarser grid because the boundary

includes nodes not present on the coarser grid. Hence we are

obliged to iterate to convergence on the refinements alone.

Fortunately, the trial potential only deviates from the true one on

the finest scales because it is obtained by prolongation of a coarse-

grid solution of the same problem. So convergence is in practice

rapid. Any further refinements are handled in the same way.

The potential on any grid is deemed to have converged when the

residual,

e ¼ 72F2 r; ð12Þ

is smaller than a fraction,,0.1, of the estimated truncation error t.

We estimate the latter as

t ¼ ‘½72
ðRFÞ�2 ð72FÞ; ð13Þ

where ‘ and R are the prolongation and restriction operators,

respectively. Thus, t is essentially the difference between

evaluating the Laplacian operator on the next coarser grid and on

the current grid.

Forces at each node are evaluated from centred differences of the

potential and propagated to the locations of particles by the TSC

scheme to ensure exact momentum conservation within any given

refinement (Hockney & Eastwood 1988). As in any code with

adaptive softening, momentum is not precisely conserved when

refinements are used. In Section 5.1.3 below we quantify this

problem in two specimen configurations.

5 PERFORMANCE OF THE POISSON SOLVER

The writers of N-body codes traditionally check the accuracy of

their Poisson solver by using it to calculate the force between two

point masses at various separations. In our view this test is

misguided because a Poisson solver that is adapted to the solution

of the collisionless Boltzmann equation should not return the force

between point particles. At some level this fact is widely

recognized in that a ‘softened’ interparticle force is aimed at, but

isotropy of the interparticle force is still considered desirable. A

Poisson solver for collisionless dynamics is concerned with finding

the forces generated by smoothmass distributions. A single particle

corresponds to a mass distribution that is unresolved on any

smoothing scale, and thus one that falls outside its remit. Presented

with this ill-posed problem, the best it can do is to assume that the

density is non-zero in the cells around the particle, and zero

elsewhere. Inevitably, this mass distribution reflects the geometry

of the code’s cells, and it will not generate an isotropic

gravitational field.

When testing a Poisson solver we should check its ability to

recover the potential of density distributions of the type that it will

encounter in the field. We have tested our code by comparing with

analytic results the forces it generates for (a) a Hernquist model and

(b) a plane wave.

5.1 Hernquist model

We check the reliability of our refinement procedure and

investigate the origin of errors in the force by sampling a

Hernquist model, in which the density varies with radius as

rðrÞ ¼
Mr0

2p

1

rðr0 1 rÞ3
: ð14Þ

The scale length r0 of the Hernquist model was set equal to 1
16
of the

box size, and we calculated the potential with a domain grid 32

nodes on a side. The model was truncated at a radius of 16 grid

nodes and a uniform background density was added to make the

mean density within the box equal to a predetermined cosmic

value; in practice about 3/7 of all particles were associated with the

background. Our analytic calculations of the force do not include

contributions coming from outside the box, where the periodic
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boundary conditions ensure that there are infinitely many other

Hernquist models.

5.1.1 Refinement hierarchy

Fig. 3 gives a visual impression of our refinement hierarchy at work

by showing the distribution of particles according to a Hernquist

model sampled with 323 particles, and the threshold for refining

nodes was set to rref ¼ 8 particles per node. Refinements are

shown down to the level of 5123 (virtual) nodes. One can clearly

see how the grid structure adapts to the actual particle/density

distribution. Successively more accurate solutions to Poisson’s

equation are achieved within regions of higher density, where

better force resolution is required to follow properly the particle

dynamics.

5.1.2 Density estimates

It is important to know how accurately one can recover the density

within a structure from the positions of particles that randomly

sample it. The standard theorem of Monte Carlo integration states

that

�rðrÞ;

ð

d3r0Wðr2 r0Þrðr0Þ ¼ lim
N!1

M

N

X

N

a¼1

Wðr2 raÞ; ð15Þ

where the ra are positions distributed with probability density

proportional to r(r). Applying this result to the case when

Wðr2 ra) is the fraction of the mass of a particle at ra that is

assigned to a node at r, we see that in the limit of infinitely many

particles, the values of the density on the grid are not those of the

input density r but its convolution r̄ with the mass-assignment

kernel W. Moreover, if we use the same mass-assignment scheme

to interpolate these values back to positions that are not on the grid,

we recover

�r
�
ðrÞ;

X

nodes i

Wðr2 riÞ �rðriÞ; ð16Þ

which is a discrete approximation to the convolution of r̄ with the

mass-assignment kernel. Hence, we expect density values

recovered from the code to reflect not the input density but its

double convolution with the mass-assignment kernel.

Fig. 4 shows that this expectation is borne out by showing four

attempts to recover the density of the Hernquist sphere from the

positions of either 323 particles (left-hand panels) or 643 particles

(right-hand panels). In each case the recovered densities scatter

around the result of doubly convolving the input density

distribution with the TSC kernel for a grid with from 512 to

4096 nodes on a side. Increasing the particle number by a factor of

8 causes finer grids to be generated, and thus enables the model’s

r 21 core to be traced further in. On the other hand, the variance in

the estimated densities is not decreased by an increase in particle

number. The upper panels show the result of refining nodes at a

lower density threshold ðrref ¼ 2 particles per node) than the lower

ones ðrref ¼ 8 particles per node). The reduction in variance and

loss of resolution caused by an increase in the density threshold are

evident. Also evident in the lower right panel is the increase in the

variance as the edge of each grid is approached; at the outside of a

grid the number of particles per node is smallest, and the variance

correspondingly high.

Fig. 5 shows that lowering the critical density for refinement

from eight to two particles per node does increase the maximum

spatial resolution, but at considerable computational cost. Whereas

with rref ¼ 8 the ratio nnode/npart ¼ 0:75 (for 643 particles), this

ratio rises to 3 when rref ¼ 2. A node has a greater computational

cost than a particle and it is less useful scientifically. Resources

spent on lowering rref would be better spent increasing the number

of particles.

In all four realizations the vast majority of nodes belong to

the grids with less than 256 nodes on a side. Figs 4 and 6

below show that on these scales little is gained by using a low

value of rref – the gains from lowering rref are concentrated at

small radii and derive from grids that contain small numbers of

nodes and particles. In fact the numbers of nodes in the 40963

grid in the top-right panels of Figs 4 and 6 are so small that

they cannot be seen in Fig. 5. These findings suggest that

significant gains in efficiency could be obtained by basing the

refinement criterion on the truncation error in the forces rather

than on the density. However, implementing this proposal is a

job for the future.

5.1.3 Force estimates

Fig. 6 is similar to Fig. 4 but for the estimated gravitational field F

of the Hernquist model. Again left panels show results obtained

with 323 particles and right panels show results for 643 particles,

and the upper and lower panels are for rcrit ¼ 2 and 8 particles per

node, respectively. In each panel the dotted curves show the loci

yðrÞ ¼ ^½ �NðrÞ�21=2, where N̄(r) is the expected number of particles
Figure 3. Refinement structure for a Hernquist model sampled by 323

particles and using rref ¼ 8 particles per node.
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interior to r. These curves show the minimum variance from

Poisson noise: the true variance will be larger because density

fluctuations are not constrained to be spherically symmetric. The

full curve shows the difference between the analytic and numerical

values of Fx as a function of radius along the x-axis, while the short

dashed curve shows the same quantity along the line (1,1,1). These

two curves agree with one another to within the anticipated Poisson

errors, which shows that grid-generated anisotropy is not a

problem. The long-dashed curves show the error expected because

even in the limit of infinitely many particles the mass-assignment

scheme recovers not the true density but its double convolution

with the mass-assignment kernel. It is evident that the variance and

Figure 4. Recovery of the density profile of a Hernquist model from particle positions. For the left panels 323 particles sampled a Hernquist profile, shown as

the upper curve, with scale radius 1
16
of the box size and outer cut-off half the box size, L. For the right panels 643 particles sampled the same profile. For all

panels the domain grid had 32 nodes on a side. For the upper panels a node was refined if its density exceeded two particles per node, while for the lower panels

the refinement threshold was eight particles per node. The tick marks along the top show the sizes of cells of grids with 4098, 2048, …, nodes on a side. The

lower curves show the effect of doubly convolving the Hernquist profile with the TSC mass-assignment kernel. In the lower left panel, a small number of

particles lie above the main mass near r/L ¼ 0:001. This phenomenon reflects the creation of a small refinement centred on the region of maximum density,

which Poisson noise has displaced slightly from the centre of the probability distribution ðr ¼ 0Þ. In most realizations this feature is absent.

Figure 5. The distribution of particles and nodes over grids in the realizations of a Hernquist sphere shown in Fig. 4. Full histograms: the numbers of particles in

each grid. Hatched histograms: the numbers of nodes in each grid. The normalization Npart equals 32
3 or 643 rather than the actual number of particles in the

simulation, which is slightly larger, as explained in the text.
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the bias in the forces are fully accounted for by Poisson noise and

smoothing by the mass-assignment kernel.

This conclusion is confirmed by a test in which the analytic

value of the density was placed on every node before solving for

the forces: on grid nodes the resulting forces agreed with the

analytic ones to better than 0.2 per cent at all points, and to better

than 0.05 per cent further from the centre than 2D for the finest

grid.

The discussion above can be summarized by saying that the

errors in the forces are dominated by uncertainty in the density. The

latter is made up of a systematic bias owing to any unresolved core,

and variance owing to Poisson noise. Increasing the particle

number at fixed rref decreases the bias while holding the variance

constant. Increasing the threshold density rref diminishes the

variance and increases the bias. Fig. 7 quantifies this last statement

by plotting the bias in the force from the left two panels of Fig. 6 as

dashed curves, and the rms variation in the force between different

realizations of the models as full curves. The latter decline

outwards as the potential fluctuations caused by local density

fluctuations, which are always of order (rref)
21/2 times the local

density, are increasingly swamped by the barely changing mean

inward pull of the model. This dilution of the effects of density

fluctuations is more marked in more massive systems, and less

marked in less massive ones. Since all haloes start out as small

systems, we cannot rely on dilution of fluctuations to make our

simulations credible. We have to recognize from Fig. 7 that the

uncertainty in the forces can be reduced only by increasing rref, and

thus reducing the simulation’s spatial resolution. In particular, the

introduction of a particle–particle step to harden the interparticle

forces at small separations would be analogous to lowering rref and

therefore increasing the Poisson noise. We shall see in Section 5.2

below that our interparticle force has a softening length of order

2D, or about four times the interparticle separation when rref ¼ 8.

Simulations with both P3M and tree codes typically employ

softening lengths which are substantially smaller than the initial

interparticle separation. Such small softening lengths are used

because in these codes the softening length is fixed in either

physical or comoving coordinates, so a small, and initially

inappropriate value is required if high-density regions are to be

adequately resolved once they have collapsed and virialized. With

our method the softening length automatically adapts to some

multiple of the local interparticle separation.

Fig. 7 suggests that the smallest permissible value of rref is eight

particles per node, which restricts fluctuations in forces near the

centres of structure to the 20–30 per cent level. The range of radii

over which we have a reasonable representation of the underlying

model, runs outwards roughly from the radius at which the bias

falls below the variance. From Fig. 7 we see that with 323 particles

the range is r . 0:005L, and in this range the forces are accurate to

better than 10 per cent. With more particles the range would have a

smaller lower limit, but the maximum uncertainty in the forces

would increase towards ,25 per cent in the limit of very large N.

As explained at the end of Section 4.4, the sum of all the forces

on the particles cannot be expected to vanish since our softening is

adaptive. Quantitatively, for 643 particles and rref ¼ 2 particles per

node, we find

X

i

Fi

�

�

�

�

�

�

�

�

�

�

¼ 1:4 � 1024
X

i

|Fi|: ð17Þ

When the same number of particles are distributed in a complex

clustering pattern which evolved from realistic cosmological

simulation, the coefficient in this equation was 4:7 � 1024. In the

absence of refinements, the coefficient was 2:7 � 1027, and thus

zero to the precision of a floating-point variable.

Figure 6. For the Hernquist model described in the text, the fractional difference between the values returned by MLAPM and obtained analytically for the

x-component of the force. Distance from the centre of the sphere is plotted horizontally. The full curve is for values along the x-axis, while the short dashed

curve is for values along the 111 direction relative to the axes. The upper panels are obtained when the critical density for refinement, rref, corresponds to two

particles per node, while the lower panels correspond to eight particles per node.

MLAPM: a C code for cosmological simulations 853

q 2001 RAS, MNRAS 325, 845–864



5.2 Zel’dovich waves

We now turn from virialized structures, to explore the

performance of MLAPM before such structures form. Specifically,

we compare the forces it generates with analytic results for plane

waves.

Let r be Eulerian coordinates and q Lagrangian coordinates for

an ensemble of particles that are uniformly distributed in q-space.

Then for a(t), a suitable function of time which increases from zero

to unity, the mapping

r ¼ q1
ak

k 2
cosðk : qÞ ð18Þ

with k a constant vector, generates a density field in r-space which

provides an exact solution for the development of a plane-wave

cosmological perturbation in a flat universe (Zel’dovich 1970). The

corresponding forces are readily obtained by differentiating r twice

with respect to time.

Fig. 8 explores the ability of a simple PM code to recover the

forces generated by Zel’dovich waves with two values of k and

a ¼ 0:9. In every panel, the forces are recovered from the positions

of 323 particles. As one passes from left to right the number of

nodes on a side of the grid rises from 32 to 256. With as many

nodes as particles the forces are slightly in error for the longer wave

and seriously in error for the shorter one. When there are eight

times as many nodes as particles, the forces are reasonably accurate

for both waves. With yet larger numbers of nodes unphysical force

spikes either side of the plane on which the wave will break. One

may readily demonstrate that these spikes arise because particles

approach each other very closely as the wave breaks, and with a

hard particle–particle interaction the overall force on a particle can

be dominated by the contribution from a single neighbour. In the

case of the shorter wave, the unphysical spikes make nonsense of

the returned potential. This experiment nicely demonstrates the

importance of tuning the softening of the potential to the resolution

limit which is inherent in the number of particles.

Fig. 9 shows the density (top) and forces (bottom) that MLAPM

Figure 8. Forces from a pure PM code of Zel’dovich waves described by equation (18) with a ¼ 0:9. In the top row k ¼ ð4p/L; 0; 0Þ and in the bottom row

k ¼ ð18p/L; 0; 0Þ. In every panel the wave is sampled with 323 particles, and the grid has 32, 64 and 256 nodes on a side as one runs from left to right. Analytic

forces are marked by squares and numerical ones by triangles.

Figure 7. Bias and variance with two values of rref. The dashed curves show

the relative error in the force of the Hernquist sphere that arises because the

density is twice convolved with the mass-assignment kernel. The full curves

show the rms variation in the force between different realizations of the

system. All curves are for the case of 323 particles except the second full

curve in the lower panel, which is for 643 particles. (It is on top at r ,

0:001L:Þ
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generates with 323 particles, a domain grid which has 32 nodes on a

side and three values of the threshold density rref. The most

accurate forces are obtained with rref ¼ 1 particle per node. Lower

values again generate unphysical force spikes. Fig. 10 shows that

an AP3M code also generates force spikes if the softening

parameter is smaller than the interparticle separation.

To produce the results shown in Fig. 9 for rref ¼ 1 particle per

node, MLAPM refines most nodes of the domain grid once and

none twice. Consequently, there are 7.4 nodes per particle, only

slightly less than if we had started with a domain grid eight times

larger and rref chosen to avoid refinement. We therefore have two

strategies for obtaining adequate resolution in unvirialized regions.

In one strategy, the domain grid has as many nodes as there are

particles but we set rref on the domain grid to a small enough value

that it is essentially all refined. Strictly we should ensure that the

domain grid remains refined even in voids until the density has

fallen to , �r=8, and this requires rref . 0:25 particles per node. In

practice such small values of rref will be useful only at very late

stages of a simulation, because the second strategy is more

economical so long as the value of rref chosen under the first causes

the whole domain grid to be refined. In the second strategy, one

starts with a domain grid that has eight times as many nodes as

particles, and sets rref ¼ 8 on it because it provides adequate

resolution until virialized structures form. With many PM and P3M

codes, including the ART code, it is standard practice (but not

mandatory) to use such a large domain grid. In certain

circumstances this second strategy may be impossible on a given

machine for a given number of particles. Then the first strategy can

be adopted with rref set to the lowest value that is compatible with

the available hardware. So long as rref is comparable to or smaller

Figure 9. The density (top) and forces (bottom) of a Zel’dovich wave with k ¼ ð18p/L; 0; 0Þ recovered by MLAPM from the positions of 323 particles. The

domain grid has 32 nodes on a side. As in Fig. 8, analytic values are marked by squares and numerical ones by triangles.

Figure 10. As Fig. 9 but showing forces recovered by Couchman’s AP3M code using a grid with as many (323) nodes as particles for three values of the force

softening.
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than unity, our experiments suggest that the correlation function

and mass functions obtained differ insignificantly from those

obtained with the second strategy (see Figs 15 to 17 later).

Why is the optimal value of rref for Zel’dovich waves so much

lower than that appropriate for virialized structures? Why are

Zel’dovich waves best represented when 7/8 of the nodes are

empty, and the remainder contain only one particle? There are two

points to consider. (i) The TSC mass-assignment algorithm

distributes the mass of a particle over 27 nodes, so a node may be

empty and yet have non-zero density. (ii) A distribution of particles

placed on a Zel’dovich distorted grid differs markedly from the

particle distribution of a virialized body in that its underlying

density field is uniquely defined by the particles (Appendix A).

Hence, at early times the density field in a cosmological

simulation is defined up to the scale of the interparticle

separation. Since the matter distribution is represented by particles,

there is a great deal of artificial power on smaller scales, but this

power is rather cleanly separated from the lower-frequency power

which represents real cosmic fluctuations. As density gradients

steepen gravitationally, this separation becomes less clean, and it

breaks down completely with the formation of caustics and

virialized structures. Consequently, in virialized regions the density

field is dominated by Poisson noise at the scale of the interparticle

separation.

6 INTEGRATING THE EQUATIONS OF

MOTION

We now turn from the Poisson solver to consideration of how

particles are moved.

6.1 Time-stepping

The Lagrangian for motion in comoving coordinates is

L ¼
1

2
a 2

_x 2 2
F

a
; ð19Þ

so the canonical momentum is

p ¼ a 2
_x; ð20Þ

and the Hamiltonian is

H ¼
p 2

2a 2
1

F

a
: ð21Þ

Hamilton’s equations are therefore

dx

dt
¼

p

a 2
;

dp

dt
¼ 2

7F

a

ð22Þ

We integrate these equations with a minor variant of the usual

symplectic scheme of second-order accuracy

xn11=2 ¼ xn 1 pn

ðt1Dt/2

t

dt

a 2
;

pn11 ¼ pn 2 7Fðxn11=2Þ

ðt1Dt

t

dt

a
; ð23Þ

xn11 ¼ xn11=2 1 pn11

ðt1Dt

t1Dt/2

dt

a 2
;

where the integrals can be evaluated analytically because they

depend only on the cosmology. The implementation of

multiple time-steps described below requires that positions

and momenta be synchronized at the start and end of each

time-step, so we do not form the standard leapfrog scheme by

combining the drift steps which start and finish the above sequence

of updates.

On finer grids forces tend to be larger, and the time it takes a

particle to cross a cell is shorter. Hence shorter time-steps are

appropriate for finer grids. Our time-stepping routine, STEP, is

called recursively. It takes as arguments a grid, G, and a time

interval, D. STEP starts by asking whether any part of the grid G

should be refined. If the answer is ‘no’ it uses equations (23) to

advance the particles onG by D and then returns. If refinement is in

order, a refined gridG0 is created and STEP(D/2,G0) called. That is,

the particles on G0 are advanced by D/2 with the particles on G still

at the initial time. Once G0 has been advanced in this way, STEP

uses equations (23) to advance the particles still on G by D, and

then calls STEP(D/2,G0). STEP then erases G0 and returns. This

scheme is sketched by the following pseudo C-code:

Step(dt, CurrentGrid){

NewGrid ¼ Refine(CurrentGrid);

if (NewGrid){

Step(dt/2, NewGrid);}

MoveParticles(dt, CurrentGrid);

if (NewGrid){

Step(dt/2, NewGrid);

Destroy(NewGrid);}}

Fig. 11 summarizes this sequence of operations, which was

proposed by Quinn et al. (1997). Whereas the coarse-grid time-step

involves accelerations calculated with all particles at the half-time

point, the two fine-grid steps involve accelerations calculated when

the coarse-grid particles are first D/4 behind the fine-grid ones, and

then ahead of them by the same amount. The principle of the

scheme is that errors arising from these lags cancel through second

order in D.

STEP is first called on the finest domain grid with a rather

large value of D. Through the recursive principle this call

invokes calls on finer and finer grids with smaller and smaller

vales of D until a grid is reached that requires no refinement, and

it is advanced, so that the grid above can be advanced, and so

on. Since refinements are destroyed after particles on them have

been moved just twice, they always faithfully reflect the particle

distribution.

The harmony of the above scheme is unfortunately marred by

particles that leave the refinement from which they started before

STEP has finished. Such departures cannot be ignored because a

particle cannot continue to contribute to the density once it is

outside the grid to which it is attached. Consider first particles that

leave their refinement at any time up to the end of ‘1. fine-grid step’

in Fig. 11. We set the positions and velocities of such particles back

to the values they had at tn and transfer them to the coarse grid as

soon as they try to leave the refinement (which may be at tn11=4 or

at tn11=2Þ. Hence, a particle moves with a fine-grid time-step only if

it both begins and finishes such a fine-grid step within the

refinement. Particles that leave the refinement at tn13=4 during ‘3.

fine-grid step’ in Fig. 11 are treated differently: such particles are

immediately transferred to the coarse grid and added to the

refinement’s list of ‘leavers’. The forces are then evaluated at

tn13=4, and the velocities and positions of leavers are updated in

parallel with the coordinates of particles that remained on the

refinement. Since the refinement is destroyed at tn11, no
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significance attaches to a particle leaving the refinement as its

position is updated to tn11.

No special action is taken when a particle enters the space

occupied by a refinement during a call to STEP; the particle

remains linked to a coarse-grid node which has been refined,

and contributes to the density on both the coarse grid and its

refinement with the spatial resolution characteristic of the

coarse grid. (For a discussion of how particles attached to a

coarse grid contribute to the density on a refinement, see

Appendix B.)

The time-steps are sufficiently short that the movement of

particles on grid n cannot change the density on grids n2 2 and

higher. Consequently, drifting and kicking the particles on grid n

only requires mass assignment and relaxation of the potential to be

performed on grids n2 1 and n, so time-steps for the relatively

small number of particles on the finest grids are computationally

inexpensive.

6.2 Internal units

Let H0 be the present Hubble constant, B the present size of the

computational box and r̄ the mean matter density. The code uses

the dimensionless variables

xc ¼ x/B;

pc ¼ p/H0B;

tc ¼ tH0;

Fc ¼ FH2
0B

2;

rc ¼ r/ �r:

ð24Þ

In terms of these variables, the equations to be solved are

dxc

dtc
¼

pc

a 2
; ð25Þ

dpc

dtc
¼ 2

7Fc

a
;

7cFc ¼
3VM

2
ðrc 2 1Þ:

6.3 Dynamical evolution of Zel’dovich waves

In Section 5.2 we checked the accuracy of our Poisson solver. Here

we check our time-stepping scheme by investigating its ability to

reproduce the analytic solution for the breaking of a one-

dimensional plane wave (Klypin & Shandarin 1983; Efstathiou

et al. 1985). Since the initial conditions of a general cosmological

simulation are a superposition of such waves, the ability to follow

the evolution of a plane wave is a crucial test of the code.

We have used MLAPM with rref ¼ 1 particle per node and

Couchman’s (1991) AP3M code with e ¼ D with 323 particles on a

323 domain grid to integrate the Zel’dovich wave from the initial

conditions that are given by equation (18) and its counterpart for

the momenta

p ¼
_a 3=2k

k 2
cosðk : qÞ: ð26Þ

Waves with three different values of k were evolved with 200 time-

steps on the domain grid from a ¼ 0:1 until a ¼ 1, when they

break. We quantify the differences between the numerical and

analytical solutions by evaluating the rms deviations (Efstathiou

et al. 1985)

Dxrms ¼
X

i

ðxi 2 xai Þ
2/
X

i

ðxai 2 qiÞ
2

" #1=2

;

Dvrms ¼
X

i

ðvi 2 vai Þ
2/
X

i

ðvai Þ
2

" #1=2

;

ð27Þ

where the superscript ‘a’ denotes the analytical solution (equations

18 and 26). For each value of k Table 1 shows errors from four

calculations. The first and second rows show the overall errors

from AP3M and MLAPM. These are broadly comparable. The

MLAPM errors contain three contributions: (i) errors in the values

of the forces at grid points; (ii) errors in the interpolation of these

forces to the locations of particles; (iii) errors in updating of

positions and momenta given the forces. The bottom row in Table 1

shows that this last source of error is insignificant by showing the

errors one obtains when the force applied to each particle is the

analytic value at its location. The penultimate row shows the much

larger errors obtained when analytic forces are placed on the grid

points: evidently interpolation is a significant source of error. Since

the interpolation errors are of order a third of the overall errors

shown in the second row, there is a suggestion that we are

determining the density and then solving Poisson’s equation as

accurately as is profitable given the coarseness of our grid.

7 LCDM SIMULATIONS

In this section we explore the performance of MLAPM when used

to generate a realistic simulation.

Table 1. RMS errors in the positions (Dxrms) and velocities (Dvrms) of
323 particles as defined by equation (27) for AP3M with e ¼ D and
MLAPM with a 323 domain grid and rref ¼ 1 particle per node.

simulation kL/2p ¼ 1 kL/2p ¼ 2 kL/2p ¼ 9
Dx Dv Dx Dv Dx Dv

AP3M 0.006 0.028 0.018 0.061 0.116 0.265
MLAPM 0.016 0.034 0.015 0.063 0.055 0.634
MLAPM(A1) 0.002 0.012 0.003 0.026 0.011 0.193
MLAPM(A2) 0.003 0.006 0.004 0.006 0.001 0.006

Figure 11. The principle of the recursive time-stepping scheme in the case

that part of the grid being operated on requires refinement. The fine-grid

steps 1 and 3 are accomplished by calling the full stepping routine again and

will typically involve further grid refinements. The coarse-grid step 2

involves updating particles not previously moved with the forces calculated

with all particles advanced to the half-time point.

n n+1n+1/2

1.

fine grid step fine grid step

3.

2.

coarse grid step

t t t
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7.1 Simulation parameters

We present data for simulations run with MLAPM, ART (Kravtsov

et al. 1997), GADGET (Springel, Yoshida & White 2000) and the

AP3M code (Couchman 1991). All six simulations contained 643

particles distributed through a box 15 h 21Mpc on a side. The

simulations started from redshift z ¼ 25 with aLCDM spectrum of

fluctuations. Table 2 lists the parameters employed in the ART,

AP3M and GADGET simulations, while Table 3 gives the

parameters of the three MLAPM runs. By their end-points, all

MLAPM simulations had nodes associated with grids of 40963

virtual nodes, which agrees with the finest refinement level reached

in the ART run (level 5).

The parameters given in the first row of Table 3 are chosen to

mimic the behaviour of the ART code as closely as possible; ART

is similar to MLAPM in many ways as both codes are purely grid

based. They both use a regular domain grid covering the whole

computational volume, and sequentially refine patches of high

density with finer and finer refinement grids of arbitrary shape. The

equations of motion are integrated using a multiple time-stepping

scheme which employs half the time-step of the previous level on

every given refinement. However there are subtle differences, too.

The first, most obvious difference is the way the solution is

obtained on the finest domain grid: ART uses a finite Fourier

Transform (FFT) solver whereas MLAPM utilizes Brandt’s

multigrid scheme (Brandt 1977). Moreover, MLAPM uses the

TSC mass assignment scheme in contrast to the CIC scheme

applied by ART. The equations of motion in the ART code are

integrated using the expansion factor a as the integration variable,

which was also applied to MLAPM’s ‘run a’ to make those two

runs as similar as possible. Two other MLAPM runs (t1 and t2) use

time t for integrating the equations of motion (cf. equation 21 in

Section 6) and perform 50 per cent more Gauss–Seidel sweeps on

each grid before checking for convergence. The latter results in a

lower performance in terms of time, but should lead to more

accurate solutions of Poisson’s equation. We will investigate these

propositions in more detail below.

7.2 Comparisons

Fig. 12 shows slices through the GADGET and ART simulations,

and the MLAPM simulation that corresponds to the first row of

Table 3 (run a). The lower panels show enlargements of a small

region of the upper panels. The rightmost panels show the final grid

structure of the MLAPM simulation. The three particle

distributions are clearly very similar, but not identical. In

comparisons between simulations run with AP3M and ART,

Knebe et al. (2000) detected similar differences, and showed that

understanding the physical significance of these differences is not

straightforward. In particular, simulations run with different codes

tend to be at slightly different phases at a given time. Such phase

differences are probably not physically significant, but can lead to

material differences in the appearance of slices such as those

shown in Fig. 12. For example, in one panel a small cluster may be

evident while in another it is invisible because its centre lies just

above or below the slice shown.

It is now interesting to compare MLAPM (run a) with the ART

run as both are set up as similarly as possible. In Fig. 13 we

therefore plot for both codes the refinement level reached against

the expansion factor a. From a , 0:55 onwards no finer

refinements are generated and hence there is no need to extend

the plotted data to a ¼ 1. We can clearly see that both codes start

using the same refinements at about the same time, with ART

creating its levels slightly earlier. Otherwise the curves agree fairly

well, demonstrating how similarly MLAPM and ART are dealing

with refinements. The ‘noisy behaviour’ can be ascribed to the

small size of refinements when they are first created; all adaptive

grids are placed around initially small high density regions, which

might fluctuate around the density threshold for a couple of steps

until stabilized. To compensate for this effect MLAPM refines at

the beginning of each domain grid step down to the actually needed

refinement level but does not allow finer grids to be called into

existence during the course of that domain step. This might explain

whyMLAPM’s refinements appear to be invoked slightly later than

ART’s (Fig. 13).

Fig. 14 shows, again as a function of expansion parameter a, the

CPU time required by all six simulations. Since the speed with

which a given code runs depends sensitively on the values chosen

for its various (technical) parameters, exact comparisons are

difficult to make. Experiments with slightly modified parameters

for ART, GADGET and AP3M showed that the total times needed

to run a simulation can vary by up to 50 per cent without

perceptible change in the statistical analysis as given below. The

only difference between MLAPM’s run a and run t1, besides the

integration variable, is the number of GS sweeps performed on

each grid before checking for convergence. As most of the time is

spent on solving Poisson’s equation, we get an increase of more

Table 2. Parameters used for three comparing simulations
performed with the ART, AP3M and GADGET code.

ART domain grid 1283

domain steps 500
rref 8/8

refinement level reached 5
number of GS sweeps on refinements 10

CPU time 47 h
AP3M softening 5 h 21 kpc

steps 4000
particles per chaining-mesh cell 50

refinements generated 89
refinement level reached 4

CPU time 69 h
GADGET softening 5 h 21 kpc

velocity scale 10 km s21

error tolerance angle 0.3
tree accuracy 0.02
tree update 0.05
CPU time 58 h

Table 3. Parameters of MLAPM simulations. The value
for the number of domain grid cells is given in the
second column and the number of integration steps also
applies for the domain grid. The first number in the rref
column is the refinement density on the domain grid,
while the second number applies to all finer grids. The
same convention applies in the column headed ‘GS
sweeps’. The simulation plotted in Fig. 12 corresponds
to run a where the parameters were chosen as close as
possible to the ones in the ART run.

run grid rref steps GS sweeps CPU time

a 1283 8/8 500 10/10 42 h
t1 1283 8/8 500 15/15 69 h
t2 643 1/8 250 15/15 48 h
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than 60 per cent in time when using 50 per cent more sweeps; we

also observe slightly bigger refinements in run t1 which accounts

for the remaining 10 per cent decrease in performance.

It is also worth noticing that AP3M and ART both perform

similarly at early times, when the forces are (mainly) based on a

FFT solver. Only when particles start to cluster and the PP part

becomes more and more important in the AP3M run does ART start

to show its advantage by using arbitrarily shaped refinements in

high density regions to increase the force resolution. However,

MLAPM overtakes ART at times, when the use of refinements is

dominating the time budget. This behaviour suggests that our (de-)

refinement procedure is more time efficient and indicates that the

difference in performance at early times between ART and

MLAPM can be ascribed to our adoption of Brandt’s multigrid plan

even on the domain grid. However again, checking the relative

timings of a FFT solver and the multi-level algorithm is a job for

the future.

In Fig. 15 we show the dark matter power spectra of all six

simulations at a redshift z ¼ 0. There are no obvious differences

and they all agree very well with each other.

However, when investigating the cumulative mass function

nð. M) for particle groups (Fig. 16) identified using a standard

friends-of-friends group finder with linking length 0.17 (which

corresponds to an overdensity of about 330), there are subtle

deviations between the runs. At the high mass end they all coincide,

but at the low mass end of the distribution function we observe more

small objects in AP3M and (to a smaller extent) GADGET than in

any of the other runs. This agrees with findings by Knebe et al.

Figure 13. Refinement levels invoked by MLAPM (run a ) and ART

(dashed curve) as a function of the expansion factor.
Figure 14. CPU time used as a function of the expansion factor reached for

the simulations shown in Fig. 12 and three other MLAPM simulations. The

curve for theMLAPM simulation plotted in Fig. 12 finishes second from the

bottom.

Figure 12. A slice through three LCDM simulations run from identical initial conditions using (from left to right) GADGET, ART and MLAPM (run a ). The

extreme right-hand panels show the final grid hierarchy of the MLAPM simulation. The bottom panels show enlargements of the small region marked in the

upper panels.
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(2000), where it was shown that AP3M tends to formmore low-mass

objects in underdense regions (cf. fig. 3 in that paper).

Finally we show the halo–halo correlation function for the objects

presented in Fig. 17 – the agreement between the codes is good.

These comparisons convince us that all four codes produce

comparable results in comparable times, except that there are small

differences in the mass functions produced by grid-based methods

(MLAPM and ART) and PP-based ones (AP3M and GADGET).

We also find that there are only modest changes in the scientific

results when fiddling with the technical parameters, i.e. the number

of GS sweeps.

7.3 MLAPM performance

This section deals with the dependence of MLAPM’s performance

on the values taken by technical parameters and the way the grids

are used.

Fig. 18 shows as a function of expansion factor achieved the

numbers of nodes at each refinement level for two simulations:

those listed in the second and third rows of Table 3 (runs t1 and t2).

The growth in the grids with 2563 or more virtual nodes is identical

in the two simulations and the last two levels (20483 and 40963) are

not shown for clarity. When the domain grid has 643 nodes, the

number of nodes in the 1283 grid falls by a factor of 2.5 during the

simulation, as particles drain out of voids and more and more

domain-grid nodes fail to achieve the threshold for refinement,

namely rref ¼ 1:0 particles per node.

Comparison of the timings listed in the lower two rows of Table 3

(run t1 and t2) shows that MLAPM is slowed when the number of

domain-grid cells is changed from 643 to 1283. This is explained in

Figure 15. Power spectra at redshift z ¼ 0 for all six simulations. The lower solid line is actually a superposition of broken lines.

Figure 16. Mass functions at redshift z ¼ 0 for all six simulations. Haloes were identified using a standard friends-of-friends algorithm.
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Table 4, where we show the average time spent on a given grid over

the course of the whole simulation. Note, that in run t2 we are also

doing 500 steps on the 1283 grid and our refinement criterion was

chosen to refine (nearly) the whole domain grid at early times. As

this run requires both less CPU time and less memory, it provides

better value for money.

It is interesting to see how the CPU time required per step

varies between grids. Again, Table 4 lists the average CPU time

per step used to solve for the forces and move the particles on

the first through fourth refinements in the course of the

simulation whose end-point is plotted in the rightmost four

panels of Fig. 12. It is always the 1283 grid which dominates

the time budget, but even when we add up the time spent on the

643 and the 1283 grid for run t2 we are still faster than using a

regular 1283 grid all the time, because at later times there are far

fewer nodes to sweep over (cf. Fig. 18). Thus the enhanced

resolution that an adaptive grid provides in high density regions

comes at an insignificant cost in both memory and CPU time.

7.4 Layzer–Irvine equation

A useful check on the accuracy of a cosmological simulation is

provided by the Layzer–Irvine equation. To derive an appropriate

form of this, we assume that the single-particle potential F which

appears in the Hamiltonian (21) could be obtained by a sum over

pairs of some time-independent smoothing kernel S. With this

assumption the total potential energy of the system is

U

a
¼

1

2a

X

N

a¼1

FðxaÞ ¼ 2
1

2a

X

a–b

Sð|xa 2 xb|Þ; ð28Þ

where the sum is over all particles and the coordinates are

comoving ones. It is straightforward to check that our equations of

motion (22) can be obtained from the N-body Hamiltonian

H ¼
K

a 2
1

U

a
; ð29Þ

where

K;
1

2

X

N

a¼1

p2a: ð30Þ

Figure 17. Halo–halo correlation functions at redshift z ¼ 0 for all six simulations. Haloes were identified using a standard friends-of-friends algorithm.

Figure 18. Numbers of nodes at each level of refinement as a function of

expansion factor. Grids as fine as 40963 virtual nodes are created, but data

for the finest two grids are not plotted.

Table 4. Average CPU time in seconds per step
over the course of a simulation with 643 particles
on a 643 domain grid (run t2) and 1283 domain
grid (run t1), respectively.

Grid: 64 128 256 512 1024

MLAPM t1: – 261 18 5 2
MLAPM t2: 35 127 21 5 2
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We have

dH

dt
¼

›H

›t
¼ 2

_a

a

2K

a 2
1

U

a

� �

: ð31Þ

Consequently

½H�t2t1 ¼ 2

ðt2

t1

da

a

2K

a 2
1

U

a

� �

: ð32Þ

This equation, which is valid no matter how a depends on time,

states that the Hamiltonian would be constant if the system were

fully virialized. For some reason it is conventional not to monitor

the satisfaction of this equation, but of an alternative conservation

equation which follows from equation (31), namely

daH

dt
¼ _aH 1 a _H ¼ 2_a

K

a 2
: ð33Þ

Consequently

C; ½aH�t2t1 1

ða2

a1

da
K

a 2
ð34Þ

should be constant.

Fig. 19 plots C/|U| as a function of a for all three MLAPM

simulations. By taking smaller time-steps one can show that

truncation error in the integration of the equations of motion (22)

makes a negligible contribution to the variation of C. Errors in

interpolating the forces from the grid to the locations of particles

(see Section 5.1.3) cause C to vary by causing the force on a

particle to differ slightly from the local potential gradient. Another

important contributor to the variability of C is the fact that F

cannot be obtained from a time-independent smoothing kernel

S(|x|), as we assumed in deriving equation (34). Indeed, no such

kernel would give our potential precisely, because our softening

length e diminishes from voids to the cores of clusters. Moreover,

the mean value of e diminishes over time as clustering develops

and finer and finer grids are created. Since the Layzer–Irvine

equation is based on the assumption of a spatially and temporally

invariant softening kernel, it follows that variability of e, for which

Section 5 presents a powerful case, will lead to significant

violations of the Layzer–Irvine equation. This is also reflected in

the curve for run t2 as in this case we started out with a 643 domain

grid and used a grid with 1283 virtual nodes that varied

significantly in extent (cf. Fig. 18). However, the variation in

C/|U| is less than 2 to 3 per cent except for a steep rise in C during

the very first steps, which is probably the result of sharp changes in

the resolution provided by the 1283 grid. As the calculation settles

down there follows a more moderate decrease in C/|U|, which

finishes at about 2 per cent.

8 DISCUSS ION AND CONCLUSIONS

In the coming years work with cosmological simulations will

increasingly focus on the formation of galaxies of various types.

Such simulations demand the highest attainable spatial and mass

resolution and will stretch available computer power to its limits.

The efficiency of the available computer codes, both in respect of

CPU time and memory usage, will be of paramount importance.

N-body codes can be divided into those that find the gravitational

potential by summation over a Green’s function, and those that

solve Poisson’s equation on a grid. To be efficient, the grid

employed in the latter type of code has to be capable of adapting

itself dynamically to the evolving mass distribution, and this

requirement leaves one little option but to solve Poisson’s equation

by Brandt’s multigrid technique.

The code presented here, MLAPM, is one of two cosmological

codes that deploys such a grid, the other being the ART code

(Kravtsov et al. 1997; Kravtsov 1999). Both codes subdivide cells

in which the density exceeds a threshold, and move particles with

time-steps that decrease by a factor of 2 with each additional level

of refinement of the region within which they lie. With these codes

gravity is automatically softened adaptively, so that the softening

length is near its optimum value in both high- and low-density

regions. With AP3M and most tree codes, by contrast, a single

softening length is employed at all times and places, with the result

that it is generally much smaller than it should be in low-density

regions.

Although MLAPM and ART are conceptually very similar, they

do differ in a number of important respects. In particular,

(i) MLAPM uses a simple recursive and fully symplectic

integration scheme;

(ii) since MLAPM is written in C rather than FORTRAN, it can

make extensive use of dynamic memory allocation;

(iii) MLAPM uses Brandt’s multigrid approach for solving

Poisson’s equation even on the domain grid, whereas the ART code

uses a FFT solver.

MLAPM has a single free parameter, the threshold density for

node refinement, rref. Smaller values of rref yield finer grids and

harder forces. The memory used by grids is proportional to r21
ref and

exceeds the memory used by particles for rref & 8 particles per

node.

Tests of the ability of the code to recover the gravitational fields

of virialized structures and strongly non-linear plane waves show

that radically different values of rref are required in the two cases.

With rref , 8 particles per node, forces near the centre of a typical

virialized structure fluctuate from realization to realization by more

than 25 per cent. Hence, eight particles per node seems a minimum

value for rref when representing virialized haloes.

By contrast, to recover a reasonable approximation to the field of

a wave whose frequency exceeds half the Nyquist frequency of the

domain grid with as many particles as the grid has nodes, we

Figure 19. Variation with a of the Layzer–Irvine invariant C which is

defined by equation (34).
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require rref & 1 particle per node, which ensures that the domain

grid is refined through most of the simulation. Such a small value

works well prior to virialization although it would yield a

completely noise-dominated gravitational field after it, because the

usual procedure for setting up the initial conditions of

cosmological simulations enables the underlying density to be

recovered from the particle positions, free of Poisson noise.

In view of the different refinement criteria required before and

after virialization, one of two strategies should be adopted. In the

first one uses a domain grid with as many nodes as there are

particles, and on it sets rref to a value less than unity. This ensures

that the domain grid is refined everywhere until voids develop in

which the particle density is low enough for adequate resolution to

be provided by the domain grid alone. In the second strategy, the

domain grid has eight times as many nodes as there are particles,

and one sets rref ¼ 8 particles per node on every grid. The second

strategy is safer unless clustering is so highly developed that the

density is less than an eighth of the mean density in a significant

volume. However, our experiments show that using a coarse

domain grid with rref ¼ 1 yields statistically indistinguishable

results at lower cost than the conservative strategy.

Before a code for cosmological simulations can now be

considered complete, it should include instructions written in MPI

that will enable it to run on a distributed-memory multi-processor

computer. To our knowledge only one such code is currently

publicly available for cosmological N-body simulations, the tree

code GADGET (Springel et al. 2000). Producing anMPI version of

MLAPM is a high priority. Multigrid codes are in principle well

suited to parallelization because each subgrid of the domain grid

can be advanced substantially independently of the others.

Moreover, the data structures (nodes and quads) associated with

physically connected nodes are already allocated in a way that

makes them likely to be stored in adjacent blocks of memory, and

the existing linking of particles to nodes means that it would be

simple to ensure that data for physically connected particles were

always stored together. The only significant problem we anticipate

encountering in the parallelization arises from the recursive nature

of the calls to step. Such recursive calls are known to be a barrier to

parallelization. Fortunately, by making a few copies of STEP,

called STEP0, STEP1, …, or whatever, it is trivial (if inelegant) to

make the algorithm non-recursive, at least for the first few calls.

Loops over zQUADS within one of these non-recursive copies of

STEP could then be parallelized.
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AK thanks Stefan Gottlöber for many useful and encouraging

discussions, and thanks Anatoly Klypin and Andrey Kravtsov for

valuable comments and kindly providing a copy of the ART code.

We are grateful to Hugh Couchman for permitting us to use the

AP3M code and to Volker Springel for access to the GADGET

code. JJB thanks the Astronomy Department of the University of

Washington for hospitality during the drafting of this paper. He was

then supported in part by NSF grant AST-9979891. This work has

benefited from the facilities of the Oxford Supercomputer Centre.

REFERENCES

Aarseth S. J., Turner E. L., Gott J. R., 1979, ApJ, 228, 664

Appel A. W., 1985, SIAM J. Sci. Stat. Comput., 6, 85

Barnes J., Hut P., 1986, Nat, 324, 446

Brandt A., 1977, Math. Comput., 31, 333

Couchman H. M. P., 1991, ApJ, 368, L23

Couchman H. M. P., Thomas P. A., Pearce F. R., 1995, ApJ, 452, 797

Dehnen W., 2000, ApJ, 536, L39

Dehnen W., 2001, MNRAS, in press (astro-ph/0011568)

Efstathiou G., Davis M., Frenck C. S., White S. D. M., 1985, ApJS, 57, 241

Frenk C. et al., 1999, ApJ, 525, 554

Gingold R. A., Monaghan J. J., 1977, MNRAS, 181, 375

Gnedin N. Y., 1995, ApJS, 97, 231

Haggerty M. J., Janin G., 1974, A&A, 36, 415

Hockney R. W., Eastwood J. W., 1988, Computer Simulations Using

Particles. Adam Hilger, Bristol

Hohl F., 1978, AJ, 83, 768

Klypin A. A., Shandarin S. F., 1983, MNRAS, 204, 891
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APPENDIX A : DENSITY FROM MASS ON A

ZEL’DOVICH-D ISTORTED GRID

We show that a distribution of particles placed on a Zel’dovich

distorted grid uniquely defines the underlying density field.

Consider the generalization of equation (18) to many waves, one

for each site of a lattice in k-space. We have that the N particle

displacements ea ¼ ra 2 qa are related to the amplitudes Ak of the

generating waves by the finite sum

ea ¼
X

|k|,K

Ak cosðk : qaÞ: ðA1Þ

If the particles are on the grid in q-space, which is the reciprocal of

the k-space grid, then this equation states that the ek are related to

the Ak by a DFT. Hence we can recover the latter from the particle

positions and then reconstruct the entire density field from the

Jacobian

r ¼ �r
›ðrÞ

›ðqÞ

� �

21

: ðA2Þ

We have investigated the possibility of obtaining the density in

regions that have yet to virialize from equation (A2). We find that

numerical differentiation of r with respect to q does yield more

accurate values of the density than the TSC mass-assignment

scheme, especially in voids. However, most of this advantage is lost

in propagating the density from the locations of particles to nodes.

APPENDIX B : PARTICLE TRANSFER TO FINE

GRIDS

We describe intricacies that arise when particles transfer from
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coarser to finer grids. Fig. B1 shows five particles at or near the

boundary of a refinement (which always includes fine nodes that

are cospatial with coarse nodes). Assigning the masses of a particle

such as P1 is straightforward because its mass only contributes to

the density on the coarse grid. Similarly, the mass of P5 only

contributes to the density on the fine grid. The masses of the other

three particles contribute to the density on both grids, and

considerable care has to be exercised in its assignment. The main

problem is to determine the contributions to the fine grid of

particles like P2 and P3 which remain on the coarse grid.

We start by transferring particles P4 and P5 to the fine grid. Next

we use the coarse grid’s TSC kernel to subtract from coarse-grid

nodes the mass of these particles, and the fine grid’s kernel to add

the same mass to fine-grid nodes. At this stage mass is assigned to

boundary nodes such as N1. When this has been done the density

on a coarse-grid node such as N2, which lies in the interior of the

refinement will be zero, while a coarse-grid node such as N3,

which lies near the refinement’s edge, will have non-zero density.

In fact, the density on N3 will come from particles such as P2 and

P3. We use the fine grid’s TSC kernel to distribute this mass among

the neighbouring fine-grid nodes, but for the present we hold it in

temporary variables, separate from the masses associated with P4

and P5. Now we use the restriction operator to add the fine-grid

density to all coarse-grid nodes that are cospatial with a fine-grid

node. This operation completes the determination of the coarse-

grid density. Finally we complete the determination of the fine-grid

density by adding to each fine-grid node the mass held in its

temporary variable.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure B1. Particles and nodes at the edge of a refinement.
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