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Multi‑level dilated residual network 
for biomedical image segmentation
Naga Raju Gudhe1*, Hamid Behravan1*, Mazen Sudah2, Hidemi Okuma2, Ritva Vanninen2,3, 
Veli‑Matti Kosma1,4,5 & Arto Mannermaa1,4,5

We propose a novel multi‑level dilated residual neural network, an extension of the classical U‑Net 
architecture, for biomedical image segmentation. U‑Net is the most popular deep neural architecture 
for biomedical image segmentation, however, despite being state‑of‑the‑art, the model has a few 
limitations. In this study, we suggest replacing convolutional blocks of the classical U‑Net with multi‑
level dilated residual blocks, resulting in enhanced learning capability. We also propose to incorporate 
a non‑linear multi‑level residual blocks into skip connections to reduce the semantic gap and to restore 
the information lost when concatenating features from encoder to decoder units. We evaluate the 
proposed approach on five publicly available biomedical datasets with different imaging modalities, 
including electron microscopy, magnetic resonance imaging, histopathology, and dermoscopy, 
each with its own segmentation challenges. The proposed approach consistently outperforms the 
classical U‑Net by 2%, 3%, 6%, 8%, and 14% relative improvements in dice coefficient, respectively 
for magnetic resonance imaging, dermoscopy, histopathology, cell nuclei microscopy, and electron 
microscopy modalities. The visual assessments of the segmentation results further show that the 
proposed approach is robust against outliers and preserves better continuity in boundaries compared 
to the classical U‑Net and its variant, MultiResUNet.

Image segmentation is a classical computer vision problem aiming at extracting regions of interest (ROIs), which 
share speci�c and o�en similar characteristics. Semantic segmentation is an active area in the biomedical image 
segmentation tasks to identify pixels of organs or lesions from the background and links them to a class label. 
Biomedical image acquisition is prone to various limitations, such as low signal to noise ratio, motion artifacts, 
low spatial, and temporal  resolution1, which impose challenges to properly segment the ROIs. �ere is an increas-
ing interest in developing computer-aided diagnosis models, which can perform segmentation on biomedical 
images without human  interventions2.

Deep convolutional neural networks (CNNs) trained by  backpropagation3 have been successfully used for 
the image segmentation. Long et.al., trained an end-to-end model based on CNNs for pixel-wise semantic 
segmentation and introduced a novel ‘skip’ connection for combining low-level with high-level  features4. Badri-
narayan et.al., introduced a deep convolutional encoder-decoder architecture, consisting of convolutional layers 
(encoder) and de-convolutional layers (decoder) followed by a pixel-wise classi�er, for a semantic segmentation 
 task5. Ronneberger et.al., further  extended4 and proposed the classical U-Net architecture, which can be trained 
end-to-end with fewer training  examples6. �e U-Net architecture is state-of-the-art and to date, di�erent vari-
ants of the classical U-Net have been proposed for the biomedical image segmentation  tasks1,2,7–10. Despite being 
successful, U-Net has some limitations, including loss of spatial  information7,9,10 and di�culty in handling images 
with variations in lesion or tumor  size10.

In this study, we propose a multi-level dilated residual network based on the classical U-Net architecture to 
address the U-Net limitations in several biomedical imaging datasets. We propose to replace convolutional blocks 
of the classical U-Net with the multi-level dilated residual (MLDR) blocks. Furthermore, we modify the skip 
connections by suggesting multi-level residual (MLR) network prior to concatenating features from the encoder 
to the decoder. We demonstrate our approach on �ve publicly available biomedical images with di�erent modali-
ties, namely,  dermoscopy11,12, electron  microscopy13,14,  MRI15,  histopathology16, and cell nuclei  imaging17. An 
example from each dataset with the corresponding segmented binary mask is shown in Fig. 1. We compare our 
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proposed approach against the classical U-Net and its state-of-the-art variants, including UNet++7,9,  ResDUnet1, 
and  MultiResUNet10, in a biomedical image segmentation task.

Methods
Classical U‑Net architecture. �e classical U-Net is an encoder-decoder based convolutional  architecture6. 
�e encoding unit encodes the input image into feature maps with lower dimensionalities and the decoding unit 
performs up-convolutional operations to generate segmentation maps with the same dimensions as the input 
image. �e encoder consists of a sequence of two 3 × 3 convolutional operations, denoted as convolutional block, 
followed by a 2 × 2 max-pooling operation with stride of 2. A�er each max-pooling layer, the number of �lters 
in the convolutional layers is doubled with an initial kernel size of 32. �is sequence is repeated four times in 
the classical U-Net. �e decoder unit up-samples the feature map using a 2 × 2 transposed convolutional opera-
tion followed by a sequence of two 3 × 3 convolutional operations. Like the encoder, the up-sampling and the 
two convolutional operations are repeated four times in the decoder, each time halving the number of kernels. 
Finally, the segmentation mask is generated by a 1 × 1 convolutional layer.

Multi‑level dilated residual convolutions. �e convolution operation is powerful and capable of 
extracting features automatically by sliding the kernel (�lter) over the input image. �e appreciable property 
of convolutions is that they are translationally equivariant, meaning that a small amount of shi� in an input 
image, the output remains the same, shi�ed by the same  amount18. U-Net encoder-decoder based architecture 
incorporates convolutional layers to extract more robust high-level semantic features. �e output (feature maps) 
of convolutional layers are down-sampled using max-pooling layers, then are restored back to the original size 
using up-sampling or deconvolution operation. However, a�er the pooling operation, the translational equivari-
ant property may not hold, making the network sensitive to small shi�s in an input  image18,19.

�e regions of interest of biomedical images are irregular and have di�erent scales (see some examples in 
Fig. 1). �erefore, it is required to develop an architecture to be robust to analyze ROIs at di�erent scales and 
variations. �e classical U-Net has limitation to handle such variations for predicting the true  segmentation10. 
Di�erent variants of the classical U-Net have been already proposed to overcome such  limitations1,2,7–10.  In10, 
Ibtehaz et al., replaced the convolutional blocks of the classical U-Net with inception-like  blocks20 using residual 
shortcut  connections21 to address the variation of scales in the images. Yu et al., showed that dilated convolutions 
increase the e�ective receptive �eld size, thus, more spatial information at di�erent scales could be  extracted22. 
Deep residual neural networks followed by the sequence of batch normalization (BN), recti�ed linear unit 
(ReLU), and convolution operation (in short, BN-ReLU-Conv) were suggested to alleviate the vanishing gradient 
problem, to improve the performance of deep neural  networks23. Zhang et al., suggested that multiple levels of 
residual networks, i.e. residual-of-residual connections, promote the learning capability of the residual connec-
tions and could overcome the over�tting  problem24.

In this study, for the �rst time, we are introducing to use the multi-level dilated residual convolutions for the 
semantic segmentation of the biomedical images. Each level (denoted as L/N) of a multi-level residual of residual 
connection is expressed as  follows24:

ISIC-2018
11, 12

 ISBI-2012
13, 14

 GlaS-2015
16

 MRI
15

DSB-2018
17

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1.  Example images from each publicly available biomedical imaging dataset used in this study. From 
le� to right, the �rst row shows the images from (a) ISIC-2018  dermoscopy11,12, (b) ISBI-201213,14 electron 
microscopy, (c) GlaS-201516 histopathology, (d)  MRI15, and (e) DSB-201817 cell nuclei microscopy; the second 
row (f–j) shows their corresponding segmentation mask used as targets to train the segmentation models.
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where xL/N and xL/N+1 are the input and the output of the Lth block, respectively. h

(

xL/N

)

= xL/N is an 
identity mapping, F is a residual mapping function with weights WL/N , and f  is a ReLU function. We suggest 
replacing F with dilated convolutions at rate d , expressed as  follows22:

where ∗d is the dilated convolution operation. In this study, we suggest replacing the convolutional block of the 
classical U-Net with the two-level (N = 2) dilated residual convolutions of rates d = 1, 3, and 5 , denoted as 
MLDR block. Each level of the MLDR block consists of a sequence of BN-ReLU followed by three 3 × 3 parallel 
convolutions at dilation rates of 1, 3, and 5 with the residual connection, to extract features from the biomedical 
images with di�erent sizes and scales (Fig. 2).

Skip connections with multi‑level residual block. �e classical U-Net architecture introduced skip 
connections to improve the segmentation  accuracy6. �e skip connections combine the low-level features, 
extracted from the encoder unit, with the high-level features of the corresponding decoder unit to recover the 
spatial information lost during the max-pooling  operation6. Despite preserving the spatial information of the 
target mask, most of the �ne-grained details are lost and thus, adversely a�ecting the predicted  segmentation10. 
Zhou et.al., re-designed the skip connections by introducing a series of nested dense convolutional blocks to 
reduce the semantic gap between the features of the encoder and the decoder prior to the  fusion7,9. Ibtehaz et.al., 
further incorporated convolutional layers with residual connections into the skip  connections10.

Inspired  by10,24, we propose to use non-linear layers as skip connections, which consist of multi-level residual 
(MLR) block, resembling the two levels of the residual-of-residual connection. Incorporating the MLR block 
into the skip connections restores the spatial and temporal information loss and enhances the network learning 
capability to accurately segment the ROIs. �e MLR block (Fig. 3) contains two levels, each having a sequence 
of BN-ReLU followed by two 3 × 3 standard convolutions (d = 1 in Eq. 2) with a residual connection.

yL/N = h
(

xL/N

)

+ F
(

xL/N ,WL/N

)

,

(1)xL/N+1 = f
(

yL/N

)

(
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)

(s) =

∑

s + dt
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(2)F
(
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)

=
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)
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Figure 2.  A schematic representation of the MLDR block. In this study, we suggest replacing the convolutional 
block in the classical U-Net6 with the MLDR block. Each MLDR block consists of two levels, each having a 
sequence of BN-ReLU followed by three 3 × 3 parallel dilated convolutions at dilation rates of 1, 3, and 5 with the 
residual connection, to extract features at di�erent resolutions.
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Multi‑level dilated residual network (MILDNet). Figure 4 illustrates an overall overview of our pro-
posed approach. Similar to the classical U-Net, the MLDR block in the encoder unit is followed by a 2 × 2 max-
pooling operation with stride of size 2 to reduce the dimensions of the extracted feature maps to half. With the 
increase in the depth of the architecture, the kernel size of the convolution operation is double with the initial 
kernel size of 32. In the decoder unit, 2×2 transpose convolutions up-sample the input features followed by the 
MLDR block. �e �nal prediction layer is a 1×1 convolution operation activated with sigmoid function to pre-
dict the segmentation mask of the given input image.

Experimental setup
Datasets. In this study, we evaluate the performance of the proposed and the baseline models on �ve bio-
medical datasets of di�erent imaging modalities, including dermoscopy, electron microscopy, MRI, histopathol-
ogy, and cell nuclei microscopy. Table  1 summarizes each dataset, provides the extraction protocol, and the 

Figure 3.  In this study, we propose to incorporate the residual-of-residual  connection24 as non-linear skip 
connection prior to combining features extracted from the encoder to the decoder. We denote these non-linear 
layers as the MLR block. �e MLR block contains two levels, each having a sequence of BN-ReLU followed by 
two 3 × 3 standard convolutions with a residual connection.

Figure 4.  Schematic diagram of the proposed approach for the biomedical image segmentation task. Unlike 
the convolutional blocks in the classical U-Net, we propose to incorporate the MLDR blocks to overcome some 
of the classical U-Net limitations, including the di�culty in handling images with variations in tumor sizes and 
scales. We also propose to use the MLR blocks into the skip connections, as non-linear layers, to further enhance 
restoring the spatial information, which is usually lost in the classical U-Net.
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annotation details of each image modality. Note that we do not have control over the quality of the ground truths 
(annotations) and they are already provided with the biomedical images in each dataset.

Baseline models for performance comparison. For comparison purposes, we adopted the classical 
U-Net as well as a number of recently proposed extensions of the classical U-Net  architecture6, including the 
UNet++7,9,  ResDUnet1, and the  MultiResUNet10. We also incorporated a residual shortcut connection in the 
convolutional block of the classical U-Net to develop a residual-based U-Net architecture, denoted as Residu-
alU-Net, and used it as one of the baseline approaches. �e main di�erences between the proposed architecture 
and the baseline approaches are illustrated in Fig. 5.

We obtained the source code of the classical U-Net  from25, following the network con�guration represented 
in the original U-Net paper. �e UNet++ and the MultiResUNet were originally implemented in the Keras 
framework, respectively  in9  and10, and we re-implemented them in the Pytorch 1.3.1 framework. We also imple-
mented ResDUnet in Pytorch following the network architecture proposed in the original  paper1. �e models 
were trained using a machine equipped with Nvidia Tesla V100 16 GB graphic card on Intel Xeon Processor 
provided by the IT service Center for Science (CSC)  Finland26.

Training protocol. We generated image patches of size 256* 256 with padding of 16 for the ISBI-2012 and 
GlaS-2015 datasets (due to fewer number of training data) to increase the number of data samples. We used 
 Patchify27, a python-based library, to generate image patches of size 256* 256 with a padding of 16 to increase the 
number of data samples. For ISBI-2012 dataset, we generated 4 patches from each image, resulting in a sample 
size of 120 images, in total. Similarly, from GlaS-2015 dataset, we generated 11 patches from each image, result-
ing in a sample size of 1815 images.

Additionally, we applied a�ne, elastic, and pixel-level data augmentation techniques using Albumentations 
Python  library28 during the training process. Data augmentation was shown to help generalization capability of 
the neural networks and to avoid over-�tting problem in previous  studies29,30. A�ne transformations include 
rotations  (00,  600,  1200 ,  1800 ,  2700 ), horizontal and vertical �ipping, random scaling (scale limit = 0.1, interpola-
tion = 1), and random shear (limit = [− 45, 45]). We noticed that the a�ne transformations had less or no impact 
on improving the segmentation accuracy. �us, we also included elastic deformation transformations  from31 to 
introduce shape variations and pixel-level transformations to vary pixel-level intensity. Transformations include 
ColorJitter (brightness = 0.2, contrast = 0.2, saturation = 0.2, hue = 0.2), GaussianBlur (blur_limit = (3, 7), sigma_
limit = 0), and GaussNoise (var_limit = (10.0, 50.0), mean = 0) (See the supplementary �le for further details).

Each dataset is split into 70% for training (training set) and 30% for the performance evaluation (test set). 
�e training set is used to train and �ne-tune the models using a 5-fold cross validation (CV) for 100 epochs. 
�e test set is used to evaluate each model against the training folds and then, the mean value is computed as the 
�nal prediction performance for each model. Table 2 illustrates the dataset splitting protocol for each dataset.

�e dimensions of all input medical images are resized to 256* 256 with bilinear interpolation and normal-
ized to the range [0, 1] using a min-max  scaler32. In this study, we considered each model architecture to have a 
depth of 5 with an initial kernel size of 32. With the increase in depth, the kernel size is multiplied by a factor of 2.

For model interpretation, we used gradient saliency  maps33. Saliency maps are generated as the derivative of 
the model output with respect to the input features to visualize regions within an input image, which contribute 
the most to the corresponding output. For a given input image, we computed saliency maps for each decoder 
layer, and then combined them by averaging over all the saliency maps to form a single saliency map. We up-
sampled the saliency maps to match the dimension of the input images.

Loss function. Binary cross-entropy with  logits34 is used to measure the loss between the actual and the 
predicted segmentation masks.

Table 1.  Five publicly available biomedical imaging datasets used in this study for the semantic segmentation. 
Note that the images are available with varying sizes within some datasets.

Dataset Modality No. of images Majority im age size Description

ISIC-201811,12 Dermoscopy 2594 1022 × 767
Dermoscopy is an imaging technique that eliminates the skin surface re�ection to enhance 
visualization of the deeper skin layers. We have acquired the dermoscopy images from the 
ISIC-2018; skin lesion analysis towards melanoma detection challenge.

ISBI-201213,14 Electron microscopy 30 512 × 512
�is dataset contains a serial section transmission electron microscopy of the drosophila �rst 
instar larva ventral nerve cord. �e dataset is provided by the ISBI-2012; 2D electron micros-
copy segmentation challenge.

MRI15 MRI 1144 256 × 256
�is dataset contains brain MRI images and segmentation masks created by manual �uid-
attenuated inversion recovery acquired from 110 patients included in the cancer genome atlas 
lower-grade collection.

GlaS-201516 Histopathology 165 775 × 522
�is dataset acquired from the gland segmentation in colon histology image challenge. �e 
images are scanned whole slide histology images of the colon, in which epithelial glands are 
annotated.

DSB-201817 Cell nuclei mi croscopy 670 320 × 256
�is dataset contains segmented nuclei images acquired under di�erent conditions by changing 
the cell type, magni�cation, and imaging modality (bright-�eld vs. �uorescence).
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For a pixel index i and an input image X = {x i ∈ R | i = 0, 1, . . . , 255}, Let Y =
{

y
i
= 0 or 1 | i =

0, 1, . . . , 255} and ̂Y =
{
ŷ
i
∈ [0, 1] | i = 0, 1, . . . , 255} be the ground-truth and predicted segmentation 

masks, respectively. �en, the binary cross-entropy is de�ned  as34:

(3)L
(
X,Y , Ŷ

)
=

∑

xi ∈X

(−yi log(ŷi) + (1 − yi) log(1 − ŷi))

Figure 5.  �e di�erences in the architectures of the proposed MILDNet and the baseline approaches, including 
the classical U-Net, ResidualU-Net, ResDUnet, UNet +  +, and MultiResUNet. For visual comparison, we 
have recreated the encoder, decoder, and skip connection structures of the baseline approaches following the 
network con�guration represented in their original studies.

Table 2.  �e dataset splitting protocol followed in this study. Each dataset is �rst partitioned into the training 
and the test sets. �e training set is further split in a 5-fold CV, where 4-folds are used for training and the last 
fold for validation. �e test set is used to evaluate each model against the 5-folds and then, the mean value is 
computed as the �nal segmentation performance of each model. For ISBI-2012 and GlaS-2015 datasets, we 
have used patch-wise training to increase the number of data samples.

Dataset ISIC-2018 ISBI-2012 MRI GlaS-2015 DSB-2018

Training folds

Fold 1 363 16 160 253 94

Fold 2 363 16 160 253 94

Fold 3 363 16 160 253 94

Fold 4 363 16 160 253 94

Validation fold Fold 5 364 20 161 253 93

Test set 778 36 343 550 201
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Evaluation metrics. We selected the widely used dice coe�cient (DC), intersection over union (IoU), and 
Hausdor� distance (HD) for the quantitative analysis of the segmentation results. �ese metrics are de�ned as 
 follows35:

where, |.| denotes absolute values,

and

d
(
yi , ŷi

)
 and d

(
ŷi , yi

)
 denote the Euclidean distance between yi and ŷi ; h

(
Y , Ŷ

)
 measures the directed HD from 

Y to Ŷ  by computing the minimum distance from yi to its nearest neighbor in Ŷ  and then, the maximum distance 

is considered as the HD value between Y and Ŷ  . Similarly h
(
Ŷ , Y

)
 measures the directed HD from Ŷ  to Y  by 

computing the minimum distance from ŷi to its nearest neighbor in Y  and then, the maximum distance is con-

sidered as the HD value between Ŷ and Y  . Finally, the degree of mismatch between Y and Ŷ  is computed as the 

maximum HD value between h
(
Y , Ŷ

)
 and h

(
Ŷ , Y

)
.

Results and discussion
Finding optimal hyper‑parameters using grid‑search. We �rst performed a grid-search36 over the 
model hyper-parameters, including batch size, training optimizer, momentum, and learning rate scheduler; and 
the network architecture hyper-parameters, including depth, levels, and dilation rates, to �nd the optimal values 
for the proposed approach. �e combination of the hyper-parameters in the grid-search is presented in Table 3. 
We found that the batch size of 4, the Adam optimizer, the momentum of 0.9, and the reduced learning rate on 
plateau (ReduceLROnPleateau) with an initial learning rate of 0.001; and the network architecture of depth 5, 
level 2, and dilation rates of [1, 3, 5] show a consistent accuracy within each model and the imaging modalities. 
�e optimal values are then used to train the models for each dataset in a 5-fold CV and the test sets are used to 
evaluate the models against each fold. We initialized the convolutional layers with Xavier  initialization37.

Residual‑of‑residual skip connections (MLR blocks) improve the segmentation accuracy. To 
evaluate the impact of the MLR skip connection on the segmentation accuracy, we trained the proposed 
approach with and without inclusion of the MLR blocks into the skip connections (prior to concatenating the 
features from the encoder unit to the corresponding decoder unit) using the optimal hyper-parameters and the 
validation sets in 100 epochs.

Table 4 shows that using the MLR blocks in the MILDNet (without data augmentation) slightly improves 
the segmentation accuracy by on average 2% relative improvement in terms of DC, considering all the datasets. 

(4)DC =
2 ×

(
Y ∩ Ŷ

)

|Y | +

∣∣∣Ŷ
∣∣∣

(5)IoU =
Y ∩ Ŷ

Y ∪ Ŷ

(6)HD = max

(
h

(
Y , Ŷ

)
, h

(
Ŷ ,Y

))
,

(7)h(Y , Ŷ) = maxyi ∈ Y (minŷi ∈ Ŷ (d(yi , ŷi)),

(8)h(Ŷ , Y) = maxŷi ∈ Ŷ (minyi ∈ Y (d( ŷi , yi)),

Table 3.  Combination of the hyper-parameter settings and their optimal values found using grid-search in 
a 5-fold CV. In this study, we used the optimal hyper-parameter values of the MILDNet to train the baseline 
approaches. �e same folds are also used during training, validation, and testing of the proposed and the 
baseline approaches.

Hyper-parameters Grid-search values Optimal values of MILDNet

Batch size [4, 8, 16, 32, 64] 4

Training  optimizers38 [Stochastic gradient descent, Adam, RMSprop] Adam

Learning rate  schedulers39 [StepLR, MultiStepLR, CosineAnnealingLR, ReduceLROnPlateau, CyclicLR] ReduceLROnPlateau

Learning rate [le–2, le−3, le−4, le−5] le−3

Momentum [0.3, 0.6, 0.9] 0.9

Depth [3, 4, 5, 6] 5

Dilation rates [{1, 2, 6}, {1, 2, 5}, {1, 2, 4}, {1, 3, 5}, {2, 4, 8}, {1, 3, 7}] {1, 3, 5}

Levels [1, 2, 3, 4, 5] 2
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Similar performance gain is also observed, when including the MLR blocks in the baseline U-Net. Figure 6 illus-
trates that the predicted segmentation masks are visually more similar to the gourd-truth binary masks (Fig. 6b) 
and (Fig. 6f), especially in preserving the shape and the continuity in boundaries, when using the MLR blocks 
in the MILDNet (Fig. 6d,h) over the direct skip connections without inclusion of the MLR blocks (Fig. 6c,g) in 
the MRI (Fig. 6a) and dermoscopy (Fig. 6e) images. A remarkable segmentation improvement is observed in 
the dermoscopy example with IoU = 0.9017 using the MLR blocks (Fig. 6h) compared to IoU = 0.8374 without 
using the MLR blocks (Fig. 6g). 

�e results suggest that the presence of the MLR blocks in the skip connections improves preserving the spa-
tial and contextual information, which is usually lost during the concatenation of the features from the encoder 
to the decoder units in the classical U-Net. �erefore, we incorporate the MLR blocks into the skip connections 
in the following experiments for the enhanced semantic segmentation.

MILDNet outperforms the classical U‑Net and other baselines in segmenting the biomedical 
images. Table 5 compares the segmentation accuracy of the MILDNet approach with and without data aug-
mentation against the classical U-Net, the UNet++, the MultiResUNet, the ResDUnet, and the ResidualU-Net, 
using the test sets of the �ve biomedical datasets.

MILDNet with data augmentation has resulted in slightly superior segmentation performance compared to 
MILDNet without data augmentation in all except the MRI dataset, in terms of IoU. For consistency, herea�er, 
we choose MILDNet without data augmentation to compare segmentation results and for visual assessment. 
MILDNet outperforms all the baselines in segmenting the biomedical images. In particular, MILDNet consist-
ently outperforms the classical U-Net by relative improvements of 2%, 3%, 6%, 8%, and 14%, respectively for the 
MRI, the ISIC-2018 dermoscopy, the GlaS-2015 histopathology, the DSB-2018 cell nuclei microscopy, and the 
ISBI-2012 electron microscopy biomedical images, in terms of DC. Similar performance gain is also observed 
in IoU and HD metrics. MILDNet also outperforms the recently proposed MultiResUNet approach by relative 
improvements of 1%, 1%, 1%, 4%, and 4%, respectively for the ISIC-2018 dermoscopy, the DSB-2018 cell nuclei 
microscopy, the ISBI-2012 electron microscopy, the MRI, and the GlaS-2015 histopathology datasets, in terms of 
DC. Interestingly, the ResidualU-Net approach achieves higher segmentation accuracy over the classical U-Net 
in all, except the MRI dataset.

Figure 7 illustrates the saliency maps of some examples from the MRI, the dermoscopy, and the histopathol-
ogy datasets for all the models. From these examples, we can see that MILDNet concentrates much better on the 
ROIs in images with complex background as in the MRI and the histopathology datasets. For the dermoscopy 
images, which have better distinction between foreground and background, all models attend favorably to the 
ROIs.

Note that the variation observed in the relative changes from dataset to dataset may come from the seg-
mentation challenges associated with each biomedical image modality. For example, in the ISBI-2012 electron 
microscopy dataset, the ROI covers the majority of the images, thus models may tend to oversegment the images. 
Illumination variation and di�erent types of textures presented in the ISIC-2018 dermoscopy dataset make seg-
mentation more di�cult. For some images in the MRI dataset, it is di�cult to visually identify tumors from the 
background due to vague ROI boundaries. In addition, brain tumors have di�erent size, shape, and structure, 
which make the segmentation challenging. Similarly, irregular boundaries and structures separating the tumor 
and non-tumor regions in the histopathology images. In the cell nuclei microscopy dataset, some images contain 
bright objects, which resemble the cell nuclei (ground-truth) and may act as outliers in the segmentation. �e 
visual assessments of the segmentation results will present some of these challenges in a later section.

Table 4.  �e impact of the residual-of-residual skip connections (MLR blocks) on the segmentation accuracy 
using the validation sets. ↑: �e higher value is better; ↓: �e lower value is better.

Dataset Models DC ↑ IoU ↑ HD ↓

ISBI-2012 electron microscopy

U-Net (baseline)
U-Net (with MLR)
MILDNet (without MLR)
MILDNet (with MLR)

0.84 ± 0.0004
0.86 ± 0.0004
0.92 ± 0.0005
0.96 ± 0.0005

0.79 ± 0.0004
0.80 ± 0.0005
0.90 ± 0.0005
0.92 ± 0.0005

9.730 ± 0.0022
9.654 ± 0.0022
9.481 ± 0.0023
9.395 ± 0.0022

ISIC-2018 dermoscopy

U-Net (baseline)
U-Net (with MLR)
MILDNet (without MLR)
MILDNet (with MLR)

0.91 ± 0.0007
0.92 ± 0.0007
0.94 ± 0.0005
0.94 ± 0.0005

0.87 ± 0.0011
0.88 ± 0.0011
0.89 ± 0.0001
0.90 ± 0.0001

15.962 ± 0.014
15.341 ± 0.014
7.96 ± 0.0018
7.54 ± 0.0018

MRI

U-Net (baseline)
U-Net (with MLR)
MILDNet (without MLR)
MILDNet (with MLR)

0.86 ± 0.0003
0.86 ± 0.0003
0.87 ± 0.0003
0.88 ± 0.0003

0.77 ± 0.0003
0.79 ± 0.0003
0.80 ± 0.0002
0.81 ± 0.0002

14.98 ± 0.0027
14.128 ± .0027
13.824 ± 0.0020
13.62 ± 0.0020

GlaS-2015 histopathology

U-Net (baseline)
U-Net (with MLR)
MILDNet (without MLR)
MILDNet (with MLR)

0.82 ± 0.0004
0.84 ± 0.0004
0.85 ± 0.0003
0.87 ± 0.0003

0.70 ± 0.0003
0.74 ± 0.0003
0.77 ± 0.0004
0.78 ± 0.0002

16.0 ± 0.0027
16.0 ± 0.0027
15.52 ± 0.0022
15.606 ± 0.0020

DSB-2018 cell nuclei microscopy

U-Net (baseline)
U-Net (with MLR)
MILDNet (without MLR)
MILDNet (with MLR)

0.88 ± 0.0005
0.90 ± 0.0005
0.92 ± 0.0003
0.95 ± 0.0003

0.79 ± 0.0004
0.83 ± 0.0004
0.89 ± 0.0002
0.90 ± 0.0002

4.258 ± 0.0022
4.224 ± 0.0022
4.129 ± 0.0020
4.078 ± 0.0020
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We also noticed a di�erence between the segmentation IoU values of our proposed method with the IoU 
values reported in the literature. For example, the IoU values of U-Net and UNet++ for DSB-2018  in7,9 are 
90.57 ± 1.26 and 92.44 ± 1.20, respectively, while in our study are 0.79 ± 0.0004 and 0.89 ± 0.0003. �is variation 
is due to using di�erent data-splitting protocol and the optimal hyper-parameters, and further we did not apply 
any post-processing techniques, such as watershed  algorithm40,41, for separating the clustered nuclei.

Finally, we performed a 5-fold CV on the entire datasets by merging the training, validation, and test sets of 
each biomedical dataset, then, ran a simple analysis of statistical signi�cance as t-test to check if the di�erences 
between the IoU values of the proposed and the baseline systems are statistically signi�cant with p-value ≤ 0.05. 
�e results in Fig. 8 show that the proposed MILDNet approach without data augmentation demonstrates a sig-
ni�cant IoU improvements with p-value ≤ 0.05 over the classical U-Net in all except the MRI dataset, however, 
with a smaller standard deviation in this dataset. Similarly, the IoU di�erences between the MILDNet and the 
state-of-the-art MultiResUNet approach are statistically signi�cant with p-value ≤ 0.05 in all except the DSB-2018 
cell nuclei microscopy dataset.

Visual assessment of the segmentation results. Here, we demonstrate visual examples from the seg-
mentation results to further compare our proposed approach with the baseline models.

MILDNet is more reliable to outline ROIs. MILDNet and the other baseline approaches perform 
favorably in segmenting the medical images with a clear distinction between the background and the ROIs. 
Figure 9 illustrates images from the ISIC-2018 dermoscopy (Fig. 9a) and the MRI (Fig. 9f) datasets with their 
corresponding ground truth masks (Fig. 9b) and (Fig. 9g) showing that in case of a clear distinction between the 
background and the foreground, the classical U-Net (Fig. 9c,h), the MultiResUNet (Fig. 9d,i), and the MILDNet 
(Fig. 9e,j) perform visually well to segment the ROIs close to the ground truths, however, MILDNet outperforms 
the other baselines in terms of the IoU in both images.

MILDNet performs favorably in images with inconsistent foregrounds. Medical images o�en 
contain regions, which appear similar to the background, due to textural and structural similarities, irregu-
larities, and noises. �is similarity may lead to loss of information and false negative segmentation. Figure 10a 
shows a relevant example of such case. Although the ROI boundaries are visually separable between the tumor 
and the non-tumor regions (see Fig. 10b), the staining color intensity and the textures within the tumor (ROI) 

Image Ground truth Without MLR With MLR 

(a) (b) (c) IoU = 0.8474 (d) IoU = 0.8508

(e) (f) (g) IoU = 0.8374 (h) IoU = 0.9017

Figure 6.  Two visual examples from the  MRI15 (a) and the  dermoscopy11,12 (e) images; and their corresponding 
ground truth masks (b,f) showing that the presence of the MLR blocks in the skip connections of the MILDNet 
enhances the segmentation accuracy, with the ground truths given in 6b and 6f. �e predicted masks for the 
skip connections with the MLR blocks (d,h) preserved the continuity in the boundaries. �e skip connections 
without the MLR blocks (c,g) resulted in the loss of some valuable information about the boundaries and the 
ROI shape.
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and non-tumor (background) appear the same in some regions, providing a challenge for the segmentation. Fig-
ure 10c shows that the classical U-Net under-segments the ROIs with IoU of 0.5083 and has missed some infor-
mation about the consistencies in the foregrounds. �e MultiResUNet (Fig. 10d) and the MILDNet (Fig. 10e) 
perform better than the classical U-Net in preserving the spatial information with IoUs of 0.8959 and 0.8996, 
respectively. We suggest that the use of MLR blocks allows the MILDNet to preserve the shape and the continuity 
of the ROIs and hence, reducing the spatial information loss during the segmentation.

MILDNet segments ROIs with obscure boundaries. Sometimes in the medical images, it is chal-
lenging to di�erentiate the ROIs from the background due to the presence of obscure boundaries. Figure 11a,f 
illustrate two examples, respectively from the dermoscopy and the MRI images with their corresponding seg-
mentation masks (Fig. 11b) and (Fig. 11g), with no clear separating boundaries. �e classical U-Net either over-
segmented (Fig. 11c) or under-segmented (Fig. 11h) the ROIs. �e MultiResUNet (Fig. 11d,i) and MILDNet 
(Fig. 11e,j) approaches both performed considerably better than the classical U-Net, however, both models have 
struggled to properly segment the ground-truths. In both examples, the MILDNet approach achieved a superior 
segmentation accuracy over the baseline approaches, e.g. the IoU of 0.6181 achieved by MILDNet compared to 
the IoU of 0.5077 achieved by the MultiResUNet in segmenting the challenging dermoscopy image illustrated 
in Fig. 11a.

Table 5.  MILDNet outperforms the classical U-Net and other baselines in segmenting the biomedical images 
using the test sets. For the MILDNet, we have also applied data augmentation techniques during training. �e 
evaluation metrics are calculated from the network output without applying further post-processing on the 
predicted binary masks. ↑: �e higher value is better;↓: �e lower value is better.

Dataset Models DC↑ IoU↑ HD↓

ISBI-2012 electron microscopy

U-Net 0.84 ± 0.0004 0.79 ± 0.0005 9.730 ± 0.0022

UNet +  + 0.84 ± 0.0004 0.88 ± 0.0007 9.685 ± 0.0022

ResidualU-Net 0.84 ± 0.0005 0.89 ± 0.0010 10.327 ± 0.0031

ResDUnet 0.89 ± 0.0002 0.80 ± 0.0004 10.289 ± 0.0020

MultiResUNet 0.88 ± 8.36 0.79 ± 9.085 9.88 ± 0.058

MILDNet (without augmentation) 0.96 ± 0.0005 0.92 ± 0.0005 9.395 ± 0.0031

MILDNet (with augmentation) 0.98 ± 1.386 0.93 ± 1.252 9.254 ± 1.75

ISIC-2018 dermoscopy

U-Net 0.91 ± 0.0007 0.87 ± 0.0011 15.962 ± 0.014

UNet +  + 0.93 ± 0.0005 0.88 ± 0.0009 8.798 ± 0.007

ResidualU-Net 0.92 ± 0.0007 0.87 ± 0.0011 15.720 ± 0.014

ResDUnet 0.93 ± 0.0006 0.88 ± 0.0011 15.962 ± 0.014

MultiResUNet 0.93 ± 0.0006 0.87 ± 0.0010 15.962 ± 0.014

MILDNet (without augmentation) 0.94 ± 0.0005 0.90 ± 0.0001 7.54 ± 0.004

MILDNet (with augmentation) 0.94 ± 0.0042 0.91 ± 0.036 7.39 ± 0.064

MRI

U-Net 0.86 ± 0.0003 0.77 ± 0.0003 14.98 ± 0.0027

UNet +  + 0.86 ± 0.0002 0.76 ± 0.0003 15.42 ± 0.0027

ResidualU-Net 0.83 ± 0.003 0.72 ± 0.0003 15.36 ± 0.0022

ResDUnet 0.85 ± 0.0003 0.76 ± 0.0004 15.99 ± 0.0024

MultiResUNet 0.85 ± 0.0003 0.78 ± 0.0004 15.53 ± 0.0022

MILDNet (without augmentation) 0.88 ± 0.0002 0.81 ± 0.0002 13.62 ± 0.0020

MILDNet (with augmentation) 0.89 ± 0.005 0.80 ± 0.003 13.02 ± 0.0082

GlaS-2015 histopathology

U-Net 0.82 ± 0.0004 0.70 ± 0.0003 16.0 ± 0.0027

UNet +  + 0.87 ± 0.0004 0.78 ± 0.0003 15.998 ± 0.0027

ResidualU-Net 0.85 ± 0.0003 0.75 ± 0.0002 15.963 ± 0.0020

ResDUnet 0.83 ± 0.0002 0.72 ± 0.0002 16.0 ± 0.0020

MultiResUNet 0.84 ± 0.0003 0.74 ± 0.0003 15.606 ± 0.0020

MILDNet (without augmentation) 0.87 ± 0.0003 0.78 ± 0.0002 15.836 ± 0.0027

MILDNet (with augmentation) 0.86 ± 0.032 0.80 ± 1.294 15.408 ± 0.0574

DSB-2018 cell nuclei microscopy

U-Net 0.88 ± 0.0005 0.79 ± 0.0004 4.257 ± 0.0022

UNet +  + 0.94 ± 0.0004 0.89 ± 0.0003 4.631 ± 0.0027

ResidualU-Net 0.92 ± 0.0004 0.86 ± 0.0003 4.194 ± 0.0027

ResDUnet 0.93 ± 0.003 0.87 ± 0.0003 4.339 ± 0.0027

MultiResUNet 0.94 ± 0.0004 0.88 ± 0.0004 4.423 ± 0.0022

MILDNet (without augmentation) 0.95 ± 0.0003 0.90 ± 0.0002 4.078 ± 0.0020

MILDNet (with augmentation) 0.94 ± 1.208 0.91 ± 0.328 4.264 ± 0.022
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Figure 12 further illustrates an extreme case from the MRI dataset (12a) with its ground truth mask (12b), in 
which the ROI (tumor region) is very di�cult to be identi�ed even by a human expert. In this example, all the 
models (Figs. 12c,d,e) have struggled to properly segment the ROI, resulting in over-segmentation.

MILDNet is robust against outliers. Segmenting the biomedical images o�en su�ers from outliers, 
which look very similar to the ROI, but they are not a part of it. Segmentation models o�en fail to distinguish 
outliers from the ROIs. Figure 13a illustrates an example from the MRI dataset, in which the non-tumor region 
contains small light green areas (outliers), which resemble the tumor region (ROI) (Fig. 13b). Similarly, Fig. 13f 

Figure 7.  Saliency maps for the MRI, the dermoscopy, and the histopathology examples. Regions that have a 
high impact on the models’ �nal decision are highlighted.
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Figure 8.  Statistical signi�cance for the di�erences in segmentation performances of the MILDNet and the 
baseline approaches using t-test. �e di�erences between the IoU values of the MILDNet and the baselines are 
statistically signi�cant when p-value ≤ 0.05. Y-axis represents the overall IoU value of each model using a 5-fold 
CV on the entire dataset by merging the training, validation, and test sets of each biomedical dataset. �e sub-
�gures (a–e) represents the box plot with the baseline approaches U-Net, UNet + + , ResDUnet, MultiResUNet 
and MILDNet (proposed) on the x-axis and the IoU values on the y-axis for all the �ve biomedical datasets used 
in this work.
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illustrates another example from the cell nuclei microscopy dataset with a ground truth mask (Fig. 13g), in 
which the background has some bright particles (outliers), which are very similar to the ROI (cell nuclei). In 
both examples, the classical U-Net has mistakenly segmented some of the outliers, circled in red in Fig. 13c,h, 
as being a part of the predicted masks. �e MultiResUNet (Fig. 13d,i) performed better than the classical U-Net 
to discard outliers, however, still mis-classi�ed small background regions. MILDNet (Fig. 13e,j) has successfully 
discarded those outliers, achieving superior segmentation performance over the classical U-Net and the Mul-
tiResUNet, in terms of IoU.

Figure 8.  (continued)

Image Ground truth U-Net
6
 MultiResUNet

10
MILDNet (Proposed)

(a) (b) (c) IoU = 0.7828 (d) IoU = 0.8299 (e) IoU = 0.8404

(f) (g) (h) IoU = 0.8538 (i) IoU = 0.8421 (j) IoU = 0.8549

Figure 9.  Segmenting a  dermoscopy11,12 image (a) and an  MRI15 image (f) having well-distinguished 
background and foreground, with (b,g) showing their corresponding ground truth segmentation masks. �e 
classical U-Net (c,h), the MultiResUNet (d,i), and the MILDNet (e,j) performed equally well in segmenting the 
ROIs, close to the ground truths.
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Outliers exist also in other datasets. We have observed that our proposed approach is able to robustly discard 
the outliers from the predicted masks. �e dilated convolutions used in the encoder and the decoder units are 
likely to contribute towards this success by improving the localization of the ROIs, e.g. the nuclei and the tumor 
regions, thus, providing more reliable segmentation.

MILDNet preserves connectivity in boundaries in the majority class. Usually, ROIs occupy a 
de�nite portion of the medical images. �e ISBI-2012 electron microscopy dataset provides an interesting seg-
mentation challenge, where the majority of the images contains ROIs (e.g. in Fig. 14a with ground truth mask 
Fig. 14b). Segmentation models may fail to properly distinguish the foreground and the background in such 
images, thus, o�en tend to unnecessarily over-segment the images. Figure 14c shows that the classical U-Net 
tended to over-segment the ROIs and o�en missed the spatial information. MultiResUNet (Fig. 14d) and MILD-
Net (Fig. 14e) both have succeeded to segment the majority of the ROIs, however, MILDNet preserved more 
contextual information by improving the connectivity between the lines and being more immune to the noises 
(compare zoomed areas of the predicted masks in Fig. 14c,d,e).

Image Ground truth U-Net
6
 MultiResUNet

10
MILDNet (Proposed)

(a) (b) (c) IoU = 0.508 (d) IoU = 0.8959 (e) IoU = 0.8996

Figure 10.  Segmenting a  histopathology16 image (a) and the ground truth mask (b), in which the foreground 
is not consistent all around. �e same staining color intensity and textures in the tumor (ROI) appear also in 
some non-tumor regions (background). �e MILDNet approach (e) is consistently better in segmenting this 
challenging image than the classical U-Net (c) and the MultiResUNet (d) approaches.

Image Ground truth U-Net
6
 MultiResUNet

10
MILDNet (Proposed)

(a) (b) (c) IoU = 0.5021 (d) IoU = 0.5077 (e) IoU = 0.6181

(f) (g) (h) IoU = 0.1062 (i) IoU = 0.6234 (j) IoU = 0.6477

Figure 11.  Segmenting a  dermoscopy11,12 image (a) and an  MRI15 image (f) having no clear boundaries 
separating the foreground and the background, with (b,g) demonstrating the ground truth segmentation masks. 
�e classical U-Net either over-segmented (c) or under-segmented (h) the images, while the MultiResUNet (d,i) 
and the MILDNet (e,j) performed considerably better in the segmentation.
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Conclusion
In this study, we proposed MILDNet, a multi-level dilated residual deep neural network, for the biomedical image 
segmentation task. We have extended the classical U-Net by (i) incorporating parallel dilated convolutions to 
extract features from multiple receptive �elds to obtain high-level and more detailed features, and (ii) using multi-
level residual connections to improve the generalizing capability of the residual learning and to optimize the 
network during the training process. �e proposed approach e�ciently captures both the local and the contextual 
features to segment lesions/tumors by leveraging the inherent properties of the residual learning and the dilated 
convolutions. We trained and validated the proposed approach on �ve di�erent biomedical imaging modalities, 
each with its own segmentation challenges using a 5-fold CV. Our proposed approach consistently outperformed 
the classical U-Net by relative improvements of 2%, 3%, 6%, 8%, and 14%, respectively for the MRI, the ISIC-2018 
dermoscopy, the GlaS-2015 histopathology, the DSB-2018 cell nuclei microscopy, and the ISBI-2012 electron 
microscopy biomedical images, in terms of DC. MILDNet also outperformed state-of-the-art MultiResUNet 
approach by relative improvements of 1%, 1%, 1%, 4%, and 4%, respectively for the ISIC-2018 dermoscopy, the 
DSB-2018 cell nuclei microscopy, the ISBI-2012 electron microscopy, the MRI, and the GlaS-2015 histopathology 
biomedical images, in terms of DC. Furthermore, the saliency maps showed that MILDNet concentrates much 
better on the ROIs in biomedical images with complex background.

Image Ground truth U-Net
6
 MultiResUNet

10
MILDNet (Proposed)

(a) (b) (c) IoU = 0.2517 (d) IoU = 0.2572 (e) IoU = 0.2584

Figure 12.  Segmenting a very challenging  MRI15 image (a) having indistinguishable boundaries between the 
background and the foreground, with (b) being the ground-truth. All models including the proposed approach 
have over-segmented the image (c–e).

Image Ground truth U-Net
6
 MultiResUNet

10
MILDNet (Proposed)

(a) (b) (c) IoU = 0.8763 (d) IoU = 0.9009 (e) IoU = 0.9247

(f) (g) (h) IoU = 0.6550 (i) IoU = 0.7365 (j) IoU = 0.7594

Figure 13.  �e non-tumor region in the  MRI15 image (a) contains small bright green areas (outliers), which 
resemble tumor region (ROI). �e cell nuclei  microscopy17 image (f) has also some bright particles (outliers), 
which are visually very similar to the cell nuclei (ROI). MILDNet successfully discarded the outliers from the 
predicted masks (e,j), with (b,g) being the ground truths. Red circles show the incorrectly segmented outliers by 
the classical U-Net (c,h) and the MultiResUNet (d,i).
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�e visual assessments of the segmentation results further highlighted that the proposed approach improves 
restoring the spatial and contextual information, i.e. by performing reliably in the presence of outliers and obscure 
ROI boundaries, and by preserving connectivity in boundaries in the majority class segmentation problem.

We tested our proposed approach as well as the baselines on datasets with di�erent data sizes ranging from 
256 in ISBI-2012 and GlaS-2015, to over 2000 in ISIC-2018. We generated image patches to increase the number 
of samples and applied data augmentation techniques during the training process to avoid over-�tting due to 
a limited number of data samples in some datasets. �e future direction of this study focuses on extending the 
MILDNet and developing a uni�ed segmentation framework, including 2D and 3D models, for various biomedi-
cal imaging modalities and multi-organ semantic segmentation tasks and to further investigate methods to train 
MILDNet faster with lower memory usage.
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