
The University of Manchester Research

Multi-level facility location-allocation problem for post-
disaster humanitarian relief distribution

DOI:
10.1108/JHLSCM-05-2018-0036

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Shavarani, S. M. (2019). Multi-level facility location-allocation problem for post-disaster humanitarian relief
distribution: A case study. Journal of Humanitarian Logistics and Supply Chain Management, 9(1), 70-81.
https://doi.org/10.1108/JHLSCM-05-2018-0036

Published in:
Journal of Humanitarian Logistics and Supply Chain Management

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:27. Aug. 2022

https://doi.org/10.1108/JHLSCM-05-2018-0036
https://www.research.manchester.ac.uk/portal/en/publications/multilevel-facility-locationallocation-problem-for-postdisaster-humanitarian-relief-distribution(b7b820e8-bd2c-4252-87b7-644ecb638915).html
https://www.research.manchester.ac.uk/portal/en/publications/multilevel-facility-locationallocation-problem-for-postdisaster-humanitarian-relief-distribution(b7b820e8-bd2c-4252-87b7-644ecb638915).html
https://www.research.manchester.ac.uk/portal/en/publications/multilevel-facility-locationallocation-problem-for-postdisaster-humanitarian-relief-distribution(b7b820e8-bd2c-4252-87b7-644ecb638915).html
https://doi.org/10.1108/JHLSCM-05-2018-0036


Multi-Level Facility Location-Allocation Problem for Post-Disaster Humanitarian Relief 

Distribution: A Case Study  

Seyed Mahdi Shavarani 

Alliance Manchester Business School, University of Manchester, Uk 
*Corresponding Author: Shavarani@postgrad.manchester.ac.uk 

 

Highlights: 

 A multi-level FLP is used to simultaneously account for both relief centres and recharge stations. 

 The model aims to optimize waiting times, total travel distance, survival rate and topology of the humanitarian 

relief system. 

 The number of required resources including centres and drones is minimized without risking the efficiency 

of the system. 

 A hybrid Genetic Algorithm is proposed for solving the model. 

 A case study is investigated to evaluate the performance of the proposed method.  

 

1. Introduction 

Millions of disasters occur each year on the planet earth. Only during fifteen years between 2000 and 
2015, there have been 800 thousand lost lives just because of earthquakes [1]. In years 1999-2008 1.2 
million lives were lost due to 7 thousand disasters worldwide [2]. Each year disasters disturb the lives 
of 250 million individuals [3]. Recent incidents such as the tsunami in the Indian Ocean in 2004 and 
the 2003 storm in Philippines have further highlighted the significance of humanitarian relief [4], [5]. 
The trend of disaster and rate of their occurrences has been positive in recent years and vulnerability is 
increasing due to increased population and ill-defined disaster response infrastructure [6], [7]. The 
number of disasters is forecasted to be fivefold within fifteen years [8] and this has made governments 
have more emphasis on disaster management in their agenda [9]. 

Disaster management includes five phases: prevention, preparedness, response/relief, rehabilitation, 
and reconstruction. If planned properly and deployed promptly, disaster response can significantly 
decrease the fatality rate [10]. Thus preparedness and response phases of disaster management are most 
discussed while other phases specifically recovery phase has not been addressed as much [11]. 
Furthermore, mitigation, preparedness, response, and reconstruction are counted the most vital phases 
of disaster management [12], [13]. Relief distribution is a key factor in disaster response [14]. Modern 
technologies should be utilized to distribute relief among survivors immediately after a disaster to 
increase the survival rate [15]. Medicines, food, water, and shelter are the most important elements of 
emergency relief [16]. Most important tasks of post-disaster relief are the proper allocation of relief 
crews and resources, locating the relief centres, and generation of transportation routes [17]. 
Consequently, eighty percent of all humanitarian relief operations is built upon logistics without which 
the relief distribution would be corrupted [18]. There are also many studies related to strategies and 
available technologies in disaster management and emergency response system and their discussion is 
out of the scope of this study [19]–[25]. 

Facility location problem (FLP) has a great importance in the strategic planning of organizations’ 
logistics. The wide spectrum of FLP applications has put it under the spotlight in many studies in the 
context of supply chain management, healthcare management, emergency logistics and so forth. 
Although Supply Chain Management (SCM) was introduced as an independent field, OR and FLP 
found their way into its core [26]. SCM is the process of planning, implementing and controlling the 
operations of the supply chain in an efficient way. Part of the planning processes in SCM aims at finding 
the best possible supply chain configuration and that’s where FLP plays its role in SCM. The interested 



reader is referred to [26] for a complete review of the relation between SCM and FLP. In the case of 
humanitarian relief, the design of supply chain significantly affects its performance [21].  It has been 
indicated that improper selection of the facility locations, results in poor accessibility and functioning 
of the facilities [27]. Facility location received importance due to its direct impact on operational cost 
and timeliness of response to the demand [28]. Thus many studies have investigated the proper location 
of different units and elements of a humanitarian relief system [29], [30]. In his study, [31] reviews the 
application of FLP for disaster relief operations. Generally, FLP aims to determine the best location of 
new facilities among a set of candidate locations. Facility location models for profit-making bodies is 
primarily to minimize cost or maximize revenue whereas facility location models for public and 
emergency services focus mainly on accessibility and response time. FLPs consider a facility opening 
cost corresponding to each location. In k-median FLP there is no cost associated with facility opening 
and just total service costs or aggregate travel distance is minimized. The k-center FLP is defined as the 
minimization of the maximum travel distance. In the covering problems, all the demand is supposed to 
be satisfied and there is no lost demand. set covering based facility location models select facilities 
among potential locations such that all demand sources are covered with a minimum number of 
facilities. Therefore, in disaster relief operations, this means that each potential demand location must 
be within the targeted response time of a facility in the relief network. However, it was observed that a 
small portion of the demand located in remote areas has a huge effect on the final solutions. Thus 
Charikar et al. addressed the lost demand, called outliers,  in the FLPs [32]. Another categorization of 
FLP is based on the capacity of the facilities [32]. In Un-capacitated FLP, it is presumed there is no 
limit on the services provided by facilities and consequently no lost demand, while in Capacitated FLP 
each facility has an upper limit for its services. As described by [33] in his book Location Science, 
Fixed-Charge FLP deals with a finite number of customers and a finite number of candidate locations 
and the costs of the facilities are considered in the model. Furthermore, there are generally two types of 
decisions made in these problems; determining the location of service providers and allocation of the 
demand. Fixed-charge facility location also plays a critical role in many other areas like supply chain 
management, distributed systems, humanitarian relief, emergency systems, location-routing problems 
or freight transportation. Traditionally, the facility layout design problem is linked with optimizing the 
performance of the plant by minimizing the total flow of the products. Therefore, the facility layout 
problem is dependent on the product flows and its demand. During a disaster, the demand may shoot 
up and the layout which was designed initially without considering the disaster may not be optimal now 
to handle the post relief operations. Therefore, disaster criteria must be considered to design the facility 
layout, once the facility in a supply chain network is selected, to optimize post-disaster relief operations. 
Some scholars have used stochastic distributions to estimate the fluctuations in the demand during the 
post-disaster period [31]. Facility location problems are generally NP-hard on a general graph and thus 
exact methods cannot be utilized for solving them, especially when dealing with large-size problems 
[33]–[36]. 

Drones have been widely investigated as delivery vehicles and due to its speed and capability of 
autonomous operation, it can be considered for relief distribution. Previously the use of drones has been 
investigated for humanitarian relief [37]–[39], rescue operations [40], delivery [41] and healthcare [42], 
[43]. [44] considered the application of drones for the relief distribution and proposed a model to locate 
the best locations for the launch stations/ relief centres. In their work, the delivery system was composed 
of aerial and ground transportation wherein the drones were used for the areas which were made 
inaccessible due to road collapses. On another hand, [45] proposed a model for finding the best locations 
for recharge stations, assuming that there is only one launch station established. Only a few studies 
have scrutinized aerial delivery systems, and the authors have tried to cover and review most of the 
existing ones. Furthermore, there is no study about the logistics of the system in the current literature 
where both launch and refuel stations are considered, specifically in the humanitarian logistics and in 
the post-disaster environment. The current study conveys such a research by proposing a multi-level 
facility location problem and solution methods. 



In this study, the drone delivery system consists of both relief centres and recharge stations which can 
be used by drones in order to reach to the points that geographically are not located within their 
endurance. To do this, a multi-level fixed-charge facility location problem is proposed to model the 
system and find the optimum number and location of both relief centres and refuelling stations. Due to 
the NP-hardness of the problem, a genetic algorithm (GA) is devised to solve the model. The proposed 
algorithm is applied to the case of Tehran for finding the best Center locations as well as refuelling 
stations to be used for post-disaster relief distribution. 

The structure of this paper is as follows; the problem is defined and formulated in the next section. In 
section 3, a genetic algorithm is devised to solve the proposed model. A case study of Tehran is 
presented in section 4. Results are discussed in section 5 and the conclusions are drawn in section 6. 

2. Problem Definition, Assumptions and Formulation 

The set of candidate locations is assumed to be known. Among the set of candidate locations, a number 
of locations should be selected for establishing relief centers and refuel stations in a manner that the 
aggregate travel distance is minimized. It is assumed that the demand occurs according to Poisson 
distribution and is satisfied by its closest facility. Drones are identical and their speed is fixed, which 
implies that minimization of the total travel distance is equivalent of minimization of total service time. 
Each drone has an endurance that indicates the maximum distance it can travel without a need to refuel. 
If a demand were within the endurance of the drone, the drone would go directly to the demand point, 
deliver the relief package and turn back. Otherwise, to reach the demand point, the drone should visit 
one or more refuel stations. Thus, the length of the shortest paths between the stations and the demand 
points are not parameters but variables that depend on the opened refuel stations at each instance of the 
problem. These variables are solved for within the model by the constraints of the shortest path 
algorithm. The words refuel and recharge stations are used interchangeably throughout the text. The 
same goes for the launch station and relief centre. The following notations are used in model 
formulation: 

Sets: 𝑉: the set of nodes ( 𝑣, 𝑣’ ∈ 𝑉) 𝐽: the set of candidate locations (𝑗, 𝑗′ ∈ 𝐽, 𝐽 ⊆ 𝑉) 

Scalars & Parameters: 𝑀: A large positive number 𝑑𝑗𝑗′: Euclidean distance between facility 𝑗 and facility 𝑗′ 𝑑𝑗𝑣: Euclidean distance between facility 𝑗 and node 𝑣 𝜆𝜐: the demand located on edge (𝑣, 𝑣’) 𝐸: 𝑇ℎ𝑒 𝑒𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑑𝑟𝑜𝑛𝑒 𝑀𝑡: The maximum allowed length of the route from demand point to its assigned launching station 𝑘: The maximum number of relief centers to be established 𝑁: The maximum number of recharge stations to be established 

Variables: 𝐿𝑗 = 1, 𝑖𝑓 𝑎 𝑙𝑎𝑢𝑛𝑐ℎ𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑖𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗; 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠 𝑅𝑗 = 1, 𝑖𝑓 𝑎 𝑟𝑒𝑓𝑢𝑒𝑙𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑖𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗; 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠 𝑦𝑗 = 1, 𝑖𝑓 𝑎 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑖𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗; 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠 



𝑥𝑗𝑣 = 1, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑣 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑗; 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠 𝑡𝑗𝑣: The length of the shortest path from facility 𝑗 to demand node 𝑣 

Using the described assumptions and definitions, the problem can be modelled as follow; 𝑀𝑖𝑛 ∑ ∑ 𝜆𝑣𝑡𝑗𝑣𝑥𝑗𝑣(𝑣)𝑗  (1) 

Subject to:  𝐿𝑗 + 𝑅𝑗 = 𝑦𝑗 ∀ 𝑗 ∈ 𝐽 (2) ∑ 𝑥𝑗𝑣 = 1𝑗  ∀ 𝑣 ∈ 𝑉 (3) 𝑥𝑗𝑣 ≤ 𝑦𝑗 ∀ 𝑗 ∈ 𝐽, 𝑣 ∈ 𝑉 (4) ∑ 𝐿𝑗 ≤ 𝑘𝑗   (5) ∑ 𝑅𝑗 ≤ 𝑁𝑗   (6) 𝑡𝑗𝑣 = (𝑤𝑣 − 𝑤𝑗) ∀ 𝑗 ∈ 𝐽, 𝑣 ∈ 𝑉 (7) (𝑤𝑗 − 𝑤𝑗′)𝑦𝑗𝑦𝑗′ ≤ 𝑑𝑗𝑗′  ∀ 𝑗, 𝑗′ ∈ 𝐽|𝑑𝑗𝑗′ ≤ 𝐸 (8) (𝑤𝑣 − 𝑤𝑗)𝑦𝑗 ≤ 𝑑𝑗𝑣 ∀ 𝑗 ∈ 𝐽, 𝑣 ∈ 𝑉|𝑑𝑗𝑣 ≤ 𝐸 (9) 𝑡𝑗𝑣𝑥𝑗𝑣 ≤ 𝑀𝑡 ∀ 𝑗 ∈ 𝐽, 𝑣 ∈ 𝑉 (10) ∑ 𝑡𝑗′𝑣𝑥𝑗′𝑣𝑗′∈𝐽 ≤ 𝑡𝑗𝑣 + 𝑀(1 − 𝑦𝑗) ∀ 𝑗 ∈ 𝐽, 𝑣 ∈ 𝑉 (11) 𝑦𝑗 , 𝑥𝑗𝑣 , , 𝐿𝑗, 𝑅𝑗 ∈ {0,1} ∀ 𝑗 ∈ 𝐽, 𝑣 ∈ 𝑉 (12) 𝑤𝑗, 𝑡𝑗𝑣 ≥ 0  ∀ 𝑗 ∈ 𝐽, 𝑣 ∈ 𝑉 (13) 

 

The objective function Minimizes the total travel distance to meet the demand on each point. Constraint 
(2) ensures that either a refuel station or a centre be established in one candidate location. Constraint 
(3) guarantees that each node is assigned to one centre for receiving services and constraint (4) Prohibits 
the assignment of any node to closed centres. The maximum number of relief centres and recharge 
stations is limited by constraints (5) and (6). Constraints (7)-(9) provide the shortest paths between 
nodes and centres in a way that the endurance capacity of the drones is not violated. Constraint (10) 
provides an upper limit for the shortest paths. Constraint (11) makes sure that each node is assigned to 
its corresponding closest centre. Constraints (12) and (13) define the binary and positive variables. 

3. Solution Method 

Due to Np-harness of FLPs [46], metaheuristic algorithms are widely used to solve them. Genetic 
algorithms (GA) are among the most frequently used algorithms in the literature [47], [48]. Genetic 
Algorithm provides competitive solutions with less CPU time compared with other algorithms used in 
this area such as particle swarm, ant colony and simulated annealing [49]–[51]. Holland Developed 
genetic algorithm based on the evolution of superior individuals through generations [52]. This 
algorithm starts with a population of random solutions. Through each iteration, some members of the 
population are randomly selected as parents and by mutation and crossover operators, the selected 
parents are mated and offspring solutions are produced and added to the pool. The solutions are then 
sorted based on their fitness value. The next generation evolves by selecting the superior solutions.  

As indicated in Fig. 1.a, each solution is represented by a chromosome wherein the 𝑖𝑡ℎ gene indicates 

the status of the 𝑖𝑡ℎ candidate location. There are 3 different values for each gene; 1, 2, and 3 which 

respectively indicate relief center, refuel station and closed status. The initial population is consisted of 
randomly generated solutions. In order to generate offspring/children, parents are selected by roulette 
wheel technique that gives higher priority to superior individuals. The superiority of the chromosomes 



is determined based on their fitness value as defined in equation (1). The less the fitness value the better 
is the solution. Parents undergo the crossover and mutation operations to generate children. To perform 
a crossover operation two parents are selected, a crossover point is generated randomly and the second 
part of the chromosomes are interchanged, giving birth to 2 new children, each inheriting some 
characteristics of their parents. For each mutation operation only one parent is selected and some 
randomly selected genes would change within the chromosome of the selected parent and an offspring 
is generated. The chromosome structure, crossover and mutation operators and pseudocode of the 
algorithm are illustrated in figure 1. To improve the quality of the solutions and to speed up the 
convergence rate towards better solutions, a local search is also applied to some randomly selected 
solutions. In each selected solution, some genes are changed to a lower level, and the quality of fitness 
function is assessed, in the case of improvement the old solution is replaced by the new one. In the next 
step, population, which is now the union of original population and generated children, is sorted 
according to the fitness value and the best solutions are selected to enter next iteration of the algorithm 
and the rest of the solutions are discarded. This is compatible with the nature in the regard that the 
superior individuals have a better chance of survival. The algorithm goes on for a predetermined number 
of iterations. The number of solutions in the initial solution, maximum number of iterations, the rate of 
offspring produced in each iteration by crossover and mutation operators and the rate of local search 
are parameters that are determined by the decision maker. In this study population size, maximum a 
number of iterations, the rate of crossover, the rate of mutation and the rate of local search has been set 
at 1500, 50, 0.8, 0.5 and 0.2. Taguchi method is used to tune the algorithm and find the best values for 
each of these parameters. The details of Taguchi methods can be found in many studies such as  [47], 
[48], [53] 

Fig. 1. a) Structure of the chromosome. b) Crossover operation. c) Mutation Operator. d) Hybrid GA 

4. The Case Study  

Tehran, the capital of Iran, is selected as the case study of this study. This city is under a severe risk of 
a major earthquake in a near future [54], therefore, extreme precautions must be taken into consideration 
for dealing with this issue. Thus, this case study investigates the best locations of relief centres and 
refuel stations to be used in such an event. As illustrated in fig. 2, the open street map of Tehran with 
124171 streets and 92471 nodes was acquired from ArcGIS 10. Among existing nodes, 182 potential 
locations have been selected. The proposed algorithm is coded and run in Matlab (R2015a).  The 
information about the existing faults and intensity of the corresponding earthquakes and destruction 

factor (𝛽𝑖) is acquired from the reports provided by Japan International Cooperation Agency [55]. The 

demand at each node is bases on destruction probability obtained as p𝑖 = 1 − 𝛽𝑖𝑃𝐺𝐴𝑖 [56], 𝑃𝐺𝐴𝑖 is the 



peak ground acceleration at node 𝑖 defined by [57] as PGA𝑖 = 𝛼 𝑒0.8𝜇(𝑟𝑖+40)2 where 𝑟𝑖 is the distant of node 𝑖 to the activated fault and 𝜇 is the magnitude of the earthquake. The demand is calculated by the 

assumption of ray fault activation with the magnitude of 6.5 and the total demand is assumed 82914. 
The maximum number of centers and recharge stations is assumed 5 and 10, respectively. The 
endurance of the drones is assumed 16 kilometers. Table 1 presents the results for different values of K 
and N. The results for the second instance are depicted in fig.2, where the maximum number of centers 
and recharge stations are equal to 7 and 10 respectively. The total travel distance of this solution is equal 
to 393682 km which translate to 4.7 kilometers per demand, considering the average speed of 80 
km/hour for a typical drone, the average of each mission could be estimated at 3.5 minutes. 

Table 1. Results of the algorithm 

#Instance 1 2 3 
K 6 7 10 
N 10 10 20 
#LC 6 7 10 
#LR 8 4 2 
TTD (km) 462244 393682 282572 
K,N,LC,LR and TTD respectively stand 
for maximum number of relief centers, 
refuel station, located centers, located 
refuel station and total travel distance 
(km). 

 

Fig.2 Transportation network of Tehran and the best locations for launching and recharging stations. 
(Results correspond to second instance illustrated in table. 1) 



 

5. Discussion 

Disasters are inevitable and as consequently each year millions of lives are lost to them. However, the 

total number of casualties could be significantly decreased by proper disaster management. To enhance 

the efficiency of relief actions, disaster managers try to utilize the state of the art technologies. In recent 

years, use of drones has been under the spotlight because of the provided speed and accessibility to 

remote and disconnected areas; both of which are vital for saving the lives of the victims. To use the 

drones efficiently, the required infrastructure should be managed properly to make the most out the 

available resources. This study proposes a tool to determine the topology of the stations, both refuel and 

launching stations, in a way that total travelling distance is minimized. Since the speed of the drones is 

fixed, this objective corresponds to the minimization of response time and increasing the chance for 

maximizing the survival rate. The case study of Tehran shows that the model can act as a decision 

support tool for determining the optimum number of stations and their corresponding locations and 

simulation of the consequences of each combination of parameters such as the maximum number of 

refuel stations and launching stations. The case study is investigated for different values of maximum 

number of stations and the results are satisfying since the waiting time for receiving services is limited 

to several minutes. Disaster response plays and important role in disaster management and prompt 

response would significantly decrease the fatality rate. Findings of this study addresses the logistics of 

an aerial delivery system as a respond to the universal attention towards using technological 

advancements, namely UAVs, for improving emergency response. To capture a more accurate picture 

of the problem, a congested model should be considered which adds to the complexity of the problem. 

Although with the advancement of technology, drones’ characteristics such as endurance and speed are 

improving rapidly, making aerial humanitarian relief systems more practical and more economic. 

6. Conclusion 

In this paper, an edge-based stochastic immobile facility location problem is studied wherein the best 
location and number of the facilities is determined with the objective of minimizing the total costs, 
travel distances and lost demands. The population was assumed to be uniformly distributed along 
network edges. Since the problem is proved to be NP-hard, a Non-Dominated Sorting Genetic 
Algorithm was developed to solve the problem. The proposed model was applied to the case study of 
Tehran and the Pareto solutions resulted from the algorithm was presented which could be beneficial to 
decision makers in this area. The model could be altered to account for multi-service FLP. The 
integration of an objective function for minimization of waiting times is recommended for future 
studies. 
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