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ABSTRACT

Cross-platform account matching plays a signi�cant role in social

network analytics, and is bene�cial for a wide range of applications.

However, existing methods either heavily rely on high-quality user

generated content (including user pro�les) or su�er from data in-

su�ciency problem if only focusing on network topology, which

brings researchers into an insoluble dilemma of model selection.

In this paper, to address this problem, we propose a novel frame-

work that considers multi-level graph convolutions on both local

network structure and hypergraph structure in a uni�ed manner.

The proposed method overcomes data insu�ciency problem of

existing work and does not necessarily rely on user demographic

information. Moreover, to adapt the proposed method to be capable

of handling large-scale social networks, we propose a two-phase

space reconciliation mechanism to align the embedding spaces

in both network partitioning based parallel training and account

matching across di�erent social networks. Extensive experiments

have been conducted on two large-scale real-life social networks.

The experimental results demonstrate that the proposed method

outperforms the state-of-the-art models with a big margin.
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1 INTRODUCTION

Nowadays, most people participate in more than one Online So-

cial Network (OSN), such as Facebook, Twitter, Weibo, Linkedin.

More often than not, users sign up at di�erent OSNs for di�erent

purposes, and di�erent OSNs show di�erent views and aspects

of people. For example, a user makes connections to their friends

on Facebook, but uses Linkedin to connect to his/her colleagues,

interested companies and seek job opportunities. Though di�erent

OSNs exhibit distinct features and functionalities, a large portion

of overlapping individual user accounts across di�erent social plat-

forms have been always witnessed. However, the information about

multiple accounts that belong to the same individual is not explic-

itly given in most social networks due to either privacy concerns

or lack of motivation [24].

The problem of matching accounts that belong to the same

individual from di�erent social networks is de�ned as Account

Mapping [32], Social Network De-anonymization[25, 40, 42]

or Social Anchor Link Prediction [8, 21, 24, 38] in Data Mining

research �eld. Account Matching across di�erent social platforms

plays a fundamental and signi�cant role in social network analytics

as it helps improve many downstream applications, such as online

personalized services [6], cross network information di�usion [27],

link prediction [1], recommender systems [23, 33], biology protein-

protein alignment for ageing related complexes [10], and criminal

behaviour detection [32]. Although much attention has been dedi-

cated to this challenging subject, there is still plenty of room for

improvement. Previous studies [16, 19, 22, 29] proposed to solve

this problem by exploiting available auxiliary information such

as self-generated user pro�les, daily generated content and other

demographic features (e.g., user name, pro�le picture, location, gen-

der, post, blogs, reviews, etc.). However, with the increased public

awareness of privacy and information rights, these information is

becoming less available and accessible.

Recently, with the advances in Network Embedding (NE) tech-

niques, research attention related to this problem has been shifted

to focus on mining network structure information [8, 20, 24, 32]

as it has been claimed that the social network structural data is

much more reliable in terms of correctness and completeness. How-

ever, only focusing on modelling the network structure itself makes

almost all existing methods su�er from data insu�ciency prob-

lems, especially in small-scale networks and cold-start settings (i.e.,

a user is new to the network). Therefore, it has been a dilemma

confronting practitioners in the real-world scenarios, and e�ective

solutions are urgently needed.

https://doi.org/10.1145/3394486.3403201


KDD ’20, August 23–27, 2020, Virtual Event, CA, USA H. Chen, H. Yin, et al.

In light of this, we propose to exploit and integrate the hyper-

graph information distilled from the original network for data en-

hancement. In the rest of the paper, we use the terms “simple graph”

and “hypergraph” to denote original network and hypergraphs ex-

tracted from original network, respectively. Compared to simple

graphs, hypergraphs allow one edge (a.k.a., heperedge) to connect

multiple nodes (more than two nodes) simultaneously. This means

non-pairwise relations among nodes in a graph can be easily orga-

nized and represented as hyperedges. Moreover, hypergraphs are

robust, �exible and can �t a wide variety of social networks, no mat-

ter the given networks are pure social networks or heterogenous

social networks with various types of attributes and links.

More speci�cally, we propose a novel embedding framework

Multi-level Graph Convolutional Networks, namely MGCN,

to jointly learn embeddings for network vertices at di�erent lev-

els of granularity w.r.t. �exible GCN kernels (i.e., simple graph

GCN, hypergraph GCN). Simple graph structure information of

social networks reveals relationships among users (e.g., friendships,

followers), while hypergraphs carry di�erent semantic meanings

depending on their speci�c de�nitions in a social network. For

example, N-hop neighbour-based hypergraphs (N-hop neighbours

of a user are connected via a same hyperedge) represent friends

circle in some extent. Centrality-based hypergraphs represent dif-

ferent social levels (users with similar centrality values may be of

same social status). Therefore, by de�ning various hypergraphs

and intergating them into network embedding learning will fa-

cilitate learning better user representations. To support this, our

proposed MGCN framework is �exible and can incorporate various

hypergraph de�nitions, which can take any hypergraphs as vector

representations, making the model structure invariant to various

hypergraph de�nitions.

The rationale behind exploiting and integrating hypergraphs by

extending GCN is that hypergraphs provide a more �exible network

representation that can contain additional and richer information

compared to individual, single graph GCNs on local network topol-

ogy. It has been found that the optimal number of GCN layers is

always set to two in most cases because adding more layers cannot

signi�cantly improve the performance [14]. As a result, GCNs are

only able to capture the local information around a node in net-

works. This phenomenon also makes solo GCN contradictory and

thus perform mediocrely on account matching task as the key to

the task is to explore more and deeper information to make the

predictions. Intuitively, de�ning GCNs on hypergrpahs extracted

from original networks will be complementary to the limitations

of existing GCN-based network embedding models.

Nevertheless, it is still a challenging task because social networks

are large-scale with millions of nodes and billions of edges. Tra-

ditional centralized training methods fail to scale for such large

networks, due to high computation demands. To adapt MGCN for

large scale social networks, and improve its scalability and

e�ciency, we propose a novel training method that �rst partitions

the large-scale social networks into clusters and learns network

embeddings in a fully decentralized way. To align the learned em-

bedding spaces of di�erent clusters, we propose a novel two-phase

space reconciliation mechanism. At the �rst stage, we align the em-

bedding spaces learned from each cluster within the same network.

In addition to the alignment between di�erent subnetworks in the

same network, the second-phase space reconciliation aligns two dif-

ferent networks through a small number of observed anchor nodes,

which makes our MGCN framework achieve more accurate anchor

link prediction than state-of-the-art models and high e�ciency on

large social networks.

The main contributions of this paper are summrized as follows:

• We propose a novel framework for the challenging task of

predicting anchor links across di�erent social networks. The

proposed method MGCN takes both local and hypergraph

level graph convolutions into consideration to learn network

embeddings, which is able to capture wider and richer net-

work information for the task.

• In order to adapt the proposed framework to be able to cope

with large scale social networks, we propose a series of treat-

ments including network partitioning and space reconcilia-

tion to handle the distributed training process.

• Extensive evaluations on large-scale real-world datasets have

been conducted, and the experimental results demonstrate

the superiority of the proposed MGCN model against state-

of-the-art models.

2 PROPOSED METHODOLOGY

2.1 Preliminaries

2.1.1 ProblemDefinition. Given a pair of networksG1 = {V1, E1}

and G2 = {V2, E2}, and a set of observed anchor links S0=2ℎ>A =

{(D, E) |D ∈ V1, E ∈ V2}, our goal is to predict those unobserved

anchor links across G1 and G2. We treat this task as binary classi�-

cation, that is, given a pair of nodes (D, E) where D ∈ V1, E ∈ V2,

we predict if there is a link between them.

2.1.2 Hypergraph. In simple graphs, an edge only connects two

nodes, while an edge in a hypergraph (i.e. hyperedge) can connect

more than two nodes. We denote a hypergraph by Gℎ = {V, Eℎ},

where V is the node set, and Eℎ is the hyperedge set. For each

hyperedge 4 ∈ Eℎ , we have 4 = {E1, · · · , E? }, E8 ∈ V, 2 < ? ≤ |V|.

2.2 Model Overview

To predict anchor links, we introduce a novel multi-level graph

convolutional network (MGCN) to learn the embeddings of each

network. Figure 1 is an illustration of our proposed MGCN frame-

work, which consists of two levels of graph convolution operations.

It �rstly performs convolution on simple graphs (i.e., the original so-

cial network in our case). After obtaining the node embeddings from

the simple graph convolution, the node embeddings are re�ned

by an innovative convolution operation de�ned on hypergraphs.

With the �nal embeddings of two social networks obtained, we

align the latent space of two networks via an embedding recon-

ciliation process. Lastly, we deploy a fully connected network to

predict whether an anchor link exists between any arbitrary pair

of nodes from two networks. In addition, we present a paralleliz-

able scheme that allows MGCN to e�ciently handle large-scale

networks through graph partitioning.

2.3 Convolution on Simple Graphs

Given an original social network G = {V, E} (i.e., simple graph),

assume that we have constructed a hypergraph Gℎ from G, where
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Figure 1: Multi-level graph Convolution

each hyperedge 4 ∈ Eℎ, 4 = {E1, E2, · · · , E=}, E8 ∈ V . We �rst per-

form simple graph convolutions in order to obtain the base em-

beddings of all nodes, denoted by X ∈ R |V×3 | , where 3 is the

dimension of each node embedding vector. We start with a simple

graph convolution within hyperedge 4 by:

X
:+1
4 = f (A4X

:
4W

: ) (1)

where A4 ∈ R |V |×|V | is the adjacency matrix within hyperedge,

f (·) denotes the non-linear activation function such as '4!* (·) =

max(0, ·), whileX:4 andW
: carry the latent representations and the

shared trainable weights in the :-th convolution layer. Speci�cally,

in contrast to the plain GCN [18] that simply operates on the entire

graph, we perform the convolution operation on each hyperedge

individually. The rationale is that we can incorporate �ne-grained

local structural information from the hyperedges into the learned

node embeddings. To achieve this, we de�ne a diagonal matrix

S4 ∈ R |V |×|V | for hyperedge 4 , where each entry S4 (E8 , E 9 ) is:

S4 (E8 , E 9 ) =

{

? (E, 4), if E8 = E 9 , E8 ∈ 4

0, otherwise
(2)

where ? (E, 4) stands for the possibility of observing node E in hy-

peredge 4 , and its calculation depends on particular de�nitions of

hyperedges (see Section 3.6 for possible options). Then, let Â =

I |V | + D
− 1

2AD
− 1

2 where D ∈ R |V |×|V | is a diagonal matrix con-

taining each node’s degree in simple graph G, A is the adjacency

matrix of the simple graph G, and I |V | is the identity matrix. Then,

the local adjacency matrix A4 for hyperedge 4 can be calculated

via:

A4 = S4 ÂS4 (3)

Intuitively, A4 can be viewed as an adjacency matrix for the

directly connected nodes in hyperedge 4 , which is further weighted

by the hyperedge connectivity in S4 (E8 , E 9 ). As a result, when per-

forming simple graph convolutions, we can simultaneously take

two types of local node-node structural information into considera-

tion, making the learned base embeddings more expressive. Based

on Equation 1, the convolution operation on the entire simple graph

G can be obtained through the summation across all hyperedges:

X
:+1
B8<?;4

= 5 (⊕4∈EℎX
:+1
4 ) (4)

where ⊕ means the concatenation of the output for each hyper-

edge 4 , and 5 (·) denotes a dense layer that maps the concatenated

embeddings back to a 3-dimensional space.

2.4 Convolution on Hypergraphs

With the base embeddings X 
B8<?;4

learned in the simple graph

convolution stage for the �nal  -th convolution layer, we further

infuse the structural information of the constructed hypergraph Gℎ

into every node’s latent representation. In recent years, hypergraph

convolution network has started to attract attention from the net-

work embedding research community [11, 17, 37]. Di�erent from

most related works that deduce hypergraph convolution using the

spectral convolution theory, we derive the mathematical form of

hypergraph convolution by treating it as a generalized version of

simple graph convolution, which makes the inference process more

intuitive and natural to understand.

Given a hypergraph Gℎ = {V, Eℎ}, let H ∈ R |V |×|Eℎ | be an

incidence matrix where each entry H(E, 4) is determined by:

H(E, 4) =

{

? (E, 4), if E ∈ 4

0, otherwise
(5)

where ? (E, 4) indicates the possibility that node E belongs to hyper-

edge 4 . Let the diagonal matrixD= ∈ R |V |×|V | denoting the degree

of nodes in the hypergraph such that D= (E, E) =

∑

4∈Eℎ H(E, 4).

Similarly, the degree of hyperedges can be denoted by a diagonal

matrix D4 ∈ R |E
ℎ |× |Eℎ | where D4 (4, 4) =

∑

E∈V H(E, 4). Since H

indicates the correlation between nodes and hyperedges, we can use

HH
⊤ to quantify the pairwise relationships between nodes. Then,

the weighted adjacency matrix Aℎ ∈ R |V |×|V | of hypergraph Gℎ

can be derived as:

Aℎ = HH
⊤ − D= (6)

Having acquired the adjacency matrix of hypergraph, we can

naturally extend simple graph convolution to hypergraph Gℎ . Re-

call that in the typical GCN framework presented in [18], for a

simple graph GB = {VB , EB }, the standard graph convolution is

de�ned as:

X
:+1
B = f

(

(

I |VB | + D
− 1

2
B ABD

− 1
2

B

)

X
:
BW

:
B

)

(7)

where DB contains all nodes’ degree of GB , AB is the adjacency

matrix of GB . Apart from the identity matrix I |VB | , the above stan-

dard graph convolution, at its core, are dependent on the node

relationships encoded in the degree and adjacency matrices DB
and AB . Therefore, by replacing its input with the corresponding

information extracted from the hypergraph Gℎ , we can e�ectively

model hypergraph convolution in a similar way to the standard

GCN at each layer : :

X
:+1

=f

(

(

I |V | + D
− 1

2
= A

ℎ
D
− 1

2
=

)

X
:
W
:

)

=f

(

(

I |V | + D
− 1

2
=

(

HH
⊤ − D=

)

D
− 1

2
=

)

X
:
W
:

)

=f
(

D
− 1

2
= HH

⊤
D
− 1

2
= X

:
W
:
)

(8)

Let Θ = D
− 1

2
E HH

)
D
− 1

2
E , then we have:

X
:+1

= f (ΘX:W: ) (9)
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whereX: = X
 
B8<?;4

when : = 0. Suppose we also adopt layers of

convolution on hypergraph, then the �nal output of the multi-level

graph convolutional network is denoted by X
 . By this mean, the

generated node embeddings in X
:+1
B8<?;4

can both capture pairwise

relations (i.e., 1-hop neighbourhood) and high-order non-pairwise

relations (i.e., hyperedges). As we will further discuss in Section

3.5.1, this is especially important when the number of observed

anchor nodes for training are limited.

2.5 Learning Network Embeddings

For network embedding, the output embeddings from Equation 9

are learned by maximizing the probability of positive edges and

minimizing the probability of negative ones:

O4<14338=6 =

∑

(E8 ,E9 ) ∈E

log[ (x ⊤8 x
 
9 ).

+

"
∑

:=1

�E:∝% (E)

[

log
(

1 − f (x ⊤8 x
 
:
)
)

]

+

"
∑

:=1

�E:∝% (E)

[

log
(

1 − f (x ⊤9 x
 
:
)
)

]

(10)

where [ (·, ·) is the sigmoid function to calculate the probability

of observing edge (E8 , E 9 ).

For a given positive edge (E8 , E 9 ) in the training set, we use bidi-

rectional negative sampling strategy [7] to draw negative edges

for training. Speci�cally, we �x E8 and generate" negative nodes

E: via a noise distribution %= (E) ∼ 3
0.75
E , where 3E is the degree of

node E . Then we �x E 9 and sample" negative nodes with the same

process. By optimizing Equation 10, we can obtain optimal embed-

dings inX from the last layer . Afterwards, the �nal embeddings

are further leveraged for downstream anchor link prediction task.

2.6 Anchor Link Prediction

Note that after acquiring the �nal representations X
 
1 and X

 
2

of two networks G1 and G2, we should not directly use them for

anchor link prediction because the node representations are learned

in two di�erent latent spaces, which may vary a lot in terms of

semantic contexts. Instead, we �rst reconcile both of them into the

same latent space, and then use the aligned embeddings for anchor

link prediction. To reconcile X 1 and X
 
2 into the same space, we

�x X 1 and project X 2 into the same space as X 1 . Let W (.|Γ, b) be

a projection function with a projection matrix Γ and bias b. Then,

by aligning the embedding vectors of the anchor nodes in both

graphs, we can learn the parameters in the projection function,

thus ensuring accurate reconciliation for two latent spaces:

O0=2ℎ>A =
∑

(E,D) ∈S0=2ℎ>A

∥X 1 [E, :] − q (X 2 [D, :] |Θ, b)∥2 (11)

where W (x|Γ, b) = xΓ + b, and S0=2ℎ>A is the labeled anchor links.

Then, for any pair of nodes (E8 , E 9 ), E8 ∈ G1, E 9 ∈ G2, the represen-

tation of this pair can be denoted by the concatenation of their

corresponding embeddings. We sent these pair embeddings into

a fully connected network and �nally output the prediction of

whether they are anchor link, and use cross entropy as the loss

function of anchor link prediction.

2.7 Handling Large-Scale Networks

Although GCN-based methods have been widely used in various

tasks, most related methods still su�er from the “last mile” technol-

ogy when we deal with large-scale networks because most GCN-

based methods need the global adjacency matrix as their inputs,

and this easily causes out of memory issues for GPU computa-

tion. Besides, when the network scale increases, it will also lead

to growth in computation time. Thus, we need an e�ective graph

partition strategy so that we can deploy the proposed MGCN in

parallel. To this end, we �rst present a graph partitioning approach

via Algorithm 1, and propose a two-phase reconciliation mecha-

nism as shown in Figure 2. Speci�cally, we split the large network

into several partitions according to modularity maximization, and

then deploy our model in every single partition. For each graph,

we reconcile the latent spaces of all its partitions into the same

one using the reserved anchor nodes when partitioning the whole

graph. Then, we align the embeddings of G1 and G2 into the same

latent space using observed anchor nodes from two graphs.

Algorithm 1: Graph Partition

Input: graph G(V, E), the upper bound of each partition

#<0G , the lower bound of each partition #<8= ,

iteration ) .

Output: partitions % = {G1 (V1, E1), · · · ,G= (V=, E=)}.

1 % = Louvain(G) //Generating partitions % from G

according to Louvain algorithm[5].

2 for iter from 1 to ) do

3 for partition G
′
∈ % do

4 if |V
′
| < #<8= then

5 add nodes of V
′
into other partitions and delete

G
′
.

6 else if #<8= < |V
′
| <= #<0G then

7 continue

8 else

9 %C = Louvain(G
′
) //Generating partitions %C

from subgraph G
′
according to Louvain

algorithm[5].

10 % = % ∪ %C

11 end

12 end

13 end

14 return %

2.7.1 Graph Partition. As Algorithm 1 depicts, to split the large

network into several partitions with acceptable size (from #<8=
nodes to #<0G nodes, for example), we �rst compute the partition

of the network which maximises the modularity using the Louvain

algorithm[5]. For each partition G
′
= {V

′
, E

′
}, if the size is larger

than the upper bound, that is |V
′
| > #<0G , we put G

′
as the input

again and repeat the algorithm to further split G
′
into more smaller

partitions. If |V
′
| < #<8= , we randomly assign it to other created

partitions.

2.7.2 Reconcile Latent Embedding Spaces. We have noticed

that to deploy our model into di�erent partitions independently
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Figure 2: Two-phase embedding space reconciliation

actually produce the embeddings in di�erent latent spaces. There-

fore we need to further match di�erent partitions into the same

representation space. Here, we select # nodes from the network as

shared nodes across all partitions, and append these# nodes as well

as their associated edges into all partitions. Then we select one of

the partitions as a �xed one, and reconcile the others into the same

space with it. For example, for all % partitions {G1,G2, · · · ,G% },

we �x partition G1 and all other partitions’ embeddings are trans-

formed via a linear function 6(.). We maximize the following target:

O?0AC8C8>= =

%
∑

?=2

∑

E8 ∈VBℎ0A43

logf
(

(5? (x
(?)
8 ))⊤x

(1)
8

)

(12)

whereVBℎ0A43 is the set of shared nodes appearing in all partitions,

and x
(?)
8 is the representation of node E8 in partition ? . Having

matched each partition into the same space, we can get the �nal

network embeddings in a uniform space, we can eventually use

them as described in Section 2.6 to predict the anchor links.

2.8 Optimization Strategy

We train MGCN model in a step-by-step manner. Speci�cally, we

�rst train MGCN by optimizing the graph embedding objective

function O4<14338=6 . Then, we optimize the graph partition recon-

ciliation objective function O?0AC8C8>= (i.e., phase-1 space reconcili-

ation), then optimize the reconciliation objective function O0=2ℎ>A
(i.e., phase-2 space reconciliation). Lastly, with the fully aligned

node embeddings from both graphs, we optimize MGCN for the

anchor link prediction task by minimizing the cross-entropy loss.

3 EXPERIMENTS

3.1 Datasets

For anchor link prediction, we use two cross-platform datasets col-

lected and published in previous research on aligning heterogenous

social networks [6]. One is the Facebook-Twitter dataset, and the

other is the Douban-Weibo dataset. Facebook-Twitter contains

1,091,489 nodes, where the Facebook network has 422,291 nodes and

3,710,789 social links while the Twitter network contains 669,198

nodes that are connected by 12,749,257 social links. In Facebook-

Twitter, 328,224 aligned user pairs are identi�ed across two net-

works. Douban-Weibo bridges two popular social media platforms

in China, namely Douban1 with 141,614 nodes and 2,700,602 social

links and Weibo2 with 141,614 nodes with 6,280,561 social links.

There are 141,614 aligned users in the total 283,228 nodes across

these two networks in the Douban-Weibo dataset.

For parameter sensitivity and robustness analysis on anchor

link prediction, we follow [24] to generate two sub-networks from

Facebook. Speci�cally, we de�ne a sparsity parameter UB to control

the sample ratio of edges from the original Facebook network, and

U2 to control the ratio of shared edges in two sub-networks. For each

edge, we generate a random value ? in [0, 1]. If ? <= 1−2UB +UBU2 ,

the edge is discarded; If 1−2UB+UBU2 < ? <= 1−UB , it is added in the

1st sub-network; If 1−UB < ? <= 1−UBU2 , it is only kept in the 2nd

sub-network; Otherwise, the edge is added in both sub-networks.

The reason of using extracted sub-networks instead of the full

dataset is that we can customize the network sparsity via UB , and

the node overlap level via U2 . Hence, the �exible compositions of

generated datasets can simulate awide range of di�erent application

scenarios for testing di�erent models’ performance. Besides, they

are relatively smaller than Facebook-Twitter and Douban-Weibo,

thus enabling running time reduction for parameter sensitivity

analysis.

3.2 Baseline Methods

We compare our method against the following baselines:

• Autoencoder [30]. This method uses one-hot encodings

of nodes as the input and learns node representations by

optimizing the mean square error loss function.

• MAH [32]. This method enforces that a pair of nodes in the

same hyperedge should come closer to learn node represen-

tations for anchor link prediction.

1https://www.douban.com/
2www.weibo.com
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(a) Anchor Link Prediction on Facebook-Twitter (b) Anchor Link Prediction on Douban-Weibo

Figure 3: Results on anchor link prediction.
• DeepWalk [28]. This method uses random walk to sample

node sequences, and then learns node embeddings with the

word2vec model.

• GCN [9]. This method de�nes convolutional networks on

graphs for node representation learning.

• PALE [24]. This method predicts anchor links via network

embedding by maximizing the log likelihood of observed

edges and latent space matching.

• HGNN [11]. This method proposes hypergraph convolu-

tional networks for network embedding.

It is worth mentioning that the baselines we have chosen are all

network embedding-based. In both evaluation datasets, the user

pro�le and content information are unavailable, making traditional

methods [16, 19, 22] that rely on auxiliary data sources inapplicable.

3.3 Experimental Settings

3.3.1 Evaluation Metrics. Following related works [19, 24], we

treat anchor link prediction as a binary classi�cation task. Speci�-

cally, with a pair of nodes (D, E) as input, we aim to predict whether

they represent the same entity in two networks or not. As such, we

leverage three widely-used classi�cation metrics, namely Macro

Precision, Macro Recall, and Macro F1.
3.3.2 Parameter Se�ings. For anchor link prediction, the ratio

of positive and negative anchor links is set to 1 : 1 for both the

training and test. We train all methods using 50% of the positive

and negative links and test them on the remaining portion. In

the graph partition and reconciliation step, we set #<8= = 1, 000,

#<0G = 15, 000, and # = 1, 000. The layer size  is 2 in our model.

We construct the hypergraph via each node’s 10 hop neighbors.

That is, we connect each node and its 10 hop neighbors with one

hyperedge. Note that we also adopt three other hypergraph con-

struction strategies, and their impact will be discussed in section

3.6. The learning rate and embedding dimension are respectively

�xed to 0.01 and 200 in our model. The negative link number in

Equation (10) is set to " = 5. For all baseline methods, we adopt

their reported optimal parameters by default.
3.4 Performance on Anchor Link Prediction

In this section, we evaluate all models’ performance on anchor link

prediction on Facebook-Twitter and Douban-Weibo datasets. We

report Macro Precision, F1, and Recall in Figure 3. Based on the ex-

perimental results in Figure 3, we draw the following observations.

Firstly, in terms of all evaluation metrics, our method has consis-

tently and signi�cantly outperformed all baselines on both datasets.

Speci�cally, compared with the second best results on Macro Preci-

sion, Macro F1 and Macro Recall, our proposed MGCN achieves an

improvement of 9.7%, 9.1%, and 9.0% on Facebook-Twitter, and 0.6%,

2.7%, 2.6% on Douban-Weibo, respectively. On one hand, MGCN

performs both local graph convolution and hypergraph convolution

operations on social networks, so it can e�ectively preserve the

structural information in the learned node embeddings, leading to

superior classi�cation performance. On the other hand, traditional

network embedding-based methods (e.g., DeepWalk and PALE) are

unable to capture the complex, high-order node relationships, and

tend to underperform on large-scale networks.

Secondly, as hypergraph-based baseline methods, HGNN shows

stronger performance than MAH on both datasets. This is because

HGNN largely bene�ts from the nonlinearity of neural networks,

which o�ers higher model expressiveness while modeling hyper-

edges. Compared with GCN or PALE that only consider pairwise re-

lations, both ourmethod andHGNN can achieve better performance

regarding Macro Precision and Macro Recall. This observation in-

dicates the advantages of exploring hypergraphs for anchor link

prediction. However, compared with both baselines, MGCN further

incorporates node information extracted from local neighbourhood,

thus enriching the granularity of learned node embeddings and

yielding more competitive anchor link prediction results.

Thirdly, we also notice that our method is more advantageous

on Facebook-Twitter than on Douban-Weibo. One possible reason

is that the Douban-Weibo dataset has relatively higher density

compared with Facebook-Twitter. When handling sparser datasets,

GCN, DeepWalk and PALE su�er from severe performance decrease

because they heavily rely on su�cient observed pairwise relations

for node representation learning. This further demonstrates that

our proposed MGCN maintains high-level performance and shows

promising robustness in the presence of data sparsity problem.

3.5 Analysis on Model Robustness
As we have previously mentioned, existing anchor link prediction

methods are prone to su�er from performance downgrade when

exposed to sparse datasets, and our proposed MGCN alleviates

this problem by thoroughly investigating structural information

within both simple graphs and the extracted hypergraphs. To test

the robustness of our model, we carry out further comparisons

with baselines on the two subnetworks extracted from Facebook

network. To be speci�c, we vary the data compositions in these two

subnetworks by adjusting the proportions of training labels (i.e.,

observed anchor links), edges (i.e., user-user pairwise interactions)

and network overlaps (i.e., shared same nodes), and record the per-

formance �uctuations of di�erent models. We choose Autoencoder,

GCN, HGNN and PALE in this analysis as they have competitive

overall e�ectiveness and are relatively stable on large-scale datasets.
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(a) Macro Precision (b) Macro F1 (c) Macro Recall

Figure 4: Results w.r.t. observed anchor link percentage. (horizontal axis: labeled anchor links ratio.)

Table 1: Experimental results under di�erent sparsity levels.

sparsity level UB

Metric Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro Precision

Our method 0.8620 0.9071 0.9353 0.9345 0.9440 0.9631 0.9638 0.9624 0.9638

Autoencoder 0.8338 0.8455 0.8601 0.8195 0.8336 0.8590 0.9204 0.9255 0.8819

GCN 0.8340 0.8457 0.8881 0.8862 0.9115 0.9252 0.9366 0.9359 0.9434

HGNN 0.7295 0.8334 0.8340 0.8351 0.8376 0.8770 0.9025 0.8787 0.8850

PALE 0.8334 0.8337 0.7333 0.8337 0.8337 0.8338 0.8336 0.7648 0.7711

Macro F1

Our method 0.8602 0.9110 0.9418 0.9438 0.9523 0.9701 0.9705 0.9698 0.9713

Autoencoder 0.7450 0.8499 0.8603 0.8273 0.8377 0.8685 0.9247 0.9337 0.8924

GCN 0.7351 0.8030 0.8583 0.8721 0.9101 0.9250 0.9347 0.9386 0.9406

HGNN 0.6667 0.7634 0.8064 0.8394 0.8459 0.8849 0.9123 0.8881 0.8954

PALE 0.6584 0.7078 0.7141 0.7327 0.7496 0.7534 0.7457 0.7581 0.7512

Macro Recall

Our method 0.8615 0.9158 0.9512 0.9570 0.9660 0.9788 0.9788 0.9790 0.9805

Autoencoder 0.7608 0.8635 0.8760 0.8562 0.8715 0.8955 0.9337 0.9477 0.9165

GCN 0.7190 0.7897 0.8448 0.8678 0.9087 0.9247 0.9345 0.9423 0.9393

HGNN 0.6600 0.7705 0.8225 0.8570 0.8633 0.9005 0.9292 0.9067 0.9153

PALE 0.6502 0.6993 0.7065 0.7283 0.7430 0.7470 0.7372 0.7550 0.7417

Entries in bold are the best results. For the sparsity level, a lower UB leads to a sparser dataset. U2 is �xed to 0.6 in this test.

3.5.1 E�ect of Anchor Link Percentage. In practice, the avail-

ability of the observed anchor nodes between two social networks

that can be used for training are usually very limited. To test the

impact of available anchor links, we �rstly hold out 10% of the

observed anchor links for test, and change the ratio of anchor links

from 10% to 90% for training. Note that two parameters UB and U2
are both �xed to 0.9 during this test. All experiments including the

sampling are executed �ve times. We report the average results

of our method and baselines in Figure 4, from which we can see

that even with a small portion of training labels, our method still

performs the best compared with other baselines. This is particu-

larly important because in the real-world, anchor links are often

sparsely observed, thus our method is the most competitive choice

when there are insu�cient labels for training.

3.5.2 E�ect of Edge Percentage. While most GCN-based meth-

ods heavily rely on the information passed along edges for node

representation learning, most real-life networks are naturally sparse

in terms of the number of edges. So, we evaluate our method and

baselines by adjusting the sparsity parameter UB mentioned in sec-

tion 3.1 from 10% to 90%, and report the everage results achieved in

�ve executions as well. Note that we still use the same evaluation

set as in Section 3.5.1. As shown in Table 1, our method keeps stable

w.r.t. di�erent values of UB . The reason is that modeling hyper-

graphs on top of simple graphs with MGCN can provide additional

structural information when the availability of edges in physical

networks is limited.

Figure 5: Performance w.r.t. di�erent hypergraph construc-

tion methods

3.5.3 E�ect of Network Overlap Percentage. Network over-

lap refers to shared entities (users in our case) in two di�erent

networks, and the shared entities tend to have similar local neigh-

borhood structures [4] in both networks. It characterizes the homo-

geneity of two independent networks. In this section, we change

the parameter U2 from 10% to 90% and show the average results

of �ve executions in Table 2, from which we notice even in 10%

overlap level, our method still keeps the best performance, and the

superiority of our method becomes more obvious when U2 is larger.

3.6 Impact of Hypergraph Construction
Strategies

We supply four methods for extracting hypergraphs from original

networks, and compare their impacts to model performance below.
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Table 2: Experimental results under di�erent overlap levels.

overlap level U2

Metric Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro Precision

Our method 0.8719 0.9176 0.9414 0.9495 0.9557 0.9613 0.9587 0.9641 0.9541

Autoencoder 0.8334 0.8799 0.8501 0.9100 0.9112 0.8600 0.8683 0.8784 0.8969

GCN 0.8336 0.8726 0.9023 0.9016 0.9276 0.9318 0.9270 0.9427 0.9381

HGNN 0.8015 0.8343 0.8259 0.8615 0.8548 0.8848 0.8993 0.8850 0.8902

PALE 0.8340 0.8015 0.8334 0.8334 0.8337 0.8336 0.7623 0.8334 0.8334

Macro F1

Our method 0.8779 0.9256 0.9499 0.9570 0.9640 0.9691 0.9670 0.9713 0.9630

Autoencoder 0.8250 0.8872 0.8592 0.9171 0.9134 0.8697 0.8781 0.8885 0.9074

GCN 0.7795 0.8436 0.8864 0.8920 0.9228 0.9319 0.9282 0.9448 0.9378

HGNN 0.6537 0.7968 0.8330 0.8706 0.8642 0.8954 0.9100 0.8942 0.9007

PALE 0.6966 0.7407 0.7542 0.7467 0.7612 0.7616 0.7554 0.7668 0.7655

Macro Recall

Our method 0.8870 0.9363 0.9617 0.9665 0.9748 0.9790 0.9775 0.9800 0.9748

Autoencoder 0.8560 0.8980 0.8822 0.9312 0.9272 0.8935 0.9005 0.9107 0.9260

GCN 0.7762 0.8337 0.8787 0.8842 0.9213 0.9330 0.9295 0.9470 0.9380

HGNN 0.6465 0.8088 0.8515 0.8880 0.8850 0.9167 0.9290 0.9113 0.9210

PALE 0.6885 0.7325 0.7480 0.7400 0.7590 0.7558 0.7520 0.7615 0.7632

Entries in bold are the best results. For the overlap level, a higher U2 leads to more overlaps in two networks. UB is �xed to 0.6 in this test.

(1) Neighborhood-based hypergraph construction. This is

the default hypergraph construction method we use for our

experiment in Section 3.4. For each node, we collect itsq-hop

neighbors and connect them in one hyperedge. As such, for

a sub-graph with # nodes, we �nally have # hyperedges. q

is optimized via grid search in {4, 6, 8, 10, 12} and is set to 10

in our experiments.

(2) Anchor-based hypergraph construction. This method is

similar to the �rst one but we only consider the 10-hop neigh-

bours of anchor nodes. That means, for a given sub-graph

with # nodes and" observed anchor nodes, we will result

in" hyperedges. Since" ≪ # usually holds, this method

is more practical when graph partitions are not applied on

large-scale graphs.

(3) Centrality-based hypergraph construction. We compute

the following centrality values for each node: degree, be-

tweenness, clustering coe�cient, eigenvector, page rank,

closeness centrality, node clique number, and communities

a node belongs to. With these centrality-based properties,

we generate a 20-dimensional vector (8-bit centrality-based

features and 12-bit one-hot community encodings) for each

node. By treating each dimension of the vector as a hyper-

edge, then each node’s value on a speci�c dimension denotes

the probability that this node belongs to the hyperedge.

(4) Latent feature-basedhypergraph construction. This Strat-

egy uses Autoencoder to extract dense latent representations

of nodes (we set the latent dimension to 200), where each

latent dimension serves as a hyperedge.

The performance w.r.t. di�erent hypergraph construction strategies

are shown in Figure 5. We set U2 = UB = 0.3 for this test. In general,

neighbor-based, anchor-based, and centrality-based hypergraphs

lead to very close results. Surprisingly, though centrality-based

hypergraph construction strategy involves carefully handcrafted

features, it falls short in terms of Macro F1 and Macro Recall. This

suggests that we do not have to design speci�c features to obtain

performance improvements, which makes our method more practi-

cal for large datasets.

Figure 6: Forward propagation time w.r.t. network scales (x-

axis: number of nodes. y-axis: running time in seconds).
3.7 Analysis on Model E�ciency

To showcase the e�ciency of MGCN, we calculate the running time

of forward propagation for 1,000 epochs w.r.t. an increasing scale

of the Facebook subnetworks and compare it with GCN and HGNN.

The results are shown in Figure 6. From the model architecture

perspective, our method involves two GCN operations on both

simple graphs and hypergraphs. However, compared with GCN

and HGNN that only models simple graphs or hypergraphs, we

can �nd that there is only a little additional time consumption of

MGCN. This veri�es the necessity and e�cacy of modeling hyper-

edges in parallel. As a result, though MGCN achieves signi�cant

performance gain over all baselines, it still has very close e�ciency

to GCN and HGNN. Hence, for even larger datasets, our method

can o�er state-of-the-art anchor link prediction performance while

retaining high-level scalability.

4 RELATED WORK

We brie�y review and summarize related literatures in this section.

4.1 Anchor Link Prediction in Social Networks
Traditional methods. Traditionally, early studies solve the prob-

lem of account matching by leveraging user pro�le (e.g., user name,

age, location) and their generated contents such as textual reviews

and posts [12, 16, 19, 22]. However, due to the di�culty of obtaining

high-quality and credible data from the Internet, these methods

inevitably su�er from the data insu�ciency problem. As a result,

these methods cannot achieve satisfactory results, and are subject

to constrained generalizability in practice. Other techniques adopt

matrix factorization to directly compute an alignment matrix [36],
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such as IsoRank [31], NetAligh [4], FINAL[39], and REGAL[15].

However, such approaches can hardly scale up to very large net-

works, because they take the entire adjacency matrices of networks

as their input, which is highly demanding on storage and com-

puting resources. Furthermore, they are prone to struggle when

handling higher sparsity that comes with large-scale networks.

Embedding-based approaches. There have been applications of

account matching by using network embedding techniques. PALE

[24] learns node embedding by maximizing the co-occurrence like-

lihood of connected vertices, then applies linear projection or multi-

layer perceptron (MLP) as the mapping function. Similar methods

also include IONE [20] which addresses this problem by model-

ing user-user following relationships in social networks. Though

DALAUP [8] further employs active learning to learn node embed-

dings, it is limited by its scalability as the active learning scheme

can be time-consuming on large-scale social networks. DeepLink

[41] employs unbiased random walk to generate embeddings us-

ing skip-gram, then adopts auto-encoder and MLP as the mapping

function. Manifold Alignment on Hypergraph (MAH) [32] uses hy-

pergraphs to model high-order relations by exploiting the idea that

a pair of nodes in the same hyperedge should come closer. MAH

is a pure hypergraph-based approach, which is simple and e�ec-

tive. However, it only considers sub-space learning for hyperedges,

and is therefore vulnerable to noises and the loss of important un-

derlying network structure information. In contrast, our proposed

method proposes a decentralized hypergraph representation learn-

ing scheme, thus being able to handle large-scale social networks

with a novel subgraph reconciliation mechanism.

4.2 Network Embedding

Network embedding aims to learn low dimensional node represen-

tations that can preserve the majority of network structural infor-

mation [14, 28, 34]. Mainstream network embedding approaches

include matrix factorization-based methods, such as Multi Dimen-

sional Scaling (MDS) [43], IsoMap [3], Spectral Clustering [26],

Laplacian Eigenmap [35], Graph Factorization [2], etc., as well as

random walk-based methods [13, 28] which �rstly sample random

walk node sequences, and then learn node embeddings via the well-

established skip-gram model. The recently proposed Graph Convo-

lutional Networks (GCNs) [14] successfully de�ne convolutional

kernels on graph-structured data to learn node representations by

aggregating information passed from its surrounding neighbours.

More recently, di�erent from traditional GCNs that only model

simple graphs, hypergraphs have been infused into the context of

graph convolutions [11, 37], enabling the learning of richer struc-

tural information. HGCN [11] introduces the concept of hypergraph

Laplacian, and then proposes a hypergraph-based extension to the

original convolution on simple graphs. HyperGCN [37] also trains

GCNs on hypergraphs with the utilization of hypergraph spectral

theory. In this paper, we develop a speci�c GCN-like model that

innovatively facilitates GCN operations at both hypergraph-level

and simple graph-level in a uni�ed framework to allow for compre-

hensive node representation learning.

5 CONCLUSION

In this paper, we propose a multi-level graph convolution networks

and anchor link prediction framework. Through the fusion of simple

graph and hypergraph, our method steadily outperform state-of-

the-art methods. To handle large scale dataset, we also design a

framework include network partitioning and two-phases reconcil-

iation. Extensive evaluations con�rms our the advantages of our

methods.The future work would suggest to explore the automatic

discovery of hypergraphs for account matching problems, as well

as scaling our framework to multiple social networks.
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A APPENDIX

Table 3: Performancew.r.t. di�erent initialization strategies.

Metric Model random one-hot latent centrality-based

Macro Precision

Our method 0.9143 0.9303 0.9128 0.9056

GCN 0.8515 0.8336 0.7402 0.8985

HGNN 0.8343 0.9202 0.9093 0.8339

Macro F1

Our method 0.9188 0.9065 0.9183 0.9112

GCN 0.8511 0.7788 0.7380 0.8997

HGNN 0.7882 0.9248 0.9151 0.7512

Macro Recall

Our method 0.9246 0.9174 0.9259 0.9187

GCN 0.8515 0.7839 0.7610 0.9014

HGNN 0.7889 0.9309 0.9223 0.7463

Entries in bold are the best results.

A.1 Impact of Embedding Initialization
Strategies

In all previous experiments, we initial all node embeddings with

randomized values. In this section, we discuss the impact of dif-

ferent initialization strategies to model performance. To achieve

this, we have tried three types of features for initialization: one-hot

features, latent features, and centrality-based features. One-hot fea-

tures are the one-hot encodings taken from the graph adjacency

matrices, which are then used as the initial node embeddings. Latent

features mean that we use the output of Autoencoder, i.e., latent

representations as the initial states. As for centrality-based features,

we calculate the features as in Section 3.6 for initialization.

We compare our MGCN model with baselines having similar

GCN-based architectures, i.e., GCN and HGNN. All variants are

examined on the Facebook subnetworks (UB = U2 = 0.3) with a

training-test split ratio of 1:1. As shown in Table 3, in contrast to

GCN and HGNN, our method shows minimal performance changes

w.r.t. di�erent initialization methods. Furthermore, except for the

initialization via one-hot features, all other initialization strategies

lead to advantageous anchor link prediction results from MGCN.

This re�ects that our method is non-sensitive to the initialization

strategies of node embeddings. Meanwhile, the strong performance

from randomly initialized node embeddings further proves that our

method does not rely on manually crafted features, and can learn

expressive embeddings solely from the network structure.
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