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Abstract Based on the Hermite variational implicit surface

reconstruction presented in Pan et al. (Science in China Se-

ries F: Information Sciences 52(2):308–315, 2009), we pro-

pose a multi-level interpolation method to overcome the

problems resulted from using compactly supported radial

basis functions (CSRBFs). In addition, we present a multi-

level quasi-interpolation method which directly uses normal

vectors to construct non-zero constraints and avoids solv-

ing any linear system, a common step of variational surface

reconstruction, and leads to a fast and stable surface recon-

struction from scattered points. With adaptive support size,

our approach is robust and can successfully reconstruct sur-

faces on non-uniform and noisy point sets. Moreover, as the

computation of quasi-interpolation is independent for each

point, it can be easily parallelized on multi-core CPUs.
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1 Introduction

As the three-dimensional scanning devices are common-

place, there are more and more point data available from

scanning the real world object by acquisition devices. In

order to do further processing on the scattered points, sur-

faces are usually reconstructed from the points. A lot of re-

search works have been devoted to develop reconstruction

methods for applications in computer graphics, robotics,

and computer-aided design and manufacturing (CAD/CAM)

[1, 31].

Due to implicit surface modeling being good at dealing

with noisy and/or incomplete data, there are many devel-

opments in this field. In those works, there are several sur-

face reconstruction methods based on Radial Basis Func-

tions (RBFs) [2–6]. Global RBFs [2, 3] are useful in repair-

ing incomplete data, while a dense linear system needs to

be solved. It is impractical for large point data although so-

phisticated mathematical techniques such as the fast multi-

pole method [2] are used. Fitting scattered data with com-

pactly supported radial basis functions (CSRBFs) [7] leads

to a simpler and faster computation procedure [4–6]. The

approaches based on CSRBFs are sensitive to the density of

scattered data, therefore, a careful selection of the support

size for CSRBFs is required to balance the reconstructed

surface quality and reconstructing performance. A multi-

level fitting technique presented in [5] provides a global

property for the CSRBFs, while an extra local quadratic fit-

ting is required at each level. Recently, Pan et al. proposed

a Hermite variational implicit surface (HVIS) reconstruction

method which uses the normal information of points directly

instead of local quadratic approximations [6]. But when us-

ing CSRBF as the kernel function, it yields unwanted arti-

facts in addition to the lack of extrapolation across holes.

In this paper, we presented a hierarchical HVIS reconstruc-
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tion method which has the advantage of globally supported

RBFs and is robust on incomplete or non-uniform points.

For all reconstruction methods based on RBFs mentioned

above, solving a linear system is required. When there are a

large number of points, the interpolation matrix may become

ill-conditioned. This leads to unstable numerical computa-

tion and a high computational cost. Comparing with an ex-

act interpolation approach, the quasi-interpolation method

presented in this paper does not solve any linear systems,

and can reconstruct satisfactory surfaces with small shape

approximation errors.

The main contributions of this work include three as-

pects. Firstly, we present a multi-level HVIS reconstruction

method which provides advantages of locally and globally

supported RBFs by using CSRBFs in a hierarchical way.

Secondly, a quasi-interpolation scheme is introduced for fit-

ting scattered points. It does not solving linear systems. The

reconstruction in that the RBF on each point is computed

locally and independently can be easily parallelized. Lastly,

an adaptive strategy for choosing local supports in CSRBFs-

based fitting is used for reconstructing surfaces from highly

non-uniform points. A threshold of nearest neighbor number

needs to be set by users for determining adaptive support ra-

dius.

The rest of this paper is organized as follows. After re-

viewing some related works in Sect. 2, we describe the

HVIS reconstruction method in brief in Sect. 3. Then,

a multi-level HVIS reconstruction method is presented

in Sect. 4. Section 5 presents the details about quasi-

interpolation and adaptive support size choosing. The con-

clusion section follows the experimental results given in

Sect. 6.

2 Related works

Surface reconstruction from points has been an important

procedure in geometric modeling for a few decades. A num-

ber of reconstruction algorithms proposed can be roughly

classified into two major groups as follows.

Explicit methods Many algorithms usually involve Voro-

noi diagram construction and reconstruct a mesh surface by

linking the points directly [8–11]. This type of methods are

more sensitive to the point set quality, such as distribution,

noise etc. than implicit methods. Moreover, the cost to com-

pute Voronoi diagram is expensive in both memory and time.

Implicit methods The algorithms in this group attempt to

create a signed implicit function, which divides the space

into inside and outside of an object, from a set of oriented

points, such as RBF-based approaches [2–6, 12–14], inte-

gration of Voronoi diagrams and variational method [15],

Poisson surface reconstruction technique [16], smooth

signed distance method [17], piecewise linear surfaces [18],

moving least squares-based [19–21], and partition of unity-

based method [22].

Our work is based on the HVIS reconstruction [6], in

which CSRBFs used form a sparse linear system, and a

hierarchy of using CSRBFs is created to achieve a global

function. In [6], directly using normal vectors in the implicit

function leads to a much less n × n positive definite linear

system for given points with normals, while the variational

implicit surface [2, 12] results in a 2n × 2n system by in-

serting off-surface points and the interpolating normal vec-

tors method [13, 14] gives a 4n×4n system. Our multi-level

HVIS is similar to the work in [5], but the latter combines

the partition of unity (PU) and RBFs, and local quadratic

approximations are used for non-zero valued constraints in-

stead of using normal vectors directly.

In addition, our surface reconstruction method presented

in this paper applies a quasi-interpolation scheme to speed

up the reconstruction of surfaces from scattered points. It

does not solve linear systems so that it is stable and efficient.

The adaptive multi-level quasi-interpolation framework is

robust to points with non-uniformities, and can successfully

reconstruct surfaces in high quality.

Quasi-interpolation Quasi-interpolation methods have

been discussed for a long time in the field of function ap-

proximation of a function [23–25]. It possesses some ad-

vantages, such as less computation time and stable compu-

tation. In [26], Zhang and Wu discussed the univariate quasi-

interpolants. A quasi-interpolation method based on radial

basis functions is discussed, and a suitable value of the shape

parameter is provided in [27]. The data the former meth-

ods processed are a kind of regularly sampled grid points.

In [28], Liu et al. generalize the data to 3D scattered points,

and get good reconstruction results. However, their method

is based on the PU and RBF interpolation method [5], in

which solving small linear systems is necessary for local

quadratic fitting. The surface reconstruction method in this

paper is faster than the one in [28] because it uses normal

vectors directly without solving any linear system.

3 Review of HVIS reconstruction

Given a set V of n data triplets (vi,ni, fi), i = 1, . . . , n,

where vi ∈ ℜ3 are 3D points, ni ∈ ℜ3 are the correspond-

ing normal vectors, and fi ∈ ℜ are their associated signed

distances, we want to fit a function f (x) to them. Since the

normal direction of the implicit surface is given by the gra-

dient ∇f (x) of the embedding function f (x), the normal

vectors, ni at the given points can be directly incorporated
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Fig. 1 Comparisons of the cross sections of signed distance

fields generated by single-level and multi-level Hermite varia-

tional implicit surface interpolation and quasi-interpolation methods:

(a) the given points, (b) single-level Hermite variational interpolation

with CSRBFs [6], (c) multi-level Hermite variational interpolation,

(d) single-level Hermite variational quasi-interpolation, (e) multi-level

Hermite variational quasi-interpolation. The colors show the function

values (red for positive value, blue for negative value), the black curve

highlights its zero iso-curve and the green color shows the undefined

region

into an optimization problem [6] by

E(f ) = ‖f ‖2
H + k1

n
∑

j=1

(

f (vj ) − fj

)2

− k2

n
∑

j=1

〈

nj ,∇f (vj )
〉

, (1)

where k1, k2 are positive parameters to weigh between fit-

ness to the data points/normals and smoothness of the sur-

face, 〈·, ·〉 denotes the dot-product of two vectors, the norm

‖f ‖H is a regularizer that takes on larger values for less

smooth functions, and H is a reproducing kernel Hilbert

space with kernel function φ(·).

The final solution to the problem Eq. (1) is [6]

f (x) =

n
∑

j=1

cjφ
(

‖x − vj‖
)

+

n
∑

j=1

〈

nj ,∇φ
(

‖x − vj‖
)〉

, (2)

where the coefficients, ci , are unknown scales to be de-

termined by the interpolation constraints, f (vi) = fi, i =

1, . . . , n. Because the surface defined by points with nor-

mals, (vi,ni), is always expected to be a zero level set in a

distance field of a signed function, the constraints become

f (vi) = 0, i = 1, . . . , n, as is

n
∑

j=1

cjφ
(

‖vi − vj‖
)

+

n
∑

j=1

〈

nj ,∇φ
(

‖vi − vj‖
)〉

= 0.

The above equation can be rewritten as

n
∑

j=1

cjφ
(

‖vi − vj‖
)

= −

n
∑

j=1

〈

nj ,∇φ
(

‖vi − vj‖
)〉

. (3)

The right side of Eq. (3) is non-zero. So, when we use a

positive definite CSRBF as the kernel function φ, the coef-

ficients ci can be determined uniquely by solving the sparse

linear system Eq. (3).

4 Multi-level HVIS interpolation

In this paper, we use Wendland’s CSRBF [7] as the kernel

function

φρ = φ(r/ρ), φ(r) =

{

(1 − r)4(4r + 1), r ∈ [0,1],

0, otherwise,

where ρ is the support size, and r = ‖p−q‖ is the Euclidean

distance between a point p and a RBF center q. As stated

in [6], using CSRBFs in HVIS reconstruction cannot repair

incomplete data in addition to generate extra unwanted zero

level-set surface at the boundary of the supporting field, as

shown in Figs. 1(b) and 2(b). Moreover, an implicit sur-

face reconstructed by single-level CSRBFs only has valid

function values defined in a narrow band around the sur-

face. Therefore, the grids used for polygonization need to

be smaller than the support size. This further slows the pro-

cedure of mesh surface generation.

In order to overcome the problems, we borrow the idea

of constructing multi-level interpolation in [5]. We build a

multi-scale hierarchy {V 1,V 2, . . . , V M = V } of point sets

by subdividing the points of V into eight equal octants re-

cursively. For each cell, the centroid of all points located in

this cell is computed and assigned with the unit average nor-

mal determined from these points. The centroids of cells in

level k are considered as points in a set V k . New RBFs at dif-

ferent levels are iteratively added to refine the fitting results.
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Fig. 2 Reconstruction results

with different methods:

(a) given non-uniform points,

(b) single-level Hermite

variational interpolation,

(c) multi-level Hermite

variational interpolation,

(d) multi-level Hermite

variational interpolation with

adaptive support size, σ = 10,

(e) and (f) single-level and

multi-level Hermite variational

quasi-interpolation, (g) and

(h) single-level and multi-level

Hermite variational

quasi-interpolation with

adaptive support size, σ = 10

We define a series of functions according to the hierarchy of

point sets

{

f 0(x) = 0,

f k(x) = f k−1(x) + δk(x), k = 1,2, . . . ,M,

where f k(x) = 0 interpolates the point set V k . The offset-

ting function between the functions of two adjacent levels is

defined by a form presented in Sect. 3 for the single-level

interpolation as

δk(x) =

nk
∑

j=1

ck
jφρk

(∥

∥x − vk
j

∥

∥

)

+

nk
∑

j=1

〈

nk
j ,∇φ

(∥

∥x − vk
j

∥

∥

)〉

,

where nk is the point number of V k , nk
j is the normal vec-

tor of point vk
j , and ρk is the support radius at the level k.

The coefficients, ck
j , are determined by solving the following

system of linear equations:

nk
∑

j=1

ck
jφρk

(∥

∥vk
i − vk

j

∥

∥

)

= −f k−1
(

vk
i

)

−

nk
∑

j=1

〈

nk
j ,∇φρk

(∥

∥vk
i − vk

j

∥

∥

)〉

,

i = 1, . . . , nk. (4)

Here, we adopt the strategy in [5] to compute the sup-

port size ρk and the clustering levels M . The support size

ρk at the level k is recursively defined by ρk+1 = ρk/2 and

ρ1 = αL, where L is the diagonal length of the bounding

box of V , and the parameter α = 0.75 is chosen such that an

octant of the bounding box is always covered by a ball of ra-

dius ρ1 centered somewhere in the octant. With the equation

M = ⌈− log2(ρ̂/(2ρ1))⌉ provided in [5], the number of lev-

els, M , can be determined by ρ1 and ρ̂, where ρ̂ is equal to

3/4 of the average diagonal length of the leaf cells, which

contain not more than eight points of V . The multi-level

HVIS makes that the final interpolation function defines a

global distance field and fills the holes in the given points,

as shown in Figs. 1(c) and 2(c).

5 Quasi-interpolation

The multi-level HVIS can reconstruct good quality surface

from scattered points by solving a nk × nk sparse linear

system at k level. However, solving a linear system still

limits the number of points. The linear system may be ill-

conditioned and its solving is computational costly as the

points increase more and more. In this section, we introduce

a quasi-interpolation scheme to fit the given points in a sta-

ble and efficient way.

The early quasi-interpolation traces back to [32] in which

a surface interpolating a given data set can be represented by



Multi-level hermite variational interpolation and quasi-interpolation 631

a weighted average of the values at the data points. Shepard

successfully constructed a group of weighting functions to

approximate interpolate two-dimensional data. We can use

the idea to fit 3D scattered points as follows:

g̃(x) =

n
∑

i=1

fiϕi(x), (5)

where ϕi(x)s are the normalized radial basis functions

ϕi(x) = φρ(‖x − vi‖)/
∑n

j=1 φρ(‖x − vj‖).

For given points, we consider an interpolant g(x) as

g(x) =

n
∑

i=1

ciϕi(x). (6)

Comparing two equations Eq. (5) and Eq. (6), when the co-

efficients, ci , are set as

ci = fi (i = 1, . . . , n), (7)

the interpolating function g(x) is approximated by g̃(x).

However, unlike two-dimensional interpolation in [32], the

values, fi , at 3D data points are unknown for surface recon-

struction. Generally, we assume the values, fi , being zero in

order to make all given 3D points locating on the zero level-

set in a distance field defined by an implicit function. This

leads to a trivial solution that the function is zero everywhere

for either interpolation Eq. (6) or quasi-interpolation Eq. (5).

The methods constructing non-zero valued constraints using

the normal vectors directly are described in [6] and Sect. 4

for interpolation. In this section, we demonstrate how to

construct non-zero valued constraints and use them to quasi-

interpolation.

5.1 Single-level quasi-interpolation

For the interpolation problem, using a normalized or non-

normalized basis does not affect the reconstruction results.

So, Eq. (2) can be written with a normalized basis as

f (x) =

n
∑

j=1

cjϕj (x) +

n
∑

j=1

〈

nj ,∇ϕj (x)
〉

.

For exact interpolation, the coefficients, ci , are determined

by solving the system of linear equations

g(x) =

n
∑

j=1

cjϕj (x) = −

n
∑

j=1

〈

nj ,∇ϕj (x)
〉

.

Let gi = −
∑n

j=1 〈nj ,∇ϕj (vi)〉 be the value of the func-

tion g(x) at point vi , with the above analysis of quasi-

interpolation, the values of the coefficients, ci , can be found

by

ci = −

n
∑

j=1

〈

nj ,∇ϕj (vi)
〉

, i = 1, . . . , n, (8)

then the quasi-solution f̃ (x) of the interpolation function

f (x) can be constructed as

f̃ (x) =

n
∑

i=1

(

−

n
∑

j=1

〈

nj ,∇ϕj (vi)
〉

)

ϕi(x) +

n
∑

i=1

〈

ni,∇ϕi(x)
〉

.

(9)

5.2 Multi-level quasi-interpolation

The computation of the above quasi-interpolation is very

fast as the evaluations for the coefficients, ci , independent of

each other. However, same as single-level interpolation with

HVIS, single-level quasi-interpolation has similar problems

in surface reconstruction mentioned in Sect. 4, as shown in

Figs. 1(d) and 2(e). In this subsection, we present a multi-

level version of quasi-interpolation to overcome the prob-

lems. Two examples are shown in Figs. 1(e) and 2(f).

As stated in Sect. 4, the exact solution of the coefficients

can be determined by solving the system of linear equations

f k(x) = f k−1(x) + δk(x) = 0. We substitute δk(x) with the

single-level interpolation function using a normalized basis

and then rewrite the linear system as

nk
∑

j=1

ck
jϕρk

(∥

∥x − vk
j

∥

∥

)

= −f k−1(x) −

nk
∑

j=1

〈

nk
j ,∇ϕρk

(∥

∥x − vk
j

∥

∥

)〉

.

For any point vk
i , we can get the estimation of its correspond-

ing coefficient ck
i as

ck
i = −f k−1

(

vk
i

)

−

nk
∑

j=1

〈

nk
j ,∇ϕρk

(∥

∥vk
i − vk

j

∥

∥

)〉

. (10)

5.3 Adaptive support size

Points with non-uniformities or holes are quite common in

practice. From these kinds of points, as shown in Fig. 2(a),

reconstruction fails when conducting the single-level inter-

polation and quasi-interpolation with a fixed support size

for all points, see Figs. 2(b) and 2(e). Although the multi-

level interpolation and quasi-interpolation methods can re-

construct surface successfully, the surfaces are not smooth in

regions with sparse points (as shown in Figs. 2(c) and 2(f)).
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This is because the support sizes at those sparse points are

too small to have enough points in its supporting field. En-

larging the support sizes globally is not reasonable as there

will be too many neighbors for the points in dense regions,

which leads to an expensive computation. In order to solve

this problem, we compute the support sizes in an adaptive

way.

Based on the initial support size calculated by the method

described in Sect. 4, we adjust the support size by consider-

ing the number of neighbors falling in a point’s local sup-

port. Letting σ be the average number of points in the ini-

tial support for every point (or setting the value of σ by

users), if the number of points falling in the support ρv of

a sample v is smaller than σ , we enlarge the support size

ρv by the factor 1.1 and check the number of points in the

support again. The checking and enlarging are repeated un-

til there are not less than σ points in the local support ρv

of a sample point v. With adaptive support sizes, single-

level interpolation and quasi-interpolation are immune to

non-uniform sample points while multi-level interpolation

and quasi-interpolation can reconstruct smooth surfaces that

successfully overcome the problem of high non-uniformity

in the given point set (see the example shown in Fig. 2). Note

that σ is the parameter which can be specified by users in our

approach. For non-uniform points, we find using σ = 10 can

give good results.

6 Results and discussion

We evaluate our multi-level Hermite variational implicit

surface interpolation (ML-HVIS-I) and quasi-interpolation

(ML-HVIS-QI) methods by applying them to point sets

consisting of up to ten millions of points, and comparing

their accuracy and computational efficiency with several

prior methods: the multi-level partition of unity and com-

pactly supported radial basis function-based interpolation

(ML-PURBF-I) [5] and quasi-interpolation (ML-PURBF-

QI) [28], the screened Poisson reconstruction [16] (screened

Poisson), and the multi-level partition of unity reconstruc-

tion [22] (MPU). All points are scaled into a 20 × 20 × 20

bounding box. Except the screened Poisson and MPU, other

methods generate mesh surfaces from reconstructed implicit

surfaces by Bloomenthal’s method in [29]. All statistics pre-

sented in this paper are obtained by tests running on a PC

with two Intel(R) Core(TM) i7-2600K CPUs at 3.4 GHz

plus 8 GBytes RAM.

6.1 Interpolation vs. quasi-interpolation

Figures 3–7 show the reconstruction results obtained by

our multi-level interpolation and quasi-interpolation meth-

ods proposed in this paper. The numbers of points in these

Fig. 3 Reconstruction from samples of a Chinese lion model.

(a) Given 82.8k points. (b) Surface reconstructed by our ML-HVIS-I

method. (c) Surface reconstructed by our ML-HVIS-QI method

Fig. 4 Reconstruction from samples of the Ramesses model. (a) Input

point cloud with 0.57 M points. Only 1/10 points are displayed in (a).

(b) Surface reconstructed by our ML-HVIS-I method. (c) Surface re-

constructed by our ML-HVIS-QI method

Fig. 5 Reconstruction from samples of the Buddha model. (a) Input

point cloud with 2.2 M points. Only 1/20 points are displayed in (a).

(b) Surface reconstructed by our ML-HVIS-I method. (c) Surface re-

constructed by our ML-HVIS-QI method



Multi-level hermite variational interpolation and quasi-interpolation 633

examples are from 83 thousand to 10.8 million, respec-

tively. The statistics of computing times are listed in Ta-

ble 1. It is easy to find that the quasi-interpolation method

is much faster than the exact interpolation method. More-

over, as the quasi-interpolation method presented can be

Fig. 6 Reconstruction from samples of the Neptune model. (a) Input

point cloud with 5 M points. Only 1/100 points are displayed in (a).

(b) Surface reconstructed by our ML-HVIS-I method. (c) Surface re-

constructed by our ML-HVIS-QI method

parallelized, the computing time can be further reduced

when running on a PC with multi-cores (see Table 1). From

those results shown in Figs. 3–7, the detail features are

smoothed for the quasi-interpolation method when the given

data has not enough points, for example the reconstruction

surface shown in Fig. 3(c). But for those models with very

large scale points, such as Figs. 4–7, we can hardly ob-

serve any visual difference between the reconstructed sur-

faces. The RMS errors listed in Table 2 prove this con-

clusion that the RMS error decreases when the number of

points increases. From the statistics of computing time listed

in Tables 1 and 2, our quasi-interpolation after paralleliz-

ing is about 10–40 times faster than the exact interpola-

tion.

6.2 Processing noisy point data

To process noisy data, a similar strategy as in [5, 28] is

adopted here. We switch from interpolation to approxima-

tion via a regularization of the corresponding RBF interpo-

lation matrices: instead of inverting RBF interpolation ma-

trix A, its regularization A + λI is inverted, where λ is the

Fig. 7 Reconstruction from samples of a Chinese dragon model. (a) Input point cloud with 10.8 M points. Only 1/100 points are displayed.

(b) Surface reconstructed by our ML-HVIS-I method. (c) Surface reconstructed by our ML-HVIS-QI method

Table 1 Time statistics for

models with different scale

points

Fig. Model Number

of points

Multi-level

interpolation

time (s)

Multi-level quasi-interpolation

time (s)

One-core Eight-cores

3 Chinese lion 83k 5.9 2.2 0.6

4 Ramesses 570k 77.9 21.5 5.5

5 Buddha 2,159k 362.2 61.7 16

6 Neptune 4,975k 572.8 225 60

7 Chinese dragon 10,828k 2,513.5 383.7 96.3

Table 2 Runtime performance of the different reconstruction techniques and RMS errors of reconstructions

Model Number

of points

Time in seconds RMS errors

ML-

PURBF-I

ML-

PURBF-QI

ML-

HVIS-I

ML-

HVIS-QI

ML-

PURBF-I

ML-

PURBF-QI

ML-

HVIS-I

ML-

HVIS-QI

Bimba 74.8k 4.7 0.7 4.2 0.4 0.0013 0.0034 0.0015 0.0018

Armadillo 173k 31.5 1.5 31 1 0.0012 0.0019 0.0013 0.0015

Raptor 1,000k 424.6 13.4 421.3 9.4 0.00042 0.0014 0.00047 0.0011
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Fig. 8 Reconstruction results on a large noisy point set. (a) shows

original noisy points. (b) is the resultant point set after remov-

ing outliers [30]. (c) and (d) are results from our ML-HVIS-I and

ML-HVIS-QI, respectively

regularization parameter and I is a unit matrix. It is useful

to make the regularization parameter λ = λk depend on the

hierarchy level k. We found that setting λk = 1.0k · nk can

make good results. For our quasi-interpolation method, we

also extend it by introducing the same regularization param-

eter λk . With this parameter λk , the coefficients ck
i of our

quasi-interpolation are in place of ck
i /(1 + λk).

For a point set with large noise, a preprocessing proce-

dure (e.g., [30]) can be applied to remove the outliers. The

resultant set retains only small noise. A surface can be re-

constructed from it by our method proposed in this paper. An

example is shown in Fig. 8. As we use the normal vectors di-

rectly in our interpolation and quasi-interpolation methods,

they are more sensitive to noises than the methods in [5, 28].

This is a limitation of our methods presented in this paper.

6.3 Comparison with ML-PURBF-I and ML-PURBF-QI

To compare our ML-HVIS-I and ML-HVIS-QI methods

with ML-PURBF-I and ML-PURBF-QI methods in [5]

and [28], we apply these methods to a few models (see

Fig. 9). The related statistics are listed in Table 2. Fig-

ure 9 shows the reconstructions by ML-PURBF-I [5], ML-

PURBF-QI [28], our ML-HVIS-I and ML-HVIS-QI. No

obvious visual difference between reconstruction results

of two interpolations and the original surfaces can be ob-

served. Some details on the original surfaces are smoothed

by the quasi-interpolation methods. Our ML-HVIS-QI can

preserve more details than ML-PURBF-QI. Same conclu-

sions can be found in Table 2. As shown in Table 2, where

the shape approximation errors, in the form of RMS errors,

are measured by the distance from the reconstructed sur-

face to the original surface using the Metro tool [33], the

reconstruction results obtained by [5] have a little smaller

shape errors than our interpolation method, while our quasi-

interpolation method can generate the surface with smaller

shape errors than ML-PURBF-QI [28]. The local quadratic

fitting somehow helps to compromise the incompatible

normals in the exact interpolation procedure, but it over

smoothes the effects of normals in the quasi-interpolation.

Fig. 9 Reconstruction surfaces from the points uniformly sampled on the bimba, armadillo and raptor surface models by different methods. For

illustration, only 1/10 points are displayed for the raptor model
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Fig. 10 Reconstructions of MaxPlanck model with non-uniform sam-

ples (a) using screened Poisson reconstruction [16] (b), our multi-level

Hermite variational interpolation (c) and quasi-interpolation (d) meth-

ods with adaptive support sizes, σ = 10

For the computational efficiency, our interpolation meth-

od is a bit faster than the interpolation method in [5], and the

time of performing our quasi-interpolation method is about

2/3 of the time of the method in [28]. This is because our

methods do not need the local fitting procedure. In Table 2,

the computing time for two quasi-interpolation methods is

the running time of parallelizing the quasi-interpolation pro-

cedure on multi-cores.

In addition, about the sparsity, as a quadratic primi-

tive described with nine floats is used for each point, ML-

PURBF-I and ML-PURBF-QI need the space of 9
∑M

k=1 nk

floats more than our corresponding methods.

6.4 Comparison with the screened Poisson and MPU

method

Poisson and MPU methods are two well known techniques.

We will compare our methods with them. In order to com-

pare the reconstructed surfaces, we try to generate mesh sur-

faces with a similar number of triangles.

We firstly compared our results with the screened Poisson

reconstruction [16] on a MaxPlanck model with highly non-

uniform points, as shown in Fig. 10. The screened Poisson

method [16], as shown in Fig. 10(b), can reconstruct a very

smooth surface with 504,568 triangles generated with the

program provided by authors of [16]. However, the details

cannot be preserved well in sparse regions. Figures 10(c)

and 10(d) show the result surfaces reconstructed by our

ML-HVIS-I and ML-HVIS-QI methods with adaptive sup-

port sizes (σ = 10) which have more details preserved than

the screened Poisson method. Two surfaces include 502,192

and 501,400 triangles, respectively. Although our adaptive

ML-HVIS-I taking 10 seconds for fitting is slower than the

screened Poisson method which takes 6.8 seconds, our adap-

tive ML-HVIS-QI uses only 1.3 seconds, which is much

faster than the screened Poisson method.

We compared the results generated by our method

and MPU method [22] on an Eight model, as shown in

Fig. 11(a). It is a sparse model with 766 points. Because

there are no sharp features on the given model, we did not

Fig. 11 Reconstructions of an Eight model with different meth-

ods: (a) the given points, (b) MPU [22], (c) ML-HVIS-I, and

(d) ML-HVIS-QI with adaptive support size, σ = 10

select the sharp feature function option when performing

the MPU software provided by the authors. From the results

in Fig. 11, it is easy to observe the visual differences. The

surface generated by MPU [22] is not smooth and has some

extra unwanted parts, see Fig. 11(b). Our multi-level inter-

polation and quasi-interpolation methods reconstruct per-

fectly smooth surfaces (Figs. 11(c) and 11(d)). The quasi-

interpolation adopts adaptive support size as σ = 10.

7 Conclusion

In most variational implicit surface reconstructions, normal

vectors are not used as constraints directly. The non-zero

constraints in the linear systems are constructed by insert-

ing offset surface points [2, 3] or local fitting [5]. Hermite

interpolation [13, 14] directly uses the normal vectors to

construct the non-zero constraints which lead to a 4n × 4n

linear system. Pan et al. proposed a HVIS reconstruction

method by incorporating the normal vectors into an opti-

mization problem directly [6]. However, using CSRBFs re-

sults in that the method often yields unwanted artifacts and

smaller step than support size in contouring in addition to

the lack of extrapolation across holes. In this paper, based

on [6], we present a multi-level HVIS interpolation which

can overcome those problems associated with CSRBFs, and

a quasi-interpolation approach for fast reconstructing an im-

plicit surface from scattered points. Our quasi-interpolation

method is simple and stable as it does not need to solve lin-

ear systems, which is a common step for almost all vari-

ational computation-based surface reconstruction methods.

With adaptive support size, our quasi-interpolation-based

surface reconstruction method demonstrates good perfor-

mance on point sets with non-uniformity. Moreover, if only

the neighbors are found, the quasi-interpolation on each

point can be computed independently. This makes the sur-

face reconstruction procedure can be easily parallelized and

run on a modern PC with multi-cores. We compute the
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RMS errors of our multi-level HVIS interpolation and quasi-

interpolation methods for some examples instead of analyz-

ing the approximate error in theory. Due to the page limita-

tion, we will discuss them in another work.

There are several limitations. Our methods need to con-

struct a multi-scale hierarchy point sets which consumes a

lot of memory and computational time. Considering the re-

covery of sharp features, our methods blur all the sharp fea-

tures on the reconstructed surfaces so that large shape ap-

proximation errors are introduced in the relevant regions.

The strategy of prior work in [34] will be exploited. Due

to using the normals directly, our methods are somehow

sensitive to noises. For those data with large noises, our

method can deal with it after applying a preprocessing step

(like [30]) on the input data. In addition, a possible future

work is to implement this reconstruction method on the

highly parallel architecture of GPUs.
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