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High temperature has become a global concern because it seriously affects the growth
and reproduction of plants. Exposure of plant cells to high temperatures result in cellular
damage and can even lead to cell death. Part of the damage can be ascribed to
the action of reactive oxygen species (ROS), which accumulate during abiotic stresses
such as heat stress. ROS are toxic and can modify other biomacromolecules including
membrane lipids, DNA, and proteins. In order to protect the cells, ROS scavenging is
essential. In contrast with their inherent harms, ROS also function as signaling molecules,
inducing stress tolerance mechanisms. This review examines the evidence for crosstalk
between the classical heat stress response, which consists of heat shock factors (HSFs)
and heat shock proteins (HSPs), with the ROS network at multiple levels in the heat
response process. Heat stimulates HSF activity directly, but also indirectly via ROS. HSFs
in turn stimulate the expression of HSP chaperones and also affect ROS scavenger
gene expression. In the short term, HSFs repress expression of superoxide dismutase
scavenger genes via induction of miRNA398, while they also activate scavenger gene
expression and stabilize scavenger protein activity via HSP induction. We propose that
these contrasting effects allow for the boosting of the heat stress response at the
very onset of the stress, while preventing subsequent oxidative damage. The described
model on HSFs, HSPs, ROS, and ROS scavenger interactions seems applicable to
responses to stresses other than heat and may explain the phenomenon of cross-
acclimation.

Keywords: heat response, heat shock factor, heat shock protein, reactive oxygen species, ROS scavenging,
signaling, interaction, cross-talk

THE HEAT RESPONSE

Plants are continuously exposed to biotic and abiotic stress factors, such as herbivory, pathogen
attack, drought, salinity and extreme temperatures. These challenges pose a serious threat to their
growth and reproduction and as such affect agricultural yields. With considerable advances in pest
and disease management, abiotic factors are now thought to be the primary cause for crop losses
worldwide (Wang et al., 2003; Suzuki et al., 2014). In case plants cannot prevent an abiotic stress
factor from affecting organismal homeostasis (i.e., escape or avoid internal stress), they may adapt
their metabolism to acquire a certain level of tolerance (Larkindale and Knight, 2002; Valliyodan and
Nguyen, 2006; Munns and Tester, 2008; Krasensky and Jonak, 2012).
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Heat stress can be defined as a rise in temperature beyond a
threshold level for a period of time, sufficient to cause irreversible
damage to plant growth and development (Wahid et al., 2007).
Sudden rises in temperature to high levels may lead to cell death
within a few minutes as a consequence of extensive protein
denaturation and aggregation and loss of membrane integrity
(Schöffl et al., 1999; Wahid et al., 2007). Furthermore, prolonged
exposure to moderately high temperatures can lead to reduced
cellular function and overall plant fitness (Bokszczanin et al.,
2013). An important process in this respect is the accumulation of
reactive oxygen species (ROS), formed as a by-product in various
aerobic metabolic pathways in different cellular compartments
such as chloroplasts, mitochondria and peroxisomes (del Rio
et al., 2006; Navrot et al., 2007) and probably also in the
apoplast through the activation of NADPH oxidases (Gechev and
Hille, 2005; Torres and Dangl, 2005; Miller et al., 2009; Wang
et al., 2014a). Under steady state conditions, ROS molecules are
formed as quickly as they are scavenged by anti-oxidative defense
mechanisms, but this equilibrium is perturbed by abiotic stress
factors such as heat (Foyer and Noctor, 2005). There is ample
evidence that, when plants are exposed to heat, ROS production
rapidly becomes excessive (Morgan et al., 1986; Dat et al., 1998;
Vacca et al., 2004; Volkov et al., 2006; Bhattacharjee, 2012, 2013;
Chou et al., 2012; Hasanuzzaman et al., 2012, 2013; Wu et al.,
2012; Hossain et al., 2013; Das and Roychoudhury, 2014; Mostofa
et al., 2014). This causes cellular damage to membranes, proteins,
lipids, organelles, and DNA (Baker and Orlandi, 1995; O’Kane
et al., 1996; Giardi et al., 1997; Larkindale and Knight, 2002;
Volkov et al., 2006; Wu et al., 2012; Bokszczanin et al., 2013).
In order to prevent cell damage and regain redox homeostasis,
one of the responses to heat is the hyper-activation of the ROS
scavenging machinery. The expression and protein level of genes
responsible for ROS scavenging are induced under heat stress in
many different plant species (Chao et al., 2009; Chou et al., 2012;
Mittal et al., 2012; Suzuki et al., 2013) and has been associated to
basal heat tolerance (Rui et al., 1990; Badiani et al., 1993; Gupta
et al., 1993; Sairam et al., 2000; Almeselmani et al., 2006; Kang
et al., 2009; Bhattacharjee, 2012;Wang et al., 2014c). Furthermore,
the induction of scavenging genes was significantly stronger in
heat tolerant genotypes than that of sensitive ones (Rainwater
et al., 1996), and improvement of plant heat stress tolerance has
been achieved by increasing antioxidant enzymes activities (Rui
et al., 1990; Badiani et al., 1993; Gupta et al., 1993; Sairam et al.,
2000; Almeselmani et al., 2006; Wu et al., 2012; Chen et al., 2013).
Taken together, this shows the importance of ROS scavenging in
the heat-stress response.

In contrast to their harmful character, however, ROS are also
considered as important signal molecules. Cells are capable of
rapid and dynamic production and control of several forms of
ROS, enabling a tight local control in the cell as well as more
holistic control of the entire plant (Vranová et al., 2002; Mittler
et al., 2011; Petrov and Van Breusegem, 2012). Therefore, they
are thought to be involved in the transduction of intracellular
and intercellular signals controlling gene expression and activity
of anti-stress systems (Desikan et al., 2001, 2004; Apel and Hirt,
2004; Foyer and Noctor, 2005; Torres and Dangl, 2005; Miller
et al., 2009; Galvez-Valdivieso andMullineaux, 2010;Mittler et al.,

2011; Kreslavski et al., 2012). Indeed, NADPH oxidase activity is
rapidly induced upon heat (Miller et al., 2009) and the mutation
of RBOHB makes Arabidopsis seedlings more sensitive to heat
(Larkindale et al., 2005; Wang et al., 2014a).

One of the best studied anti-stress mechanisms is the
production of heat shock proteins (HSPs) upon exposure to
high temperatures (Wang et al., 2004). By acting as molecular
chaperones, HSPs prevent deleterious protein conformations
and eliminate non-native aggregations, which are formed
during stress (Vierling, 1991; Boston et al., 1996; Morimoto,
1998). The expression of HSPs and other heat-responsive
genes is regulated by heat shock factors (HSFs; Kotak et al.,
2007) through their association to a palindromic binding
motif (5′-nAGAAnnTTCTn-3′) in the promoter region of the
heat-responsive genes: the heat shock element (HSE; Pelham,
1982; Scharf et al., 2012). Activation of HSFs upon stress
occurs via a multistep process involving homotrimer formation
and acquisition of transcriptional competence for target gene
induction (Liu et al., 2013).

Clearly, both the activation and production of HSFs/HSPs
and the increase in ROS/scavenging activity belong to the major
responses of plants to heat stress and play important roles in
acclimation. A number of recent genetic and biochemical studies,
however, indicate that there are complex interactions between
these responses. This review describes the evidence for crosstalk
between HSFs, HSPs, ROS, and ROS scavenging enzymes at
various points in the heat stress response pathway and presents
a model with a timing component.

ACTIVATION OF HSFs BY ROS

In non-stressed situations, the HSFs are located in the cytoplasm
for most eukaryotes, in an inactive monomeric form due to
association with HSP70, HSP90, and potentially other proteins
(Morimoto, 1998; Schöffl et al., 1998). According to the chaperone
titration model, heat results in a higher load of denatured
proteins, which pulls HSPs away from HSF complexes through
competitions to act as molecular chaperones. This then leads to
the release ofHSFs, which form trimers and relocate to the nucleus
to activate expression of HSP and other heat-responsive genes
(Zou et al., 1998; Volkov et al., 2006).

A number of studies, however, report that expression of heat-
responsive genes is also increased upon application of the ROS
H2O2 (Uchida et al., 2002; Wahid et al., 2007; Banti et al.,
2008). For example, AtHSP17.6 and AtHSP18.6 achieved similar
expression levels through heat treatment as they do through
H2O2 application at room temperature (Volkov et al., 2006).
Several hypotheses have been formulated that suggest that heat
can indirectly activate HSFs via the action of ROS.

Firstly, damaging amounts of heat-induced ROS also induce
protein denaturation. In this way ROS enhances dissociation
of the HSP–HSF complex, as described by the titration model
(Schöffl et al., 1998). Secondly, and similar to what was found
for mammalian and Drosophila HSFs, it has been proposed that
certain plant HSFs act as H2O2 sensors (Ahn and Thiele, 2003;
Miller and Mittler, 2006). Among all the ROS molecules, H2O2
plays a key role in signaling due to its moderate reactivity and

Frontiers in Plant Science | www.frontiersin.org November 2015 | Volume 6 | Article 9992

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Driedonks et al. HSF/HSP-ROS Interactions upon Heat

thus relatively long lifetime (Vranová et al., 2002). In addition,
H2O2 can bypass membranes easily, making it a good candidate
to function as a signaling molecule (Petrov and Van Breusegem,
2012). Miller and Mittler (2006) suggested that H2O2 might
directly modify HSFs and induce HSF trimerization. Indeed,
both heat and oxidative stresses result in the formation of high
molecular weight HSE-binding complexes and the formation
of these complexes has been shown to be a signature of early
HSFA1a/A1b-dependent gene expression in heat-stressed leaves
of Arabidopsis (Lohmann et al., 2004; Volkov et al., 2006). In
vitro and in vivo studies confirmed activation of AtHSFA1a
via trimerization in response to heat and H2O2 stress but also
via pH alterations (Liu et al., 2013). HSFA1a, purified from E.
coli, sensed the different stresses directly in a redox dependent
fashion. In vitro stress treatments caused monomer-to-trimer
transitions of HSFA1a, while the presence of the reducing agent
dithiothreitol reversed this action. Although the study suggested
a redox dependent fashion for HSF trimerization for all three
stresses, the exact mechanism of action is still unclear. There is
empirical evidence that the transcription factors may be sensitive
to H2O2 via “single-Cys” or “two-Cys” redox sensory mechanisms
(Mittler et al., 2011). These cysteine residues are typically
responsive to oxidative stress. HSFA1a contains one Cys residue
located at the N-terminal portion of the trimerization domain
(Hübel and Schöffl, 1994). N-terminal deletions of HSFA1a
negatively affected the sensing of H2O2 and pH changes, which
suggests that trimerizations were induced by HSF conformational
changes (Liu et al., 2013). In addition, Giesguth et al. (2015)
recently showed that an HSFA8 Cys residue is responsible
for translocation to the nucleus upon oxidative stress: H2O2
treated protoplasts showed cytosol-to-nucleus translocations of
the wild-type HSFA8, but not of the HSFA8C24S mutant variant
(Giesguth et al., 2015). Interestingly, however, the N-terminal
deletion of HSFA1a did not inhibit heat sensing. This shows
that activation of this particular transcription factor is stress-
specifically regulated despite a common dependency on oxidative
activity (Mittler et al., 2011). Notably, all stress treatments induced
of HSFA1a binding to the HSP18.2 and HSP70 promoter, as
detected by both formaldehyde cross-linking and chromatin
immunoprecipitation, which paralleled the mRNA expression
of these HSFA1a target genes (Volkov et al., 2006; Liu et al.,
2013).

In addition to the above two processes, cellular communication
between ROS and HSFs may involve mitogen-activated protein
kinases (MAPK). HSF phosphorylation has been observed in
yeasts and mammals (Chu et al., 1996; Knauf et al., 1996;
Kim et al., 1999) and might thus occur in plants as well
(Link et al., 2002). Indeed, Arabidopsis HSFA2 was found to
be phosphorylated by MPK6 on T249 after heat treatment, and
this was associated with subsequent intracellular localization
changes (Evrard et al., 2013). Furthermore, MPK3- and MPK6-
dependent phosphorylation of AtHSFA4A Ser309 and physical
interaction between the proteins was reported recently (Pérez-
Salamó et al., 2014). Activated HSFA4A in turn controlled the
transcription of HSP17.6A (Pérez-Salamó et al., 2014). In tomato,
heat-induced MAPKs were shown to transduce heat stress signals
via HSFA3 (Link et al., 2002). In Arabidopsis, the same MAPKs

that phosphorylate HSFs, namely MAPK3 and MAPK6, have
been shown to be activated by H2O2 (Kovtun et al., 2000;
Moon et al., 2003; Rentel et al., 2004). However, despite the
presence of putative phosphorylation sites in tomato HSFA1,
no heat-induced phosphorylation of this HSF was observed.
Also, the phosphorylation site in AtHSFA4 was not conserved
in HSFA4A proteins of citrus, grapevine and poplar (Pérez-
Salamó et al., 2014). Taken together, this implies that both HSF
oxidation and ROS-dependent phosphorylation can play a role
in HSF activation, but that the latter is not a general signaling
mechanism.

HSF–ROS SCAVENGING GENE
INTERACTIONS

In addition to activation of HSFs by ROS signaling, evidence
for interaction between HSFs and ROS scavenging genes has
also been obtained. The expression of APX1 was found to
be regulated by HSFA2: overexpression of HSFA2 resulted in
increased expression of APX1, while AthsfA2 knock out mutants
showed a reduced expression of APX1 (Li et al., 2005). In
agreement with this, AtHSFA2 overexpression lines showed
increased heat and oxidative stress tolerance (Li et al., 2005).
Expression of a dominant-negative construct for AtHSFA4a
prevented the accumulation of APX1 transcripts (Pnueli et al.,
2003; Apel and Hirt, 2004; Mittler et al., 2004; Davletova et al.,
2005). Interestingly, the AtHSFA4a dominant-negative construct
also prevented accumulation of the H2O2-responsive zinc-finger
protein ZAT12, which is required for APX1 expression during
oxidative stress. The ZAT12 promoter contains HSE binding
sites (Rizhsky et al., 2004) and therefore, HSFA4a might directly
interact with the ZAT12 promoter (Davletova et al., 2005).
However, HSEs are also present in the promoter region of the
APX1 gene itself, suggesting that direct activation via HSFs is also
possible (Storozhenko et al., 1998; Panchuk et al., 2002). Using
Pennisetum glaucum APX1 and a PgHSFA, a specific binding
interaction between theAPX1HSE andHSFwas confirmed, via in
vitro gel shift assays as well as their expression patterns over time
(Reddy et al., 2009).

Although APX1 has been shown to be a central component
of the Arabidopsis ROS network (Davletova et al., 2005), APX2,
another isoform also localized in the cytosol, revealed a stronger
induction by heat stress (Panchuk et al., 2002). AtHSFA2 has also
been found to act as an APX2 activator (Schramm et al., 2006;
Nishizawa et al., 2008). Transcription level comparison between
wild-type and athsfa2 knock out plants revealed that transcripts
of APX2 were absent in heat shock induced leaves of the knock
out background, but present in the wild-type plants (Schramm
et al., 2006). Deletion analyses of the promoter region of APX2
functionally mapped the HSFA2 binding sites to HSEs near the
transcription start site (Schramm et al., 2006).

In addition,Nishizawa et al. (2006) andBanti et al. (2010) found
strongly enhanced expression of galactinol synthase (GolS1 and
GolS2) ROS scavenging genes in an HSFA2 overexpressing line.

Combining these results, HSFA2 seems to play a central role in
ROS scavenger expression and thus constitute an important link
between heat shock and oxidative stress responses.
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HSP CHAPERONES SUPPORT ROS
SCAVENGING ACTIVITY

Heat shock proteins function as molecular chaperones and play
an important role in stress tolerance. In tomato, overexpression of
the LeCDJ1DnaJ protein coding gene (also known as J-protein or
HSP40; Qiu et al., 2006) resulted in improved thermotolerance,
accompanied by increased APX and superoxide dismutase
(SOD) activity after heat stress and reduced accumulation of
O2

− and H2O2. Despite the higher APX and SOD activity,
transcription of the corresponding genes was not enhanced
in the transgenic plants. Therefore, the influence of DnaJ
proteins on APX and SOD activity was proposed to be post-
transcriptional, due to their functionality as chaperones. Other
studies have found similar effects of HSPs on ROS scavenging
proteins upon heat stress. In Arabidopsis, overexpression
of RcHSP17.8 enhanced SOD activity (Jiang et al., 2009)
whereas overexpression of ZmHSP16.9 in tobacco enhanced
POD, CAT, and SOD activity (Sun et al., 2012). Altogether,
it may be hypothesized that the HSP proteins positively
affect thermotolerance by protecting ROS scavenging protein
conformation and activity, resulting in a lower ROS concentration
(Kong et al., 2014a).

An alternative link between DnaJ proteins and ROS scavenging
was suggested by Zhou et al. (2012). They showed thatArabidopsis
AtDjB1 knockout plants (atj1-1) were more sensitive to heat
stress than wild-type plants. After heat shock, the knockout
plants showed an increased concentration of H2O2 and other
oxidative products as well as a decreased concentration of
the antioxidant ascorbate (ASC; Mittler et al., 2004; Zhou
et al., 2012). The viability of atj1-1 knockout seedlings after
heat stress was rescued by exogenous ASC application. This
suggests that lower concentrations of the antioxidant in atj1-
1 knockout plants resulted in increased H2O2 concentrations
leading to a decreased thermotolerance (Zhou et al., 2012). As
the underlying cause, the authors hypothesize a link with the
electron transport chain (ETC). AtDjB1 directly interacts with
a mitochondrial HSP70 and stimulates ATPase activity (Zhou
et al., 2012), a mechanism which is conserved among several
kingdoms (Qiu et al., 2006). AtDjB1 knockout potentially leads
to the accumulation of cellular ATP, which feedback inhibits
ETC. Because the last step of ASC synthesis is linked to the
ETC (Bartoli et al., 2000), decreased ETC results in decreased
ASC concentration and, consequently, the accumulation of H2O2
(Zhou et al., 2012).

Although it is unclear whether there is a specific interaction
between HSPs and the ROS scavenging machinery or that HSPs
generally maintain protein functions, these results indicate that
upon heat stress, accumulation of ROS is reduced via HSP-
supported ROS scavenger activity.

A POSITIVE FEEDBACK LOOP INCLUDING
HSFs, ROS SCAVENGING GENES,
AND MIRNA398

In contrast to the positive effects of ROS reducing mechanisms
on heat stress tolerance, an Arabidopsis study provided evidence

linking enhanced ROS accumulation to higher stress tolerance
(Guan et al., 2013). The research indicated the existence of
a positive a feedback loop, whereby heat and ROS allow
for further ROS accumulation, depending on the actions of
microRNA398 (miRNA398). miRNA398 expression was found
to be induced within 1 h and reach its peak 2 h after heat
stress. The miRNA398 promoter region contains a putative
HSE, and chromatin immune-precipitation assays revealed direct
binding of HSFA1b and HSFA7b to the HSE promoter region
under heat stress. Thus, association of these HSFs to the
promoter region seems to be responsible for the induction of
this miRNA upon heat stress (Guan et al., 2013). miRNA398
negatively regulates the expression of three target genes: CSD1,
CSD2, and CCS (Guan et al., 2013). CSD1 and CSD2 genes
are isoforms of copper/zinc-SOD scavenging genes which are
located in the cytoplasm and chloroplasts, respectively (Bowler
et al., 1992; Kliebenstein et al., 1998) and CCS is a copper
chaperone encoding gene, which delivers copper to both CSD
genes (Cohu et al., 2009). Consequently, CSD1, CSD2, and CCS
are down-regulated during heat stress, allowing further ROS
accumulation. This pathway acts in an autocatalytic manner, as
H2O2 in turn promotes expression of various HSFs, including
HSFA7b (Guan et al., 2013). Accumulation of ROS seems to
be an unfavorable response for the plant to survive heat stress.
However, comparison of wild-type and csd1, csd2, and ccsmutants
plants revealed higher heat tolerance in mutant plants while
transgenic plants over-expressing miR398-resistant versions of
CSD1, CSD2, or CCS were hypersensitive to heat stress (Guan
et al., 2013).

These unexpected outcomes may be explained by the increases
in oxidative power for helping activate the primary set of HSFs
at the start of the heat response. In contrast to Guan et al.
(2013); Sunkar et al. (2006) found that lack of miRNA398
enhances tolerance to some other stress factors, high light and
chemically induced ROS, via enhanced expression of CSD1 and
CSD2 (Sunkar et al., 2006). Therefore, it seems that the benefit
of reduced SOD activity is heat-specific, potentially due to the
importance of high HSF activity in the first hours of the response
to this stress.

A MULTI-LEVEL INTERACTION MODEL

A number of recent studies have provided evidence for
connections between HSFs, HSPs, ROS, and ROS scavengers
upon heat stress. Here, we propose a comprehensive model
on the relations between the various components to explain
a large proportion of the observations (Figure 1). Through
contrasting effects on ROS scavenging activity, heat shock
induces a short-term positive (roughly, within the first few hours
of heat stress) and a long-term negative feedback loop (after the
first few hours of heat stress) on the HSF signaling pathway.
The proposed complexity of the heat-stress response network is
mirrored in some of the counter-intuitive observations, such as
enhanced heat tolerance in certain scavenger mutants (Rizhsky
et al., 2002; Vanderauwera et al., 2011). However, analogous
to the proposed miRNA398 mechanism, constitutively, slightly
elevated ROS levels in such mutants may result in a primed
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FIGURE 1 | Model describing crosstalk between the HSF/HSP and
ROS pathways in the heat stress response. In addition to directly
activating HSFs, high temperature leads to the accumulation of ROS. This, in
turn, leads to a further activation of HSFs, either directly or indirectly via
activation of a MAPK pathway. The HSFs bind to HSE in the promoter region
of HSF, HSP, miRNA398, and ROS scavenging genes. The
miRNA398-dependent down-regulation of a subset of SOD scavengers might
play a role in the rapid ROS accumulation upon exposure to heat. This would
support the activation of HSFs and thereby boost the induction of the
heat-stress response in the short term. In the longer term, the induction and
stabilization of other scavengers would start to suppress ROS levels to avoid
excessive cellular damage.

state and, as a consequence, a stronger and/or faster response
to a heat treatment. Guan et al. (2013) indeed showed that
knockout mutations in CSD1 and CSD2 were accompanied
by constitutively higher levels of HSF and HSP transcripts.
In accordance, the importance of ROS at early heat response
was shown by Volkov et al. (2006): a rapid oxidative burst
of ROS during the first 15 min of the heat shock stimulates
HSF DNA-binding and is essential for the induction of heat
responsive gene expression, e.g., ofHSPs and APX2 (Volkov et al.,
2006). The typical “late” high mobility HSE-binding complexes,
formed after 2 h, were shown to be ROS independent (Lohmann
et al., 2004; Volkov et al., 2006), which is in accordance with
the production of anti-oxidants and ROS scavengers reducing
the ROS overload after the early onset of the HSR (Chaitanya
et al., 2002; Wahid et al., 2007; Frank et al., 2009; Dong et al.,
2015). Nevertheless, if plants are continuously exposed to
heat stress, the activity of some antioxidants and scavengers,
e.g., APX and CAT, decreased after 3 days of heat stress in
tomato, alfalfa and tobacco cell cultures (Wu et al., 2012;
Li et al., 2013; Sgobba et al., 2015). The changes of these
components of the antioxidant system were ascribed to the
impaired health and growth of plants under long term heat stress
and are different from short term heat stress (de Pinto et al.,
2015).

Importantly, the model described here refers specifically to
the complexity of events after a short term heat shock; its
applicability to other types of heat stress, e.g., mild levels of
heat stress, which only affect plant physiology in the long
term, is not evident and more research will be necessary in
order to clarify how the HSF/HSP and ROS systems behave
under those circumstances. Also, it should be noted that the
proposed model is not stand-alone and will interact with
other factors, such as phytohormones. Abscisic acid (ABA),
salicylic acid (SA) and ethylene have all been implicated in the
heat response and can induce the production of ROS (Kwak
et al., 2006; Foyer and Noctor, 2009). While a number of
phytohormone-related mutants show impaired tolerance to heat
(Larkindale et al., 2005), application of these hormones may
enhance thermotolerance via an effect of ROS. SA application,
for example, enhanced SOD activity and HSP expression during
heat stress (Clarke et al., 2004; He et al., 2005). Dedicated
analysis of the role of hormones during the first hours of heat
treatment should clarify their putative positions in the response
model.

The model may well have broader applicability then to the
heat response only (Jiang and Zhang, 2002; Jammes et al., 2009;
Bartoli et al., 2013; Wang et al., 2014b; Hossain et al., 2015). Not
only are ROS accumulation, signaling and scavenging thought to
occur and play a role in myriad other stress responses (Mittler,
2002; Hossain et al., 2015), but so is HSP activity (Pastori
and Foyer, 2002; Banti et al., 2008; Pucciariello et al., 2012).
HSPs are also induced upon water stress, salinity and osmotic
stress, cold, anoxia, UV-B light, and oxidative stress (Vierling,
1991; Waters et al., 1996; Wang et al., 2004; Loreti et al., 2005;
Swindell et al., 2007). Furthermore, overexpression of various
HSFs enhanced tolerance to abiotic stresses other than heat,
including salt, drought, osmotic, and anoxic stress (Bechtold
et al., 2013; Chauhan et al., 2013; Shen et al., 2013; Pérez-Salamó
et al., 2014). Also, tomato plants overexpressing the DnaJ/HSP40
LeCDJ1 showed both higher heat and chilling tolerance (Kong
et al., 2014a,b) and overexpression of BRZ-INSENSITIVE-LONG
HYPOCOTYLS 2 (BIL2), a mitochondrial-localized DnaJ/HSP40
family member, enhanced resistance against salinity and high
light stress (Bekh-Ochir et al., 2013). The role of both the
oxidative stress andHSF/HSP systems inmultiple stress responses
might explain the phenomenon of cross-acclimation, where
exposure to a certain stress factor improves tolerance to a
subsequent different stress factor (Banti et al., 2008, 2010; Chou
et al., 2012; Byth-Illing and Bornman, 2013; Hossain et al.,
2015).
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