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Abstract—To characterize intra-tumor heterogeneity
comprehensively, we propose a multi-level fusion strategy
to combine PET and CT information at the image-, matrix-
and feature-levels towards improved prognosis. Specifi-
cally, we developed fusion radiomics in the context of 3
prognostic outcomes in a multi-center setting (4 centers)
involving 296 head & neck cancer patients. Eight clinical pa-
rameters were first utilized to build a (1) clinical model. We
also built models by extracting 127 radiomics features from
(2) PET images alone; (3–8) PET and CT images fused via
wavelet-based fusion (WF) using CT-weights of 0.2, 0.4, 0.6
and 0.8, gradient transfer fusion (GTF), and guided filtering-
based fusion (GFF); (9) fused matrices (sumMat); (10–11)
fused features constructed via feature averaging (avgFea)
and feature concatenation (conFea); and finally, (12) CT
images alone; above models were also expanded to include
both clinical and radiomics features. Seven variations of
training and testing partitions were investigated. Highest
performance in 5, 6 and 5 partitions was achieved by image-
level fusion strategies for RFS, MFS and OS prediction, re-
spectively. Among all partitions, WF0.6 and WF0.8 showed
significantly higher performance than CT model for RFS
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(C-index: 0.60 ± 0.04 vs. 0.56 ± 0.03, p-value: 0.015) and
MFS (C-index: 0.71 ± 0.13 vs. 0.62 ± 0.08, p-value: 0.020)
predictions, respectively. In partition CER 23 vs. 14, WF0.6
significantly outperformed Clinical model for RFS predic-
tion (C-index: 0.67 vs. 0.53, p-value: 0.003); both avgFea and
WF0.6 showed C-index of 0.64 and significantly higher than
that of PET only (C-index: 0.51, p-value: 0.018 and 0.031,
respectively) for OS prediction. Fusion radiomics modeling
showed varying improvements compared to single modal-
ity models for different outcome predictions in different
partitions, highlighting the importance of generalizing ra-
diomics models. Image-level fusion holds potential to cap-
ture more useful characteristics.

Index Terms—Image fusion, radiomics, PET/CT, multi-
center, Head & Neck Cancer.

I. INTRODUCTION

T
HERE are approximately 600,000 new cases of head

and neck (H&N) cancer every year worldwide, with

40%−50% of these resulting in death [1]. Aside from conven-

tional prognostic factors such as PET standard uptake values

(SUV) [2], tumor site, stage and HPV status [3], intra-tumor

heterogeneity is also increasingly recognized to be related to

tumor development, response to therapy and metastasis in H&N

cancer [4]–[6]. Accurate quantification of heterogeneity has

great potential to identify high-risk patients who may benefit

from aggressive treatment, and low-risk patients who may be

free from toxic side-effects [7].

Radiomics analysis, incorporating measurement of hetero-

geneity, has been extensively investigated towards improved

outcome prediction [8], though has been commonly conducted

only on individual modalities (CT, MRI or PET) [5], [9]–[14].

As different modalities convey different aspects of disease [15],

texture and histogram features extracted from CT image quanti-

fying the spatial distribution of tissue intensities [16]; ring-shape
18F-fluorodeoxyglucose (FDG) uptake reflecting intratumoral

necrosis had prognostic value for patients with H&N squamous

cell carcinoma (HNSCC) [17]; SUV of FDG-PET correlates

with microvessel density characterized by perfusion CT in H&N

cancer [18]. Use of combined PET and CT scans for visual

interpretation has shown superiority for initial diagnosis and

subsequence surveillance compared with use of PET or CT

alone [19], [20].
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Instead of visual evaluation, for the relatively few quantitative

multi-modality radiomics studies performed towards more accu-

rate tumor imaging phenotype exploration, the adopted strategy

has most commonly been to concatenate significant features

from PET and CT for multivariate analysis to improve prediction

of outcome in different kinds of cancers [21]–[23]. Some studies

instead attempted to integrate multi-modality information via

image fusion [24]–[27]. Mu et al. [24] used weighted summation

of PET and CT images to predict immunotherapy response in

non-small cell lung cancer (NSCLC) patients. Riyahi et al. [25]

also directly adopted the weighted summation of normalized

PET and CT images to generate a single blended PET-CT

image, and then, feature changes between baseline and follow-up

were used for tumor response prediction in esophageal cancer.

While simple summation of images may be limited, Vallières

et al. [26] investigated wavelet-based fusion of PET and MRI

images to predict lung metastasis in soft-tissue sarcomas, and

concluded that fused features could be superior to using separate

features extracted from individual images. Zhou et al. [27] also

investigated usefulness of radiomics features extracted from

wavelet-based fusion of PET and MRI to predict progression of

patients with mild cognitive impairment to Alzheimer’s disease,

and showed that the fusion-modality model (C-index = 0.8039)

had higher prediction accuracy than the MRI model (C-index =
0.7627) and the PET model (C-index = 0.7755).

Different from aforementioned studies working on feature

concatenation and image integration, Parekh et al. [28] designed

a tissue signature co-occurrence matrix by merging matrices

constructed from multiparametric MRI images, and demon-

strated improved performance for diagnosis of breast cancer

and brain stroke compared to single parameter radiomics. As

such, compared to single-modality radiomics features providing

limited information corresponding to each imaging modality,

multi-modality fusion radiomics features may produce more

meaningful features and textural visualization of the underly-

ing tumor regions, and have the potential to provide improved

prognosis.

Obviously, different levels of fusion (image-, matrix- and

feature-levels) may lead to different radiomics features, which

may finally affect the model performance. To the best of our

knowledge, multi-modality fusion radiomics features from dif-

ferent levels have not been comprehensively investigated and

compared in prognostic tasks. Thus, in the present study, we

proposed a multi-level fusion strategy for radiomics analysis,

combining the information provided by PET and CT at the

image-, matrix- and feature-levels towards improved prognosis

(3 outcomes) of multi-center (4 centers) H&N cancer patients (n

= 296). (1) In image-level fusion, in addition to wavelet-based

fusion (WF) [26], we additionally introduce two advanced fusion

methods, namely gradient transfer fusion (GTF) [29] and guided

filtering-based fusion (GFF) [30] to fuse PET and CT images

arriving at a single fused image, from which features were

extracted to fully characterize the information from PET and

CT images. (2) In matrix-level fusion, we construct a summed

individual enriched matrix (noted as sumMat) by considering

the voxel relationships in PET and CT simultaneously. (3) In

feature-level fusion, we investigate the concatenation of features

from the two imaging modalities (noted as conFea), and the

mean values of PET and CT features (noted as avgFea) were

also investigated.

Overall, our study investigates the prognostic performance

of PET-CT radiomics features extracted by using image-level,

matrix-level and feature-level fusion strategies. The rest of this

article is structured as follows: Section II describes the dataset,

multi-level fusion strategy, feature extraction and statistical

analysis in detail. Section III provides the experiment results.

Section IV discusses the main finding, limitations and some

future directions, followed by conclusions in Section V.

II. MATERIALS AND METHODS

A. Dataset

The dataset used in this study was from The Cancer Imaging

Archive (TCIA) http://www.cancerimagingarchive.net, contain-

ing FDG-PET/CT imaging data, clinical data, outcome data

and radiotherapy contours (RTstruct) of 296 patients from four

different institutions in Québec, Canada. Of these, 65 were

from Centre hospitalier de l’Université de Montréal (CHUM,

noted as CER1), 100 from Centre hospitalier universitaire de

Sherbrooke (CHUS, noted as CER2), 90 from Hôpital général

juif (HGJ, noted as CER3) de Montréal, and 41 from Hôpital

Maisonneuve-Rosemont (HMR, noted as CER4) de Montréal.

All patients were histologically confirmed with H&N cancer,

and had pre-treatment FDG-PET/CT scans between April 2006

and November 2014. PET images had varying pixel sizes of

3.52 to 5.47 mm, slice thicknesses of 3.27 to 4 mm, slice

spacings of 3.27 to 4 mm with matrix sizes of 128 or 144,

while CT images have varying pixel sizes of 0.68 to 1.37 mm,

slice thicknesses of 1.5 to 3.75 mm, slice spacings of 1.5 to

3.27 mm (except for 2 cases at 5 mm) with matrix size of

512. There are 47 patients received radiation therapy alone

and 249 patients received chemo-radiation therapy. The median

follow-up period of all patients was 44 months (range: 6–113).

Three outcomes: recurrence-free survival (RFS), metastasis-free

survival (MFS) as well as overall survival (OS) were considered.

The characteristics of the 296 patients are listed in Table I.

B. Multi-Level Fusion

In order to characterize tumor more comprehensively, we

proposed a multi-level fusion strategy to combine the informa-

tion provided by PET and CT at image-, matrix-and feature-

levels. A flowchart of our efforts is illustrated in Fig. 1. As

for image-level fusion, three public available fusion meth-

ods, namely wavelet-based fusion (WF, https://github.com/

mvallieres/radiomics), gradient transfer fusion (GTF, https://

github.com/jiayi-ma/GTF) and guided filtering-based fu-

sion (GFF, https://github.com/funboarder13920/image-fusion-

guided-filtering) were adopted. PET and CT images were

combined into a single fused image, aiming to preserve and

extract useful information from both PET and CT images.

The WF method first decomposes PET and CT images into 8

sub-bands wavelet coefficients by using 3D discrete wavelet

transform (DWT), and then corresponding wavelet coefficients

http://www.cancerimagingarchive.net 
https://github.com/mvallieres/radiomics
https://github.com/jiayi-ma/GTF 
 https://github.com/funboarder13920/image-fusion-guided-filtering
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Fig. 1. The flowchart of multi-level fusion strategy (image-, matrix-to feature-level fusion) to combine PET and CT information for the prediction of
RFS, MFS and OS for head and neck (H&N) cancer patients.

Fig. 2. An example of PET, CT and fused images obtained by wavelet-based fusion with CT weights of 0.2, 0.4, 0.6 and 0.8 (WF0.2, WF0.4,
WF0.6, WF0.8), gradient transfer fusion (GTF) and guided filtering-based fusion (GFF) methods.

are weight-averaged by setting CT weights of 0.2, 0.4, 0.6, and

0.8 (noted as WF0.2, WF0.4, WF0.6 and WF0.8). The corre-

sponding PET weight was 1-(CT weight), and the fused image

was thus obtained by inverse DWT. PET and CT images without

fusion were also used to construct single modality prognostic

models. The GTF method formulates the fusion problem as

an ℓ1-TV minimization problem, where the data fidelity term

maintains the main intensity distribution in the PET image, while

the regularization term preserves gradient variations in the CT

image:

Φ(x) = ‖x− u‖
1
+ λ‖∇x −∇v‖1 (1)

where x, u and v represent fused, PET and CT images, respec-

tively, λ is a positive parameter, ∇ is the image gradient, and

the default parameters used in [29] were adopted in this study.

The GFF method first uses an average filter to get a two-scale

representation of both PET and CT images (base layer containing

large scale variations in intensity, and a detail layer capturing

small scale details), and then the base and detail layers are fused

by using a guided filtering-based weighted averaging method.

The default parameters of guided filter fusion in [30] were used

in this study. Fig. 2 shows an example of PET, CT, and the fused

images obtained by WF0.2, WF0.4, WF0.6, WF0.8, GTF and

GFF methods.

As for matrix-level fusion, two texture matrices were first

constructed from PET and CT images separately, and then were

summed up into a single enriched matrix (noted as sumMat).

In other words, the summed matrices considered the voxel

relationships in PET and CT simultaneously. Seven types of

matrices characterize local regional or global image patterns
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TABLE I
THE CHARACTERISTIC OF PATIENTS FROM FOUR CENTERS

M/F: male/female.

U/N/O/H/L: unknown/nasopharynx/oropharynx/hypopharynx/larynx.

RT/CRT: radiotherapy/chemotherapy.

n.a.: not available.

were considered: gray level co-occurrence matrix (GLCM),

gray level run length matrix (GLRLM), gray level size zone

matrix (GLSZM), neighborhood gray tone difference matrix

(NGTDM), gray level gap length matrix (GLGLM), neighboring

gray level dependence matrix (NGLDM) and gray level distance

zone matrix (GLDZM).

As for feature-level fusion, one popular fusion strategy

adopted by multiple studies involves concatenation of features

from different modalities (noted as conFea) was used in this

study, we also use the mean value of PET and CT features (noted

as avgFea) to investigate whether it is useful for prognosis. In

addition, 8 clinical features (Sex, Age, Site, T stage, N stage,

TNM stage, Therapy, HPV status) were collected for model

construction. Above models were also expanded to include both

clinical and radiomcis features, thus, a total of 23 strategies

(one clinical model, 4 single modality model: PET or CT model

and 18 fusion models with or without clinical features) were

investigated.

C. Feature Extraction

The tumor volume was defined as GTVprimary+GTVlymph

nodes, and was applied to the FDG-PET image, CT image and

fused images, which evaluated the overall tumor burden includ-

ing primary tumor and lymph node metastasis. Images were dis-

cretized into 64 bins, voxel size was interpolated to an isotropic

1 × 1 × 1 mm3, and 127 radiomics features were extracted from

each region. This included 9 shape features, 11 intensity features,

6 histogram features, 26 GLCM features, 13 GLRLM features,

13 GLSZM features, 5 NGTDM features, 13 GLGLM features, 5

NGLDM features, 16 GLDZM features, and 10 moment features

from the Standardized Environment for Radiomics Analysis

(SERA) package (https://rahmimlab.com/software/sera/) [31],

which in compliance with imaging biomarker standardization

initiative (IBSI) guidelines [32].

D. Statistical Analysis

Since four centers were involved in the dataset, apart from

one partition adopted in previous studies [33]–[35] (center 2

and center 3 used for training, and center 1 and center 4 used for

testing, noted as CER 23 vs. 14), we additionally investigated

six other kinds of partitions (CER 12 vs. 34, CER 13 vs. 24, CER

123 vs. 4, CER 124 vs. 3, CER 134 vs. 2 and CER 234 vs 1) by

ensuring training patients to be more than testing patients, while

those partitions having less training patients than testing patients

were excluded. Three endpoints recurrence-free survival (RFS),

metastasis-free survival (MFS) and overall survival (OS) were

considered. Thus, this study was carried out for 7 partitions× 23

strategies × 3 outcomes. For each set, univariate Cox analysis

was conducted by performing 50 repetitions of 3-fold cross

validation in the training cohort, the prognostic performance was

measured using the concordance index (C-index), from which

features were sorted in descending order of the mean validation

C-index (in the 150 validation rounds), and the top 10 features

were then selected. For feature pairs with Spearman’s correlation

higher than 0.8, the one with lower C-index was further removed,

resulting in a non-redundant candidate feature subset for subse-

quent multivariate analysis. We considered all possible combi-

nations of the candidate features (in sets of 2 up to 5 features)

to perform multivariate Cox analysis in the training cohorts.

Let k denote the number of candidate features, then the number

of all possible combinations will be C2

k
+ C3

k
+ C4

k
+ C5

k
, thus

there were a total of 627 combinations/models for k = 10 in this

study. The final optimal model in the training set was identified

by Akaike information criteria (AIC). AIC rewards goodness

of fit (as assessed by the log-likelihood) and penalizes number

of features simultaneously, requiring increases in log-likelihood

(LogL2-LogL1) to be higher than increases in the number of

features (FeaNum2-FeaNum1) between two models. We have

discussed AIC in comparison to more conservative criteria else-

where [36]. For each model, the median value of the prognostic

score generated in the training cohort was used untouched

in the testing cohort as a threshold to separate patients into

high- and low-risk subsets, and the difference between the two

Kaplan-Meier curves was evaluated by log-rank test. Statisti-

cally significant differences between individual C-indices were

evaluated by using the R package “compareC” (Version 1.3.1),

while statistically significant differences between two series

of C-indices were evaluated by using paired Student’s t test.

Significance level was set as p < 0.01 in order to set stricter

acceptance given multiple testing. Feature extraction and all

other statistical analyses were conducted on Matlab R2018b

(The MathWorks Inc.). Since HPV status was only available

for 124 patients, HPV status was excluded from multivariate

 https://rahmimlab.com/software/sera/
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TABLE II
THE MEAN AND SD OF C-INDEX IN TESTING COHORT OF EACH STRATEGY AMONG ALL 7 DIFFERENT TRAINING AND TESTING

PARTITIONS FOR RFS, MFS AND OS

analysis, though the prognostic performance of HPV was later

evaluated and reported for these 124 patients.

III. RESULTS

A. Feature Popularity in Univariate Analysis

Supplementary Fig. S1 shows top 10 features with best

performance after 50 repetitions of 3-fold cross validation

as selected for each partition, each fusion strategy and each

outcome; also, feature popularity among the partitions and

fusion strategies for each outcome are illustrated. Features

selected more than 20 times are listed in supplementary

Table S1. Four clinical features (Age, Site, T stage and

Therapy) and 3 texture features (IMC2_GLCM, InVar_GLCM

and SGLGE_GLGLM) were mostly highly selected towards

prediction of RFS. Two clinical features (N stage and T stage),

3 shape features (MV, Compactness2 and Irregularity) and 5

texture features (LGLGE_GLGLM, LGHGE_GLGLM, oJ3,

GLN_GLSZM, and ICM1_GLCM) showed high popularity in

MFS prediction. Three clinical features (T stage, Site and TNM

stage), 3 shape features (Sphericity, Eccentricity and Irregular-

ity) and 3 texture features (RLV_GLRLM, LGHGE_GLGLM

and GLN_GLSZM) were most commonly selected for OS

prediction.

For the 124 patients whose HPV status are available, as shown

in Supplementary Fig. S2, HPV status was only significantly

associated with RFS (C-index: 0.76, p < 0.0001), HPV +
showed lower risk (HR: 0.12, 95% CI: [0.03–0.45]) of recur-

rence compared with HPV-, while it was not predictive of MFS

(C-index: 0.57, p: 0.605) or OS (C-index: 0.63, p: 0.316).

B. Comparison Between different Fusion Strategies

Box plot of Fig. 3 shows the C-index in the testing cohort

for each strategy among all 7 different training/testing partitions

for RFS, MFS and OS prediction (also detailed in supplemen-

tary Table S2); the mean and SD of C-indices are also listed

in Table II; corresponding statistically significant difference

comparison between strategies can be found in supplementary

Fig. 5(a–c) and Fig. S3. For RFS prediction (Fig 5a), WF0.6

Fig. 3. Box plots of the C-index in testing cohort for each strategy
among all 7 different partitions for prediction of (a) RFS, (b) MFS and
(c) OS.

(C-index: 0.60± 0.04) showed significantly higher performance

relative to CT (C-index: 0.56 ± 0.03) with p-value of 0.015.

For MFS prediction (Fig. 5b), the C-index of WF0.8 model

(0.71 ± 0.13) was significantly higher than that of CT only

(0.62 ± 0.08, p-value: 0.020), WF0.2 (0.64 ± 0.11, p-value:

0.003) and GFF (0.61± 0.07, p-value: 0.019). For OS prediction



LV et al.: MULTI-LEVEL MULTI-MODALITY FUSION RADIOMICS 2273

Fig. 4. The Kaplan–Meier curves shown only for partition CER 23 vs. 14. The models shown include the Clinical-only model, PET model and CT
model for (a-c) RFS, (e-g) MFS and (i-k) OS prediction; (d) WF0.6 model (wavelet-based fusion with CT weight of 0.6) for RFS, (h) WF0.8 model
(wavelet-based fusion with CT weight of 0.8) for MFS and (l) WF0.6 model (wavelet-based fusion with CT weight of 0.6) for OS prediction. The
curves for training vs. testing are also color-coded as shown in the legend.

(Fig. 5c), no fusion model significantly outperformed Clinical

only, PET only or CT only models. Overall, on average (multiple

training and testing in multi-center scenario), fusion model

showed limited superiority relative to single modality, though

it outperformed CT model in RFS and MFS predictions, high-

lighting the potential of generalizing radiomics models when

utilized in a multi-center setting. More results and discussions

below are aimed to provide greater insights into our findings, and

we note that in specific partition CER 23 vs. 14, several fusion

models indeed demonstrated better performance compared to

Clinical model, CT model and PET model.

For specific partition CER 23 vs. 14, Fig. 4 shows the Kaplan–

Meier curves of models constructed by using only clinical

parameter, PET or CT single modality, and fusion strategy

(WF0.6 model, WF0.8 model and WF0.6 model for RFS, MFS,

and OS prediction, respectively); corresponding lists of feature

combinations are shown in Supplementary Table S3. Statisti-

cally significant difference comparisons between strategies are

detailed in Fig. 5(d f) and further detailed in supplementary

Fig. S4. WF0.6 model which involved clinical and radiomics

features showed significantly higher performance than Clinical,

CT and sumMat models (regardless of with clinical features or

not) for RFS prediction (C-index: 0.67 vs. 0.53, 0.59/0.56 and

0.61/0.58 with p-values of 0.003, 0.006/0.012 and 0.001/0.002).

Besides, sumMat model marginally significantly outperformed

PET model for both RFS and MFS prediction (C-index: 0.61 vs.

0.57, p-value: 0.039, and 0.78 vs. 0.74, p-value: 0.059, re-

spectively). WF0.8 model without clinical feature marginally

significantly outperformed Clinical model (C-index: 0.82 vs.

0.62, p-value: 0.019) for MFS prediction (Fig. 5e). Amongst

the fusion models, for OS prediction (Fig. 5f), WF0.6 without

clinical feature and avgFea with clinical feature both statisti-

cally significantly outperformed PET only (C-index: 0.64 vs.

0.51, with p-value of 0.031 and 0.018, respectively) and CT

only (C-index: 0.64 vs. 0.55, with p-value of 0.035 and 0.013,

respectively); WF0.6 with clinical feature can statistically sig-

nificantly separate patients into high-risk and low-risk groups

(Fig. 4) in comparison to Clinical only or PET only models,

though showing lower C-index of 0.64 (p-value: 0.014) relative

to Clinical model of 0.70 (p-value: 0.116) or PET model of
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Fig. 5. Statistically significant p-value comparisons of C-indices between different models (a–c) among all partitions and (d-f) in partition CER
23 vs. 14; Clinical + radiomics models are marked as orange, while radiomics models are marked as gray; p-values lower than 0.05 are marked as
blue, while p-values lower than 0.01 are marked as green; higher C-index values are marked as red.

Fig. 6. (a) The C-index in testing cohort of each strategy and each outcome in partition CER 23 vs. 14 (centers 2 and 3 used for training, centers
1 and 4 used for testing); (b) the highest C-index values in the test set in each partition (amongst different strategies).

TABLE III
THE HIGHEST C-INDEX IN EACH PARTITION AND FOR EACH OUTCOME AMONGST DIFFERENT FUSION STRATEGIES. FUSION MODELS WHICH

INVOLVING RADIOMICS FEATURES ONLY WITHOUT CLINICAL FEATURE ARE MARKED WITH ∗, OTHERWISE, FUSION MODELS INVOLVED WITH BOTH

CLINICAL AND RADIOMICS FEATURES

0.68 (p-value: 0.356). Fig. 6(a) shows the C-index in testing

cohort of each strategy and each outcome in partition CER 23 vs.

14. WF0.6 showed highest C-index of 0.67 for RFS prediction,

WF0.8 showed highest C-index of 0.82 for MFS prediction,

and Clinical model showed highest C-index of 0.70 for OS

prediction.

Results demonstrated varying influences of different fusion

strategies depending on the predicted outcome; this is likely due

to the fact that different fusion strategies can highlight different

aspects of biology, which could be more specifically related to

specific outcomes. Thus, specific models instead of a general

model need to be developed for particular application.

C. Comparison Between Different Partitions

Table III and Fig. 6(b) show the highest testing C-index in

each partition under specific strategy for each outcome; the cor-

responding feature combinations are detailed in supplementary

Table S4. Highest performance in 5, 6 and 5 partitions was

achieved by image-level fusion strategies for RFS, MFS and
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OS prediction, respectively, revealing the potential of fusion

radiomics for outcome prediction. For RFS prediction, only two

partitions CER 234 vs. 1 and CER 124 vs. 3 showed C-index>0.7

(0.74 and 0.72 by GFF and WF0.6 strategies, respectively) while

all other 5 partitions showed C-index<0.7 (0.63-0.68). For MFS

prediction, partitions CER 234 vs. 1, CER 123 vs. 4 and CER

23 vs. 14 showed higher C-index (0.89, 0.83 and 0.82 all by

WF0.8, respectively) than other partitions (0.63-0.70). For OS

prediction, CER 123 vs. 4 showed highest C-index of 0.74 by

GFF among all partitions, followed by CER 234 vs. 1 and CER

23 vs. 14 both with C-indices of 0.71 and 0.70 by GFF and Clin-

ical model, respectively. Prognostic performance was strongly

influenced by data partitioning; as such, batch effect removal

[37], caution in interpretation and use of extensive validation

are necessary for translation of radiomics into clinical practice.

IV. DISCUSSION

In this work, we first investigated and compared multi-

modality radiomics combining the information provided by

PET and CT at the image-, matrix- and feature-levels towards

improved prognosis of head and neck cancer patients in a multi-

center manner. PET and CT images are routinely generated from

a single examination in clinical practice. Merging anatomical tis-

sue density provided by CT and functional glucose metabolism

reflected by PET can be critical to the quantification of intra-

tumor heterogeneity and the subsequent outcome prediction.

Low attenuation regions in CT images are well known to cor-

relate with necrosis change [38]. Higher metabolism regions in

PET images result from sufficient oxygen, glucose and nutrients

provided by neovascularization. Our results demonstrated that

image-level fusion of PET and CT provides potential prognostic

performance compared with matrix-level fusion strategy as well

as use of clinical features, PET features or CT features alone

only for a specific partition of training and testing while not for

all partitions on average. Our findings point out future directions

for investigating advanced multi-modality image fusion methods

in application of radiomics analyses on outcome prediction,

also highlighting the potential of generalizing radiomics models

when utilized in a multi-center scenario.

Three previous studies [33]–[35] used center HGJ and CHUS

for training, and center HMR and CHUM for testing (i.e., CER

23 vs. 14 in our study); thus, below comparison is based on this

partition. In comparison with the model reported by Vallières

et al. [33], our model showed lower C-index for prediction of

MFS (0.82 vs. 0.88) and OS (0.70 vs. 0.76) and comparable

C-index (0.67 vs. 0.67) for prediction of RFS. We note that in

that work, the authors performed random forest for final model

construction, while the multivariate Cox analysis was adopted in

our study considering time-to-event continuous variable instead

of binary variable. Besides, they extracted a total of 1615 ra-

diomics features by considering several isotropic voxel size and

gray level discretization methods; however, only 1 mm voxel

size and 64 bins gray level were adopted in our study, as more

features involvement may result in higher risk of false discovery

rate. The difference in methodology may result in variations in

performance [39].

In the study by Diamant et al. [34], deep learning was only ap-

plied to CT images while clinical parameters were not integrated,

and only AUC values were reported (requiring a relatively ad

hoc time-to-event cut-off threshold), while the C-index (which

preserves the continuous time-to-outcome information) was not

reported. Thus, our results are not directly comparable; but to

summarize, the authors obtained AUC values of 0.65, 0.88 and

0.70 for RFS, MFS and OS, in comparison to our C-index values

of 0.67, 0.82 and 0.70. Their study only made use of CT images

and not PET images, and thus our study sheds light on the relative

value of and optimal approaches to fusing information from

both modalities. As for the study by Bizzego et al. [35], they

concluded that combining radiomics and deep learning features

from both PET and CT images outperformed using only one

feature type or single modality. The authors only considered

prediction of recurrence, and reported Matthews Correlation

Coefficient (MCC) of 0.748 instead of AUC or C-index, which

is not directly comparable with our C-index of 0.67. Besides,

the final model contained 261 radiomics features and 239 deep

learning features, which are much more than our maximum of

5 features.

There are a number of metrics (such as entropy, standard

deviation and fusion mutual information etc.) that are used in

other applications for evaluation of fused image quality [40],

which are beyond the scope of the current study. We directly

evaluated the prognostic performance of each fusion strategy

aiming to identify the ones with higher prognostic performance

instead of evaluating the fusion quality by aforementioned met-

rics. At the same time, we performed feature difference com-

parisons between different strategies. Since (i) shape features

are irrelevant for fusion strategies, (ii) the sumMat strategy

was only concerned with matrix-based texture features, and

(iii) the conFea strategy identically contained PET and CT

features, we conducted feature difference comparisons only on

91 texture features from sumMat and 108 intensity and texture

features from remaining strategies on all patients. As shown

in supplementary Fig. S5, only 5/108 features from PET and

CT were highly correlated, consistent with the fact that these

two modalities capture complementary aspect of tumors. Most

features from WF0.8, GFF and avgFea were weakly correlated

with both PET features and CT features, providing an insight

towards their good prognostic performance. Most features from

WF0.2, WF0.4, WF0.6 and GTF were highly correlated with

PET features while not with CT features, meaning that fused

images generated by these four fusion strategies keep more

information from PET, and are more similar to PET compared to

CT. Most features from sumMat were highly correlated with CT

features, indicating that CT intensity distributions make higher

contribution to the construction of fused matrices. Thus, these

features are surrogates to PET or CT features, and may not be

able to generate more useful information, thus hindering their

added value to use of PET or CT alone.

Four features in the WF0.6 model showed highest prog-

nostic value for RFS prediction in partition CER 23 vs. 14,

and the prognostic score was formulated as 0.87 × Age

+ 0.91 × SZHGE_GLSZM-0.71 × LRHGE_GLRLM

+ 1.06 × B3. This indicates that older age, higher
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SZHGE_GLSZM and higher B3 to be associated with poor

prognosis, while LRHGE_GLRLM is negatively correlated with

recurrence. Small zone high gray-level emphasis from gray level

size zone matrix (SZHGE_GLSZM), describing scattered high

intensity small regions, may represents specific habitats that are

resistant to therapy. Long run high gray level emphasis from gray

level run length matrix (LRHGE_GLRLM) describes long strip

high intensity vessel patterns, which may imply tumors with

good oxygen supply, which are sensitive to therapy thus with

good prognosis as hypoxia is associated with poorer prognosis

[41]. Moment invariants feature B3 describes the complexity

of both shape and intensity distribution, may also reveal the

intratumor heterogeneity.

We considered all possible combinations of the candidate

features to perform multivariate Cox analysis, and the final

optimal model in the training set was identified by Akaike

information criteria (AIC). This procedure alleviates the impact

of different model initializations in forward stepwise selection

[36], while it’s only suitable for small number of candidate

features, since large number of candidate features required large

search space and will be time consuming. In this study, we

tried 627 combinations (up to 5 features) among top 10 features

of 155–255 training patients within few seconds, providing a

trade-off between higher model performance without over fitting

[42] and acceptable running time. When using other stricter

criteria (e.g., Bayesian information criterion-BIC) for model

selection, less features will be retained in final model and will

result in lower performance, thus, in this study, we preferred

AIC. As for partition CER 234 vs. 1 (Table III), three C-indices

of RFS, MFS and OS prediction were higher than 0.70, while

the corresponding log-rank p-values (0.228–0.481) were not

significant, most probably because only 7, 3 and 5 patients had

recurrence, metastasis and death among 65 testing patients in

center 1, respectively.

We investigated fusion models by involving radiomics fea-

tures with or without clinical features. When using only ra-

diomics features, the performance for OS prediction was seen

to be lower compared to using both radiomics and clinical

features. As shown in Supplementary Table S5, WF0.2, GTF

and sumMat without clinical feature showed significantly lower

mean C-index compared to these models when involving clinical

feature (C-index: 0.55 vs. 0.60, p-value: 0.043, 0.57 vs. 0.61,

p-value: 0.028, 0.57 vs. 0.60, p-value: 0.043, respectively). This

suggests that these two kinds of features are complementary

to one another. Our study was conducted in a multi-institution

data setting. As shown in Supplementary Fig S6 and Table

S6, clinical features such as Age, Site, T stage, N stage and

TNM stage, along with several radiomics features from GLCM,

GLGLM and GLSZM were popular in the final multivariate

model, demonstrating their importance across different institu-

tions. Furthermore, most popular features in univariate analysis

(Supplementary Table S1) were also highly selected in multi-

variate analysis.

This study has some limitations: HPV status was not available

for all patients and was not invoked in model construction,

potentially limiting model performance. We applied GTF and

GFF with default parameters to our dataset, while parameter

adjustment in different fusion strategies may result in variation of

prognostic performance. Future directions including validation

on larger cohorts of patients and investigation of more image

fusion methods on radiomics analysis.

V. CONCLUSION

In this study, we proposed multi-level fusion strategies to

combine the information provided by PET and CT at the image-,

matrix- and feature-levels towards improved prediction of out-

come (RFS, MFS and OS) in multi-center (4 centers) head and

neck cancer patients (296 subjects). Fusion radiomics model

showed varying improvements compared to single modality

models for different outcome prediction in different training

and testing partitions, highlighting the potential of generaliz-

ing radiomics models when utilized in a multi-center scenario.

Integrating information at image level (i.e., merging metabolic

information in PET and anatomic information in CT voxel by

voxel) holds potential to capture more useful characteristics.
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