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Abstract

Various aspects of multi-level optimization are reviewed, and the application to
problems typical of aircraft wing and fuselage structures is discussed. A three-
level optimization is proposed, since this relates in a convenient way to the
design of a shell structure in which stiffened panels are assembled into
individual cross-sections which are in turn linked together to form the complete
structure. Furthermore the different tasks which the designer has to perform can
then retain their separate identity, and a considerable degree of 'local'
optimization can be carried out. The suitability of multi-level optimization in
more complex design problems is tested on a structure representative of a wing
box in composite material, with buckling limitations in each panel, and another
problem in which aeroelastic requirements are included. Proposals are made for a

simplified approach to the sensitivity data used in multi-level optimization.




1. INTRODUCTION

The aim of the work described here is the development of a preliminary design
program for stiffened shell structures typical of aircraft wings and fuselages,
based on multi-level optimization (1). The optimization of large structural
systems is currently receiving much attention in the literature, and various
strgtegies have been proposed to reduce the size of the optimization problem
(see for example refs. 2 and 3). Multi-level optimization enables a large
problem to be broken down into a number of smaller ones, at different levels
according to the type of problem being solved. The nature of an aircraft shell
structure makes multi-level optimization highly practical, not only in terms of
reducing the computing cost but also because the individual tasks in the
traditional design process are then preserved. For example, the design of
stringer-skin panels and shear webs in a wing is a detail activity which can
best be carried out as far as possible in isolation from other aspects of the
design. Nevertheless their design has a direct influence on the stiffness and
therefore on the aeroelastic characteristics of the wing as a whole, and to some
extent on the load distribution within the wing. The rib pitch, on the other
hand, is a parameter belonging to the overall design of the wing which clearly
has a major influence on the design of compression panels in the wing. In a
multi-level optimization these interactions are taken into account in a
relatively simple way, without attempting a one-step optimization of the
complete wing. Even at the detail level, with composite materials for example,
the design freedom may still be too great for a conventional, intuitive approach
to the design. Resort to more formal optimization methods becomes essential if
the full advantage is to be gained from the use of these materials. It is
emphasized that the aim of the present work is an optimization program for use
in the early stages of the design process, for comparison of alternative designs
and for an efficient initial sizing of the structure. Therefore analytical or
semi-analytical methods for structural behaviour are preferred to purely
numerical methods, especially at the level of detail design. Inevitably, though,

the optimization process itself remains firmly rooted in numerical techniques.




2. MULTI-LEVEL APPROACH

A simple example will be used to illustrate some features of the optimization
problem, and as a basis for a multi-level approach. Consider a rectangular box
structure (such as the one shown inset in Fig. 4) under a bending moment
resulting in a loading intensity p = 1000 N/mm in the upper and lower panels.
The efficiency formula (4) for a compression panel, based on simultaneous

flexural and local buckling, gives a design stress:

o=n,[£LE. (1)

Assume a rib pitch L = 1000 mm and Young's modulus E = 72 000 N/mmz. With a

maximum efficiency o = 0.955 for a panel with Z-section stringers, the

optimum equivalent (i.e?x;meared) thickness of the compression panel t = 3.90 mm
and the actual skin thickness t = 1.56 mm. (See Fig. 1: this figure has been
reconstructed to show specifically the dependence of n on E/t.). For the tension
panel take, somewhat arbitrarily, a ratio 1_:1/t1 = 2, If the allowable tensile
stress is 400 N/mmz. the equivalent thickness of the tension panel El = 2.5 nm

and the actual skin thickness tl = 1.25 mm.

Suppose now that in addition there is a torsional stiffness requirement
equivalent to a uniform thickness of the box of 2.0 mm. The redesign will be

done in three steps as follows:

Step 1. Simply increase the skin thickness of the tension and compression panels
to 2.0 mm, with no change in the stringers. The total equivalent thickness
(t + El) becomes 7.59 mm (see Table 1). Neither the compression panel nor the

tension panel is now fully-stressed.

Step 2. Take advantage of the increased skin thickness t of the compression
panel to reduce the size of the stringers. (Note: it is assumed that the
stringers on the tension panel are already of minimum size and cannot be reduced
further). At an efficiency n now slightly less than the maximum, due to a lower

t/t, the total equivalent thickness (t + El) becomes 7.21 mm, a reduction of 5X.



Step 3. Since the tension panel is still thicker than necessary for its tensile
loading, the thickness of the compression skin can be increased at the expense
of the tension skin (maintaining the same torsional stiffness) to obtain a
further reduction in the stringers. This implies an optimization to find the
best ratio t/tl' The result is given in Table 1, with (t/t
reduction in total equivalent thickness (t + tl) of 7X.

1)opt = 1.6 and a net

For the purpose of this paper, the important step is this last one (the
percentage reduction obtained depends on the required torsional stiffness and on
the loading intensity, and is not in itself important, of course).
Redistribution of material between the tension and compression panels has
resulted in an overall weight saving, even though the efficiency of the
compression panel itself is further reduced and the thickness distribution is
not the optimum for torsional stiffness. Note that the tension skin does not
reduce to its original thickness, i.e. it is not fully-stressed. Note also that
optimization of the compression panel (implied by use of Fig. 1) remains
independent of those aspects of the design involving the whole cross-section (in
this example variation of the t/t1 ratio). This is characteristic of the multi-
level approach - more formally stated it is then the sensitivity of the optimum
for the compression panel that is carried through to the level of the complete

cross-section.

If the box structure is intended to represent an aircraft wing, then a series of
such cross-sections along the span must be considered, with an increasing
bending moment from section to section. Provided that the required torsional
stiffness can be treated as an average over the length of the structure, an
optimum distribution of material must be found not only within the cross-section
but also along the span. (At this stage the optimization becomes more than a
simple hand calculation and the numerical example will not be continued
further!) It may well be found that towards the wing root the necessary strength
of the structure leads to a torsional stiffness greater than the average
required, while at less heavily loaded sections redistribution of material is
still possible. If the wing is tapered, theory dictates that purely for
torsional stiffness the optimum has an increased thickness towards the tip,
in contrast to the requirements for strength. Further, it should be pointed out

that in this example redistribution of material is the result of a stiffness




constraint, but can also be due to redundancy in the structure. A three-spar
wing, for example, introduces a major redundancy in the cross-section, and
redistribution of material can then take place between the three spar webs. The
considerable modification of the stress distribution near the root of a swept
wing is evidence of redundancy of a different kind in the type of structures

considered in this paper.

Obviously, the design of a real wing structure is much more complicated than the
example discussed here due to its shape, geometric limitations, discontinuities
in the structure, and also because of the influence of discrete sheet
thicknesses, standard stringer sections, rib pitch limitations and so on.
Nevertheless, the example illustrates the essential compromises in the
optimization process. In particular, if each component of the structure were
designed individually on the basis of the loads imposed on it (in the manner of
a fully-stressed design) and with some prescribed contribution to the total
stiffness, an optimum design is unlikely to be achieved. An optimum distribution
of material to different parts of the structure (or, to be more precise, an
optimum stiffness distribution) could be achieved by optimization of the
structure as a whole but more efficient - and matching better the traditional

design process - is the multi-level approach.

The different levels of such an approach are already recognizable in the
example. The design of stringer-skin panels, shear webs and ribs are very
conveniently treated as individual problems (as has always been the case in
practice) and this is identified as 'level 1' (lowest level). The necessary
interaction between the design of these will be treated at tlevel 2'
(intermediate level) which is the assembly of such panels into a single cross-
section. Although not strictly part of the cross-section, the assembly of ribs
into the structure is also placed in level 2, as will be discussed later. At
‘level 3' (highest, or system level) the individual cross-sections are linked
together to form albeit an idealisation of the complete wing. The theoretical
basis for multi-level optimization, following closely ref. 1, will be reviewed
in the following section, after which attention will be turned to specific

aspects of the application to wing design.



3. THEORY OF MULTI-LEVEL OPTIMIZATION

For simplicity consider first a two-level optimization - the complete structure
at the upper level is built up of a number of sub-structures at the lower level.

The design variables of sub-structure (element) e are:
e e
y = {yl} .
Sufficient quantities:
e e
X" = {X
(%)

to define the stiffness 6f the sub-structure will be expressed:

while its mass Me must also be expressible as:
e _ e ,.e
M~ = fz (xX7) .

The x® might be simple quantities such as cross-sectional area, or more complex
ones such as second moment of area, depending on the nature of the problem.

Together the variables:
X = (x%)

for all the sub-structures become the design variables of the complete
structure, defining in fact the mass and stiffness distribution throughout the
structure. The intention is, of course, that by suitable choice of the
quantities x® the number of upper level variables can be minimised. In effect
each variable X: transfers one design variable from a sub-structure at the lower

level to the complete structure at the upper level.

Just as the majority of the design variables can be confined to individual sub-

structures, so can the constraints. Constraints gs are those generally




relatively few constraints (such as limitations on deflection) which relate to

the complete structure:

while constraints:
e e
g7 = £, (¥7.0%
J i

are confined to the sub-structure e. The numerical value of a constraint is the
difference between the actual value of a stress, deflection or some other
quantity and the allowable value of that quantity, i.e. a constraint is defined
here as zero or negative when the condition is satisfied. In the above formulae
Qe are the forces on the sub-structure, dependent on the upper level variables X
if the structure is redundant {or if the weight of the structure has a
significant effect on its loading). Through Qe. therefore, the constraints ge
depend on the stiffness distribution in the structure as a whole, as do the

. S
constraints g .

In a two-level optimization, instead of minimising the mass of each sub-
structure individually (which would lead to a purely local optimization) the
design variables ye are chosen to minimise the extent of constraint violation in
the sub-structure while keeping x® (and therefore Qe) constant. Constraint
violation is measured by a 'cumulative constraint' Ce, for example the
Kresselmeir-Steinhauser function:

e

c” = % in [§ exp (psi)] (2)

where the constant p is chosen by the user. At the lower level then the

optimization problem is:

win [c®(g%)]
y

subject to constraints:




x° - £] (¥°) = 0
e e e
yp 8y Sy,

where yi. yﬁ are lower and upper limits on the design variables. The equality
constraints above imply that the number of design variables ye should exceed the

number of quantities X if optimization at the lower level is to be possible.
The mass of the complete structure is minimised at the upper level:
. e
min [g M)
subject to constraints:

g® (X)) so0,

e e

c® (x%, % s o0,

e € e
yp Y Sy,

Xl S Xs Xu .
where upper and lower limits on X may be necessary to avoid physically
impossible demands at the lower level. For an efficient procedure at the upper
level the cumulative constraints c® (one for each sub-structure) are linearised
in terms of Xe and Qe. i.e. the sensitivity of each lower level optimum Ce to
these parameters (ace/axe and ace/aQe) must be determined. Move limits are
introduced to reduce linearisation errors. Further, upper and lower limits on
the variables ye are included to avoid violation of these limits during
optimization at the upper level. This requires additional sensitivity data, i.e.
the derivatives of the optimum ye with respect to X and Qe (aye/axe and
8ye/aQe). For small problems this might be achieved by repeated optimization at
the lower level. A more efficient procedure (nevertheless computationally

expensive) is referred to ref. 1.



The two-level process involves optimization of each sub-structure followed by
optimization of the complete structure, this being repeated until convergence is
obtained. The upper level supplies values of X% to each sub-structure at the
lower level together with the loads Qe. while the lower level supplies values of
the cumulative constraint Ce and its derivatives to the upper level. In a multi-
level process, the sub-structures of the two-level case are further divided into
smaller structural components, and so on. Cumulative constraints are minimised
at each sub-level, while the mass of the complete structure is minimised at the
highest (system) level. This is further elaborated for a three-level process in
the following section, which also serves as an illustration of the type of

structure suitable for multi-level optimization.
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4, APPLICATION TO WING DESIGN

A three-level process for the application of multi-level optimization to wing
structures was already suggested, and this can now be discussed in more detail

for each level in turn.

Level 3. At the highest level a chosen number of cross-sections are linked
together to form a model of the wing as a whole. The design variables are the
masses m, allocated to each section of the wing and the torsional stiffnesses
ki of each section. This appears to represent adequately the conflicting
requirements in the design, as discussed in section 2. Out of the mass
allocation to each section must be found the material necessary to satisfy
strength and buckling requirements at the lowest level. The torsional stiffness
acts as a constraint on the design at the intermediate level. The total mass of
the wing to be minimised is, of course, the sum of the masses m, . Constraints at
this level, apart from the cumulative constraints supplied by each section of
the wing at the intermediate level and a torsional stiffness requirement for the
wing as a whole, can also include more sophisticated design requirements such as
a flutter speed limitation (see section 5.2). Strictly speaking the rib pitch
should also be considered a design variable at this level, but in fact will be
treated as a continuous variable at the next level. At a suitable stage in the
design the user can choose a rib pitch which fits in with known fixed rib
positions. Differences from the optimum rib spacing are then compensated for
elsewhere in the design, as is the effect of stringer pitch which must have a
continuity along the wing. (The need for an interactive program, in which the
user can control the progress of the design, becomes self-evident.) At the
present stage it is assumed that the geometry of the wing (wing profile, spar
positions, etc.) is fixed, the purpose of the program under development being to

arrive at a suitable detail design within that fixed geometry.

Level 2. The intermediate level is the design of individual cross-sections
representative of the surrounding wing structure, while maintaining the required
torsional stiffness (in effect this is what is taking place in the numerical
part of the example in section 2). Design variables are the mass of material
allocated to skin panels, shear webs and ribs (for a given material the
equivalent thickness Ei) the shear stiffness (for a metal structure the actual
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skin or web thickness ti) and the rib pitch L. For a composite structure, the
shear stiffness itself must be retained (see section 5.1). Equality constraints
imposed from the level above are the mass m allocated to that section of wing,
and the torsional stiffness k of the section. Note that m and k are directly
expressible in terms of Ei and L, and ti respectively. Since the only function
of this level is to keep separate the individual detail design tasks at the
lowest level (where the greatest number of design variables and constraints are
found) there are no other constraints apart from the cumulative constraints
supplied by each component at that level. These are directly formed into a

cumulative constraint at the intermediate level.

Level 1. The lowest level is the detail design of the individual panels, webs
and ribs making up the structure, and is characterised by discrete design
variables for sheet thicknesses, standard stringer sections, and other
limitations. These can have a significant effect on the efficiency of the
structure as a whole and it is therefore preferred, even at the preliminary
design stage, to take discrete variables into account. While every effort is
made to keep the number of design variables small, the number of constraints may
nevertheless be quite large - including stresses in the structure, various
buckling modes, local skin deflections, and so on. The aim is for a flexible
approach, so that other requirements such as fatigue and damage tolerance can be
included as necessary. Allowance can also be made for the weight of joints in
the structure. Due to the discrete design variables, minimisation of the
cumulative constraint (subject to the equality constraints from the level above)
becomes more of a 'sorting' process between a limited number of discrete values
than a mathematical optimization. The individual design tasks at this level are
now small enough that it is considered more effective to use a zero-order
optimization, in which the variables are forced to take discrete values at every
stage, than to use a higher order method followed by a search for the
appropriate discrete values in the neighbourhood of the optimum. More important,
the effect of discrete design variables would be to cause a discontinuous
behaviour of the cumulative constraint. To avoid upsetting convergence there may
then be an advantage in the use of analytic approximations to the sensitivity of
the cumulative constraint (in which discrete values are ignored) to steer the

design towards an optimum, as discussed in the following section.
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4.1, Simplified Approach to Sensitivity Data

Various modifications of the multi-level procedure have been put forward in the
literature, for example in ref. 5. The method of ref. 1 is preferred here for
its theoretical basis and the close relationship between the numerical procedure
and the structure itself. However, some simplifications are introduced which,
while remaining close to the original concept of ref. 1, appear to have
advantages in the type of problem considered in this paper. These are summarised

as follows:

(i) Upper and lower limits on design variables are included in the cumulative
constraint at their own level, and not carried through as constraints to the
next level. This avoids the need to compute the sensitivity of optimum values of
these variables (aye/axe and aye/aQe) the use of which is in any case
questionable if some of the ye are discrete variables. However, this also
affects linearisation of the cumulative constraint, so that tighter move limits

may be required.

(ii) Use of analytic approximations to the sensitivity of the cumulative
constraints (aCe/aXe and aCe/aQe) at the lowest level, on the basis of
optimality criteria for the different components of the structure at this level,
is still being studied. This is intended in particular for use with discrete
variables which would otherwise cause a discontinuous behaviour of the

cumulative constraint.

Point (ii) above needs some further explanation. The required sensitivities are
readily obtained from eqn. (2) if ag‘;/axe and ag?/aQe can be found. Consider,
for example, the design of a compression panel in the structure. If the
individual constraints can be replaced by a constraint based on the design
stress o given by eqn. (1) then as well as the direct effect of t on the applied
stress in the panel there is an indirect effect of both t and t on the
efficiency n of the panel. Furthermore, to allow for yielding of the material,
Young's modulus E can be replaced by the tangent modulus Et' Substitution of
p = ot in eqn. (1) for the loading intensity that can actually be carried by the

panel (as opposed to the applied loading intensity) gives
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2 t
o=0n —/—
from which
5 (t/t) _dn
_3_0=_g_[ n Q(E/t) ]
at t dE
1.9t
Et do
and
142 (E/tl.' dn
3_0 - [o] [ n d(E/t) ]
= - dE
it ¢t 1- ¢ _t
Et * do

Note that eqn. (1) refers to an optimized panel, i.e. with the required
equivalent thickness t and actual skin thickness t the remaining dimensions of
the panel are chosen to give maximum loading intensity p. The efficiency n is
defined as a function of E/t in Fig. 1. Since t and t are design variables at
the next level the required ag;?/aie and ag§/ate. and therefore an approximation
to the sensitivity of the cumulative constraint, can be obtained from the above

formulae.
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5. NUMERICAL RESULTS

Two test problems have been selected, the results of which will be reviewed
briefly here. These are intended primarily to demonstrate convergence of the
multi-level procedure. The first problem is a composite box structure, with some
features of an aircraft wing. This was chosen because the design of the
composite panels at the lower level is perhaps sufficiently complicated to
provide a pointer to real design problems. At the upper level there is a single
torsional stiffness constraint. The second problem is a simplified wing
structure with aeroelastic constraints. In this case the highest level in a
three-level procedure is much more complex, while the lowest level is based on a

more practical approach to the wing cross-section.

5.1 Composite Wing Box

The problem chosen (6) is a rectangular box structure with a fixed number of
hat-section stringers in the upper and lower panels, and similar stiffeners
placed transversely on the front and rear shear webs (see inset in Fig. 4). The
box is divided lengthwise into 3 bays (by ribs not included in the optimization)
so that in total the structure consists of 12 separate panels. As well as the 3
design variables defining the shape of the stringers (see inset in Fig. 3) 4
additional design variables define the thickness of the laminate and its lay-up
in each panel, so that in total the problem has (3+4)x12 = 84 design variables.
The box is loaded by a bending moment at its free end, with a minimum torsional

stiffness requirement imposed on the box as a whole.

The optimization is treated as a two-level problem, the lower level being the
design of each of the 12 panels, and the upper level the assembly of these
panels into the box structure. At the lower level, constraints are the stresses
in each layer, a strain criterion for the laminate, and panel buckling. At the
upper level the design variables are chosen to be the cross-sectional area of
each panel and (being a composite structure) its shear stiffness. In total this
is 24 upper level design variables. The single constraint at the upper level is
the torsional stiffness. For this problem, to adhere closely to the theoretical
procedure of ref. 1, it was chosen to follow the optimization of each panel at
the lower level by a calculation of the sensitivity of the panel optima to the
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upper level variables. Maximum and minimum values of the lower level variables
are therefore included in the upper level constraints (and not incorporated in
the cumulative constraint as proposed in section 4.1). At this stage, discrete
layer thicknesses of the composite were disregarded. A 5% move limit was imposed
on the upper level variables, after investigation of the linearity of the
cumulative constraint, although it is thought that some relaxation of this move

limit could be allowed.

With suitable starting values for the upper level variables, each of the 12
panels is optimized in turn, i.e. subject to two equality constraints imposed by
the upper level variables, the cumulative constraint Ce is minimised.
Optimization at both levels is performed by sequential quadratic programming. A
typical reduction in c® for one of the compression panels is shown in Fig. 2. It
is seen that the cumulative constraint remains well behaved throughout the
optimization, in spite of large changes in the geometric design variables of the
stringer (see Fig. 3) and similar changes in thickness and lay-up (not shown) .
Some design variables reach prescribed maximum or minimum values during the
optimization (as is clear in Fig. 3) but this is reflected in only minor kinks
in the graph of c®. It is concluded that the cumulative constraint in eqn. (2)
is a suitable representation of how closely a panel is approaching its
constraints, and is highly tolerant of changes within the panel itself. The
result of minimisation of the cumulative constraint is a panel in which the
constraints tend to be equalised, i.e. as far as the design freedom of the panel

permits it approaches a uniform margin of safety in all modes.

This lower level optimization is followed by optimization at the upper level.
Figure 4 shows the iteration history, and the reduction in volume of the
structure. It so happens in this example that the reduction in each of the upper
level variables reaches the 5% move limit, so that the maximum reduction in
volume is also 5%. Saving of material is primarily due to improvement in shear
stiffness of the front and rear webs by change in lay-up, and improvement in the
buckling efficiency of the upper and lower panels by re-shaping the stringers.
It is found that redistribution of shear stiffness continues in the later
iterations, even though there is then little further reduction in volume.
Another round of optimization at the lower level follows after the 16th

iteration; this can primarily be seen as updating the sensitivity coefficients.
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This is followed by a second optimization at the upper level, with a further
2.4% weight reduction. The initial increase in volume is the result of
constraint violations detected at the lower level. A small further weight

reduction would be possible in a third optimization at the upper level.

5.2 Wing with Aeroelastic Constraints

The second problem (7) is a simplified form of wing, in this case of
conventional metal construction, now with flutter and divergence constraints
included. Optimization is treated as a three-level problem, in a manner similar
to that described in section 4. At the lowest level the design of individual
stiffened panels uses an optimality criterion approach rather than a formal
optimization, based on a previously developed program (8) for wing cross-
sections. This was considered necessary at this stage because of the complexity
of the calculation at the highest level; furthermore sensitivity data is then
easily obtained by finite difference (none of the design variables was treated
as discrete). Optimization at the intermediate and highest levels uses Rosen's
gradient projection method. Maximum and minimum values of the design variables
are included in the cumulative constraint at the appropriate level (as in
section 4.1). In the test problem there are no constraints on the strength of
the structure so that, apart from the above, flutter and divergence are the only

constraints.

By far the heaviest burden of analysis in this problem comes at the highest
level, where flutter and divergence constraints must be evaluated. The analysis
is based on a simple bending and twisting deformation, with instatibnary
aerodynamic forces on the wing based on two-dimensional strip theory. The mass
distribution consists of non-variable masses together with the mass of the wing
structure itself - the latter being the mass to be minimised. The resulting
equations of motion lead to a form of eigenvalue problem requiring a numerical
procedure to extract the critical flutter speed. The same equations are used for
divergence. Although the aeroelastic model is too simple to obtain reliable
flutter and divergence speeds for an actual wing, it is considered satisfactory
for the present purpose - which is to test the multi-level procedure on this
kind of problem. Nevertheless the calculation of this model, and of the

gradients of the flutter and divergence constraints with respect to the highest
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level variables (obtained analytically by differentiation of the eigenvalue
equations) was carried out to a good degree of accuracy, which is thought to
account for the highly satisfactory behaviour of these constraints in the

optimization as a whole.

Figure 5 shows the reduction in the flutter and divergence constraints with
number of cycles at the highest level. One cycle implies here optimization at
the highest level, followed by re-optimization and evaluation of sensitivity
data at the intermediate and lowest levels (the intermediate level being visited
in both directions). It is seen that the flutter constraint becomes active at
the 59th cycle, and remains critical for the remainder of the optimization.
(Note that in Fig. 5 constraints are defined positive when satisfied, and that
each is normalised by dividing by the initial value of the constraint.)

The corresponding reduction in mass of the structure (relative to the mass of
the initial design) is shown in Fig. 6, with a 60% reduction up to the 59th
cycle, followed by a small further reduction up to about the 80th cycle. This
shows that redistribution of material continues after the flutter condition has
become active. In fact examination of the behaviour of individual design
variables, and the cumulative constraints at the intermediate and lowest levels,
shows that considerable internal variation is taking place up to and beyond the
80th cycle. This may be partly the result of lack of strength constraints on
individual components of the structure, coupled with a flutter constraint which
is relatively insensitive to the individual design variables. Nevertheless these
lower level variations are not reflected at the highest level, which shows a
highly stable behaviour, so that the multi-level process is considered very
satisfactory in this problem. Less satisfactory is the number of cycles
necessary to reach convergence, but it is believed that this has more to do with
the optimization algorithm used (and the move limits imposed) than with the
multi-level procedure itself. Figure 7 shows the change in mass allocated to
each of the five sections into which the wing is divided, as obtained at the
80th cycle, and the change in torsional stiffness. (These are normalised by the
appropriate values for the root section in the initial design.) It is evident
from Fig. 7 that, for flutter alone, the optimum has its maximum torsional
stiffness some distance away from the root, demanding a generally similar mass
distribution. At the highest level the mass of each section and its torsional

stiffness are the only design variables. This implies that flexural stiffness is
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not directly controlled during optimization. While flexural stiffness is fairly
closely related to the mass distribution, it is clear that the mass allocated to
ribs, for example, does not contribute to the flexural stiffness. Both flexural
and torsional stiffness play an essential role in the flutter calculation, but
as far as can be judged this reduction in the number of highest level variables

has no adverse effect on convergence.
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6. CONCLUSION

The results obtained demonstrate the practicality of multi-level optimization in
the design of aircraft shell structures. Formulation of the problem is such that
a clear distinction between levels can be drawn, with the result that the
majority of design variables and constraints are confined to individual,
relatively small design tasks at the lowest level. This gives encouragement to
continue the development of a more general program for use at the preliminary
design stage. Any conclusion on the reduction in computing cost as a result of
multi-level optimization in real design problems would be premature, because the
problems described here are in fact too small for this purpose. Nevertheless
this remains a critical issue, since the purpose of such a design program is to
enable a rapid sizing of the structure to be carried out, and to make effective
comparisons between alternative designs. From the various test problems
investigated it becomes clear that the choice of optimization algorithm at each
level, as well as the definition of design variables and constraints, plays a
major role in the efficiency of the whole process. The use of analytical
approximations to the sensitivity data appears promising, and work on this and

on a satisfactory treatment of discrete design variables is continuing.

Acknowledgement

Much of the program development referred to in this paper was done by
P.G. van Bladel (8), H.J.W.M. Koelman (6) and P. Arendsen (7) (the last two
partly while completing their study at the National Aerospace Laboratory NLR).
As well as the programming, they have made many other contributions to the work,
and the author gratefully acknowledges their assistance. The author also wishes

to thank W. Spee for‘his painstaking work on the figures.




-20-

References

1. Sobieszczanski-Sobieski, J., James, B. and Dovi, A. Structural optimization
by multilevel decomposition. AIAA Paper No. 83-0832, AIAA/ASME/ASCE/AHS 2uth

Structures, Structural Dynamics and Materials Conference, 1983.

2. Bartholomew, P. and Wellen, H. Computer-aided structural optimization of

aircraft structures.
ICAS-88-1.11.3, 16th Congress of the International Council of the

Aeronautical Sciences, 1988.

3. Berkes, U.-L. and Wiedemann, J. Efficient procedures for the optimization of
aircraft structures with a large number of design variables.
ICAS-88-1.10.3, 16th Congress of the International Council of the

Aeronautical Sciences, 1988.

4. Farrar, D.J. The design of compression structures for minimum weight. Journal
of the Royal Aeronautical Society, 53 (1949) 1041-1052.

5. Vanderplaats, G.N., Yang, Y.J. and Kim, D.S. An efficient multilevel
optimization method for engineering design. AIAA Paper No. 88-2226,
AIAA/ASME/ASCE/AHS 29th Structures, Structural Dynamics and Materials
Conference, 1988.

6. Koelman, H.J.W.M. Multi-level optimization of composite structures (in
Dutch). ir. thesis, Delft University of Technology, Faculty of Aerospace
Engineering, 1987.

7. Arendsen, P. Multilevel optimization with aeroelastic constraints (in Dutch).
ir. thesis, Delft University of Technology, Faculty of Aerospace Engineering,
1988.

8. Van Bladel, P.G. A Fortran program for the design of a wing cross-section (in
Dutch). Delft University of Technology, Faculty of Aerospace Engineering,

1986.




-21-

Table 1
compression tension
step t t £ £ n (t+t)
mm mm il i mm
1 4.34 2.0 3.25 2.0 -- 7.59
2 3.96 2.0 3.25 2.0 0.941 7.21
3 4.17 2.6 2.88 1.63 | 0.893 7.05
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Fig.'l. Efficiency of a compression panel with Z-section
stringers as a function of the ratio: equivalent

thickness/actual skin thickness.
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Fig.'2. Reduction in cumulative constraint during

optimization of a composite compression panel.
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Fig.'3. Variation in stringer dimensions during optimization

of a composite compression panel.
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FLUTTER & DIVERGENCE CONSTRAINTS
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Fig.'5. Reduction in flutter and divergence constraints.

(Note: constraints are positive when satisfied.)



MASS OF STRUCTURE
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Fig. 6. Reduction in mass of wing structure

(flutter constraint active).
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