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Multi-level Parallelism for Incompressible Flow

Computations on GPU Clusters
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aDepartment of Computer Science
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Abstract

We investigate multi-level parallelism on GPU clusters with MPI-CUDA and
hybrid MPI-OpenMP-CUDA parallel implementations, in which all computa-
tions are done on the GPU using CUDA. We explore efficiency and scalability
of incompressible flow computations using up to 256 GPUs on a problem with
approximately 17.2 billion cells. Our work addresses some of the unique is-
sues faced when merging fine-grain parallelism on the GPU using CUDA with
coarse-grain parallelism that use either MPI or MPI-OpenMP for communi-
cations. We present three different strategies to overlap computations with
communications, and systematically assess their impact on parallel perfor-
mance on two different GPU clusters. Our results for strong and weak scaling
analysis of incompressible flow computations demonstrate that GPU clusters
offer significant benefits for large data sets, and a dual-level MPI-CUDA im-
plementation with maximum overlapping of computation and communication
provides substantial benefits in performance. We also find that our tri-level
MPI-OpenMP-CUDA parallel implementation does not offer a significant ad-
vantage in performance over the dual-level implementation on GPU clusters
with two GPUs per node, but on clusters with higher GPU counts per node
or with different domain decomposition strategies a tri-level implementation
may exhibit higher efficiency than a dual-level implementation and needs to
be investigated further.
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1. Introduction1

Many applications in advanced modeling and simulation require more2

resources than a single computing unit can provide, whether in the prob-3

lem size or the required performance. Graphics processing units (GPUs)4

have enjoyed rapid adoption within the high-performance computing (HPC)5

community because GPUs enable high levels of fine-grain data parallelism.6

The latest GPU programming interfaces such as NVIDIA’s Compute Unified7

Device Architecture (CUDA) [1], and more recently Open Computing Lan-8

guage (OpenCL) [2] provide the programmer a flexible model while exposing9

enough of the hardware for optimization.10

Current high-end GPUs can achieve high floating point throughputs by11

combining highly parallel processing (200-800 scalar processing units per12

GPU), high memory bandwidth and efficient thread scheduling. GPU clus-13

ters, where fast network connected compute-nodes are augmented with latest14

GPUs, [3] are now being used to solve challenging problems from various do-15

mains. Examples include the 384 GPU Lincoln Tesla cluster operated by16

the National Center for Supercomputing Applications (NCSA) at University17

of Illinois at Urbana Champaign [4] and the 512 GPU Longhorn cluster at18

the Texas Advanced Computing Center (TACC). Latest supercomputers too19

allow large numbers of GPUs to be used to solve single problems. Examples20

include the 7168 GPU Tianhe-1A [5, 6] and the 4640 GPU Dawning Nebulae21

[7] supercomputers. These new systems are designed for high performance22

as well as high power efficiency, which is a crucial factor in future exascale23

computing [8].24

2. Related Works25

GPU computing has evolved from hardware rendering pipelines that were26

not amenable to non-rendering tasks, to the modern General Purpose Graph-27

ics Processing Unit (GPGPU) paradigm. Owens et al. [9] survey the early28

history as well as the state of GPGPU computing up to 2007. The use of29

GPUs for Euler solvers and incompressible Navier-Stokes solvers has also30

been well documented [10–17].31

Modern motherboards can accommodate multiple GPUs in a single work-32

station with several TeraFLOPS of peak performance, but GPU program-33

ming models have to be interleaved with MPI, OpenMP or Pthreads to make34
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use of all the GPUs in computations. In the multi-GPU computing front,35

Thibault and Senocak [15, 16] developed a single-node multi-GPU 3D incom-36

pressible Navier-Stokes solver with a Pthreads-CUDA implementation. The37

GPU kernels from their study forms the internals of the present cluster im-38

plementation. Thibault and Senocak demonstrated a speedup of 21× for two39

Tesla C870 GPUs compared to a single core of an Intel Core 2 E8400 3.0 GHz40

processor, 53× for two GPUs compared to an AMD Opteron 8216 2.4 GHz41

processor, and 100× for four GPUs compared to the same AMD Opteron42

processor. Four GPUs were able to sustain 3× speedup compared to a single43

GPU on a large problem size. The multi-GPU implementation of Thibault44

and Senocak does not overlap computation with GPU data exchanges. There-45

fore, three overlapping strategies are systematically introduced and evaluated46

in the present study.47

Micikevicius [18] describes both single and multi GPU CUDA implemen-48

tations of a 3D 8th-order finite difference wave equation computation. The49

wave equation code is composed of a single kernel with one stencil opera-50

tion, unlike CFD computations which consist of multiple inter-related kernels.51

MPI was used for process communication in multi-GPU computing. Micike-52

vicius uses a two stage computation where the cells to be exchanged are com-53

puted first, then the inner cells are computed in parallel with asynchronous54

memory copy operations and MPI exchanges. With efficient overlapping of55

computations and copy operations, Micikevicius achieves very good scaling56

on 4 GPUs running on two Infiniband connected nodes with two Tesla 10-57

series GPUs each, when using a large enough dataset.58

Göddeke et al. [12] explored course and fine grain parallelism in a finite59

element model for fluids or solid mechanics computations on a GPU cluster.60

Göddeke et al. [19] described the application of their approach to a large-scale61

solver toolkit. The Navier-Stokes simulations in particular exhibited limited62

performance due to memory bandwidth and latency issues. Optimizations63

were also found to be more complicated than simpler models such as the ones64

they previously considered. While the small cluster speedup of a single kernel65

is good, unfortunately acceleration of the entire model is only a modest factor66

of two. Their model uses a nonuniform grid and multigrid solvers within a67

finite element framework for relatively low Reynolds numbers.68

Phillips et al. [20] describe many of the challenges that arise when imple-69

menting scientific computations on a GPU cluster, including the host/device70

memory traffic and overlapping execution with computation. A performance71

visualization tool was used to verify overlapping of CPU, GPU, and commu-72
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nication on an Infiniband connected 64 GPU cluster. Scalability is noticeably73

worse for the GPU accelerated application than the CPU application as the74

impact of the GPU acceleration is quickly dominated by the communication75

time. However, the speedup is still notable. Phillips et al. [21] describe a76

2D Euler Equation solver running on an 8 node cluster with 32 GPUs. The77

decomposition is 1D, but GPU kernels are used to gather/scatter from linear78

memory to non-contiguous memory on the device.79

While MPI is the API typically used for network communication between80

compute nodes, it presents a distributed memory model which can poten-81

tially make it less efficient for processes running on the same shared-memory82

compute node [22, 23]. For this reason, hybrid programming models com-83

bining MPI and a threading model such as OpenMP or Pthreads have been84

proposed with the premise that message passing overhead can be reduced,85

increasing scalability. With two to four GPUs per compute node, a hybrid86

MPI-OpenMP-CUDA method warrants further investigation and is studied87

in this paper along with an MPI-CUDA method to develop a multi-level88

parallel incompressible flow solver for GPU clusters.89

Cappello, Olivier, and Etiemble [24–26] were among the first to present90

the hybrid programming model of using MPI in conjunction with a thread-91

ing model such as OpenMP. They demonstrated that it is sometimes possible92

to increase efficiency on some codes by using a mixture of shared memory93

and message passing models. A number of other papers followed with the94

same conclusions [27–34]. Many of these papers also point out a number95

of cases where the applications or computing systems are a poor fit to the96

hybrid model, and in some cases performance decreases. Lusk and Chan97

[35] describes using OpenMP and MPI for hybrid programming on three98

cluster environments, including the effect the different models have on com-99

munication with the NAS benchmarks. They claim combination of MPI and100

OpenMP parallel programming is well fitted to modern scalable high perfor-101

mance systems.102

Hager, Jost, and Rabenseifner [36] give a recent perspective on the state103

of the art techniques in hybrid MPI-OpenMP programming. Particular at-104

tention is given to mapping the model to domain decomposition as well as105

overlapping methods. Results with hybrid models of the BT-MZ benchmark106

(part of the NAS Parallel Benchmark suite) on a Cray XT5 using a hybrid107

approach showed similar performance at 64 and fewer cores, but greatly im-108

proved results for 128, 256, and 512 cores, where a good combination of109

OpenMP fine-grain parallelism combined with MPI coarse-grin parallelism110
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can be found that matches well with the hardware. These examples also111

take advantage of the loop scheduling features in OpenMP. Advantages in112

fine grain parallelism like this will not be able to be taken advantage of113

in a model where OpenMP is only used for coarse-grain data transfer and114

synchronization.115

Balaji et al. [37] discuss issues arising from using MPI on petascale ma-116

chines with close to a million processors. A number of irregular MPI collec-117

tive operations are considered to be nonscalable when applied to a very large118

number of processes. The tested MPI implementations also allocate some119

memory which is proportional to the number of processes, limiting scalabil-120

ity. These as well as other limitations lead Balaji et al. to suggest a hybrid121

threading / MPI model as one way to mitigate the issue. However, we think,122

in the case of a typical GPU system the situation is not as bad. Because123

the CUDA model for fine-grain parallelism manages 256 to 512 processing124

elements within a single process, and this number will likely increase with125

future GPUs. Hence a one million processing element GPU cluster using126

just MPI-CUDA may have fewer than 4000 MPI processes. This suggests127

that clusters enhanced with GPUs look well suited for petascale and emerg-128

ing exascale architectures. Therefore, compute-intensive applications need to129

be evaluated for parallel efficiency and performance on large GPU clusters.130

Our study is one of few that critically evaluates multi-level parallelism of131

incompressible flow computations on GPU clusters.132

Nakajima [38] describes a three-level hybrid method using MPI, OpenMP,133

and vectorization. This approach uses MPI for inter-node communication,134

OpenMP for intra-node communication, and parallelism within the node via135

the vector processor. It closely matches the rationale behind our hybrid MPI-136

OpenMP-CUDA approach for a GPU cluster implementation. Nakajima’s137

weak scaling measurements showed worse results for 64 and fewer SMP nodes,138

but improved with 96 or more. GPU clusters with 128 or more compute-139

nodes (256 or more GPUs) are rare at this time, but trends indicate these140

machines will become far more common in the high performance computing141

field [6–8].142

While these articles show some potential benefits for using the hybrid143

model on CPU clusters, a question is whether the same benefits will ac-144

crue to a tri-level CUDA-OpenMP-MPI model, and whether the benefits145

will outweigh the added software complexity. With high levels of data par-146

allelism on the GPU, separate memory for each GPU, low device counts per147

node, and currently small node counts, the GPU cluster model has numer-148
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ous differences from dense-core CPU clusters. In this paper we investigate149

several methods of distributing computation using a dual (MPI-CUDA) and150

tri-level (MPI-OpenMP-CUDA) parallel programming approaches along with151

different strategies to overlap computation and communication on GPU clus-152

ters. We adopt MPI for coarse-grain inter-node communication, OpenMP153

for medium-grain intra-node communication in the tri-level approach, and154

CUDA for fine-grain parallelism within the GPUs. In all of our implementa-155

tions, computations are entirely done on the GPU using CUDA. We use a 3D156

incompressible flow Navier-Stokes solver to systematically assess scalability157

and performance of multi-level parallelism on large GPU clusters.158

3. Governing Equations and Numerical Approach159

Navier-Stokes equations for buoyancy driven incompressible fluid flows160

can be written as follows:161

∇ · u = 0, (1)
162

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u+ f , (2)

where u is the velocity vector, P is the pressure, ρ is the density, ν is the163

kinematic viscosity, and f is the body force. The Boussinesq approximation,164

which applies to incompressible flows with small temperature variations, is165

used to model the buoyancy effects in the momentum equations [39]:166

f = g · (1− β(T − T∞)), (3)

where g is the gravity vector, β is the thermal expansion coefficient, T is the167

calculated temperature at the location, and T∞ is the steady state tempera-168

ture.169

The temperature equation can be written as [40, 41]170

∂T

∂t
+∇ · (uT ) = α∇2T + Φ, (4)

where α is the thermal diffusivity and Φ is the heat source.171

The buoyancy-driven incompressible form of the Navier-Stokes equations172

(Eqs. 1–4) do not have an explicit equation for pressure. Therefore, we use173

the projection algorithm of Chorin [42], where the velocity field is first pre-174

dicted using the momentum equations without the pressure gradient term.175
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a) b)

Figure 1. Lid-driven cavity simulation with Re = 1000 on a 256 × 32 ×
256 grid. 3D computations were used and a 2D center slice is shown. a)
Velocity streamlines and velocity magnitude distribution. b) Comparison to
the benchmark data from Ghia et al. [44].

The resulting predicted velocity field does not satisfy the divergence free con-176

dition. The divergence free condition is then enforced on the velocity field177

at time t + 1, to derive a pressure Poisson equation from the momentum178

equations given in Eq. (2). We solve the discretized versions of the resulting179

equations on a uniform Cartesian staggered grid with second order central180

difference scheme for spatial derivatives and a second order accurate Adams-181

Bashforth scheme for time derivatives. The pressure Poisson equation can182

be solved using either a fixed iteration Jacobi solver or a parallel geometric183

multigrid solver [43]. Both solvers are available in our code. We do not184

activate the geometric multigrid solver in certain computations where we in-185

vestigate dual- and tri-level parallelism, because the amalgamated parallel186

implementation of the multigrid method complicates the detailed analysis of187

scaling and breakdown of communication timings due to the inherent algo-188

rithmic complexity in the method.189

Validation on a number of test cases including the well-known lid-driven190

cavity and natural convection in heated cavity problems [44, 45] were used191

to compare the overall solutions to known results. Figure 1 presents the192

results of a lid-driven cavity simulation with a Reynolds number 1000 on a193

256 × 32 × 256 grid. Figure 1a shows the velocity magnitude distribution194
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a) b)

Figure 2. Natural convection in a cavity using a 128 × 16 × 128 grid and
Prandtl number 7, with a 2D center slice shown. a) Streamlines for Rayleigh
number 200,000. b) Isotherms and temperature distribution for Rayleigh
number 200,000.

and streamlines at mid-plane. As expected, the computations capture the195

two corner vortices at steady-state. In Fig. (1b), the horizontal and vertical196

components of the velocity along the centerlines ar e compared to the bench-197

mark data of Ghia et al. [44]. The results agree well with the benchmark198

data. The numerical results for the tri-level and dual-level parallel versions199

do not differ.200

We simulate the natural convection in a heated cavity problem to test our201

buoyancy-driven incompressible flow computations on a 128× 16× 128 grid.202

Figure 2 presents the natural convection patterns and isotherms for Rayleigh203

(Ra) numbers of 200,000 and a Prandtl (Pr) number of 7.0. Lateral walls204

have constant temperature boundary conditions with one of the walls having205

a higher temperature than the wall on the opposite side. Top and bottom206

walls are insulated. Fluid inside the cavity is heated on the hot lateral wall207

and rises due to buoyancy effects, whereas on the cold wall it cools down208

and sinks, creating a circular convection pattern inside the cavity. Although209

not shown in the present paper, our results agree well with similar results210

presented in Griebel et al. [40]. A direct comparison is available in Jacobsen211

[17]. Figure 3 presents a comparison of the horizontal centerline temperatures212

for a heated cavity with Ra=100,000 and Pr=7.0 along with reference data213
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Figure 3. Centerline temperature for natural convection in a cavity with
Prandtl number 7 and Rayleigh number 100,000, using a 256× 16× 256 grid
with a 2D center slice used. Comparison is shown to data from Wan et al.
[45].

from Wan et al. [45]. Our results are in very good agreement.214

Aside from these benchmark cases, our CFD solver can compute flow215

around embedded obstacles such as urban areas and complex terrain can be216

found in [17, 46, 47]217

4. Multi-level Parallelism218

Multiple programming APIs along with a domain decomposition strat-219

egy for data-parallelism is required to achieve high throughput and scalable220

results from a CFD model on a multi-GPU platform. For problems that221

are small enough to run on a single GPU, overhead time is minimized as222

no GPU/host communication is performed during the computation, and all223

optimizations are done within the GPU code. When more than one GPU224

is used, cells at the edges of each GPU’s computational space must be com-225

municated to the GPUs that share the domain boundary so they have the226

current data necessary for their computations. Data transfers across the227

neighboring GPUs inject additional latency into the implementation which228

can restrict scalability if not properly handled. For these reasons we investi-229

gate multi-level parallelism on GPU clusters with different implementations230
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a) b)

Figure 4. The domain decomposition. a) The decomposition of the full
computational domain to the individual GPUs. b) An overview of the com-
munication, GPU memory transfers, and the intra-GPU 1D decomposition
used for overlapping.

to improve the performance and scalability of our Navier-Stokes solver.231

4.1. Domain Decomposition232

A 3D Cartesian volume is decomposed into 1D slices. These slices are233

then partitioned among the GPUs on the cluster to form a 1D domain de-234

composition. The 1D decomposition is shown in Figure 4a. After each GPU235

completes its computation, the edge cells (“ghost cells”) must be exchanged236

with neighboring GPUs. Efficiently performing this exchange process is cru-237

cial to cluster scalability as we demonstrate in section 5.238

While a 1D decomposition leads to more data being transferred as the239

number of GPUs increases, there are advantages to the method when us-240

ing CUDA. In parallel CPU implementations, host memory access can be241

performed on non-contiguous segments with a relatively small performance242

loss. The MPI CART routines supplied by MPI allow efficient management of243

virtual topologies, making the use of 2D and 3D decompositions easy and244

efficient. In contrast, the CUDA API only provides a way to transfer linear245

segments of memory between the host and the GPU. Hence, 2D or 3D de-246

compositions for GPU implementations must either use nonstandard device247
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memory layouts which may result in poor GPU performance, or run separate248

kernels to perform gather/scatter operations into a linear buffer suitable for249

the cudaMemcpy() routine. These routines add significant time and hinder250

overlapping methods. For these reasons, the 1D decomposition was deemed251

best for moderate size clusters such as the ones used in this study.252

To accommodate overlapping, a further 1D decomposition is applied253

within each GPU. Figure 4b indicates how the 1D slices within each GPU254

are split into a top, bottom, and middle section. When overlapping commu-255

nication and computation, the GPU executes each separately such that the256

memory transfers and MPI communication can happen simultaneously with257

the computation of the middle portion.258

4.2. Dual-Level MPI-CUDA Implementations259

The work by Thibault and Senocak [15, 16] showed how an incompressible260

Navier-Stokes solver written for a single GPU can be extended to multiple261

GPUs by interleaving CUDA with Pthreads. The full 3D domain is decom-262

posed across threads in one dimension, splitting on the Z axis. The resulting263

partitions are then solved using one GPU per thread. No effort was made264

to hide latencies arising from GPU data transfers or Pthreads synchroniza-265

tion. To solve the restrictions of the shared memory model of Thibault and266

Senocak, we adopt MPI as the mechanism for communication between GPUs,267

and introduce three strategies to overlap computations on the GPU with data268

copying to and from the GPU and MPI communication across the network.269

In our present implementation, a single MPI process is started per GPU,270

and each process is responsible for managing its GPU and exchanging data271

with its neighbor processes. Since we must ensure that each process is as-272

signed a unique GPU identifier, an initial mapping of hosts to GPUs is per-273

formed. A master process gathers all the host names, assigns GPU identifiers274

to each host such that no process on the same host has the same identifier,275

and scatters the result back. At this point the cudaSetDevice() call is made276

on each process to map one of the GPUs to the process which assures that277

no other process on the same node will map to the same GPU. All ghost cell278

exchanges are done via MPI Isend and MPI Irecv. Overlap of computations279

with inter-node and intra-node data exchanges is accomplished to better uti-280

lize the cluster resources. All three of the implementations have much in281

common, with differences in the way data exchanges are implemented. It is282

shown in section 5 that implementation details in the data exchanges have a283

large impact on performance.284
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for (t=0; t < time_steps; t++)

{

adjust_timestep();

for (stage = 0; stage < num_timestep_stages; stage++) {

temperature <<<grid,block>>> (u,v,w,phiold,phi,phinew);

ROTATE_POINTERS(phi,phinew);

temperature_bc <<<grid,block>>> (phi);

EXCHANGE(phi);

turbulence <<<grid,block>>> (u,v,w,nu);

turbulence_bc <<<grid,block>>> (nu);

EXCHANGE(nu);

momentum <<<grid,block>>> (phi,uold,u,unew,vold,v,vnew,wold,w,wnew);

momentum_bc <<<grid,block>>> (unew,vnew,wnew);

EXCHANGE(unew,vnew,wnew);

}

divergence <<<grid,block>>>(unew,vnew,wnew,div);

// Iterative or multigrid solution

pressure_solve(div,p,pnew);

correction <<<grid,block>>> (unew,vnew,wnew,p);

momentum_bc <<<grid,block>>> (unew,vnew,wnew);

EXCHANGE(unew,vnew,wnew);

ROTATE_POINTERS(u,unew); ROTATE_POINTERS(v,vnew); ROTATE_POINTERS(w,wnew);

}

Listing 1. Host code for the projection algorithm to solve buoyancy driven
incompressible flow equations on multi-GPU platforms. The EXCHANGE step
updates the ghost cells for each GPU with the contents of the data from the
neighboring GPU.
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// PART 1: Interleave non-blocking MPI calls with device

// to host memory transfers of the edge layers.

// Communication to south

MPI_Irecv(new ghost layer from north)

cudaMemcpy(south edge layer from device to host)

MPI_Isend(south edge layer to south)

// Communication to north

MPI_Irecv(new ghost layer from south)

cudaMemcpy(north edge layer from device to host)

MPI_Isend(north edge layer to north)

// ... other exchanges may be started here, before finishing in order

// PART 2: Once MPI indicates the ghost layers have been received,

// perform the host to device memory transfers.

MPI_Wait(new ghost layer from north)

cudaMemcpy(new north ghost layer from host to device)

MPI_Wait(new ghost layer from south)

cudaMemcpy(new south ghost layer from host to device)

MPI_Waitall(south and north sends, allowing buffers to be reused)

Listing 2. An EXCHANGE operation overlaps GPU memory copy operations
with asynchronous MPI calls for communication.

The projection algorithm is composed of distinct steps in the solution285

of the fluid flow equations. Listing 1 shows an outline of the basic imple-286

mentation using CUDA kernels to perform each step. The steps marked as287

EXCHANGE are where ghost cells for each GPU are filled in with the calculated288

contents of their neighboring GPUs. The most basic exchange method is to289

call cudaMemcpy() to copy the edge data to host memory, MPI exchange us-290

ing MPI Send and MPI Recv, and finally cudaMemcpy() to copy the received291

edge data to device memory. This is straightforward, but all calls are block-292

ing which greatly hinders performance. Therefore, we have not pursued this293

basic implementation in the present study.294

4.2.1. Non-blocking MPI with No Overlapping of Computation295

The first implementation uses non-blocking MPI calls [50] to offer a sub-296

stantial benefit over the blocking approach, which we do not pursue. Our297

first implementation does not overlap computation although it tries to over-298
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lap memory copy operations. The basic EXCHANGE operation is shown in299

Listing 2. In this approach, none of the device/host memory operations nor300

any MPI communication happens until the computation of the entire domain301

has completed. The MPI communication is able to overlap with the CUDA302

memory operations. When multiple arrays need to be exchanged, such as the303

three momentum components, the components may be interleaved such that304

the MPI send and receive for one edge of the first component is in progress305

while the memory copy operations for the later component are proceeding.306

This is done by starting part 1 for each component in succession, then part307

2 for each component.308

4.2.2. Overlapping Computation with MPI Communications309

The second implementation for exchanges aims to overlap the CUDA310

computation with the CUDA memory copy operations and the MPI com-311

munication. We split the CUDA kernels into three calls such that the edges312

can be done separately from the middle. This has a very large impact on313

the cluster performance as long as the domain is large enough to give each314

GPU enough work to do. The body of the pressure kernel loop when using315

this method is shown in Listing 3. Rather than perform the computation316

on the entire domain before starting the exchange, the kernel is started with317

just the edges being computed. The first portion of the previously shown318

non-blocking MPI EXCHANGE operation is then started, which does device319

to host memory copy operations followed by non-blocking MPI communica-320

tions. The computation on the middle portion of the domain can start as321

soon as the edge layers have finished transferring to the host, and operates322

in parallel with the MPI communication. The last part of the non-blocking323

MPI EXCHANGE operation is also identical and is run immediately after the324

middle computation is started. While this implementation results in signifi-325

cant overlap, it is possible to improve on it by overlapping the computation326

of the middle portion with the memory transfer of the edge layers as shown327

in the final implementation.328

4.2.3. Overlapping Computation with MPI Communications and GPU Trans-329

fers330

The final implementation is enabled by CUDA streams, and uses asyn-331

chronous methods to start the computation of the middle portion as soon332

as possible, thereby overlapping computation, memory operations, and MPI333

communication. A similar approach is described in Micikevicius [18]. This334
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// The GPU domain is decomposed into three sections:

// (1) top edge, (2) bottom edge, and (3) middle

// Which of them the kernel should process is indicated

// by a flag given as an argument.

pressure <<<grid_edge,block>>> (edge_flags, div,p,pnew);

// The cudaMemcpy calls below will not start until

// the previous kernels have completed.

// This is identical to part 1 of the EXCHANGE operation.

// Communication to south

MPI_Irecv(new ghost layer from north)

cudaMemcpy(south edge layer from device to host)

MPI_Isend(south edge layer to south)

// Communication to north

MPI_Irecv(new ghost layer from south)

cudaMemcpy(north edge layer from device to host)

MPI_Isend(north edge layer to north);

pressure <<<grid_middle,block>>> (middle_flag, div,p,pnew);

// This is identical to part 2 of the EXCHANGE operation.

MPI_Wait(new ghost layer from north)

cudaMemcpy(new north ghost layer from host to device)

MPI_Wait(new ghost layer from south)

cudaMemcpy(new south ghost layer from host to device)

MPI_Waitall(south and north sends, allowing buffers to be reused)

pressure_bc <<<grid,block>>> (pnew);

ROTATE_POINTERS(p,pnew);

Listing 3. An example Jacobi pressure loop, showing how the CUDA kernel
is split to overlap computation with MPI communication.
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 pressure <<<grid_edge,block, stream[0]>>> (edge_flags, div,p,pnew);

// Ensure the edges have finished before starting the copy

cudaThreadSynchronize();

cudaMemcpyAsync(south edge layer from device to host, stream[0])

cudaMemcpyAsync(north edge layer from device to host, stream[1])

pressure <<<grid_middle,block, stream[2]>>> (middle_flag, div,p,pnew);

MPI_Irecv(new ghost layer from north)

cudaStreamSynchronize(stream[0]);

MPI_Isend(south edge layer to south)

MPI_Irecv(new ghost layer from south)

cudaStreamSynchronize(stream[1]);

MPI_Isend(north edge layer to north);

MPI_Wait(south receive to complete)

cudaMemcpyAsync(new south ghost layer from host to device, stream[0])

MPI_Wait(north receive to complete)

cudaMemcpyAsync(new north ghost layer from host to device, stream[1])

// Ensure all streams are done, including copy operations and computation

cudaThreadSynchronize();

pressure_bc <<<grid,block>>> (pnew);

ROTATE_POINTERS(p,pnew);

Listing 4. CUDA streams are used to fully overlap computation, memory
copy operations, and MPI communication in the pressure loop.
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method has the highest amount over overlapping, and is expected to have335

the best performance at large scales. The body of the pressure kernel loop336

when using this method is shown in Listing 4.337

It is important to note that the computations inside the CUDA kernels338

need minimal change, and the same kernel can be used for all three imple-339

mentations. A flag is sent to each kernel to indicate which portions (top,340

bottom, middle) it is to compute, along with an adjustment of the CUDA341

grid size so the proper number of GPU threads are created. Since GPU342

kernels tend to be highly optimized, minimizing additional changes in kernel343

code is desirable.344

4.3. Tri-Level MPI-OpenMP-CUDA Implementation345

GPU cluster nodes are becoming denser with multiple GPUs per node346

[51]. Therefore we add a threading model to investigate whether additional347

efficiency can be gained from removing redundant message passing when348

processes are on the same host and communication and synchronization are349

handled by a hybrid MPI-OpenMP model. The effectiveness of this solution350

depends on a number of factors, with some barriers to effectiveness being:351

• Density of nodes. With more GPUs per node, the potential effective-352

ness can be increased. Only clusters with two GPUs per node were353

available for the present study.354

• MPI implementation efficiency. The OpenMPI 1.3.2 software on the355

NCSA Lincoln Tesla cluster seems reasonably well optimized. Goglin356

[52] discusses optimizations of MPI implementations to improve intra-357

node efficiency. A number of optimizations have been performed on358

MPI implementations since the early hybrid model papers were writ-359

ten, including a reduction in the number of copies involved. Since the360

application being studied only uses OpenMP and MPI for coarse-grain361

parallelism, any benefits in latency for small transactions will not have362

an impact.363

• A large number of nodes. Many of the hybrid model papers note ben-364

efits occurring only as the number of nodes grows [26, 36, 38]. While365

the 64-node 128-GPU implementation used in this study is larger than366

many published cluster results, it may still be too small to see an ap-367

preciable benefit.368
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• A good match between the hardware, the threading models, and the do-369

main decomposition. A number of hybrid model papers show applica-370

tion / hardware combinations that show reduced performance with the371

hybrid model [26, 28, 30, 35].372

• Interactions between OpenMPI, OpenMP, and CUDA can exist. For373

instance, the default OpenMPI software on the NCSA Lincoln Tesla374

cluster is compiled without threading support.375

There are two popular threading models in use today: POSIX Threads376

(Pthreads) and OpenMP. We consider OpenMP, because it has become the377

dominant method for shared memory parallelism in the HPC community. In378

our implementation the thread level parallelism is on a coarse grain level,379

since CUDA is handling the fine grain parallelism. We do not consider a380

more general approach where OpenMP can be used to perform some of the381

computations on multi-core CPUs in addition to computations on the GPU.382

MPI defines four levels of thread safety: SINGLE, where only one thread383

is allowed. FUNNELED is the next level, where only a single master thread384

on each process may make MPI calls. The third level, SERIALIZED, allows385

any thread to make MPI calls, but only one at a time is using MPI. Finally,386

MULTIPLE allows complete multithreaded operation, where multiple threads387

can simultaneously call MPI functions.388

With many clusters having pre-installed versions of MPI libraries, some-389

times with custom network infrastructure, it is not always possible to have390

access to the highest (MULTIPLE) threading level. Additionally, this level391

of threading support typically comes with some performance loss, so lower392

levels are preferred if they do not otherwise hinder parallelism [53]. Three393

implementations were created, using the SERIALIZED, FUNNELED, and SINGLE394

levels. The first implementation used one thread per GPU, with each thread395

responsible for any possible MPI communications with neighboring nodes.396

The second used N +1 threads for N GPUs, where a single thread per node397

handles all MPI communications and the other threads manage the GPU398

work. This can help alleviate resource contention between MPI and GPU399

copies, since each activity is on its own thread. Additionally this lets one use400

the FUNNELED level, which increases portability and possibly can increase per-401

formance. Lastly, the third version uses OpenMP directives to only perform402

MPI calls inside single-threaded sections.403

Similar to the dual-level MPI-CUDA testing, simulation runs were per-404

formed on the NCSA Lincoln Tesla cluster for the tri-level parallel implemen-405

18

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found
online at Parallel Computing, published by Elsevier. Copyright restrictions may apply. doi: 10.1016/j.parco.2012.10.002



// COMPUTE EDGES

if (threadid > 0)

pressure <<<grid_edge,block>>> (edge_flags, div,p,pnew);

#pragma omp single

{

MPI_Irecv(new ghost layer from north)

}

if (threadid > 0)

cudaMemcpy(south edge layer from device to host)

// Ensure all threads have completed copies

#pragma omp barrier

#pragma omp single

{

MPI_Isend(south edge layer to south)

MPI_Irecv(new ghost layer from south)

}

if (threadid > 0)

cudaMemcpy(north edge layer from device to host)

// Ensure all threads have completed copies

#pragma omp barrier

#pragma omp single

{

MPI_Isend(north edge layer to north)

}

// COMPUTE MIDDLE

if (threadid > 0)

pressure <<<grid_middle,block>>> (middle_flag, div,p,pnew);

#pragma omp single

{

MPI_Wait(new ghost layer from north)

MPI_Wait(new ghost layer from south)

}

// Ensure all threads wait for MPI communication

#pragma omp barrier

if (threadid > 0) {

cudaMemcpy(new north ghost layer from host to device)

cudaMemcpy(new south ghost layer from host to device)

}

// Ensure all threads have completed copies

#pragma omp barrier

#pragma omp single

{

MPI_Waitall(south and north sends, allowing buffers to be reused)

}

if (threadid > 0)

pressure_bc <<<grid,block>>> (pnew);

ROTATE_POINTERS(p,pnew);

Listing 5. An example Jacobi pressure loop using tri-level MPI-OpenMP-
CUDA and simple computational overlapping. This uses the SINGLE thread-
ing level.
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tation. At the time this study was performed, the MPICH2 implementation406

on NCSA Lincoln had interactions with the CUDA pinned memory support,407

making it very slow for the CUDA Streams overlapping cases. OpenMPI was408

used instead. But, unfortunately, the OpenMPI versions available on NCSA409

Lincoln do not support any threading level other than SINGLE, and optimal410

network performance was not obtainable with custom compiled versions by411

the first author. Hence only the last implementation was used. An example412

implementation is shown in Listing 5, where simple computational overlap-413

ping is performed. CUDA computations are performed on threads 1 − N ,414

while MPI calls are performed on the single thread 0. With a FUNNELED hy-415

brid implementation, the omp master pragma would be used instead, with416

care taken since it has no implied barrier as omp single does.417

4.4. Parallel Geometric Multigrid Method418

Solution of complex incompressible flows benefits substantially from an419

advanced solver for the pressure Poisson equation, such as a multigrid (MG)420

method. The parallel geometric multigrid method that we implement in this421

study is built upon the strategies and lessons learned in previous sections.422

Based on the performance results obtained from parallel computations that423

adopt the Jacobi solver, we choose to follow the MPI-CUDA implementa-424

tion described in section 4.2.3 in our MG method implementation. The 3D425

geometric MG method is composed of the restriction, smoothing, and prolon-426

gation steps. In the restriction step we use a 27-point full weighting scheme427

to restrict the residual solution from the fine grid to the next coarse grid428

level. The prolongation operator is the inverse operator of the restriction429

step. Therefore, we use a trilinear interpolation in the prolongation stage.430

In the smoothing stage, we use a weighted (ω = 0.86) Jacobi solver with 3431

to 4 iterations as the smoother for 3D computations.432

Different schemes can be adopted to coarsen the grid in the MG method433

[56]. In our implementation, we use the V-cycle, which is adequate for the434

solution of pressure Poisson equation resulting from incompressible flow for-435

mulations. We develop an amalgamation strategy to overcome the data-436

starvation issue that arises in a multi-GPU implementation of the MGmethod.437

Basically, when the mesh at the finest level is divided and distributed over438

the GPUs, data-starvation per GPU is inevitable because of the inherent439

grid coarsening strategy in the MG method. When the coarsest grid per440

GPU is reached, the overall solution has not reached the deepest level in the441

V-cycle. We call the implementation that halts the grid coarsening process442
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when the coarsest mesh per GPU is reached as the truncated MG method.443

Depending on the size of the mesh and the number of GPUs deployed in the444

computations, truncating the MG cycle can substantially degrade the supe-445

rior convergence rate of the MG method. To avoid this issue, we develop446

an amalgamation strategy to complete the V-cycle to its full-depth for the447

whole mesh. Our amalgamation strategy make use of the collective commu-448

nication in the MPI library. Specifically, we use the MPI Gather function to449

reconstruct the mesh on a single GPU, and continue with the V-cycle down450

to its full-depth until the coarsest mesh for the overall domain is reached.451

Once the coarse grid solution is performed on a single GPU, we proceed452

with the V-cycle on a single GPU and scatter the information to all GPUs453

with an MPI Scatter function at the same MG level where the amalgama-454

tion to a single GPU took place. The amalgamation strategy enables us to455

achieve the superior efficiency of the MG method in a parallel multi-GPU456

implementation.457

5. Performance Results from NCSA Lincoln and TACC Longhorn458

Clusters459

The NCSA Lincoln cluster consists of 192 Dell PowerEdge 1950 III servers460

connected via InfiniBand SDR (single data rate) [54]. Each compute node461

has two quad-core 2.33 GHz Intel E5410 processors and 16GB of host mem-462

ory. The cluster has 96 NVIDIA Tesla S1070 accelerator units each housing463

four C1060-equivalent Tesla GPUs. An accelerator unit is shared by two464

servers via PCI-Express ×8 connections. Hence, a compute-node has access465

to two GPUs. For the present study, performance measurements for 64 of the466

192 available compute-nodes in the NCSA Lincoln Tesla cluster are shown,467

with up to 128 GPUs being utilized. The CUDA 3.0 Toolkit was used for468

compilation and runtime, gcc 4.2.4 was the compiler used, and OpenMPI469

1.3.2 was used for the MPI library.470

The TACC Longhorn cluster consists of 240 Dell R610 compute nodes471

connected via InfiniBand QDR (quad data rate). Each compute node has472

two quad-core 2.53 GHz Intel E5540 Nehalem processors and 48GB of host473

memory. The cluster has 128 NVIDIA QuadroPlex S4 accelerator units each474

housing four FX5800 GPUs. An accelerator unit is shared by two servers via475

PCI-Express 2.0×16 connections. Performance of the GPU units is similar to476

the Lincoln cluster, however the device/host memory bandwidth is more than477

2× higher and the cluster interconnect is 4× faster. For the present study,478
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Figure 5. Speedup on the NCSA Lincoln Tesla cluster from the three MPI-
CUDA implementations relative to the Pthreads parallel CPU code using all
8 cores on a compute-node. The lid-driven cavity problem is solved on a
1024× 64× 1024 grid with fixed number of iterations and time steps.
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performance measurements for 128 of the 240 available compute-nodes in the479

TACC Longhorn cluster are shown, with up to 256 GPUs being utilized. The480

CUDA 3.0 Toolkit was used for compilation and runtime, gcc 4.1.2 was the481

compiler used, and OpenMPI 1.3.3 was used for the MPI library.482

Single GPU performance has been studied relative to a single CPU proces-483

sor in many studies. Such performance comparisons are adequate for desktop484

GPU platforms. On a multi-GPU cluster, a fair comparison should be based485

on all the available CPU resources in the cluster. To partially address this486

issue, the CPU version of the CFD code is parallelized with Pthreads to use487

the eight CPU cores available on a single compute-node of the NCSA Lin-488

coln cluster [15, 16]. Identical numerical methods are used in the CPU and489

GPU code for the tests performed. In Thibault and Senocak [16], the per-490

formance of the CPU version of the code was investigated and the GFLOPS491

performance was found to be comparable to the NPB benchmark codes.492

A lid-driven cavity problem at a Reynolds number of 1000 was chosen for493

performance measurements. Measurements were performed for both strong494

scaling where the problem size remains fixed as the number of processing495

elements increases, and weak scaling where the problem size grows in direct496

proportion to the number of processing elements. Measurements for the CPU497

application were done using the Pthreads shared-memory parallel implemen-498

tation using all eight CPU cores on a single compute-node of the NCSA499

Lincoln cluster. All measurements include the complete time to run the ap-500

plication including setup and initialization, but do not include I/O time for501

writing out the results. Single precision was used in all computations.502

Strong Scaling Analysis503

Figure 5 shows the speedup of the MPI-CUDA implementation of our504

flow solver relative to the performance of the CPU version of our solver505

using Pthreads. The computational performance on a single compute-node506

with 2 GPUs was 26× faster than 8 Intel Xeon cores, and 64 compute-nodes507

with 128 GPUs performed up to 104× faster than 8 Intel Xeon cores. In508

all configurations the fully overlapped implementation performed faster than509

the first implementation that did not perform overlapping. Additionally, the510

final fully overlapping implementation performs fastest in all configurations511

with more than one GPU, and shows a significant benefit with more than four512

GPUs. With the fixed problem size, the amount of work to do on each node513

quickly drops — on a single GPU a single pressure iteration takes under514

10ms of compute time. Little gain is seen beyond 16 GPUs on this fixed515
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size problem, which highlights the fact that GPU clusters516

problems with large data sets.517

Weak Scaling Analysis518

All three MPI-CUDA implementations presented in section 4.2 were also519

run with increasing problem sizes such that the memory used per GPU was520

approximately equal. The analysis is commonly referred to as weak scalabil-521

ity. Simulations such as channel or duct flows can lead to extension of the522

whole domain in one of the three dimensions as the problem size increases. In523

this case the height and depth of a channel is fixed, while the width increases524

relative to the number of GPUs. For the 1D network decomposition per-525

formed in our flow solver, the amount of data transferred between each GPU526

will be constant, as will the domain dimensions on each GPU. Therefore we527

expect the scalability to be excellent.528

Figure 6a indicates how scalability with the fully overlapped implementa-529

tion performs so well in this one dimensional scaling case, dropping from 94%530

with 4 GPUs to only 93% with 128 GPUs. Note that four GPUs is the first531

case where the network is utilized. The results from the TACC Longhorn532

cluster shows a consistent behavior, with only a 1% drop in efficiency from533

4 GPUs to 256 GPUs. The fully overlapped MPI-CUDA implementation534

shows a definite advantage over the other two MPI-CUDA implementations.535

Figure 6b shows the parallel efficiency when the computational domain536

grows in two dimensions during a weak scaling analysis. This is a very com-537

mon scenario seen in such examples as many lid-driven cavity and buoyancy-538

driven cases, as well as flow in complex terrain, where covering a larger phys-539

ical area (e.g. more square blocks in an urban simulation) involves growth540

in the horizontal dimensions, while the number of cells used for height re-541

mains constant. On the TACC Longhorn cluster, 256 GPUs were utilized542

on 128 compute-nodes to sustain an 4.9 TeraFLOPS performance. With ap-543

proximately 400GB of memory used during the computation on 128 GPUs,544

it is not possible to directly compare this to a single node CPU implemen-545

tation on traditional machines. Figure 6b also shows the clear advantage546

of overlapping computation and communication. Parallel efficiency in the547

two-dimensional growth problem with full overlapping is excellent through548

64 GPUs, and parallel efficiency drops to 60% beyond 64 GPUs.549

One obvious feature of Figure 6(b) is that efficiency does not fall in550

a smooth fashion with increasing GPUs, but steps up and down with an551
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a) 1D Growth

b) 2D Growth

Figure 6. Efficiency of the three MPI-CUDA implementations with increasing
number of GPUs on the TACC Longhorn cluster (weak scalability presenta-
tion). a) Growth is in one dimension. The size of the computational grid is
varied from 512× 512× 256 to 512× 512× 65536 with increasing number of
GPUs. b) Growth is in two dimensions, with the Y dimension fixed. The size
of the computational grid is varied from 1024×64×1024 to 16384×64×16384
with increasing number of GPUs. Using 256 GPUs,computations sustained
8.5 TeraFLOPS in 1D the growth case and 4.9 TeraFLOPS in the 2D growth
case. 25
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overall decreasing trend. This is related to an interaction between the two-552

dimensional problem size growth and the structure of the CUDA kernels.553

The mechanism of having each thread loop over all the Z planes is very effi-554

cient, however the CUDA kernel throughput strongly changes as the numbers555

of threads (the X and Y dimensions) relative to the number of Z planes per556

GPU is varied. Earlier implementations of the kernels, as seen in Jacobsen557

et al. [55], show much less variability, but overall performance is lower — for558

a similar problem the single GPU performance is 33 GFLOPS vs. 41 for the559

current code, and 2.4 TFLOPS vs. 2.9 TFLOPS with 128 GPUs.560

Figure 7 presents the weak scaling analysis for a growth in three dimen-561

sions of the computational domain on the Longhorn cluster. Figure 7(a)562

indicates how scalability with the fully overlapped implementation trails off563

sharply at 16 GPUs, and the gap between the overlapping implementations564

and non-overlapping narrows. The reasons for this behavior are examined565

in the next section. Figure 7(b) shows the sustained GFLOPS performance566

on a logarithmic scale. With 256 GPUs, 2.4 TeraFLOPS was sustained with567

the fully overlapped implementation. Note that for the 1D growth case, 9.5568

TeraFLOPS was sustained using the same number of GPUs.569

Further Remarks on Scalability570

NCSA Lincoln cluster was transformed into a GPU cluster from an ex-571

isting CPU cluster. The connection between the compute-nodes and the572

Tesla GPUs are through PCI-Express Gen 2 ×8 connections rather than573

×16. Measured bandwidth for pinned memory is approximately 1.6 GB/s,574

which is significantly slower than the 5.6 GB/s measured on a local worksta-575

tion with PCIe Gen 2 ×16 connections to Tesla C1060s. Kindratenko et al.576

[54] observed a low host-device bandwidth on Lincoln cluster, and suggested577

further investigations. This observed low-bandwidth issue with the Lincoln578

cluster has an impact on our results.579

We performed bandwidth measurements on the TACC Longhorn clus-580

ter which uses GPUs with similar performance (Quadroplex 2200 S4 on581

Longhorn, Tesla S1070 on Lincoln). However, measured device/host memory582

transfers are over 2× faster on Longhorn, and its Infiniband QDR shows a583

4× increase in interconnect bandwidth with simple benchmarks. It should584

also be pointed out that as the CUDA kernels are optimized and run faster,585

less time becomes available for overlapping communications, leading to a loss586

in parallel efficiency.587
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a) Cluster efficiency

b) Performance in GFLOPS

Figure 7. Efficiency of the three MPI-CUDA implementations with increasing
number of GPUs on the TACC Longhorn cluster (weak scalability presenta-
tion). Growth is in three dimensions. The size of the computational grid is
varied from 416× 416 × 416 to 2688× 2688 × 2560 with increasing number
of GPUs. a) Parallel cluster efficiency, b) Perfomance in GFLOPS.
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a) 1D Growth (Lincoln) b) 1D Growth (Longhorn)

c) 2D Growth (Lincoln) 2D Growth (Longhorn)

e) 3D Growth (Lincoln) f) 3D Growth (Longhorn)

Figure 8. Percent of pressure Poisson solver (30 Jacobi iterations) time spent
in computation, host/GPU memory transfer, and MPI calls. No overlapping
is used. The problem size grows such that the number of cells per GPU is
approximately constant. a–b) 1D growth, c–d) 2D growth, e–f) 3D growth.
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To further examine the reasons behind the scalability results seen, CUDA588

event timers were used to get high resolution profiles of time spent in the589

iterative pressure solver. The timers calculated the time spent doing compu-590

tation in the pressure and boundary condition kernels, the amount of time591

spent copying data between the GPU and the host, and the time spent in592

network communications. This data was collected using the implementation593

described in section 4.2.1, to show the need for overlapping as well as shed594

light into the earlier scalability graphs.595

For the 1D growth case shown in Figure 8a–b, measured compute and596

GPU copy time was essentially constant for all runs. This is expected, as597

the per-GPU dimensions of the pressure domain are identical at each size,598

and the amount of data to be transferred is constant. The amount of data599

exchanged by each host also remains constant as the number of GPUs in-600

creases, yet the time spent in MPI calls on the Lincoln cluster increases with601

more GPUs. While performing the solver iterations, each process only syn-602

chronizes with its immediate neighbors – no global operations are used. We603

attribute the observed behavior as a network topology issue with the Lincoln604

cluster and not with our implementation because it is absent in the results605

using the Longhorn cluster. On the Longhorn cluster, as shown in Figure 8b,606

the percent of time spent in copy and MPI is essentially constant once the607

network is utilized at 4 GPUs, which is what is expected.608

With the 2D growth case shown in Figure 8c–d, the amount of data to be609

transferred grows by a factor of
√
N as the number of GPUs (N) increases.610

In the 4 GPU case each transferred layer consists of 2048 × 64 cells, while611

with 16 GPUs (a 4× increase) each layer has 4096×64 cells — a 2× increase.612

With 32 or fewer GPUs, it is possible to completely overlap network traffic613

and GPU copies with computation. However, the particular size used in this614

simulation for 32 and 128 GPUs leads to slower computation than other cases,615

as remarked upon earlier to explain the wiggly trend in parallel efficiency in616

Figure 6b. With 64 and 128 GPUs, complete overlapping of copy, MPI, and617

computation needs to be done to keep scalability. The data on Longhorn618

shows a similar pattern, yet scales better as the communication paths are619

faster.620

The 3D growth case is shown in Figure 8e–f. The amount of data to be621

transferred grows by a factor of N2/3 with the number of GPUs. In the single622

GPU case each transferred layer consists of 416 × 416 cells, while with 64623

GPUs each layer has 1664 × 1664 cells — a 16× increase. Both the GPU624

copy and MPI communication time increase rapidly, with the GPU copy625
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alone taking more time on 64 GPUs than the entire computation time. The626

picture on the Longhorn cluster is similar, with the faster data copies just627

moving the saturation point to more GPUs. While large linear transfers are628

done to achieve maximum copy efficiency, the amount of data is too large629

in these cases. Calculations are shown below for the 64 GPU case on the630

Lincoln cluster:631

Copy Bandwidth = (layer size · 4 · iterations · timesteps) /time (5)

= ((1664× 1664× 4 bytes) · 4 · 30 · 200) /139.62 seconds

= 1816 MB/s
632

MPI Bandwidth = (layer size · 4 · iterations · timesteps) /time (6)

= ((1664× 1664× 4 bytes) · 4 · 30 · 200) / 624.5 seconds

= 405.9 MB/s

For each GPU, the two edge layers must be copied from the GPU and then633

again to the GPU, hence the factor of 4. This simple calculation ignores the634

effect of the edge nodes. The effective GPU copy bandwidth is similar to that635

reported with memory benchmarks on this platform, which is 2 to 3 times636

less than newer hardware. The effective MPI bandwidth is lower than the637

bidirectional bandwidth measured with MPI benchmarks, suggesting this as638

a possible point to investigate.639

A 2D decomposition would greatly reduce the amount of data transferred640

with these large 2D and 3D simulations. Assuming a domain partition in the641

growth dimensions, the 2D and 3D simulations would see a 4× reduction in642

the number of bytes transferred. The ramifications to CUDA are discussed643

in section 4.1. It is likely that for 3D problems on many GPUs, the extra644

CUDA work may be worth the per-GPU cost.645

Figure 9 directly compares the weak scaling efficiency with growth in646

three dimensions using a fully overlapped version of our flow solver on NCSA647

Lincoln and TACC Longhorn clusters. While the improved communication648

bandwidth on the TACC Longhorn cluster greatly helps scalability (at 128649

GPUs, Lincoln is at 13% while Longhorn achieves 34%), the overall trend650

in weak scaling is similar. On the NCSA Lincoln Tesla cluster, only 768651

GFLOPS was sustained with the fully overlapped implementation using 128652
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Figure 9. A comparison of weak scaling with the fully overlapped MPI-
CUDA implementation on two platforms, with growth in three dimensions.
Longhorn has higher bandwidth for both GPU/host and network data trans-
fer than Lincoln.

GPUs. On the TACC Longhorn cluster, 2.4 TeraFLOPS was sustained using653

256 GPUs.654

Performance Analysis of Tri-level MPI-OpenMP-CUDA Implementation655

Similar to the dual-level performance results, a lid-driven cavity problem656

at a Reynolds number of 1000 was chosen for performance measurements657

on the NCSA Lincoln Tesla cluster. As mentioned in section 4.3 earlier,658

software issues on the NCSA Lincoln cluster precluded effective testing of659

anything but the tri-level implementation to use single threading. The weak660

scaling analysis with growth in three dimensions is the most taxing case on661

cluster efficieny as compared to growth in one and two dimensions, and shows662

the most difference between the parallel methods considered. Therefore we663

evaluate the tri-level parallel implementation using weak scaling analysis with664

growth in three dimensions, and compare it against the best performing dual-665

level parallel implementation.666

Figure 10 compares the the scaling efficiency of the fully overlapped dual-667

level MPI-CUDA and the tri-level MPI-OpenMP-CUDA implementations in668
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Figure 10. A comparison of weak scaling with the fully overlapped MPI-
CUDA and single threaded MPI-OpenMP-CUDA implementations, with
growth in three dimensions. Since the tri-level implementation uses all the
GPUs of a single node, the base value for parallel scaling is set to a single
node of the NCSA Lincoln Tesla cluster containing two GPUs.

the 3D growth weak scaling scenario. The MPI-CUDA data matches the fully669

overlapped data from Figure 7, though 100% is set with two GPUs (a single670

node) rather than one. We decided to calculate the cluster efficiency relative671

to the performance of two GPUs in this particular case, because tri-level im-672

plementation uses all the GPUs of single node with OpenMP addressing the673

intra-node parallelism and MPI handling the inter-node parallelism. Hence,674

the super-efficiency observed at 4 GPUs is direct outcome of how we calculate675

the parallel efficiency in this particular case.676

With fewer than 4 nodes (8 GPUs), the dual-level MPI-CUDA implemen-677

tation performs better. With 32 and 64 nodes (64 and 128 GPUs), there is678

a small benefit with the present MPI-OpenMP-CUDA implementation. At679

this point the amount of data being transferred may bring any efficiencies680

of the shared memory model to the forefront, outweighing single-node syn-681

chronization. Our results are consistent with the hybrid performance results682

shown by Nakajima [38], where MPI-vector implementation outperformed683

the hybrid MPI-OpenMP-vector implementation at 64 and fewer nodes, and684

started showing an increasing benefit at 96 nodes and and beyond. We were685

not able to measure the results beyond 64 nodes (128 GPUs), but we believe686

32

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found
online at Parallel Computing, published by Elsevier. Copyright restrictions may apply. doi: 10.1016/j.parco.2012.10.002



Figure 11. Performance and parallel efficiency of the V-cycle truncated and
amalgamated multigrid on 1, 8, and 64 GPUs where the problem size scales
with the number of GPUs. Time is plotted against the residual level for
a double precision problem using 2573 on 1 GPU, 5133 using 8 GPUs, and
10253 using 64 GPUs on the NCSA Lincoln Tesla cluster. A marker is shown
for each 4 loops of the multigrid cycle.

the performance of the tri-level implementation should be further investi-687

gated on larger clusters with more than two GPUs per node and also with688

different domain decomposition strategies.Unfortunately, such large clusters689

with dense GPU nodes were not available or accessible during our study.690

Performance of the Parallel Geometric Multigrid Method691

A 3D lid-driven cavity problem was started at grid sizes of 2573, 5133692

and 10253 using 1, 8 and 64 GPUs on the NCSA Lincoln Tesla cluster. We693

used double precision in all computations. The actual wall-time taken by the694

pressure solver is plotted against the residual level for the initial time step.695

Figure 11 shows the performance of the multigrid algorithm on the NCSA696

Lincoln Tesla cluster for relatively large problems (16M, 128M, and 1024M697

cells). In particular the results of the amalgamated full-depth multigrid are698

compared to the truncated multigrid, and the single-GPU multigrid imple-699

mentation. We note that on a single GPU, issues of amalgamation and700

incomplete V-cycles are absent. With 8 GPUs, the coarsest grid is 173, while701
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with 64 GPUs with coarsest grid is 653. On a single GPU a full-depth V-702

cycle was performed, hence there is no truncation of the V-cycle. Our results703

show the clear benefit of amalgamation on the convergence rate of a multi-704

GPU implementation of the MG method. At the larger problem sizes, the705

convergence rate of the truncated multigrid is unacceptable and the need for706

amalgamation in the parallel multigrid method becomes obvious.707

The multigrid level at which amalgamation to a single GPU takes place708

has an effect on the performance. The current implementation can amalga-709

mate to a single GPU at the third level in the V-cycle for most problems710

considered in this study. However, for a grid size of 10253 we found that711

amalgamating at the fourth level or deeper levels produces same performance712

results, and they are better than performance results obtained when amal-713

gamating at the third level. We note that the level at which to amalgamate714

depends on computational problem and device memory sizes.715

6. Conclusions716

We have presented both dual-level (MPI-CUDA) and a tri-level (MPI-717

OpenMP-CUDA) parallel implementations of a Navier-Stokes equations solver718

to simulate buoyancy-driven incompressible fluid flows on GPU clusters. We719

adopt NVIDIA’s CUDA programming model for fine-grain data-parallel op-720

erations within each GPU. In the tri-level implementation we use OpenMP721

for intra-node communications within a compute-node, and MPI for commu-722

nications across the cluster. In the dual-level implementation, MPI handles723

all intra- and inter-node communications.724

We adopted a simple point iterative scheme to solve the pressure Pois-725

son equation to investigate the interplay of computation, communications,726

and synchronizations in multi-level parallel implementations on a GPU clus-727

ter with different strategies to overlap computation with communications.728

However, many applications, including the present one, require advanced729

numerical methods and fast solvers such as the multigrid method. There-730

fore, we extended the best performing multi-level parallel implementation731

described in this study to a geometric multigrid method, in which we intro-732

duced an amalgamation strategy to recover the superior convergence rate of733

the multigrid method on GPU clusters.734

In all the multi-level implementations we adopted a 1D domain decom-735

position strategy as the overhead for gathering and scattering the data into736

linear transfer buffers can exceed the advantages of the smaller transfer sizes737
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that one could get from 2D or 3D domain decompositions. An additional738

level of 1D domain decomposition is also introduced within the compute-739

space of each GPU to overlap intra- and inter-node data exchanges with740

advanced features of MPI and CUDA. We implemented three strategies to741

overlap computation with communications. With measurements from two742

different GPU clusters, we showed that performance and efficiency critically743

depends on the bandwidth of the network, and the strategy that introduces744

maximum overlapping of computation with communication improves the par-745

allel performance markedly. Although we have used as many as 256 GPUs on746

128 nodes of the Longhorn cluster with Infiniband QDR network, the paral-747

lel efficiency dropped below 50% beyond 64 GPUs on 32 nodes during weak748

scaling analysis with 3D growth in computational domain sizes, suggesting749

that multi-GPU computing can benefit substantially from advances in fast750

networking hardware.751

Our performance measurements indicate that the dual-level (MPI-CUDA)752

parallel model with maximum overlapping produces the best performance.753

We believe the gain from the tri-level MPI-OpenMP-CUDA parallel method754

is unlikely to offset the additional software complexity that is introduced into755

the flow solver. Models that share fine-grain parallelism on multi-core CPUs756

with GPUs, a different domain decomposition strategy than is presented here757

or have high GPU density per node may see better results and need to be758

investigated further.759

A number of issues with obtaining the most benefit from tri-level MPI-760

OpenMP-CUDA parallel methods have been identified. Compared to early761

published results, current MPI libraries have much better optimization for762

multiple processes per node. A number of the benefits ascribed to the hybrid763

MPI-OpenMP programming model are typically obtained via OpenMP’s fine-764

grain parallelism support, which is not used at all in this study, because all765

fine-grain parallelism is supplied by CUDA. Other simulation software that766

can use both CPU and GPU resources for computation may show more767

advantage from tri-level parallelism. It is also an open question whether a768

much denser per-node GPU density may be able to take better advantage769

of the tri-level parallelism. We think having only two GPUs per node on770

current and planned GPU cluster designs puts a limit on the possible benefit771

from the mixed API model. At the time of the present study, GPU clusters772

with denser nodes were not available.773

Finally, with our best performing implementation using 256 GPUs on the774

TACC Longhorn cluster, we were able to process 17 billion elements with775
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8.5, 4.9, 2.4 TeraFLOPS of single precision sustained performance in 1D, 2D776

and 3D growth during weak scaling analysis, respectively. On the NCSA777

Lincoln cluster, we have shown that 2-GPU performance of our solver is 26×778

faster than the 8-core CPU performance. Our results demonstrate that GPU779

clusters are powerful computing platforms to solve computationally large780

problems. With their heterogeneous architectures that can support both781

CPU and GPU based applications and graphics rendering, we expect a wide782

adoption of GPU clusters in the industry and academia.783
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A flow solver is parallelized with MPI-CUDA and MPI-OpenMP-CUDA implementations.> 
Weak and strong scaling analysis performed using up to 256 GPUs> Three strategies to overlap 
computation and communication are assessed.> MPI-CUDA implementation with maximum 
overlapping gives the best performance> Tri-level parallelism does not show any advantage for 
the present application. 
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