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Abstract. A dynamic model for parallel H.264/AVC video encoding
on hybrid GPU+CPU systems is proposed. The entire inter-prediction
loop of the encoder is parallelized on both the CPU and the GPU, and a
computationally efficient model is proposed to dynamically distribute the
computational load among these processing devices on hybrid platforms.
The presented model includes both dependency aware task scheduling
and load balancing algorithms. According to the obtained experimental
results, the proposed dynamic load balancing model is able to push for-
ward the computational capabilities of these hybrid parallel platforms,
achieving a speedup of up to 2 when compared with other equivalent
state-of-the-art solutions. With the presented implementation, it was
possible to encode 25 frames per second for HD 1920×1080 resolution,
even when exhaustive motion estimation is considered.

1 Introduction

The increasing demand for high quality video communication, as well as the
tremendous growth of video contents on Internet and local storages, stimulated
the development of highly efficient compression methods. When compared to pre-
vious standards, H.264/AVC achieves compression gains of about 50%, keeping
the same quality of the reconstructed video [1]. However, such efficiency comes at
the cost of a dramatic increase of the computational demand, making real-time
encoding hard to be achieved on single-core Central Processor Units (CPUs).

On the other hand, the latest generations of commodity computers, often
equipped with both multi-core CPUs and many-core Graphic Processor Units
(GPUs), offer high computing performances to execute a broad set of signal
processing algorithms. However, even though these devices are able to run asyn-
chronously, efficient parallelization models are needed in order to maximally
exploit the computational power offered by these concurrently running devices.
Such models must assure the inherent data dependencies in the parallelized al-
gorithms, as well as a load balanced execution in the processing devices.

Recently, several proposals have been presented to implement parallel video
encoders on GPUs [2–5]. However, most of them were only focused on a single
encoding module. On the other hand, the task partitioning between the CPU
and the GPU of these hybrid systems [6] has been referred to as the main chal-
lenge for efficient video coding on current commodity computers. The adopted
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approaches [7, 8] usually offload most computationally intensive parts to the
GPU, keeping the rest of the modules to be executed in the CPU. However, to
the best of the authors’ knowledge, there is not yet any proposal that effectively
considers a hybrid co-design parallelization approach, where the CPU and the
GPU are simultaneously used to implement the whole encoder structure.

By taking this idea in mind, an entirely new parallelization method is pro-
posed in this paper. Such method is based on a dynamic performance prediction
for parallel implementation of the entire inter-loop of the encoder, which simulta-
neously and dynamically exploits the CPU and the GPU computational power.
In order to optimize such a hybrid platform, a dependency aware strategy for
dynamic task and data distribution is proposed. The presented method relies
on a realistic performance model that is built at run-time and improved at each
iteration of the algorithm, in order to capture the real system behavior. For
such purpose, it exploits several parallelization levels currently available in such
a system, ranging from the fine-grained thread-level parallelism on the GPU, to
both thread and vector-level parallelization on the CPU side.

2 Dependencies and Profiling Analysis of the H.264/AVC

According to the H.264/AVC standard [9], each frame is divided in multiple Mac-
roblocks (MBs), which are encoded using either an intra- or an inter-prediction
mode (see Fig. 1). In the most computationally demanding and frequently ap-
plied inter-prediction modes, the best-matching predictor of each MB is searched
within already encoded Reference Frames (RFs). This process, denoted as Mo-
tion Estimation (ME), considers a further division of each 16×16 pixels MB into
sub-blocks, as small as 4×4 pixels. The search procedure is then further refined
by interpolating the RFs with half-pixel and quarter-pixel precision. Then, an in-
teger transform is applied to the residual signal, which is subsequently quantized
and entropy encoded, before it is sent alongside with the motion vectors (MVs)
to the decoder. The decoding process, composed of the dequantization, inverse
integer transform and motion compensation, is also implemented in the feedback
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Fig. 1. Block diagram of the H.264/AVC encoder: inter-loop
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loop of the encoder in order to locally reconstruct the RFs. A deblocking filter
is finally applied to remove blocking artifacts from the reconstructed frame.

Several classes of data dependencies can be identified in this encoding process.
Inter-frame dependencies exist between different frames in the video sequence.
Such dependencies mainly arise from the ME procedure between the current
and previously encoded RFs and limit the processing of successive video frames,
by forcing them to be sequentially processed. Intra-frame dependencies exist
between the processing of different regions of the same frame. They mainly
exist in the intra-prediction encoding of the MBs, MVs prediction or in the
deblocking filtering, when MB edges are filtered using the pixels of neighboring
MBs. Functional dependencies between the H.264/AVC modules exist when the
output data of one module represent the input data of another. For example,
the MVs resulting from the ME define the initial search point for the Sub-pixel
Motion Estimation Refinement (SME). Similarly, the sub-pixel values, obtained
after the interpolation procedure, are the inputs of the SME. On the other hand,
the interpolation and the motion estimation do not need to wait for each other,
since both of them use the current frame and/or RFs.

From this dependencies analysis, it can be observed that parallel processing
can only be considered within the scope of a single frame, since inter-prediction
can not start before the list of RFs is updated. Moreover, due to the intra-frame
dependencies in the deblocking filter, this module can not be concurrently ap-
plied on two different regions of each slice. Hence, the conjunction of all these
observations exclude the possibility of dividing each slice in several independent
parts to be simultaneously processed in a pipeline fashion. Finally, considering
all the functional dependencies between the H.264/AVC modules, it can be con-
cluded that only the interpolation and the ME can be processed in parallel,
while the rest of the modules have to be sequentially processed. To simplify the
presentation, and without any loss of generality, it will be assumed a single-slice
frame configuration for the rest of this paper.

(a) CPU. (b) GPU.

Fig. 2. Breakdown of the H.264/AVC inter-prediction-loop processing time (FME: full-
pixel ME; SUB: sub-pixel ME; INT: interpolation; DBL: deblocking filter; MC TQ: di-
rect transform, quantization, dequantization and inverse transform)
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Fig. 2 represents a breakdown of the H.264/AVC processing time for both
CPU and GPU implementations, regarding the several encoding modules. These
profiling results were obtained for highly optimized implementations on an Intel
Core i7 CPU and on an NVIDIA GeForce GTX 580 GPU. As it can be seen, ME
is the dominant module, with more than 60% and 75% of the total processing
time on CPU and GPU, respectively. Similarly, the SME also occupy a significant
amount of the processing time. Finally, it is also observed that the conjunction
of motion compensation, integer transform, quantization, dequantization and
inverse transform, represented as MC TQ, only represents about 1%-2% of the
total processing time.

3 Performance Model and Task Distribution for Parallel
Video Coding on a Hybrid CPU+GPU System

The heterogeneous structure of the H.264/AVC encoder includes modules with
very different characteristics regarding the data dependencies and parallelization
potential. In this section, it is analyzed the possibility of minimizing the encoding
time by efficiently distributing the several tasks on the CPU and on the GPU.

3.1 Load Distribution and Scheduling Strategy

As a consequence of the profiling analysis presented in section 2, the most compu-
tationally demanding modules (ME and SME) are distributed among the CPU
and GPU. These devices simultaneously execute these operations on different
parts of the frame, where the frame division is considered to be at the level of
rows/columns of MBs. This distribution is performed in a rather dynamic way,
according to the performance level for each device that was evaluated in the
previous encoded frame. Since the interpolation can be simultaneously executed
with ME, this module is also considered when distributing the ME operation. A
module-level scheduling is applied to the rest of the modules, in such a way that
the overall processing time is minimized. Since all the other modules that can
be concurrently processed (MC TQ) only take 1% of the total time, their dis-
tribution among the CPU and GPU would not offer any significant advantage.
Nevertheless, their execution is still evaluated in both processing devices (by
using a predefined set of test frames), in order to predict further performance
gains.

Algorithm 1 presents the implementation of the proposed method. The most
complex steps will be explained in the following subsections. Before the encoding
starts, the ME and SME modules are set to be performed on both devices on
different halves of the frame, in order to perform a preliminary performance
evaluation (lines 1 and 2 initializes the number of MBs assigned to each device).
For the same reason, the rest of the modules are also assigned on both devices
(line 3) and subsequently implemented in parallel (lines 5-13). Then, according
to the measured times (line 14), it is decided which device will perform the
interpolation operation (line 15). After that, the number of MB-rows to be sent
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Algorithm 1. Scheduling/load balancing algorithm

1: nme cpu = nme gpu = #MBrows/2
2: nsub cpu = nsub gpu = #MBrows/2
3: Assign the rest of the modules to both devices
4: for frame nr=0 to nr of frames do

5: in parallel on CPU and GPU do

6: Load nme cpu/gpu rows
7: Perform ME on nme cpu/gpu rows
8: Perform interpolation on assigned device(s)
9: Exchange results

10: Perform SUB on nsub cpu/gpu rows
11: Exchange results
12: Perform the rest of the modules on assigned device(s)
13: end in parallel

14: Update times
15: Decide device for interpolation
16: Update nme cpu and nme gpu

17: Update nsub cpu and nsub gpu

18: if next frame is test-frame then

19: Assign the remaining modules to both devices
20: else if frame is the last test-frame then

21: Perform the scheduling algorithm for remaining modules
22: end if

23: end for

to each device is updated (see section 3.2) for both ME and SME (lines 16
and 17). Finally, whenever the following frame is marked as a test frame, the
modules that will not be divided between the processing devices (all except the
ME and SME) are assigned to both of them, in order to update their evaluation.
Otherwise, they are distributed among the devices, in order to minimize the
overall processing time. For this distribution, both the processing time and any
eventual data transfer time are considered (see section 3.3).

3.2 Dynamic Load Balancing for Motion Estimation and Sub-pixel

Motion Estimation Refinement

The distribution of the large computational load that is involved in the ME and
SME modules among the CPU and GPU devices is performed at the level of
MB-rows, by sending ngpu rows to the GPU, and n − ngpu rows to the CPU,
where n is a total number of MB-rows in each frame. By assuming that the
attained performance (s), expressed as the number of processed MB-rows per
second, does not depend on the considered distribution (i.e., sgpu, scpu = cte),
the ME processing times on the two platforms can be expressed as:

tgpu me =
ngpu

sgpu
, tcpu me =

n− ngpu

scpu
(1)
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Hence, the main aim of the dynamic load balancing is to find the optimal dis-
tribution of MBs that will provide the most balanced execution time on the
two processing devices, as stated in eq. 2. In this equation, tcpu me and tgpu me

represent the processing time of the ME module on the CPU and the GPU,
respectively. Conversely, tgpu0 and tcpu0 represent the execution time of the re-
maining processing modules that are supposed to be implemented on the CPU
and GPU, together with the ME. As an example, such set of modules can include
the interpolation operation, which does not have any data dependency with the
ME and is required to be executed on one of these devices. Hence, the assign-
ment of the interpolation module is done according to the ratio of performances
on the two devices (i.e. speedup). In particular, if the interpolation is predicted
to have a larger speedup than the ME module when sending it from the CPU to
the GPU, it is assigned a greater offloading priority. Otherwise, it remains in the
CPU, while the ME is simultaneously performed on the GPU. As soon as the
interpolation is finished, the ME starts to be simultaneously executed on both
devices.

tcpu me + tcpu0 ≈ tgpu me + tgpu0, (2)

By combining eq. 1 with eq. 2, it is obtained:

n− ngpu

scpu
+ tcpu0 ≈

ngpu

sgpu
+ tgpu0, (3)

where:

ngpu ≈

n+ scpu(tcpu0 − tgpu0)

1 +
scpu
sgpu

. (4)

However, the measured performance in any real system varies along the time,
not only because of the changes in the conditions it operates on, but also because
the inherent processing can be data-dependent. Therefore, if the number of MB-
rows that is assigned to each device is computed by assuming the encoding time
of a single frame, the obtained distribution will hardly be accurate along the
time. As a consequence, the number of MB-rows that is submitted to the GPU
should be updated in every iteration:

ni
gpu ≈

n− si−1
cpu∆t0

1 +
s
i−1
cpu

s
i−1
gpu

, ni
cpu = n− ni

gpu (5)

where ∆t0 = tcpu0 − tgpu0 is the signed sum of distribution-independent task
portions on the CPU (positive sign) and on the GPU (negative sign). The mea-
sured performance values (si−1

cpu and si−1
gpu) are updated upon the encoding of each

frame, according to the measured ME processing time on both devices. Hence,
this iterative procedure starts with a predicted value (e.g., n0

gpu = #MBrows/2)
and is updated until it converges to the ideal distribution, based on the measured
performance on both processing devices.

The same strategy is applied in the case of the SME module. Since there is
no other dominant H.264/AVC module that can be processed in parallel with



Multi-level Parallelization of Advanced Video Coding 171

SME, the values of tcpu0 and tgpu0 will be set to zero, while the values of tcpu sme,
ncpu sme, tgpu sme and ngpu sme will be updated along the time.

3.3 Scheduling of the Remaining Modules

As it was described in section 3.1, the least computationally intensive modules
of the encoder are scheduled to be completely executed on one of the processing
devices. The same happens with the deblocking filter, whose implementation can
not be efficiently split by multiple devices. The proposed scheduling scheme is
then applied, in order to minimize the overall processing time. For such purpose,
all these modules are implemented and evaluated on both the CPU and GPU,
and the measured processing times are then used as input parameters for the
distribution algorithm, altogether with the data transfer times, required for any
module transition between the devices.

The proposed distribution procedure is illustrated in Fig. 3. A data-flow di-
agram for all the encoding modules, considering both the CPU and GPU, is
initially constructed. The transform and quantization tasks, as well as the de-
quantization and inverse transform, are presented together, due to the low com-
putational requirements and simpler parallelization model. When the measured
execution times are considered as a parameterization of each task, a weighted
Directed Acyclic Graph (DAG) is obtained. The several nodes of such a graph
(A, B ... H) are the decision points, where each task can be submitted to any of
the two processing devices. The edges represent the individual task transitions,
weighted by the respective computing and data transfer times. The shortest path
between the starting and ending nodes of this graph represents the minimum en-
coding time. Dijkstra’s algorithm [10] is typically used to find such a path, by
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defining, for each encoding module of the inter-loop, the processing device on
which it will be executed when encoding the subsequent frames. Due to the
small number of nodes and edges, the application of this algorithm does not add
a significant delay to the encoding procedure.

4 Experimental Results and Evaluation

The validation and evaluation of the proposed dynamic load distribution model
was conducted with the H.264/AVC encoder implemented by the JM 17.2 refer-
ence software [11]. The considered test video sequences were blue sky, rush hour
and river bed, with a spatial resolution of 1920 × 1080 pixels. The ME mod-
ule was parametrized with a search area of 32×32 pixels. The used evaluation
platforms (presented in Table 1) adopted Linux operating system, CUDA 4.1
framework, icc 12.0 compiler and OpenMP 3.0 API to parallelize the video en-
coder. As it can be seen, Platform 1 has a slightly faster GPU than Platform 2,
and a significantly less powerful CPU.

Table 1. Hybrid (CPU+GPU) platforms adopted in the considered evaluation

Platform 1 Platform 2
CPU GPU CPU GPU

Model Intel Core i7 GeForce 580GTX Intel Core 2 Quad GeForce 580GTX
Cores 4 512 4 512
Frequency 3GHz 1.54 GHz 2GHz 1.59GHz
Memory 4GB 1.5GB 4GB 1.5GB

The achieved encoding performance is presented in Fig. 4, for both hybrid
platforms. The presented charts compare the resulting performance (in the time
per frame (ms)) of five different scheduling strategies:

CPU-only - the whole encoder is implemented in the CPU;
GPU-only - the whole encoder is implemented in the GPU;
Chen original - method proposed by Chen [7], where the ME, SME and

interpolation modules are statically offloaded to the GPU
(the rest are kept in the CPU);

Chen optimized - Chen’s encoder [7], optimized with OpenMP and SSE4 vec-
torization techniques;

Proposed - presented dynamic load distribution strategy.
Contrasting to Chen’s approach [7], which considers a static offloading to the

GPU of only the ME, SME and interpolation modules, the proposed distribution
method combines an adaptive data-level partitioning (see eq. 5) and a dynamic
selection of the device that offers the best performance for each of the processing
modules of the video encoder (see Fig. 3).
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(a) Platform 1. (b) Platform 2.

Fig. 4. Encoded frames per second (fps) for a varying number of RFs, using the
1920×1080 video format. Comparison of the proposed approach with CPU-only, GPU-
only and the approach proposed by Chen [7].

The ME module of all these implementations (except the CPU-only) adopted
the improved search algorithm proposed in [3]. Furthermore, OpenMP paral-
lelization techniques to exploit the available number of CPU cores were exten-
sively considered (except in GPU-only and Chen original), as well as a broad set
of CUDA optimizations to exploit, as much as possible, the GPU computational
resources (except in CPU-only).

The performance regarding the frames per second considering different num-
ber of RFs are presented in Fig. 4 for two platforms specified in Table 1. As it can
be seen, the Proposed method achieves speedup levels of up to 1.5 and 2, when
compared with the GPU-only implementation and with the Chen optimized
strategy, respectively, and a speedup of up to 5 when compared with the CPU-
only implementation. Due to the fact that Platform 1 has a significantly slower
CPU, the Chen optimized strategy achieves a lower performance when com-
pared to the GPU-only implementation, while in the case of Platform 2 their
performances are very similar. However, GPU-only requires a CUDA imple-
mentation of all the H.264/AVC modules of the inter-loop. The impact of the
considered OpenMP and SSE4 vectorization [12] optimizations of the CPU code
are emphasized when comparing the results obtained for the Chen original and
Chen optimized approaches.

Contrasting with Chen optimized and GPU-only approaches, the Proposed
algorithm achieves a higher performance that is less dependent on the adopted
hybrid platform. In particular, by simultaneously using the computational re-
sources of the CPU and the GPU devices, in an adaptive and dynamic load
balanced fashion, both processing devices participate in a much better distri-
bution of the computational load, based on a constantly updated prediction of
the offered performance by each device. Finally, it can be seen that a real time
encoding with more than 20 fps is achieved on both platforms for a single RF.
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5 Conclusions

A new dynamic load distribution model for hybrid CPU+GPU advanced video
encoders was proposed. The distribution is carried out by exploiting both in-
tra/inter task-level and data-level parallelism. The possibility of asynchronously
processing on the CPU and GPU is also fully exploited to efficiently distribute
the computational load of the most demanding H.264/AVC modules among
these devices. A dynamic load balancing strategy is defined based on a per-
formance model that uses prediction techniques from the previous processing
results. Based on the proposed model and method, a speedup up to 2 for the
total encoding time comparing state-of-the-art approaches was achieved, as well
as the ability to encode more than 25 fps for a HD 1920×1080 resolution, con-
sidering all the sub-block prediction modes and an exhaustive ME algorithm.
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