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Abstract We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which
can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth
surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due
to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit
approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision
strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend
together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function
from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point
set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface
reconstruction and geometry modeling such as surface completion.

Keywords moving least squares, surface reconstruction, implicit modeling, partition of unity approximation

1 Introduction

Multi-media have seen three waves so far: sound,
images, and video. The arrival of 3D scanning has cre-
ated the fourth digital media: 3D geometry, also called
3D geometric models. Applications of 3D geometry
already cover a wide range of areas from multimedia,
entertainment and computer graphics, to biomedical
computing, reverse engineering and scientific comput-
ing. This new multi-media wave brings with it the
need to design efficient algorithms for the acquisition,
reconstruction, analysis, manipulation, simulation and
transmission of complex 3D models. Among these algo-
rithms, surface reconstruction from the raw range data
is one of the most fundamental and challenging tasks.

Digital scanning devices are now commonly used to
acquire high-resolution 3D models. Current scanners
are able to produce large amounts of raw, dense point
sets. One of the principal challenges faced today is the
development of surface reconstruction techniques which
deal with the inherent noises of the acquired dataset.
Many surface reconstruction methods have been pro-
posed in recent years, among these methods, point
set surfaces (PSS) which are defined by local moving

least-squares (MLS) approximations of the data[1-2]

have been proven to be a powerful approach for mesh-
less surface representation. PSS is one of the most flex-
ible surface representations for point sets and has been
successfully used in a wide range of applications[3].

Initial Levin’s definition[1] and PPS definition[2] are
relatively expensive to compute. Although significant
progress[4-5] has been made to design simpler and more
efficient definitions, the central limitation of the robust-
ness of PSS is the plane fit operation that is highly un-
stable in regions of high curvature where the sampling
rate drops below a threshold. Recently, Guennebaud et

al.[6-7] proposed an algebraic point set surfaces (APSS)
framework to locally approximate the data using alge-
braic spheres. Compared with MLS approximations[2],
this strategy exhibits high tolerance with respect to low
sampling densities while retaining a tight approxima-
tion of the surface.

Although algebraic point set surfaces (APSS)[6] are
successful for representing point set surface, APSS also
has its own drawbacks. One problem is that algebraic
point set surfaces are defined locally, which make it in-
convenient for geometry modeling operations such as
shape blending and deformations, and the local feature
also makes the approximation accuracy for the point set
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not easy to control. Although Guennebaud et al.[7] pre-
sented a real-time rendering method using a dynamic
upsampling strategy, this approach does not work well
for surface reconstruction of incomplete data with large
holes due to its local nature. Another drawback of
APSS[7] is that a local MLS approximations is com-
puted for each point, thus, it is not efficient enough to
process large point set.

To overcome the above problems, inspired by multi-
level partition of unity implicit (MPU) techniques[8-9],
we present an MPU algebraic point surfaces which can
be represented by either a projection or an implicit
form. We use the partition of unity approach to build
an implicit approximation function for the scattered
point set. We first use an octree subdivision strategy
to adaptively construct local algebraic spheres for the
point set, and then apply weighting functions to blend
together these local shape functions, resulting in an
error-controlled approximation of the signed distance
function from the surface. The signed distance func-
tion makes the degree of the approximation to be easily
controlled, and is convenient for surface reconstruction
(polygonization), which is the zero level set isosurface
extraction of the constructed distance function. We
also present an efficient and robust projection opera-
tor, making our approach robust even for filtering noisy
data and point set resampling.

Our method has the advantages of both multi-level
partition of unity implicits method[9] and algebraic
point set surfaces (APSS)[6]. As a consequence, com-
pared with PSS definition[2], our method is simpler and
more robust at the surface reconstruction at the re-
gions of high curvature. Compared with [9], algebraic
point set surface we applied is more robust. The ini-
tial MPU approach[9] uses either bi-variate polynomials
when the data are flat enough, or tri-variate implicit
quadrics otherwise, however, both this selection proce-
dure and the fitting of implicit quadrics (which not very
robust) make the approach more complicated and less
stable. Compared with the APSS[6-7], our method is
much faster at surface reconstruction, since we apply
an octree subdivision method adapting to the complex-
ity of the local surface shape. In addition, our method
is more convenient than APSS[6-7] for geometry mod-
eling such as surface completion. A shorter version of
this paper appeared in [10].

The rest of our paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 gives a technical
description for multi-level partition of unity algebraic
point set surfaces (MPU-APSS). In Section 4, we pro-
pose dynamic point resampling, and in Section 5, we
give the experimental results and discussions. Finally,
we conclude our paper in Section 6.

2 Related Work

Point Set Surface (PSS)[2] is an efficient smooth
surface representation for point sets, which is con-
structed using Levin’s moving least squares projection
operator[1]. The projection is an iterative procedure
where at each step the point is projected onto a poly-
nomial approximation of the neighboring data, and the
polynomial approximation is fitted from a local ref-
erence plane computed by a non-linear optimization.
PSS also has been applied in geometry modeling. Pauly
et al.[11] introduced a point-based modeling system, in
which they defined an implicit PSS function to perform
constructive solid geometry (CGS) operations on ob-
jects. By omitting the polynomial fitting step, Amenta
and Kil[4] showed that the same surface can be com-
puted by weighted centroids and a smooth gradient
field, this method is also extended to achieve convex
interpolation using Hermite centroid evaluations[12].
Fleishman et al.[13] presented a robust MLS technique
for reconstructing a piecewise smooth surface from a
noisy point set, they used techniques from robust statis-
tics to guide the creation of the neighborhoods used by
the MLS computation.

Rather than fitting a plane, inspired by [14], Guen-
nebaud et al.[6] defined the surface by means of sphere
fitting which significantly improves the robustness
against low sampling density. For PSS[2], even though
fitting polynomials allows achieving tighter approxi-
mations, the approach fails when the data cannot be
locally represented as a height field. Another limitation
of the robustness of PSS[2] is that the plane fit opera-
tion becomes highly unstable when the sampling rate
drops down. However, moving least squares of fitting of
algebraic spheres performs better at the regions of high
curvature. Recently, Guennebaud et al.[7] provided a
more generic solution that includes intuitive parame-
ters for curvature control of the fitted spheres, and also
presented a real-time rendering system for such sur-
faces using a dynamic up-sampling strategy combined
with a conventional splatting algorithm.

Many surface construction methods have been pro-
posed. Pioneering work in surface reconstruction was
done by Hoppe et al.[15], who created a piecewise
smooth surface in a multi-phase process that was based
on implicit modeling of a distance field. Amenta et

al.[16] presented a surface reconstruction in computa-
tional geometry view, however, their method usually
fails in both noisy and undersampled models or models
with sharp features. An alternative approach is to inter-
polate a set of points with radial basis functions (RBF)
which offers a smooth object representation. Typically
this requires the minimization of a thin-plate spline
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energy functional. Computing an RBF interpolation
is performed by solving a system of equations of the
size up to 3N × 3N , where N is the number of input
points. Both Carr et al.[17] and Morse et al.[18] pre-
sented a fast solver for RBF which greatly reduced the
complexity of RBF. Dinh et al.[19] used a nonsymmet-
ric RBF function which aimed at capturing sharp fea-
tures. They identified edges using covariance analysis
of a neighborhood of a point to determine the shape of
the function assigned to the point. Kazhdan et al.[20]

reconstructed surface from oriented points by casting
surface reconstruction as a spatial Poisson problem. Al-
though details can be reconstructed better, however, as
this method has to solve a large linear system, which
makes it not efficient to process large point data.

Ohtake et al.[9] introduced an implicit function sur-
face representation defined by a blend of locally fitted
implicit quadrics (MPU). Each quadric approximates
points in a local neighborhood, although the quadrics
fitting alleviate the limitations of polynomial fitting,
the quadrics are fitted by adding a few point constraints
away the surface neglecting the fact that the algebraic
distance is not linear. Xie et al.[21] extended the MPU
technique to handle noisy datasets, and they described
separate procedures for outlier detection and noise re-
moval for robust surface reconstruction. Another re-
lated approach is sparse low-degree implicit (SLIM)[22]

where the geometry consists of points equipped with
bivariate polynomials. Efficient rendering is accom-
plished by blending the primitives in screen space.
However this approach still suffers from the polyno-
mial fitting limitations and does not properly define a
smooth surface since it depends on the view direction.

Sometimes, the density of the point set might not
be sufficient for high quality rendering or surface re-
constructions, then the point sets have to be upsam-
pled. Particle simulation procedure[23-24] have been
widely used to control the sampling density of a point
cloud spread over an implicit surface. Guennebaud
et al.[25-26] presented iterative refinement schemes for
upsampling, while these methods are too costly to be
able to handle dynamic data. Xiao et al.[27] re-sampled
the in-between morphing object dynamically and adap-
tively using MLS surfaces. Alexa et al.[2] presented an
upsampling algorithm where the tangent plane of each
input sample is uniformly upsampled and the sampled
points are projected onto a precomputed polynomial
approximating the underlying surface. Although this
method is difficult to generate near-uniform sampled
surface, this scheme can be efficient in parallel GPU
implementation. Based on this upsampling procedure,
Guennebaud et al.[7] provided a real-time rendering sys-
tem using a dynamic up-sampling strategy, in which the

generated splats are projected onto the APSS to make
a smooth surface. However, since the APSS are defined
locally, for incomplete point sets with large holes, this
upsampling method does not work well. However, as
our MPU algebraic point set surfaces blend the local
shape approximations for the point sets, we can up-
sample and compete the point set with large missing
data.

Different from completion methods based on sur-
face reconstruction, Xiao et al.[28] presented a new ap-
proach for appearance and geometry completion over
point-sampled geometry. They converted the problem
of context-based geometry completion into a task of
texture completion on the surface. By using point set
surfaces filtering[29], the geometric detail is peeled from
the models and is converted into a piece of signed gray-
scale texture on the base surface of the point set surface.
Point set surfaces aggregation[30] and segmentation[31]

also can help to perform surface completion.

3 MPU Algebraic Point Set Surfaces

The partition of unity approach[8-9] is typically
used to integrate locally defined approximates into
an implicit approximation. Inspired by the partition
method[8-9], which makes reconstruction of huge mod-
els or complex surface possible and efficient, we now
present an MPU based algebraic point set surface, in
which we employee Guennebaud’s algebraic sphere[6-7]

as the only local approximating function, and from
which we benefit not only robustness but also simplic-
ity.

3.1 Algebraic Point Set Surfaces

The key idea of APSS[6] is to locally approximate
the point cloud by a fitted algebraic sphere that moves
continuously in space. Let point sets P = {pi ∈ R

3} be
equipped with normals ni and ri radii representing the
local point spacing. The normals ni can be estimated
from the initial scans during the point set acquisition,
or can be computed using local least-squires fitting[32].
The radii ri can be computed using a local estimation of
the density. These radii are used to define the following
adaptive weighting scheme wi(x) = φ((‖pi−x‖)/hi(x))
describing the weight of the point pi for any point x.
Here, h is a global scale factor allowing to adjust the
influence radius of every point, and φ is a smooth, de-
creasing weight function.

An algebraic sphere is defined as the 0-isosurface
of the scalar field S

u(x)(x) = [1, xT, xTx]u, where

u = [u0, . . . , u4]
T

is the vector of scalar coefficients de-
scribing the sphere. For u4 6= 0, the corresponding cen-
ter c and r radius is computed as c = − 1

2u4

[u1, u2, u3],
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and r =
√

c
T
c − u0/u4. The APSS Sp approximating

the point cloud P yields as the zero set of an implicit
scalar field g(x) representing the distance between the
evaluation point x and a locally fitted algebraic sphere
u(x):

g(x) = S
u(x)(x) = [1, xT, xTx]u(x). (1)

The sphere u(x) is obtained by minimizing given
distances between itself and the neighbors of x in a
weighted least square sense. The original algorithm
minimizes the positional constraints Su(pi) = 0 and
the derivative constraints ∇Su(pi) = ni simultaneously
such that:

u(x) = arg min
∑

i

wi(x)(Su(pi)
2 + ‖∇Su(pi) − ni‖

2).

(2)
This minimization yields a standard system of linear

equations. Guennebaud et al.[7] proposed a generalized
fitting procedure to solve (2) by minimizing the two
key constraints (positional, derivative) separately and
starts with the derivative constraints, and obtain the
following explicit solution for the coefficients of u(x):

u4 = β
1

2

∑

wip
T
i ni −

∑

w̃ip
T
i

∑

wini
∑

wipT
i pi −

∑

w̃ipT
i

∑

wipi

(3)





u1

u2

u3



 =
∑

w̃ini − 2u4

∑

w̃ipi (4)

u0 = −[u1 u2 u3]
∑

w̃ipi − u4

∑

w̃ip
T
i pi (5)

where wi = wi(x) and w̃i is the normalized weight of
the sample pi: w̃i = wi/

∑

j wj . β is an additional
scalar parameter that, for the time being, is equal to
1. The equations for the gradients are omitted, but can
be derived easily.

3.2 MPU Algebraic Point Set Surfaces

The partition of unity approach[8] is used to build a
global function from a set of locally defined functions,
which resembles the behavior of each function within
their respective domains of influence. The basic idea of
the partition of unity approach is to break the data do-
main into several pieces, approximate the data in each
subdomain separately, and then blend the local solu-
tions together using smooth, local weights that sum up
to one everywhere on the domain, more details refer to
[9].

We now employ the partition of unity approach to
build an approximation and interpolation function for
the scatted scanned scattered points. We first compute
the bounding cube Ω of the points in M , then we apply
an adaptive octree-based subdivision to Ω . Let ui(x)

be the locally fitted function defined in vicinity ci (the
center of the cell) using the algebraic sphere. The do-
main of influence of each local function is designated by
assigning to it a nonnegative weight function wi(x). So
the result blended function defined on Ω by the parti-
tion of unity approach can be formulated as:

f(x) =

∑n

i=1 wi(x)ui(x)
∑n

i=1 wi(x)
. (6)

Let ϕi(x) = wi(x)/
∑n

i=1 wi(x), then the sum of
this set of nonnegative compactly supported functions
{wi(x)} is unity:

n
∑

i=1

ϕi(x) ≡ 1 on Ω . (7)

(6) and (7) constitute the core of the our function ap-
proximation employing partition of unity approach[8] as
shown in Fig.1. If an approximation of M is required,
we use the quadratic B-spline b(t) as [9] to generate
weight functions, wi = b(3|x − ci|/2Ri), if an inter-
polation of M is required, we use the inverse-distance
singular weights[33].

Since the important properties of the blending func-
tion f(x) such as the maximum error and convergence
order are inherited from the local behavior, to con-
struct a recursive procedure for assembling an MPU
approximation at point x with precision ε0, we first
computed a local shape function ui(x) for a cell within
a specified threshold. We estimate a local max-norm
approximation error applying the Taubin distance[34]

ε = max |u(pi)|/|∇u(pi)|, if ε is greater than a user-
specified threshold ε0, the cell is subdivided and the
fitting process is performed for the child cells.

Similar to [9], we blend these local shape functions
to build an implicit approximation function. By using

Fig.1. (a) Blending of a set of locally defined functions using par-

tition of unity approach. The resulting function (black solid curve

Sp) is constructed from three local APSS functions (u1(x), u2(x),

and u3(x)) with their associated weight functions (w1(x), w2(x),

and w3(x)). (b) Shows in a clear way of the procedure.
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Fig.2. Multi-level partition of unity algebraic point set surface for multi-level surface. Based on the hierarchical octree division of pint

set (a), the surface is reconstructed at different level (b).

changing precision ε, it enables us to compute an error-
controlled approximation of the signed distance func-
tion from the surface. With the implicit distance func-
tion, we can reconstruct surface (polygonization) for
the underlying point set which is the zero level set iso-
surface extraction of the distance function as shown in
Fig.2.

Besides the surface reconstruction, our MPU-APSS
is able to perform surface completion. Guennebaud et

al.[7] have provided a dynamic up-sampling strategy, in
which the generated splats are projected onto the APSS
to make a smooth surface. However, the APSS[6] de-
fined locally makes this upsampling method not work
well for completing point sets with large holes. Since
our MPU algebraic point set surfaces blend the local
shape approximation surfaces for the point sets, we can
upsample and compete the point set with large missing
data. The comparison results are shown in Fig.10.

4 Projection Operator and Resampling

Projection operator is useful for generating a smooth
surface from the noisy point set. Practical problems of
MLS surfaces[2] are a complicated non-linear optimiza-
tion to compute a tangent frame and the normal to this
tangent frame is usually not the surface normal. Simi-
lar to MLS surfaces, the sphere normal can differ from
the actual surface normal. In this section, we use MPU
algebraic point set surface definition to present simple,
efficient projection operators, and to compute the ex-
act normal of the surface. The projection operators are
useful for filtering noisy point-sampled geometry and
performing the re-sampling processing.

4.1 Projection Operator

Since our MPU algebraic point set surfaces is de-
fined by blending the local shape approximations, we
first come to the definition of the projection operator
for one single algebraic sphere. We extend the almost
orthogonal projection in [5] to perform the projection
procedure for algebraic PSS. For an implicit function
f , let n(x) and a(x) define a tangent frame with origin
in a(x), then the projection Q(x) of x onto the tangent
is computed as:

Q(x) = x − n(x)T(a(x) − x)n(x). (8)

The APSS Sp approximates or interpolates the point
set P = {pi ∈ R

d}, and yields as the zero set of the
implicit scalar field f(x), where f(x) = S

u(x)(x) =
[1, xT, xTx]u(x) represents the algebraic distance be-
tween the evaluation point and the fitted sphere u(x).

Suppose we project point onto the algebraic sphere
u(x), we compute a(x) as the weighted average of
points in the neighborhood N(x) of x:

a(x) =

∑N−1
i=0 θ(‖x − pi‖)pi

∑N−1
i=0 θ(‖x − pi‖)

. (9)

The surface normal n(x) corresponding to x is de-
fined as the gradient of the implicit u(x): n(x) =
∇f(a(x)).

Inspired by [5], for a given point x, we can adapt
the projection procedure to make it almost orthogonal.
By almost orthogonal we mean that the projection is in
direction of n(x′), if x′ is the projection. The projec-
tion operator for APSS works as follows: the projection
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always considers the original point x and not the inter-
mediate points x′. Fig.3 shows two steps of an almost
orthogonal projection of a point x onto the surface.
Since f(x′) = n(x′)T(a(x′) − x′) ≈ 0, the terminated
point is a point x′ on the surface. More specifically, the
following Table 1 gives the pseudocode that computes
an orthogonal projection of x.

Fig.3. The first two steps of an almost orthogonal projection of a

point x onto the surface. In each step the current approximation

x′ is used to build an orthogonal tangent frame using n(x′) and

a(x′), onto which x is projected to get a new approximation.

Table 1. Pseudocode for Computing an Almost Orthogonal

Projection of x

1. Set x′ = x.

2. Compute a(x′) and n(x′).

3. Set x′ = x − n(x′)T(a(x′) − x)n(x′).

4. If ‖n(x′)T(a(x′) − x′)‖ > ε go back to 2.

Then we come to the almost orthogonal projection
for MPU algebraic PSS. As our MPU algebraic point
set surfaces are defined by blending the local shape
approximations, to define a projector for MPU alge-
braic PSS, instead of projecting x to the sphere it as-
sociates with during the MPU-APSS construction, we
project the point x to the underlying MPU algebraic
PSS f(x) (see (6)), which is weighted average of the
implicit spheres. Note that we apply decent gradient
method to compute the normal n(x). Then using the
iteration method presented in Table 1, we obtain the fi-
nal projected point. The almost orthogonal projection
for MPU-APSS is simple and efficient, and has reason-
able convergence.

The almost orthogonal projection is useful for point
set filtering. To make a smooth surface from the noisy
point set, we can first compute an MPU-APSS based
on the given precision for the underlying point sets, and
then we project the point onto the underlying surface to
obtain a smooth surface, as illustrated in Fig.9. This al-
most orthogonal projection is simple and efficient, con-
verges fast, and provides a good coverage when the tan-
gential components of the input samples do not overlap.

4.2 Re-Sampling and Completion

When the density of the point set is not sufficient

enough for high quality rendering or surface reconstruc-
tion, the point set then have to be upsampled. With
the implicit function built for the scattered point sets,
and the proposed projection operator, we now come
to the point set re-sampling operation. To obtain a
complete geometry model, our upsampling procedure
is performed in the following three steps. (a) Density
estimation for detecting regions of insufficient sampling,
(b) adaptive upsamping of the neighborhood of each de-
tected points, and (c) projection of the sampled points
on the MPU-APPS.

To detect regions with insufficient sampling density
dynamically, we estimate and record the local sampling
density for each point of the object. We estimate the
local sampling density ρi for each pi ∈ P by finding the
sphere with minimum radius ri centered at pi that con-
tains the k-nearest neighbors to pi, then ρi is defined
as ρi = k/ri

2. Let σ be the density threshold value
for up-sampling, if ρ < σ, new sample points must be
inserted in the neighborhood of pi.

Once the point pi of insufficient sampling density
is detected, the points Ni nearby are projected onto a
plane originated at pi with normal ni. A bounding rect-
angle is established for the projected points, and points
are uniformly re-sampled in the rectangle according to
a user specified threshold[2], as shown in Fig.4. Then
the MPU-APSS is constructed for the original region
containing the point pi, using the almost orthogonal
projection for MPU-APSS, the re-sampled points are
projected onto the underlying MPU-APSS to achieve
the final up-sampling result. The normal at each sam-
pled point can be computed directly by evaluating the
gradient of the MPU-APSS. As shown in Fig.11, the
up-sampling techniques eliminate the insufficient sam-
pling regions.

Fig.4. MPU-APSS resampling, for each point pi, we first gener-

ate m × m sampled points according to its local point spacing

and user’s required density, then we project these m × m points

onto the implicit MPU-APSS surface with the almost projection

operator.

5 Experimental Results and Discussions

To demonstrate the efficiency of our method we
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have implemented lots of examples including surface
reconstruction (polygonization), geometry reconstruc-
tion for the incomplete scattered geometry with large
holes, geometry reconstruction for the point set with
heavily noise, we also present surface upsampling ex-
amples. In addition, we provide the comparison results
with other surface reconstruction methods such as [6,
9]. We measure the performance of these algorithms on
a machine of an Intel Core 2 Duo 2.6GHz with 2 GB of
RAM.

Fig.5. (a) Reconstructed surface (polygonization) using our

MPU-APSS. (b) Reconstructed surface using MPU (Ohtake et

al., 2003[9]).

Fig.6. Surface reconstruction (polygonization) comparison from

the scatted point sets. (a) Original point set. (b) Reconstructed

surface using MPU-APSS. (c) Reconstructed surface using MPU

(Ohtake et al., 2003[9]).

In Fig.5 and Fig.6, we show the surface reconstruc-
tion (polygonization) and compare with [9]. Ohtake
et al.[9] use one of these three local approximations to
fit the points in a cell: (a) a general 3D quadric, (b)
a bivariate quadratic polynomial, and (c) a piecewise
quadric surface. The local shape function selection de-
pends on the point set distribution in the cell, for exam-
ple, they use piecewise quadric surface to reconstruct
sharp features. To handle sharp features, however,
MPU[9] requires fitting a number of surfaces locally, and
this is a non-trivial task as it requires the identification

of discontinuities, in addition, this method is also not
robust for noisy point set (see Fig.6). Our MPU-APSS,
combining multi-level partition of unity with APSS, is
simpler and more efficient, and shows improved stabi-
lity for fitting the high curvature regions, as illustrated
in Fig.5 and Fig.6, the features is better reconstructed.
There are 417 245\217 351 points in Fig.5 and Fig.6, re-
spectively, it takes our method 19 s\7 s for reconstruc-
tion, while it takes 66 s\32 s using method in [9]. In
Fig.5, for both our method and MPU[9], the approx-
imation accuracy ε is set 0.0001 (0.01% of the length
of the diagonal of the bounding box of the model), the
minimum number of points in each cell is set 15.

Fig.7 shows the filtering result using our MPU-APSS
method, as shown in Fig.7, even handle the heavily
noisy point data, the filtered point set is smooth and
the features are well preserved. Different from surface
reconstruction (see Fig.5 and Fig.6), which is recon-
structed from the implicit distance fields, the filtering
result in Fig.7 is performed using the projection ope-
rator.

Fig.8 gives MPU-APSS reconstruction of a noisy
data using different curvature control parameter β. By
introducing parameter β ∈ [0, 1] in (3), algebraic sphe-
rical can be continuously tweaked to fit from a pure
planar fit and a pure spherical fit[7]. More generally,
this parameter allows to control the curvature of the
fitted sphere: a negative value of β inverts the cur-
vature, a value greater than one tends to exaggerate
the surface features. Note that for APSS this feature
should only be used for densely sampled models since
extreme settings of β will reduce the stability of the rep-
resentation. With the β integrated in our MPU-APSS
for surface reconstruction, however, it is even robust
to process the coarsely sampled models, as shown in
Fig.8. Reconstructing smooth surface from the noisy
point set, with the changing parameter β, our MPU-
APSS enables to preserve the surface structure while
removing the noise, and to enhance the features with
large β.

In Fig.9 and Fig.10, we show the surface reconstruc-
tion and surface completion results using the proposed
method, and give the comparison results. Using the

Fig.7. Noisy point set filtering. (a) Original point set (19K

points). (b) Model with noise (0.5% of the diagonal). (c) Fil-

tered result using the almost orthogonal projection.
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Fig.8. MPU-APSS reconstruction of a noisy data using different

values of the curvature control parameter β. (a) Input model.

(b) β = 0.0. (c) β = 1.0. (d) β = 2.0. (e) β = 3.0. (f) β = 4.0.

octree subdivision strategy, compared with [6, 9], our
method is easy to control the approximation accuracy,
as shown in Fig.9, the features are better reconstructed
than [6, 9]. In Fig.10, we perform the surface recon-
struction on an incomplete point set with large hole.
As our MPU algebraic point set surfaces blend the lo-
cal shape approximations for the point sets, we can

Fig.9. (a) Original bunny point set. (b) Reconstruction using

APSS[6]. (c) Reconstruction using MPU[9]. (d) Reconstruction

using proposed MPU-APSS.

complete the point set with large missing data. How-
ever, the APSS[6] defined locally makes this upsam-
pling method not work well for completing point sets
with large holes, as illustrated in Figs. 10(c) and 10(f).
As APSS[6] computes local approximation for each
point while our method selects the center of the oc-
tree leaves and blends those local approximations us-
ing a partition of unity, thus our method is faster than
APSS[6]. For the Dragon\Bunny models in Fig.10 with
452 645\134 346 points, respectively, our methods takes
20 s\6 s, while APSS[6] takes 300 s\80 s.

Fig.10. Surface completion. (a), (d) The incomplete point sets with holes. (b), (e) Completed surfaces with APSS[6]. (c), (f) Completed

surfaces with proposed MPU-APSS.
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Fig.11 gives an upsampling result, our MPU-APSS
combining almost orthogonal projection is robust for
upsampling the insufficient sampled point sets. Note
that the results are smooth and the insufficient regions
with sharp features are also well reconstructed. Guen-
nebaud et al.[7] also provided a dynamic upsampling
strategy to make a real-time rendering system, and they
presented algorithms to implement the upsampling ope-
ration on parallel multicore architectures. In the future,
we will integrate our upsampling methods into GPU ac-
celeration.

Fig.11. (a) Original point set with 24K points. (b) Upsampled

result set with 710K points.

6 Conclusion and Future Work

We have presented an MPU algebraic point set sur-
faces which can be represented by either a projection
or an implicit form. Our method employs the partition
of unity approach to build an implicit approximation
function for the scattered point set, which results in
an error-controlled approximation for the point data.
Compared with APSS method[6], our method has fol-
lowing two main advantages: one is that our method
offers much higher performance in the case of smooth-
ing of a densely sampled surface, because APSS have to
consider hundreds of samples at each evaluations while
the proposed MPU-APSS approach does fewer of these
expensive sphere fits; the other is that with pure APSS
we have to determine the weighting functions wi while
this can be automatic with the hierarchical octree sub-
division schemes used in our method. In addition, the
MPU-APSS preserves the desirable nature of the im-
plicit approaches such as automatic large hole filling.
We also have presented an efficient and robust projec-
tion operator to make the approach well suited to filter
heavily noisy input data and point set resampling.

There are also some drawbacks in our method.
Our method requires precomputation before perform-
ing surface reconstruction, and the surface reconstruc-
tion result also depends on the arbitrary choice of the
nodes. Another drawback is that the partition of unity
(POU) method may generate inflexions, although using

multi-level partition of unity may alleviate this prob-
lem, however, this problem cannot be avoided com-
pletely. In the future, we will investigate point-based
modeling using the MPU algebraic point set surfaces,
and perform constructive solid geometry (CGS) opera-
tions on point sets. Another interesting future topic is
to automatically detect the outliers from raw scanned
data using our MPU-APSS, and reconstruct smooth
surface from raw scanned data with outliers.
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