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Abstract 

To overcome the limitation of strictly non-preemptive frame transmission in Ethernet  networks, the IEEE802.1Qbu 
standard was introduced. This standard  specifies a one-level frame  preemption paradigm wherein, depending on 
their priority levels, frames are grouped into two classes: namely, the ``express frames'' and the ``preemptable 
frames''.  These two classes are  given with the interpretation that (1) only express frames can preempt 
preemptable frames;  and (2) two frames belonging to the same class cannot preempt each other. While this 
approach  partially solves the problem, some preemptable frames can still suffer long blocking periods,  
irrespective of their individual priority levels. Indeed, there are frames that do not fall into the express frames 
class,  but nevertheless have firm timing requirements that can only be met if they can benefit from preempting 
lower priority frames. To ameliorate the condition of such frames, we propose a multi-level preemption paradigm. 
Specifically, we expose the limitations of the one-level preemption approach experimentally; and we present the 
feasibility and implementation requirements of the multi-level preemption scheme in details. 
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Abstract—To overcome the limitation of strictly non-
preemptive frame transmission in Ethernet networks, the IEEE
802.1Qbu standard was introduced. This standard specifies a one-
level frame preemption paradigm wherein, depending on their
priority levels, frames are grouped into two categories: namely,
the “express frames” and the “preemptable frames”. These two
categories are given with the interpretation that (1) only express
frames can preempt preemptable frames; and (2) two frames
belonging to the same category cannot preempt each other. While
this approach partially solves the problem, some preemptable
frames can still suffer long blocking periods, irrespective of
their individual priority levels. Indeed, there are frames that
do not fall into the express frames category, but nevertheless
have firm timing requirements that can only be met if they can
benefit from preempting lower priority frames. To ameliorate the
condition of such frames, we propose a multi-level preemption
paradigm. Specifically, we expose the limitations of the one-
level preemption approach experimentally; and we present the
feasibility and implementation requirements of the multi-level
preemption scheme in details.

I. INTRODUCTION

The legacy Ethernet standards were originally designed

targeting only non real-time applications and desirable features

like (1) frame preemption [1]; (2) global time synchroniza-

tion [2]; (3) frame replication and elimination for reliabil-

ity [3]; (4) path control and reservation [4]; and finally (5)

centralised network configuration [5] among other features

were missing in order to make it also suitable for real-time ap-

plications. A tremendous amount of work has been achieved in

this direction over the past few years and several modifications

and/or amendments have been made to the standards. Ethernet

has successfully been patched and augmented with all the

aforementioned features [6], thus leading to a set of updated

standards, referred to as Time-Sensitive Networking (TSN) [7].

Before these standards, frames transmission were thought

of as atomic operations, i.e., they were transmitted over

links of the network by following a fully non-preemptive

policy, irrespective of the individual frame priorities [8], [9].

Consequently, the transmission of a low-priority frame could

prevent and/or block that of any high-priority frame for a non-

negligible period of time. To illustrate this claim, assuming an

IEEE 802.1 network operating at 1Gb/s, the size of a low-

priority frame can perfectly be as large as the maximum valid

Ethernet frame, i.e., 1542 bytes [10]. This means a blocking

of 12.336µs, which is prohibitive for real-time domains like

the industrial automation, where latency requirements can

be as stringent as 5µs at each node [11]. To circumvent

and/or mitigate this limitation, the IEEE 802.1Qbu [1] and

IEEE 802.3br [12] standards have defined a one-level pre-

emption scheme, which is specified as follows. Two Medium

Access Control (MAC) service interfaces referred to as the ex-

press MAC interface (eMAC); and the preemptable MAC inter-

face (pMAC) are implemented. Frames assigned to the eMAC

and pMAC service interfaces are called “express frames” and

“preemptable frames”, respectively. Then, only express frames

can preempt preemptable frames. Finally, frames transmitted

through the same service interface cannot preempt each other

and are served in a first-in-first-out (FIFO) manner. Fig. 1

illustrates such a scenario at a given output node.

Fig. 1: Illustration of the one-level preemption scheme.

In this figure, three frames (f1, f2 and f3) are considered

for transmission. Frames f2 and f3 are eMAC frames (in

red colored box), whereas f1 is a pMAC frame (in green

colored box). The downward arrows define the frame arrivals

and upward arrows define the time instant at which the

transmission of each frame is completed. Frame f1 arrives

first (at time 0) and starts its transmission. However, upon

the arrival of f2, f1 is preempted and f2 is transmitted. Now

during the transmission of f2, frame f3 arrives, but it cannot

start its transmission because f2, which is in the same service

category, is being transmitted. The transmission of f3 starts

only after the transmission of f2 is completed. Finally, as all

the eMAC frames, which arrived after the preemption of f1
have been transmitted, f1 can resume its transmission.

As shown in the figure, preemption favors a prompt service

of all eMAC frames, but this comes at the cost of some

overheads, unfortunately. The overheads stem from the fact

that fragments of split frames have to form valid Ethernet



Fig. 2: Frame transmissions under 1-level preemption vs. 2-level preemption.

frames. As a matter of fact, pieces of information (e.g., the

fragment count, an error correction code to detect whether

all fragments have correctly been transmitted, etc.) must be

added to the fragments of the preempted frame – here, f1 –

so that the network nodes can correctly transmit and receive

all of them. In addition, these overheads are used to correctly

reconstruct the original frame at each receiver node. Note that

the “receiver node” herein includes all downstream switches

and the final destination node of a frame. We will keep this

convention throughout this paper.

II. MOTIVATION FOR PROMOTING A MULTI-LEVEL

PREEMPTION PARADIGM

From the discussion conducted in Section I, it follows that

the one-level preemption scheme greatly improves the respon-

siveness of eMAC frames, but exposes serious limitations

and poor performance, when it comes to the transmission of

pMAC frames. This may nullify the benefits the standards

sought to bring about in the first place. Indeed, there are

frames that cannot be classified as eMAC frames, but have

firm timing requirements. These frames should not be blocked

for prohibitively long time periods by lower priority frames in

order not to jeopardize the schedulability of the entire system.

On another front, the current specification of the one-level

preemption operation in the standards does not allow these

frames to leverage the basic benefits of enabling preemption,

unfortunately. Fig. 2 illustrates the case. In this figure, five

frames (f1, f2, f3, f4, and f5) are considered for transmission.

Frames f2 and f4 are eMAC frames (in red colored boxes)

with stringent timing constraints; frames f3 and f5 are pMAC

frames (in black colored box) with firm timing constraints;

and finally f1 is a pMAC frame with no timing constraint at

all (in green colored box). In this settings, we assume that all

frames with stringent and firm timing requirements must be

transmitted before the arrival of the next one of the same type.

We also assume that f3 and f5 have a higher priority than f1.

In this scenario, frame f1 arrives first (at time 0) and starts its

transmission, followed by frame f2, and finally frame f3.

⊲ In the one-level preemption paradigm: upon the arrival of

f2, frame f1 is preempted since f2 is an eMAC frame. Then,

upon the completion of this frame, f1 resumes its transmission.

This holds true despite the earlier arrival of f3, which has

a higher priority than f1. This is due to the one-level of

preemption scheme as pMAC frames cannot preempt each

other, thus exhibiting a priority inversion problem! As a result,

f3 and f5 are delayed until the completion of f1, thereby

preventing f3 from meeting its timing requirement.

⊲ In the 2-level preemption transmission paradigm: The

aforementioned issue is circumvented. Here, frames f3 and f5
received better services. Frame f3 is transmitted immediately

after the completion of f2, and f5 is also transmitted imme-

diately after the completion of f4. This results in f3 being

able to meet its timing requirement, as well as a noticeable

improvement in the completion time of both f3 and f5.

From this example, it follows that pMAC frames with firm

timing requirements suffer diminished responsiveness under

the 1-level preemption paradigm, but the situation improves

already under a 2-level preemption paradigm. Since this type

of frames are not uncommon in real-time applications, this

represents a clear motivation for exploring, not only a 2-

preemption, but a multi-level preemption scheme in TSN to

draw the maximum benefit from this approach.

This research. In this paper, we advocate for a multi-

level preemption paradigm in Ethernet in order to circum-

vent the limitations encountered in the one-level preemption

scheme. Our contribution is twofold. First, we propose a

new framework wherein the non-preemptive transmission con-

straints among non-express frames is relaxed. Specifically, we

allow non-express preemptable frames with stringent timing

requirements to preempt frames that are free from any timing

requirements (as shown in Fig. 2). Then, we describe the oper-

ation dynamics of our approach and the actual implementation

recommendations for its feasibility.

Paper organization. The rest of the paper is organized

as follows. Section III discusses relevant related works while

the system model is presented in Section IV. Section V ex-

plains the current implementation of the one-level preemption

mechanism in Ethernet networks while Section VI details the

feasibility and implementation requirements of the multi-level

preemption scheme. Section VII presents experimental results

to demonstrate the weaknesses of the existing one-level pre-

emption scheme, which the multi-level preemption approach

can efficiently resolve. Finally, Section VIII concludes the

paper and presents future research directions.



III. RELATED WORK

Most of the literature on frame preemption in Ethernet

have focused on the impact of preemption on the end-to-

end transmission delay. To this end, simulation is commonly

used (see [9], [13]–[15] for more details). Most of the authors

relying on this methodology recognize the effectiveness of

frame preemption in Ethernet and have reached the conclu-

sion that it allows system designers to drastically reduce the

transmission delays of express frames, while the performance

of preemptable frames does not degrade much. Kim et al. [14]

showed that preemptive switched Ethernet provides better

performance than the standard IEEE 802.1Q/p protocol. This

holds true especially when real-time and non-real time frames

are transmitted over the same network. In the same vein, Thiele

and Ernst [9] observed that the end-to-end delays of express

frames under preemptive Ethernet are very close to those of

IEEE 802.1Qbv [2], thus suggesting the standard Ethernet with

enabled preemption as a viable alternative to IEEE 802.1Qbv.

It is well established in the research community that sim-

ulation is neither an exhaustive, nor a rigorous means of

evaluating the performance of a system. This is due to the

fact that it does not guarantee the occurrence of the instance

that would produce the worst-case scenario. Consequently,

despite the vast quantitative performance results obtained

through this technique, more sophisticated approaches have

been developed to provide guarantees on end-to-end delays of

Ethernet frames. In this direction, Thiele and Ernst [9] pre-

sented a Compositional Performance Analysis (CPA) for the

one-level preemption scheme under both the standard Ethernet

and TSN. Assuming a preemption-enabled network, Zhou et

al. [15] presented a VHDL design layout for the transmission

and reception processes as well as an FPGA-based hardware

implementation of the sender and receiver nodes. By using an

FPGA-based implementation, Hotta et al. [10] also provided

a quantitative evaluation of the performance gains associated

to frame preemption. The measurement results show that the

maximum latency of express frames could be significantly

reduced (from 27.57µs to 2.46µs @ 1Gb/s). Other works

like [8], [13] have pointed out a few challenges that could

result from preemption operations for low-priority frames,

including: (i) starvation; (ii) buffer overflow (when there are

more preempted frame fragments to be stored than the buffer

size of switches/nodes); and (iii) possible distortion in the

order of arrival of express frames.

To the best of our knowledge, no work has investigated the

feasibility of multiple preemption levels in Ethernet networks,

and especially for preemptable traffic. In this work, we fill

this gap by investigating the feasibility of an additional MAC

Merger sublayer interface to support more preemption levels.

We assume 3 frame classes and 2 preemption levels to inves-

tigate the feasibility of multi-level preemption in Ethernet.

IV. SYSTEM MODEL

We consider a network traffic consisting of a set F
def
=

{f1, f2, . . . , fn} of n ≥ 1 flows partitioned into two service

categories: the express traffic and the preemptable traffic.

Fig. 3: The MAC merge sublayer managing service interfaces.

Each flow f i def
= (srci, dsti, Ci, Di, T i) ∈ F consists of a

potentially infinite number of frames f i

k
(with k ≥ 1) and is

characterized by a 5-tuple, where: (1) srci is the source node;

(2) dsti is the destination node; (3) Ci is the maximum size

of each frame f i

k
; (4) Di ≤ Ti defines the time window within

which each frame f i

k
must reach dsti; and finally (5) T i is

the minimum timespan between any two consecutive frame

transmissions of f i. All frames generated by a flow inherit

its priority and the smaller the superscript of a flow, the

higher its priority. We assume that the preemptable service

category is further partitioned (for proof of concept) into two

sub-categories referred to as the time-sensitive preemptable

traffic (tpflows), with firm timing requirements; and best effort

preemptable traffic (bpflows), with no timing requirements.

Also, we assume that every express flow has a higher priority

than all preemptable flows and the following rules apply:

R1– Every express flow can preempt all preemptable flows;

R2– Every tpflow can preempt all bpflows;

R3– Flows belonging to the same service category cannot

preempt each other and are transmitted in a FIFO

manner.

V. CURRENT IMPLEMENTATION OF PREEMPTION

MECHANISM IN ETHERNET NETWORKS

The IEEE 802.1Qbu and 803.3br standards [1], [12] de-

scribe not only the preemption operation, but also the hardware

modifications required on the switches/bridges to support

preemption. Preemption occurs at the MAC Merge sublayer,

which is between the physical and the MAC layers (see Fig. 3).

Frames at this sublayer are referred to as mPackets [12]. Before

each mPacket transmission, the sublayer verifies if the next

switch/node supports preemption by performing a verification

operation (see [12], page 42 for details). Preemption capability

is enabled at the sender node only after the verification

confirms that it is supported by the receiver node (i.e., the

downstream node) [16]. When this is the case, additional

information are added to the mPacket header, describing its

preemption characteristics. Then, the sublayer has the capa-

bility to preempt any preemptable mPacket currently being

transmitted and can also prevent a new one from starting

its transmission [12]. In addition, it is important to preserve

the Ethernet frame format when mPackets are preempted.

The IEEE 802.3br Standard ensures this feature by defining

mPacket formats in a preemption enabled environment.

Fig. 4 shows that an express frame (see Fig. 4b) differs from

a typical MAC frame (see Fig. 4a) by only one octet, referred



Fig. 4: Frame format as in IEEE 802.3 Standards (the numbers

are in bytes and represent the size of each field).

to as “Start Frame Delimiter” (SFD). This octet is replaced by

the “Start mPacket Delimiter-Express” (SMD-E). In practice

the SFD and SMD-E have the same value, though. On the

other hand, a preemptable frame that has not been preempted

(see Fig. 4c) also differs from a typical MAC frame by only

a single octet, here the SFD is replaced by the “Start mPacket

Delimiter Start Fragment” (SMD-Sx).

Fig. 5: Frame fragment format as in IEEE 802.3 Standards (the

numbers are in bytes and represent the size of each field).

Now, assuming a frame that has been preempted, it is worth

noticing that the first fragment remains almost the same as the

original frame. There are only two differences: (1) the size,

which is smaller (because the original frame has been divided

into fragments); and (2) the error checking code (FCS), which

is replaced by a newly generated mPacket error checking code

(mCRC) (see Fig. 5b). The header of all the other fragment(s)

consist of three components: (i) a preamble; (ii) a “Start

mPacket Delimiter for Continuation fragment” (SMD-Cx) and

(iii) a “Frag count”, which is used to monitor the correct order

of fragment arrivals and detect missing fragments (see Fig. 5c).

All the fragments are appended with the same mCRC except

the last fragment which ends with the FCS of the original

preempted frame (see Fig. 5d). At the receiver node, a Medium

Independent Interface (xMII) inspects the SMD for each frame

upon arrival and the value of the SMD indicates whether the

frame is an express or a preemptable frame [17]. Express

frames (i.e., frames containing SMD-E) are processed by an

Express Filter, whereas preemptable frames are processed by

a “Receive processing” construct. This specific Receive pro-

cessing is responsible for guaranteeing that all the fragments

of a preempted frame have been received completely and in

correct order. To this end, it uses both the “mCRC” and the

“frag count” values. The frame transmission of any preempted

frame is guaranteed to complete because each fragment has

an mCRC computed based on the segment its original frame

contained. This means that the reception of a sequence of

fragments of a preempted frame is completed as soon as the

last four octets of the mPacket does not match the mCRC [12].

The current frame preemption specification does not allow

any form of padding to be added to any fragment. That is,

the data portion of any fragment cannot be augmented to

meet the minimum Ethernet frame size requirement, which

is 84 bytes. To enforce this, the standards command any

preemptable frame not to be preempted until the following

two requirements are fulfilled: (1) the size of the fragment

that is currently being transmitted is at least 84 bytes; and

(2) the remaining fragment, which results from the occur-

rence of a preemption, also meets the minimum frame size

requirement. With these two requirements in mind, the longest

non-preemptable Ethernet frame fragment is 143 bytes long

(see [9], Lemma 1 for a detailed proof). This implies that

any express frame can be blocked for at most 1.144µs and

11.44µs, assuming a 1Gb and 100Mb speed Ethernet, respec-

tively. We recall that without preemption, the blocking was

12µs, assuming a 1Gb speed Ethernet. Roughly speaking, this

means a reduction of 90.5%, when preemption is enabled. On

another front, the total overhead induced by the occurrence

of each preemption is 12 bytes (i.e., 6-byte preamble, 1-byte

SMD-Cx, 1-byte FCnt; and finally 4-byte mCRC). The Inter

Frame Gap (IFG) between two consecutive transmission has to

be accounted for before the next frame/fragment is transmitted.

According to the standards, the size of each IFG is equal to the

amount it takes to transmit 12 bytes of data. This brings the

total overhead associated to the occurrence of each preemption

to 24 bytes (i.e., 0.19µs, assuming 1Gb/s speed).

VI. ON THE FEASIBILITY AND REQUIREMENTS OF THE

MULTI-LEVEL PREEMPTION PARADIGM

To achieve multi-level preemption in TSN, it is important

that switch nodes are capable of identifying more than two

service categories of frames in first place. That is, each

switch node where preemption is enabled should distinguish

frames belonging to a different category than the traditional

eMAC and pMAC categories. To this end, we must enrich the

definition set of the SMD octet, which is used to determine

whether a frame is preemptable or not at the MAC merge

sublayer. By doing so, it will be possible to further partition

the set of preemptable frames. In their current specifications,

the standards define eleven different SMD values [12]. In

addition to allow us distinguish between eMAC and pMAC

frames, these values also describe the verification frames

(i.e., the frames sent to determine if the next node supports

preemption). On another front, the current specification of the

preemption operation does not allow frames belonging to the

same category to preempt each other [12]. For the sake of

interoperability, it is important to keep this convention, as

discussed later in this paper. To this end, an additional MAC

Merge sublayer interface is needed to support each additional

preemption level so that frames of each service category are

assigned to a unique MAC Merge sublayer interface.

The “Transmit Processing” function is responsible for the

frame transmission at the MAC Merge sublayer interface. The

current verification procedure in this function can only check



if preemption is supported by the receiver node. It does this

by sending a “request frame” to the receiver node to inquire

if it supports preemption(s). The receiver node, in return,

sends a response to confirm that it supports preemption(s)

or otherwise. In practice, this information is interpreted by

the sending node based on the SMD value of the response

frame. The transmission of any preemptable frame starts only

after this verification process. From this discussion, both the

“Transmit Processing” and the “Receive Processing” functions

would require modifications before multi-level preemption can

be enabled. For the transmission, we would need the SMD

values to also inform the sending node of the preemption level

the receiver node supports.

A. Modifications in the transmission mechanism of frames

Fig. 6 illustrates a Transmit Processing state diagram to

support an additional level of preemption, which extends

the basic 1-level preemption scheme (see [12], page 50).

In this figure, all newly proposed transitions and/or states

are indicated with red dotted lines. All labels, functions and

variables are as defined in the standard (see [12], pages 45–48).

The transmission process is triggered when a frame reaches

the INIT TX PROC state. Below we provide the reader with

a description of the state diagram operation.

⊲ On the transmission of express frames. When an express

frame reaches the “Transmit Processing” function, i.e., at

the IDLE TX PROC, it is identified as such and then it

transits to the EXPRESS TX state, which is responsible for

transmitting it in a non preemptive manner. Upon completion,

the function transits to the E TX COMPLETE state, where

it either returns to the idle state (IDLE TX PROC) or

resumes the transmission of a pending preempted frame.

⊲ On the transmission of preemptable frames. In contrast

to the express frame transmission process, when a preempt-

able frame reaches the IDLE TX PROC state, the Transmit

Processing function first checks whether the receiver node

has preemption capabilities enabled and transits back to the

IDLE TX PROC state (see connector “C”). If the answer is

positive, the function transits to the START PREEAMBLE
state, which triggers the transmission in a preemptable manner.

Note that the transmission can be interrupted only if an express

frame arrives and the preemptable transmission has reached

a feasible preemption point. In case a preemption occurs, an

MCRC value is computed for the preemptable frame fragment

(TX MCRC) and the function transits to a waiting state

(RESUME WAIT). All the pending express frames are then

transmitted (see connector “B”) and the transmission of the

preemptable resumes only afterwards. Upon completion or if

preemption did not occur during frame transmission, then the

function transits back to state IDLE TX PROC. For a more

detailed information about each state, the reader is referred to

the IEEE 802.3br Standard (see [12], pages 48–52).

⊲ On the proposed modifications for enabling an ad-

ditional preemption level. An additional preemption level

does not require any alteration in the transmission process of

express frames since we are concerned with the transmission

of preemptable frames with firm timing requirements. For

such frames, new states have to be added. The changes are

illustrated with red dotted lines in Figure 6. In this figure,

we define two preemptable MAC Merge Sublayer interfaces,

referred to as p1 and p2, and enforce the following rules.

• Any p1 frame can preempt any p2 frame, but the reverse

is not true.

• Upon preemption, any p2 frame can resume its transmis-

sion only if all pending express and p1 frames/fragments

have completed their transmission.

With this new preemption level specification, in addition to

checking whether the receiver node has preemption capabili-

ties, we must check its preemption level (0, 1 or 2). When

a preemptable frame reaches the IDLE TX PROC state,

then the function transits (i) to the START PREEAMBLE
state if it is a p1 frame; or (ii) to the newly defined

START PREEAMBLE 2 state if it is a p2-frame. In this

context, each p1 frame is transmitted in a similar manner

as a traditional pMAC frame, whereas each p2 frame is

transmitted such that it can be preempted by both express and

p1 frames. When a preemption occurs, the p2 frame resumes

and completes its transmission only after the completion of all

pending express and p1 frames/fragments.

B. Modifications in the reception mechanism of frames

In a similar manner, Fig. 7, which is an extension of the

“Receive Processing” state diagram (see [12], page 51), illus-

trates the newly proposed transitions and/or states in red dotted

lines. Again, all labels, functions and variables are as defined

in the standard (see [12], page 45–48). The reception process

is triggered when a frame reaches CHECK FOR START.

⊲ On the reception of express frames. When an express

frame reaches the CHECK FOR START state, it is iden-

tified as such and then it transits to the EXPRESS state,

which is responsible for receiving it in a non preemp-

tive manner. Upon completion, the function transits to the

IDLE RX PROC state.

⊲ On the reception of preemptable frames. In con-

trast to express frames, when a preemptable frame reaches

CHECK FOR START, the modified “Receive Processing”

function transits to the REPLACE SFD where the SFD of

the frame is replaced by a newly computed SMD value.

Afterwards, the function transits to P RECEIVE DATA,

which triggers the reception in a preemptable manner. Note

that the reception can be interrupted only if an express

frame arrives and the preemptable transmission has reached

a feasible preemption point. In case a preemption occurs,

the reception is suspended and the function transits to

P WAIT FOR DV FALSE, where it receives the preempt-

ing express frame(s). Upon complete reception of these

frames, the function transits to P WAIT FOR RESUME,

which resumes the reception of the preempted frame. Upon

completion or if preemption did not occur during the frame

reception, the function transits back to IDLE RX PROC.
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IDLE_TX_PROC 

fragSize ⇐ 0                                           start ipg_timer 

txFr ag⇐ 0                                              eTXCplt ⇐ FALSE 
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TX_VERIFY 

TX_V ⇐ 0 
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PREEMPTABLE_TX 

rTX_DATA(pTX_DATA) 

fragSize++ 

P_TX_COMPLETE 
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IF PTxCplt 

  THEN txFrame++ 
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rTX_DATA(eTX_DATA) 
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rTX_CPLT 

eTxCplt ⇐ FALSE 

TX_VERIFY 

TX_R ⇐ 0 

send_r ⇐ FALSE 

START_PREAMBLE_2 

rTX_DATA(p2TX_DATA) 

SEND_SMS_S_2 

pAllow ⇐ pActive 

SMDS_ENCODE(txFrame) 

PREEMPTABLE_TX_2 
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fragSize++ 

TX_MCRC_2 

TX_MCRC 
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fragSize++ 
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rTX_DATA(p2TX_DATA) 
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Fig. 6: Modified “Transmit Processing” state diagram for two-level preemption. Added features are represented in red color.

⊲ On the proposed modifications for enabling an additional

preemption level. Similar to the transmission process, an

additional preemption level does not require any alteration

in the reception of express frames. For the reception of

preemptable frames with firm timing requirements, new states

have to be added. The changes are illustrated with red dotted

lines in Fig. 7. In this figure, we also define two preemptable

MAC Merge Sublayer interfaces referred to as p1 and p2 and

enforce the following rules.

• Any p1 frame can preempt any p2 frame, but the reverse

is not true.

• Upon preemption, any p2 frame can resume its reception

only if the reception of all pending express and p1
frames/fragments has completed.

With this new preemption level specification, the receiver node

must confirm that it has preemption capabilities, and its sup-

ported level preemption (0, 1, or 2). When a preemptable frame

reaches CHECK FOR START, then the function transits to:

(i) P RECEIVE DATA if it is a p1 frame; or (ii) the newly

defined P2 RECEIVE DATA state if it is a p2 frame. In

this context, each p1 frame is received as a traditional pMAC

frame, whereas each p2 frame is received such that it can be

preempted by both express and p1 frames. When a preemption

occurs, the reception of the p2 frame resumes only if all

pending express and p1 frames/fragments have completed.

At this stage, we have described the modifications required

to enable multi-level preemption. In addition, there are other

key operational factors (interoperability and frame buffering)
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Fig. 7: Modified “Receive Processing” state diagram for two-level preemption. Added features are represented in red color.

that need to be revisited before a full roll-out of multi-level

preemption enabled nodes. Below, we address these concerns.

C. Interoperability

In practice, nodes with more than one preemption level

capability will coexist with others with at most one. This

coexistence can be guaranteed by the verification process

mentioned in the previous subsection. After a node sends

a verification request to check whether the receiver node

supports preemption, the reply should not only indicate this

information, but also the preemption level supported. Similar

to the 1-level preemption scheme, multi-level preemption

is enabled only if the receiver node supports it. If k-level

preemption (with k ∈ N) is supported, then the sending

node will transmit the frames in a k-level preemptive manner.

We note that in this work, we assume a 2-level preemption

paradigm for simplicity sake.

D. Frame Buffering

In the multi-level preemption scheme, careful attention must

be paid to how the input buffers are used in the reception

of frames. We recall that the reception of a sequence of

fragments belonging to a preempted frame is completed as

soon as the last four octets of the fragment does not match

the mCRC. Once this mismatch occurs, the receiver node

assembles the content of its buffer as a single frame. Under

a multi-level preemption scenario, this mismatch may occur

due the reception of a preemptable frame belonging to a



f1 f2 f3

Source ES1 ES2 ES3

Destination ES4 ES5 ES6

Payload (bytes) 300 700 1496

Deadlines 120µs 250µs -

Period 500us 700us 1ms

Service category express tpflow bpflow

TABLE I: Network flow properties

Fig. 8: Network topology

higher preemption service category. In this case, there will

be two sets of preemptable frame fragments at the input port

of the receiver node. We recommend that frames of different

preemption categories should be received in different input

buffers. This would guarantee the integrity of each frame.

VII. EXPERIMENTAL RESULTS

This section reports on the experiments performed to

demonstrate the limitation of the one-level preemption scheme

and the need for a multi-level preemption approach. The exper-

iments were performed by using NeSTiNg [18], a simulation

model for TSN using the OMNeT++ framework [19].

⊲ Setup. We consider a network topology consisting of six

end-stations and two full-duplex preemption enabled TSN

switches S1 and S2 as shown in Fig. 8. For proof of concept

purposes, we assume only three flows (f1, f2 and f3). The

parameters of the flows are specified in Table I, together with

their source and destination nodes. Two batches of experiments

are conducted: (a) Only flow f1 is assigned to eMAC; and

(b) Flows f1 and f2 are assigned to eMAC. A simulation time

of 106µs is used for each simulation run. This simulation time

was large enough to showcase our approach.

⊲ Results and discussion. About Scenario (a), f1 was able to

meet its deadline in all simulation instances, with a worst-case

end-to-end delay of 109µs and an average end-to-end delay of

91.16µs (see Fig. 9a, the blue plot). This trend is explained by

the fact that f1 had exclusive access to the eMAC interface.

In this scenario, flow f2 could not always meet its deadline,

unfortunately. This is due to the fact that it shares the pMAC

interface with f3, whose transmission induced a blocking time

up to 123.36µs. The observed worst-case end-to-end delay

of flow f2 was 365µs, with an average delay of 253.116µs

(see Fig. 9a, the red plot).

The deadline miss observed for f2 in Scenario (a) can

be resolved by moving this flow to the eMAC interface as

opted for in Scenario (b) (see Fig. 9b, the red plot). In this

new scenario, f2 now records a worst-case end-to-end delay

of 197.4µs (with an average of 187.79µs), but f1 is now

unable to meet its deadline in some of the simulation instances

(see Fig. 9b, the blue plot). The observed worst case end-

to-end delay for f1 is now 128µs, which is well above its

deadline. As a matter of fact, moving f2 to the eMAC interface

provides it with a prompt service, but this changes the picture

for flow f1, unfortunately. This is due to the blocking time

induced by the transmission of f2. Thus, it is not possible to

meet the deadlines of both f1 and f2 simultaneously, while

assuming the traditional 1-level preemption scheme.

Assuming Scenario (a) and a 2-level preemption scheme,

all instances of f1 would be able to meet its deadline (the

worst-case end-to-end delay of this flow would remain 109µs);

while all instances of f2 would also be protected from a

long blocking by flow f3. The worst-case end-to-end delay

of this flow would be 203.5µs, thus meeting its deadline and

promoting multi-level preemption schemes.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we highlighted the limitations of the 1-

level preemption scheme for TSN. Then, we examined the

preemption mechanism in details to determine the feasibility

of a multi-level preemption scheme. We detailed the required

modifications to reach this goal and provided implementation

recommendations to guarantee frame integrity and interop-

erability. Finally, in the experimental section, we identify

a simple scenario where the proposed approach would be

beneficial. Moving forth, we plan to implement this approach

in OMNeT++ and perform a formal performance analysis.
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[8] C. Simon, M. Máté, M. Maliosz, and N. Bella, “Ethernet with time
sensitive networking tools for industrial networks,” Infocommunications

Journal, vol. 9, no. 2, pp. 6–14, 2017.
[9] D. Thiele and R. Ernst, “Formal worst-case performance analysis of

time-sensitive ethernet with frame preemption,” in 21st IEEE Int. Conf.

on Emerging Technologies and Factory Automation, 2016, pp. 1–9.
[10] Y. Hotta, A. Inoue, H. Bessho, C. Mangin, and R. Kawate, “Experimental

study of a low-delay ethernet switch for real time networks,” in 16th

IEEE Int. Conf. on High Performance Switching and Routing, 2015.
[11] Y. Kim, “Very low latency packet delivery requirements and problem

statements,” in IEEE 802.1 AVB Task Group Int. Meeting. USA, 2011.
[12] IEEE, “IEEE standard for ethernet amendment 5: Specification and

management parameters for interspersing express traffic,” Std 802.3br-

2016 (Amendment to IEEE Std 802.3-2015), pp. 1–58, 2016.
[13] W. K. Jia, G. H. Liu, and Y. C. Chen, “Performance evaluation of IEEE

802.1qbu: Experimental and simulation results,” in 38th IEEE Conf. on

Local Computer Networks, 2013, pp. 659–662.
[14] J. Kim, B. Y. Lee, and J. Park, “Preemptive switched ethernet for real-

time process control system,” in 11th IEEE Int. Conf. on Industrial

Informatics, 2013, pp. 171–176.
[15] Z. Zhou, Y. Yan, S. Ruepp, and M. Berger, “Analysis and implementation

of packet preemption for time sensitive networks,” in 18th IEEE Int.

Conf. on High Performance Switching and Routing, 2017, pp. 1–6.
[16] L. L. Bello and W. Steiner, “A perspective on IEEE time-sensitive

networking for industrial communication and automation systems,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.

[17] IEEE, “IEEE standard for local and metropolitan area networks–bridges
and bridged networks,” Std 802.1Q-2014, pp. 1–1832, 2014.

[18] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
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