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Abstract 
In this paper we describe our experiences and directions regarding the management of 

multi-domain Enterprise Networks (ENs). Our views are (i) the management of the EN 

is a distributed problem-solving activity and (ii) recent results in automated problem

solving in the distributed artificial intelligence and robotics communities can contribute 

to our understanding, development, and deployment of management software for the 

EN during the 90s and into the 21st century. We discuss a distributed, multi-level archi

tecture for EN management and describe examples in fault management and business 

process management. Our examples demonstrate an integration of two off-the-shelf 

Network Management (NM) products: the Spectrum NM platform from Cabletron Sys

tems and NerveCenter from the Seagate Corporation. 
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1 INTRODUCTION 

The idea of an intelligent, self-healing network has caught on. As in the robotics com

munity, network researchers and managers foresee an autonomous, self-managed net

work that can negotiate problems with little human intervention. In the late 90's and 

into the 21st century, we should see a shift toward a view of the enterprise network 

(EN) as an intelligent, autonomous (or semi-autonomous) agent [1]. Where robots have 

sensors, sense-data, and effectors, the EN will have analyzers and monitors, network 

traffic and behavior data, and system commands to effect tasks such as failure detec

tion/diagnosis/repair, upgrading software, dynamic reconfiguration, and controlling 

network devices. In the same way that researchers give robots instructions in the form 

of goals and the robot figures out how to achieve the goals, network managers will give 

A. A. Lazar et al. (eds.), Integrated Network Management V

© Springer Science+Business Media Dordrecht 1997



6 Part One New Approaches to Customer Network Management 

the EN a set of goals and the network will figure out how to achieve those goals. This 

view of the EN opens the way for thinking about outstanding issues with intelligent 

architectures in general and their contributions to understanding and achieving good 

network management solutions. 

One such issue is task analysis. What network tasks are better performed by reason

ing with raw message traffic data? With network events? With network alarms? What 

tasks are better performed by reasoning with a symbolic model of a network? What 

tasks require reasoning that is distributed over multiple layers of network abstraction, 

as opposed to cooperative reasoning systems over a single layer of abstraction? What 

control mechanisms will be needed? These sorts of issues have received considerable 

attention in the AI and robotics communities, and similar issues have surfaced in recent 

research on the management of enterprise networks. 

Our objectives in this paper are as follows. First, we provide a brief account of dis

tributed, multi-level reasoning in robotics and AI research. Next, we consider the prob

lems and goals of EN management and show how the achievements in the former 

disciplines map to an EN management architecture. Finally, we discuss working exam

ples of the architecture in fault management and business process modeling. Our exam

ples demonstrate an integration of the Spectrum network management platform from 

Cabletron Systems and NerveCenter from the Seagate Corporation. 

2 DISTRIBUTED AI AND ROBOT REASONING 

2.1 What is Distributed Artificial Intelligence? 

A common approach to problem-solving is to decompose a task into subtasks and to 

perform the subtasks sequentially or assign them to individual agents in parallel. This 

approach assumes that a central controller exists which decomposes the task, assigns 

subtasks to appropriate agents, and synthesizes the results. In contrast, distributed artifi

cial intelligence (DAI) is concerned with problem-solving for which a central control

ler is not present and for which subtasks are interdependent [2,3,4]. Specifically, DAI is 

concerned with problems that exhibit the following characteristics: 

1. Control and expertise required for solving a problem are distributed over a number 

of agents. 

2. An agent is not always able to complete his subtask alone. 

3. No single agent can solve the entire problem alone. 

4. The solution to the problem requires cooperation and communication among agents 

in such a way that the expertise of each agent combines to solve the problem. 

It is clear that EN management is a DAI problem. A first-order categorization of net

work management tasks includes fault, configuration, accounting, security, and perfor

mance management [5]. However, it is not clear that this is the best or a complete 

categorization of network management subtasks, and less clear how and in what ways 

the specialists performing the subtasks depend upon the other specialists. A good way 

to pose the question is "What does X need from Y, and when and how often is it 
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needed?", where X is a particular specialist andY is the set of remaining specialists. A 
prior question, of course, is "What are the Xs?" 

For example, problem-solving that involves fault, configuration, and performance 
management often requires specialists in each area who compare notes in order to solve 
the problem. In addition, another specialist in budget control and expenditures is con
sulted in order to find the most reasonable solution from a cost perspective. 

As an aside, it is interesting to note that a problem that could tum out to be a DAI 
problem is the re-creation of intelligent behavior exhibited by a single human agent. 
For example, a controversial issue in the robotics community is that of determining 
what mechanisms are required to build an autonomous agent [6]. On the one hand, it 
has been argued that an agent requires a single controller who coordinates tasks such as 
perception, cognition, acting, planning, and learning. In this view, intelligent behavior 
is not a DAI problem since a controller delegates these tasks to sub-agents, where the 
sub-agents do their work independently of each other and the controller synthesizes 
their results. Alternatively, it has been argued that intelligent behavior of a single agent 
is itself an example of DAI. Perception, cognition, etc. are performed by specialists 
who negotiate among themselves, and agency is an emergent property or epiphenome
non of the multiple agents [7]. 

As with any sufficiently large multiple-agent enterprise, including EN management 
and possibly a single human agent, these questions are hard. A thorough study of net
work management within the DAI framework has not been forthcoming. Compara
tively, there is more work and experimentation with AI paradigms applied to specific 
management tasks, e.g. paradigms such as neural networks, fuzzy logic, case-based 
reasoning, and expert systems. There is less work describing how these pieces fit 
together. The reason is that network management is plain difficult, and the understand
ing and characterization of DAI problems in general are equally challenging. 

Here we do not try to characterize a complete network management architecture. In 
section 3 we discuss work on a piece of the total solution, fault management, and 
describe a working DAI architecture for achieving distributed fault management in the 
EN. Other efforts toward defining the subtasks and dynamics of integrated network 
management include [8,9]. 

2.2 What is Robot Reasoning? 

The work on implementing intelligence in a robot since the early 80s is an interesting 
story. If our hypothesis that intelligent networks will come to be viewed as autonomous 
agents turns out to be true, then the uncovering of false starts and promising approaches 
in the robotics community could help us in understanding intelligent network manage
ment. In this section we describe two prominent approaches to the development of 
intelligent architectures for robots. For further detail, see [6]. 

2.2.1 The Single Loop Architecture 

The single loop architecture (SLA) for robot intelligence is shown in Figure I. Intelli
gent behavior starts with robot sensors and ends with instructions that are executed by 
robot effectors. Initially, sensory input is passed through several layers of abstraction, 
e.g. signals, signs, and symbols. Each layer filters noise and extraneous data out of the 
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data passed to it, and transforms the data into fewer, more informative chunks of data. 

When data becomes manageable, usually at the symbolic level, it is compared with pre

defined knowledge about what instructions should ensue. This operation is usually 

defined as "coordination" and may be implemented in a number of ways, including 

simple look up tables or expert systems. The output of the coordination module is a set 

of symbolic instructions. These instructions are decomposed down through levels of 

decomposition until they are suitable for processing by the robot's effectors, usually in 

the form of signals 

The important ideas in the SLA are (i) the compression of sensor data through layers 

of abstraction, (ii) the coordination of highly abstracted sensor data and goals, and (iii) 

the decomposition of instructions through layers of abstraction into a form that is exe

cutable by effectors. 
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Figure 1 A single loop architecture for robot reasoning. 

It is generally agreed that the SLA is unsuitable for dynamic, unstructured tasks. Sensor 

data must be abstracted into symbols before they can be coordinated with the goals of 

the system and initiate the decomposition of instructions for effectors. As a result, the 

processing time required to transform sensor data to control instructions through the 

loop is prohibitive. By the time the system figures out what to do in environment A, it is 

likely that environment A is obsolete and the instructions are no longer applicable. In 

other words, the rate at which the world changes over time is disproportionate to the 

amount of processing required for timely behavior. 

2.2.2 The Multiple Loop Architecture 
Robotics researchers observed that the coordination of abstracted sensory data and 

goals do not have to take place only at the symbolic level. Coordination could occur at 

any level of abstraction. Further, they observed that coordination at lower levels 

required increasingly less time, since upper levels would be by-passed. Therefore, 

problems which require a quick solution could be handled at lower levels of abstrac

tion, and problems which require more time could be handled at upper levels of 

abstraction. This distinction is generally referred to as "reflexive" behavior for short

term solutions and "deliberative" behavior for long term solutions. Figure 2 shows a 

design that reflects these ideas, called the multiple loop architecture (MLA). 
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Each level of the MLA is a separate control loop that corresponds to a specific class 
of problems, where problems are partitioned and assigned to levels according to the 
amount of time and type of information required to solve them. For example, the short
term abstraction/coordination/decomposition loop at the lowest level provides quick 
reaction, bypassing upper level control mechanisms. In the network management 
domain, such tasks might include intelligent routing and temporary disconnection to a 
busy host. The medium-term loop provides reaction to more complex problems and 
operates on increasingly abstract input such as signs. Tasks of this sort might include 
alarm correlation in a busy network with multiple alarms, where some alarms are real 
and others are apparent, and the task is to distinguish the two and suppress all apparent 
alarms. The top level would provide reaction to problems that require more time. The 
classic example of a task of this kind is the reasoning involved in deciding to move a 
host from subnet A to subnet B because the majority of the host's clients reside on sub
net B, thereby causing increased traffic on the link between A and B. 
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Figure 2 The multiple-loop architecture for robot reasoning. 

In comparison with the SLA, the MLA is intuitive and shows promise for a clearer 
understanding of intelligent network management. However, the primary unresolved 
issues of the MLA approach are (i) a methodology by which to classify and divide tasks 
according to information available and time required to solve them, (ii) the particular 
algorithms on each level that execute its class of tasks, and importantly (iii) how to syn
thesize activities on multiple levels when a task requires multiple levels of coordina
tion. The latter issue is the classic DAI problem. 

3 MANAGING THE ENTERPRISE NETWORK 

With the ideas and insights of the preceding section under our belts, let us now tum to 
the practical matter of managing the EN. Three important truths regarding EN manage
ment motivate our distributed, multi-level architecture for EN management: 
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1. The EN is inherently a distributed, multi-domain entity. ENs typically are partitioned 

in ways that help administrators understand and manage the EN, e.g. with respect to 

geographical domains, functional domains, or managerial domains. 

2. The tasks involved in managing distributed ENs are too complex for a single control

ling agent, and thus the tasks themselves must be partitioned into distributed, coopera

tive agents. 

3. The data types for analyzing and reasoning about EN behavior come in various 

forms, e.g. traffic data, symbolic models of the network, events, alarms, et al. 

3.1 Spectrum's Distributed Client/Server Architecture 

For the reasons above, the Spectrum NM platform was designed as a distributed client/ 

server architecture. The Spectrum servers, called SpectroSERVERs (SSs) monitor and 

control individual EN domains. The Spectrum clients, called SpectroGRAPHs (SGs) 

may attach to any SS in order to graphically present the state of that SS's domain, 

including topological information, event and alarm information, and configuration 

information. 

Importantly, each domain can be viewed from a single SG. See Figure 3. If SG-1 is 

attached to SS-1, but the user wishes to see the domain controlled by SS-2, the user can 

click on an icon in SG-1 that represents SS-2. Figure 3 shows the primary client/server 

attachment between SG-1 and SS-1, where virtual attachments between SG-1 and other 

SSs are indicated by dotted lines. 

SG-1 

~EN~ 
Figure 3 The SPECTRUM distributed client/server architecture. 

3.1.1 Experiences with the Architecture in an Internal Testbed 

We have tested the architecture in an internal testbed to establish operational feasibility. 

A virtual enterprise network was configured using 250 SSs situated in our U.S. and 



Multi-level reasoning for managing distributed enterprises 11 

U.K. facilities. A three-layered hierarchical topology was used, with one master SS 
connecting to 14 SSs, each of which in tum connecting to 15-20 more SSs. Each end
node SS was given a database with several hundred manageable devices. 

Cabletron recommends a maximum 7: 1 ratio among SSs that are configured hierar
chically. This ratio is derived from workstation operating system characteristics rather 
than communications traffic load among SGs and SSs. Note that load would be a 
strong, adverse factor if we allowed a one-to-one correspondence between SGs and 
SSs, or if we allowed heavy communication among SSs. 

In our internal testbed, we purposely exceeded the 1 :7 ratio in order to stress the 
architecture. Performance, accuracy, and reliability were monitored over a period of 
several days, during which time a variety of simulated failures were introduced and the 
resultant behavior analyzed. A few communication flaws at the physical layer were 
identified and corrected, but as a whole the test was successful and the test bed operated 
without incident. Subsequent passes through this test plan are being used to exercise 
new and enhanced distributed and fault tolerance functions. 

These initial tests provided a good, empirical argument for the scalability of the dis
tributed, client/server architecture. We consider each SS as an intelligent agent, capable 
of presenting management data on demand to any client SG. This keeps inter-SS com
munications to a minimum. Each SS "knows about" its peer SSs, but is prohibited from 
extensive communication with them. In Section 3.2, we show how SSs may communi
cate by intermediary agents who reside at higher levels of NM abstraction. 

3.1.2 Customer Installations 

The distributed version of Spectrum has been installed at dozens of customer sites 
worldwide, with setups ranging from a few (2 or 3) SSs to several hundred. For the 
most part, customer ENs are divided into geographical domains, using an SS at each 
facility or campus, with a central master SS at a headquarters location. 

A particularly challenging project currently in progress is the management of a tele
communications network in Eastern Germany [10], deployed by Deutsche Telekom. 
This project poses unusual requirements because it is purely non-SNMP, using only a 
proprietary management protocol. Spectrum was chosen as the management platform 
because (1) it has a distributed, client/server design, (2) it has APis for developing non
SNMP management applications, (3) it has APis for configuring intelligent SS agents, 
and (4) it enables representation of both devices and services involved in the EN. 

Consider (3). With multi-domain ENs with corresponding SS agents, polling-based 
management can be costly in terms of bandwidth load. By restricting SS polling (i.e. 
only using it for testing basic element presence/status) and instead having managed ele
ments forward management data to the SSs via traps, in-band management traffic is 
reduced considerably. This was a requirement for the application. Note that a transition 
from polling to trap-based management and intelligent agents is considered by some to 
be the future of EN management [ 11]. 

Consider (4). Data collected via the management system is being utilized in two 
ways. First, network devices are represented topologically in order to monitor and con
trol the operations of the telecommunications network as a whole. Second, a service
based representation is used to monitor/manage usage and repairs so that, for example, 
large business customers may be given relatively higher priority for repairs than resi-
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dential customers. This secondary representation can be easily accomplished by giving 

relative weights to each managed element's alarms. 

As of the end of 1996, the number of SSs deployed for this application was nearing 

1000 (490 primary servers, each with a fault-tolerance backup server). The NM config

uration is similar to our internal testbed save that (i) each end-node SS manages both 

devices and services, (ii) there are only two tiers (i.e. there is not yet a top-level master 

SS), and (iii) there are more end-node SSs per second tier SS (up to 40). Performance 

and capability results thus far have been excellent, and the project is on track towards a 

planned deployment of 4000 total SSs (first tier plus second tier). The success achieved 

thus far has already resulted in commitments for similar projects by telecommunica

tions providers in several other countries. 

3.2 Multi-Level Reasoning 

Let us stop a moment to think about the management tasks that occur within network 

domains and management tasks that occur across domains. We will use fault manage

ment as our first example. 

Fault management consists of event monitoring and filtering, event correlation, esca

lation of events to alarms, alarm correlation, and diagnosis/repair. The SSs that monitor 

individual network domains perform these tasks with Spectrum's inductive modeling 

technology (IMT) [12]. We may refer to this as intra-domain event/alarm correlation. 

With multi-domain ENs, the requirement now is to perform the same function across 

domains. For example, a failed router in Domain-1 may affect the applications running 

in Domain-2. Conversely, the cause of an application failure in Domain-2 may be iden

tified as the failed router in Domain-1. We refer to this as inter-domain event/alarm cor

relation. Since we have limited inter-communication among SSs, we need to find some 

other way to do inter-domain alarm correlation. 

In light of our discussion of multi-level reasoning in Section 2.2, we can conceptual

ize the inter-domain event/alarm correlation task as shown in Figure 4. The figure, 

however, is somewhat misleading because it is in two dimensions. The bottom-most 
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Figure 4 The Multiple-Loop Architecture for multi-domain fault management. 
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two levels can be performed by SSs that monitor and control individual domains in the 

EN. The number of SSs is the (implicit) third dimension. The agent that resides on the 

top level collects alarms from multiple SSs and carries out inter-domain alarm-correla

tion, communicating with other SS agents as appropriate. Note that the SS agents com

municate indirectly via the intermediary coordination agent on the top level. 

What reasoning paradigm is appropriate for the coordination agent at the top-most 

level? Several reasoning paradigms are at our disposal, including simple look-up 

tables, expert systems, case-based reasoning systems, state-transition graphs, et al. Sev

eral commercial products that incorporate some one or other of these paradigms are 

available. At present, we are integrating NerveCenter (which uses the state-transition 

graph paradigm) with Spectrum, where NerveCenter is the top-most agent [13]. 

NC 

Figure 5 An integrated architecture with SPECTRUM and NerveCenter. 

A clearer picture of the integration architecture is shown in Figure 5 (we have left out 

the SG clients). The Spectrum Alarm Notifier (AN) is a client daemon that collects 

alarms from all domains in the EN. The AN can be configured to allow only select 

alarms to be passed to NerveCenter (NC). NerveCenter performs high-level reasoning 

over multi-domain alarms and if appropriate, communicates with other SS agents via 

the Spectrum Command Line Interface (CLI). Communications may include requests 

for further bits of information, or notification of inter-domain alarms. 
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At this juncture our integration with NerveCenter is in development/testing stage. 

Once complete, we wish to examine the ease with which one can encode knowledge in 

the top-level agent. In the AI community, this task is called the problem of knowledge 

acquisition. For example, we may ask: How easy is it to encode new knowledge in a 

state-transition graph? A rule-based expert system? A case-based reasoning system? 

Another important issue we are studying is the ability of the top-most agent to learn and 

adapt itself to new problems, given its past experience [14]. This latter task is quite 

ambitious, but it takes us closer to the realization of an intelligent network. 

3.3 Business Process Modeling 

In the final analysis, the network is simply an element in a larger picture which includes 

all aspects of an enterprise's business processes. These processes depend on the net

work and its various nodes in order to successfully complete their stated goals. When a 

network element is not functioning properly, fault management will help us to isolate it 

and correct the problem, but what else was affected? A router failure may cause a mar

keting forecast report to fail, or a file server crash might interrupt a nightly software 

distribution. Let's take a simple example and see how these higher-level functions can 

be managed via the architecture that we've been describing. 

When a standard business function such as "Accounts Receivable" is described, we 

discover that it is, as any business process, composed of resources and workflows. 

Required resource components may include client workstations, compute servers, file 

servers, database applications, peripherals, and the voice and data networks connecting 

them all together. Workftows often consist of standard procedures, contingency plans, 

and data flows. Human operators are also involved, but since they lack a standard man

agement interface, they will be ignored for purposes of this discussion. Computing sys

tems and network elements have long been manageable, and applications are becoming 

increasingly so via proprietary interfaces and current standards efforts [15]. 

We find that Inductive Modeling techniques and multi-level reasoning can also be 

applied to business process management. Firstly, the systems, servers, applications, 

PBXs, peripherals, network devices, power supplies, (and operators, for that matter) 

can be modeled, along with the connection and dependency relationships between 

them. The objective is then to monitor the presence and health of these elements and 

roll the collective results up to a higher level representation of the "Accounts Receiv

able" business process. This monitoring data can also be fed to state machines (or 

other techniques) used to model the workflows. Since the elements are distributed 

across multiple domains in a large enterprise, we must consider that the information 

will be corning from several agents and must be correlated, perhaps by the means 

described in section 3.2. With this aggregate information, it becomes possible to focus 

upon mission critical common resources, understand the breadth of impact when a 

common element experiences troubles, and proactively manage problems on a business 

priority basis. This topic area is the subject of additional work by the authors [16]. 
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4 SUMMARY AND CONCLUSION 

We have examined the problem of EN management from two related perspectives. We 
looked at ongoing work on intelligent architectures in the distributed artificial intelli

gence community and in the robotics community. Our view is that there are elements in 
this work that will contribute to our understanding and implementation of EN manage
ment software as we approach and enter the 21st century. From a practical perspective, 
we described working architectures for solving the problem of intra- and inter-domain 

event/alarm correlation and business process modeling/management in multi-domain 
ENs which involved integrating the Spectrum NM platform and NerveCenter from 
Seagate Corporation. 
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