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Abstract 
 

Using hypervisors or virtual machine monitors for 
security has become very popular in recent years, and 
a number of proposals have been made for supporting 
multi-level security on secure hypervisors, including 
PR/SM, NetTop, sHype, and others.  This paper looks 
at the requirements that users of MLS systems will 
have and discusses their implications on the design of 
multi-level secure hypervisors.  It contrasts the new 
directions for secure hypervisors with the earlier 
efforts of KVM/370 and Digital’s A1-secure VMM 
kernel. 
 
1 Purpose of this paper 
 

There have been a number of recent efforts to 
develop multi-level security (MLS) for hypervisors or 
virtual machine monitors (VMMs), such as NetTop 
[40], sHype [44], and a proposed combination of Xen 
[17] and sHype [33].  There has been a lot of 
confusion about what the requirements are to 
adequately support multi-level security (MLS) in a 
hypervisor.  The hypervisor is being used to separate 
multiple instances of untrusted operating systems, 
running at different security levels.  The purpose of 
this paper is to clarify what end-users of MLS expect 
to be able to do1, and what technical issues impact 
those requirements at Common Criteria levels EAL4 
and above.2  This paper presents no major new ideas or 
innovations.  The goal is to assist developers of 
hypervisors to decide which of these ideas and features 
are important to make multi-level security useful to the 

                                                           
1 The end-user requirements are derived from the author’s personal 
experience designing, deploying, and supporting a variety of MLS 
systems within the DoD and in designing high security hypervisors. 
2 Trusted Information Systems, Inc. developed a proposed 
interpretation of the Orange Book for Virtual Machine Monitors [10] 
that attempted to clarify some of these issues, but it did not address 
the networking issues on which this paper particularly focuses. 

end-users.  A hypervisor with fewer features is less 
expensive to build and is easier to evaluate under the 
Common Criteria.  However, if the hypervisor is too 
restrictive, then the customers will be unable to 
implement the MLS applications that they want to run.  
This paper identifies a set of features that are needed to 
make the hypervisor useful, yet are still simple enough 
to assure its security. 
 
2 End-User Expectations  
 
2.1 What does Multi-Level Secure Mean? 
 

MLS systems can mean many things to many 
people.  What this paper will describe are the 
requirements and implications of a multi-level secure 
mode of operation as was defined many years ago in 
DoD Directive 5200.28 [11]  and in the implementing 
manual [13].3  A system that runs in multi-level secure 
mode has information at a variety of classification 
levels4, but not all users are cleared for all information.  
By contrast, most classified systems in the DoD today 
run in system-high mode and have information at a 
variety of classification levels, but all users are cleared 
for the most sensitive information in the system.  The 
system may be a single machine or an entire network.  
For example, the DoD’s SIPR network stores 
information marked from Unclassified through Secret, 
but all users are required to have at least a Secret 
clearance.  There is also a controlled mode of 
operation in which all users are cleared to some level, 
but not necessarily the highest level of information.  
The first successfully deployed controlled mode 

                                                           
3 A more modern version of these definitions can be found in [6] 
4 This paper will speak of security levels in most cases to make the 
language simpler.  However, using only hierarchic security levels is 
an over-simplification of the model.  The DoD security model is 
actually a lattice-structure with both levels and categories.  A point in 
the lattice is usually called an access class, and any pair of access 
classes may be comparable (<, =, or >) or they may be disjoint and 
totally incomparable.  See [18] for details. 



system was the Multics system at the Air Force Data 
Services Center in the Pentagon that processed Top 
Secret information, but allowed users who were only 
cleared for Secret.  Under the old Orange Book 
evaluation system [5] and as recommended in the 
Yellow Books [4, 12], system-high systems were 
typically evaluated B1 or below.  Controlled mode 
systems were typically evaluated at B2, and true multi-
level mode required B3 or higher.  Translating to the 
Common Criteria [7-9], B1 and below are roughly 
EAL4 and below, B2 is roughly EAL5, and B3 and 
higher are roughly EAL6 and higher. 
 

This paper has focused on the use of MLS for the 
defense applications, but they are by no means limited 
to defense applications.  MLS can be extremely useful 
in commercial applications.  An example use of MLS 
in a frequent-flyer smart card application is shown in 
[29, 30].  IBM has developed a new extended 
mandatory access control model, designed to provide 
multi-organizational MLS in a meaningful way to the 
entire Internet.  This is described in [25] and in section 
3 of [47].  The development of multi-organizational 
MLS for commercial use also has payoffs for the 
military.  Traditional military MLS models have been 
single-organization models.  Everyone in the 
Department of Defense follows the same security 
rules.  However, this traditional single-organization 
model has problems when multi-national coalition 
forces must work together.  Each country’s military 
has its own security policies, and those policies do not 
easily map into a single policy.  By contrast, IBM’s 
multi-organizational MLS, designed to handle many 
different businesses on a single world-wide Internet, is 
much better suited to modeling the many different 
security policies of multi-national coalition forces. 

 
2.2 What do Users Want to do with MLS 

Systems? 
 

The most basic requirement is that the MLS system 
keeps highly classified information from leaking to 
people who are not properly cleared.  This requirement 
is met by a system that implements the Bell and 
LaPadula security model [18].  However, this 
requirement can also be met by simply keeping data of 
different classifications on different computer systems 
and restricting access to those systems by clearance 
levels.  Most systems in the DoD do exactly that and 
run in a system-high mode. 

 
The biggest problem with system-high mode is that 

sharing information across security levels is very hard.  

Users at high levels of security want to be able to read 
low-level information, even though they do not want to 
contaminate that low-level information with high-level 
secrets.  Keeping multiple copies of the low level 
information on different machines running at different 
system-high levels is not acceptable.  First, you need to 
have significantly larger amounts of storage in such a 
case, and keeping the data synchronized can be very 
difficult.  If you update the low-level data on a low-
level machine, that update must be replicated onto all 
the other copies.  Such replication is particularly 
difficult, because machines running at different 
system-high levels must NOT be networked together.  
The DoD frequently has to resort to sneakernet to 
apply these types of updates. 

 
Users also want to downgrade information from 

higher security levels to lower security levels.  The 
simplest form of this is the statutory downgrading 
required after the passage of specific numbers of years.  
Since statutory downgrading only happens after 
multiple decades have passed, there is little need to 
make it happen in real time, although there is a need 
for efficiently downgrading large numbers of files 
from archival storage. 

 
However, there is another form of downgrading that 

does need to be done quickly and in real time.  A user 
at a high security level may determine that a particular 
piece of information needs to be made available to 
someone at a lower security clearance.  For example, 
an intelligence analyst may determine from a spy’s 
report that the enemy is going to attack at dawn.  The 
defenders who need to know about the upcoming 
attack, but those defenders should not know who is the 
spy.  The analyst must sanitize the information, 
removing any indicator of who the spy is, but leaving 
the information that the enemy will attack at dawn.5  
The analyst needs to be able to isolate the information 
to be downgraded, ensure that the particular 
information cannot be modified until the downgrade 
operation has completed, and then release that 
information to the recipient on a timely basis.   

 
3 Implications of the Bell and LaPadula 

Security Model 
 

The Bell and LaPadula security model [18] imposes 
a number of constraints on possible implementations of 
MLS systems.  In particular, Bell and LaPadula require 
                                                           
5 Sanitization without leaving indicators is often very tricky, but for 
this paper, we assume that the analyst can easily determine which 
information is safe to downgrade. 



that each process in a single system (or each system-
high machine in a network) be identified at a particular 
security level.  That process is allowed to read lower-
classified information, but it is not allowed to write 
files that are marked at a lower classification level.  
This is to prevent Trojan horses from releasing 
arbitrary information.  Note that this is a basic 
requirement of the model at evaluation levels EAL4 
and above.  It is not to be confused with covert channel 
issues [34, 37] that only come into play at B2 or EAL5 
and above. 

 
The result of this no-write-down requirement is that 

network connections between system-high systems are 
only generally useful if the systems are at precisely the 
same system-high level.  Most network protocols 
require two-way communications (if only for packet 
acknowledgements), and acknowledgements cannot be 
permitted from high to low.  This requirement is made 
clear in the Trusted Network Interpretation (TNI) [14] 
of the Orange Book [5].6  It is possible to build truly 
one-way networks.  Such networks were first proposed 
in chapter 7 of [26] and in [27].  Rushby and Randell 
[43] proposed a complete implementation of such a 
system, based on the Newcastle Connection, developed 
at University of Newcastle.  There have been several 
commercial products evaluated in Australia7 to 
implement one-way networks of one kind or another.  
These products from BAE Systems, Compucat, and 
Tenix Defence Systems all provide very limited 
communications capabilities.8   
 

Why are these one-way networks so limited?  Most 
network protocols use two-way communications to 
implement both flow control and error control.  If you 
cannot have two-way communications, then there 
                                                           
6 The TNI [14] explicitly calls for strictly one-way networking at 
level B2 in section 3.2.1.3.4.  However, in the B1 sections of the 
TNI, section 3.1.1.3.1 requires accurate labels on information 
transferred between network trusted computing base (NTCB) 
partitions, and section 3.1.1.4 requires that subjects and objects used 
for communication with other components are under control of the 
NTCS partition.  The phrase “under control” is critical here, because 
the distinction between overt communications channels that must be 
secure at B1 and covert communications channels that need not be 
secure until B2 is whether or not they are “under control” of the 
TCB.  Since the subjects and objects for communication are under 
control of the NTCB, the issues of one-way communications and 
packet acknowledgements are NOT covert channel issues.  This is an 
inconsistency in the TNI and not an unexpected one.  The TNI has 
been criticized in a number of ways for inconsistencies like this in 
[45]. 
7http://www.dsd.gov.au/infosec/evaluation_services/epl/dap.html 
8 The BAE Systems product evaluation report [3] indicates that it 
may have covert channel issues that are discussed in classified 
supplementary reports.  The covert channel situation seems better on 
the other two products. 

needs to be a trusted intermediary that accept and error 
check all messages sent by the sender, even if the 
receiver is refusing all input.  This means that the 
intermediary may need huge amounts of buffer 
memory to hold hours or days worth of traffic.  In 
addition, many protocols that run on top of TCP need 
two-way communications.  For example, the FTP 
protocol [41] cannot run over a one-way network.  The 
above-mentioned products use their own proprietary 
protocol to transfer files from low to high. 

 
4 Hypervisor Implications 

 
There are two classes of hypervisors that must be 

considered when examining the technical implications 
of MLS for hypervisors.  The two classes are pure 
isolation hypervisors and sharing hypervisors. 

 
4.1 Pure Isolation Hypervisors 

 
A pure isolation hypervisor simply divides a 

machine into partitions, and permits no sharing of 
resources between the partitions (other than CPU time 
and primary memory).  Implementing a pure isolation 
hypervisor is very easy, because the only security 
policy to be enforced is isolation.  IBM’s EAL5-
evaluated PR/SM system [2] for the z/Series 
mainframes is a good example of a pure isolation 
hypervisor.  There is essentially no sharing between 
partitions in PR/SM.  PR/SM does have features for 
certain very limited forms of sharing (such as channel 
to channel connections, etc.), but under the EAL5 
evaluation certificate, such sharing is absolutely 
forbidden.  If a customer site turned on such sharing, 
they would no longer be running an evaluated 
configuration. 

 
The partitions of a pure isolation hypervisor are 

essentially just like a collection of system-high 
separate computers.  Each partition has its own disks 
and network connections, and if one partition is 
unclassified and the other is secret, then there cannot 
even be a network connection between them. 

 
A valid question is, “Who would want a pure 

isolation hypervisor?  You can get the same results by 
running several separate machines.”  In the case of a 
z/Series mainframe, there is a good reason.  
Mainframes are so expensive that the ability to 
partition one system into several isolated systems will 
save the customer lots of money, even if no sharing is 
permitted.   

 



However, for smaller systems, such as small 
departmental servers or desktop or workstation clients, 
the benefits of a pure isolation hypervisor are much 
harder to justify.  Additional separate systems are 
sufficiently cheap with modern technology that the 
inherent performance costs and complexity of 
hypervisors become significant issues.   
 

One could argue for a pure isolation desktop client 
as an alternative to four or five clients that some DoD 
end-users have find room for in their offices.  One 
such pure isolation desktop client is NetTop [40]9, 
developed by the NSA specifically to reduce the 
number of distinct client machines that an analyst must 
have on their desktop.  NetTop allows separate 
partitions to connect to separate external networks, but 
allows no sharing of any kind between partitions.  
However, the end user of NetTop or other pure 
isolation hypervisors will almost immediately want to 
transfer information from one client to another, and 
they will get very frustrated when they can’t. 

 
Thus, pure isolation hypervisors are really only 

useful for customers of the largest and most expensive 
servers.  Using multiple separate machines makes more 
sense for smaller configurations. 

 
4.2 Sharing Hypervisors 

 
Sharing hypervisors permit significant resource 

sharing between partitions.  z/VM10 is the best example 
of a sharing hypervisor.  Virtual machines under VM 
can share either virtual or physical disk, network 
connections, etc.  In the early days, two virtual 

                                                           
9 The paper on NetTop [40] describes it as a high-assurance system.  
However, this description by the NSA is quite inaccurate.  High 
assurance conventionally means evaluation at levels EAL6 or above.  
EAL4 and EAL5 can be considered medium assurance, although 
some would classify EAL4 as low assurance.  Anything lower than 
EAL4 is certainly low assurance.  NetTop is based on SE/Linux [38, 
48] which has never been evaluated.  Regular Linux kernels have 
been evaluated to EAL3 and are under evaluation at EAL4.  Linux 
itself is so complex that it is likely to never reach high assurance 
without major reimplementation.  SE/Linux, while it adds security 
features to Linux, also significantly increases the complexity of 
Linux [31] which makes it even less likely to ever achieve a high 
assurance evaluation.  A quote from [45] well summarizes the need 
for genuine high assurance: “That which must be Trusted had best be 
Trustworthy.” 
10 z/VM is the latest version of IBM’s primary virtual machine 
monitor product.  IBM invented the concept of hypervisors or virtual 
machine monitors in the mid 1960s at the Cambridge Scientific 
Center.  The first prototype system was CP/40 [15, 36] on a specially 
modified System 360/40.  The first version available outside of IBM 
was CP-67/CMS [22] for the System 360/67.  The first fully 
supported product was VM/370 [22].  A full history of VM has been 
written by Varian [49]. 

machines under VM communicated by connecting the 
output of the virtual card punch of one into the input of 
the virtual card reader of another.  Secured versions of 
sharing hypervisors can support a variety of secure 
applications, including fast, easy low to high sharing, 
sophisticated downgrading, etc.  The idea of a secure 
sharing hypervisor originated with Madnick and 
Donovan [39].  The best examples of such secure 
sharing hypervisors are KVM/370 [46] and Digital’s 
A1-secure VMM [32]. 
 

The most critical feature of a secure sharing 
hypervisor is a secure shared file store11.  The secure 
shared file store allows a high level partition to have 
read-only access to low-level data, while a low-level 
partition gets read-write access to the same data.  This 
avoids the clumsy one-way networking approaches 
described in section 3.  Only a single copy of the data 
is required and updates are visible immediately to all 
partitions.12 

 
The secure shared file store is so important, because 

it makes a variety of MLS applications possible.  The 
most obvious is the secure read-down capability 
described in the previous paragraph.  However, 
downgrading applications also need a secure shared 
file store.  This is because the downgrading application 
needs to isolate the file to be downgraded, allow 
trusted programs and/or human beings to review what 
is to be downgraded, and only after all electronic or 
human approvals have been completed are the 
markings on the file changed.  During that whole 
process that could take minutes or even hours, the 
candidate file must not be modified in any way by 
other than totally trusted software.  Once approved, the 
remarking must be an atomic operation – either it 
totally completes or it doesn’t happen at all.  A secure 
shared file store makes this much easier to implement 
and to assure correctness. 

 

                                                           
11 A secure shared file store is simply a secure file system available at 
the hypervisor level, rather than at the guest operating system level.  
A guest operating system might store its entire file system within a 
single file of secure shared file store.  The mini-disks of z/VM are a 
good example of a secure shared file store. 
12 Properly synchronizing those updates, so that all partitions see 
consistent date requires a mechanism, such as version numbers [23] 
or event counts [42] to solve the secure readers-writers problem. 



5 Evolving from a Pure Isolation 
Hypervisor to a Sharing Hypervisor 

 
An obvious question is what has to be done to 

evolve from a pure isolation hypervisor to a sharing 
hypervisor.  The major constraints on this evolution 
are that the add-ons must be secure, but they also must 
perform very well.  It is very easy for a hypervisor 
implementation to add huge amounts of overhead to a 
system, and adding such overhead needlessly could 
easily result in customers abandoning either security or 
hypervisors or both. 

 
5.1 One-Way Network Options 
 

As discussed in section 3, it is possible to 
implement semi-usable one-way networks, if you have 
a highly trusted intermediary.  The intermediary must 
have a very large buffer store that is totally protected.  
The easiest way to construct such a buffer is in a 
secure shared file store.  The reason that a huge buffer 
is needed is because there cannot be any flow control 
from a high partition to a low partition.  Even if the 
high partition cannot accept more packets, the 
intermediary must continue to accept traffic and store 
it until the high partition can again accept input.  This 
is discussed in some detail in chapter 7 of [26].  You 
could give the intermediary access to an entire real 
disk drive as its buffer store, but based on the principle 
of least privilege, you would like a different 
intermediary for each pair of security levels.  
Managing those buffers in a secure file store will be 
much easier than with many separate real physical 
drives. 
 

Another way to implement a one-way network is 
with one of the Australian-evaluated one-way network 
products that were mentioned in section 3.  The 
product from Tenix Defence Systems deserves careful 
examination, because it even supports a one-way cut 
and paste capability (although only for Windows 
operating systems).  However, these products all use 
hardware add-ons that are external to the hypervisor 
and would therefore require a separate physical 
network card for each partition. 

 
5.2 Secure Shared File Store Options 
 

A secure shared file store need not be a fully 
general-purpose file system.  Most files in the file store 
will be virtual disks (or mini-disks as called in z/VM).  
A virtual disk contains an entire guest OS file system 
within it, so the virtual disk is likely to be large and is 

not likely to change its size very often.  The secure 
shared file store can easily insist that such files always 
be contiguous and always be of fixed length.  The 
other use for secure file store is to support 
downgrading operations.  Files to be downgraded are 
likely to be much smaller than entire virtual disks, but 
once created, they never change at all, so again, fixed 
size contiguous files are acceptable.  Since there may 
be many of these files and their size is likely to be 
small, using entire disk drives is not a viable option.  
They also have relatively short lifetimes while the data 
is being reviewed and then the data is likely to be 
moved into the virtual disks of the intended destination 
partition. 

 
The secure shared file store could be implemented 

in two ways – as a subsystem of the hypervisor or as a 
separate highly trusted partition.  Either approach can 
be made to be secure, but the overriding consideration 
must be performance.  I/O operations are often the 
Achilles heel for performance in a hypervisor.  Many 
workloads will be extremely I/O intensive and some 
will have downgrades occurring frequently.  However, 
this is implemented, minimizing the cost of context 
switching into and out of the secure shared file store 
will be crucial.   

 
If the secure file store is a subsystem of the 

hypervisor, the calls can be made as cross-ring calls 
that can often be implemented with little performance 
overhead and without having to flush caches and 
translation buffers.  If the secure file store is in a 
separate partition, then the interface is essentially a 
message-passing interface.  Lauer and Needham [35] 
have shown the duality of subroutine calls and 
message-passing calls, but in section 6.8 of [24], 
Karger argues that the calling interface will always (or 
at least almost always) will have better performance.  
This can be seen in the hypervisor context as follows.  
If the secure shared file system is a subsystem of the 
hypervisor itself, then a call to perform a read or a 
write consists of a cross-ring call into the kernel, 
followed by a cross-ring return.  The calls and returns 
should require no flushing of translation buffers or 
caches.  Between the call and the return, the file 
system must perform I/O and those operations may 
have context switches, depending on the driver 
architecture, of course. 

 
By contrast, if the secure shared file system is 

implemented in a separate partition, then a call to 
perform a read or a write consists of a cross-ring call 
into the kernel to initiate a message pass, followed by a 
full context switch to the file system partition and a 



cross-ring return out to the file system code itself.  The 
file system code now performs I/O, just as the file 
system subsystem would with essentially the same 
performance overheads for communicating to and from 
drivers.  However, when the I/O has completed, the 
file system code must now do a cross-ring call into the 
kernel to initiate a message pass back to the caller, the 
kernel must do a context switch to the calling partition, 
followed by a cross-ring return to the actual calling 
code in the guest OS.  The exact amount of overhead 
for the extra context switches to and from a different 
partition will depend on the precise implementation, of 
course, but even if the underlying CPU supports 
multiple address spaces in the TB simultaneously, the 
overhead will be significant, just from register saving, 
clearing, and restoring.13  In a CPU without multiple 
address space support (such as the VAX or current 
generation x86 processors), the context switching 
overhead could easily be doubled or more.  In an I/O 
intensive workload, this type of overhead could be 
prohibitive.  Real decisions must be made on real 
performance benchmarks, of course.  It is always 
dangerous to assume how a hypervisor will perform 
just from theoretical analyses.  Section 7.3 of [21] 
shows how initial performance assists on the VAX 
VMM proved to be not very useful and how only 
measurement of those initial designs led to the proper 
optimizations. 
 

Even if the secure shared file store is implemented 
as part of the hypervisor, this does not mean that the 
code needs to be dispersed all over the hypervisor, 
leading to increased complexity.  As required at the 
higher levels of assurance of the Common Criteria, the 
hypervisor should be implemented as a layered 
architecture, with the file store in separate layers from 
the other parts of the hypervisor.  An example of such 
a layered design for a secure file store can be seen in 
[32]. 
 

However the secure shared file store is 
implemented, the most important point of this paper is 
that the complexity and cost of a one-way network 
solution is likely to be comparable to that of a secure 
shared file store, yet the file store approach makes 
implementing sophisticated multi-level applications 
much simpler.   

                                                           
13 See [28] for details on the costs of register saving, clearing, and 
restoring in these cases, together with possible optimization 
techniques. 

6 I/O Memory Management Units 
 

A variety of processors are starting to deploy I/O 
memory management units (MMUs) that can 
significantly help performance by allowing a 
hypervisor partition to directly control unshared I/O 
devices.  In most computers, I/O devices reference 
main memory using absolute addresses.  This means 
that I/O drivers must be completely trusted, because 
they can address any location of main memory.  An 
I/O MMU would provide the same concepts of virtual 
address translation and protection to I/O drivers that 
MMUs provide to the CPU.  With an I/O MMU, a 
device driver would be constrained to only using those 
memory locations allocated to it by the operating 
system, just like an application program is similarly 
constrained.  With such hardware support, most I/O 
drivers could become ordinary unprivileged programs.  
(The exception would be I/O drivers for shared multi-
user devices, such as disks or networks.  Such I/O 
drivers must provide secure multiplexing of those 
shared devices.)   

 
I/O MMUs are not a new idea.  The use of an I/O 

MMU was first proposed in 1975 for the Multics 
Secure Front-End Processor (SFEP) [19], and the first 
practical implementation was for the Honeywell 
SCOMP processor [20] which received the first-ever 
A1 security evaluation in 1985.  Examples of modern 
implementations of I/O MMUs can be found in section 
2.19 of [1] and in [16]. 

 
7 Conclusion 
 

This paper has shown what some of the critical 
issues are in adding multi-level security (MLS) to a 
hypervisor.  If the users are content with a pure 
isolation hypervisor that makes sharing between 
partitions extremely difficult, then an approach such as 
NetTop is viable.  A pure isolation hypervisor, such as 
PR/SM, can be extremely cost effective at sharing very 
expensive server hardware, such as IBM’s z/Series 
mainframes.  However, the paper has shown that many 
important applications cannot be easily implemented 
on a pure isolation hypervisor, and that implementing 
such applications creates the need for a secure file 
store, even at Common Criteria level EAL4.  The 
paper contains theoretical analyses suggesting that 
implementing such a file store as a hypervisor 
subsystem will likely give much better performance, 
but tempers those recommendations with evidence that 
purely theoretical performance analysis of hypervisors 
can be misleading.  Regardless of the implementation 



approach, the performance of such a secure file store 
will be extremely critical to the success of any 
hypervisor design. 
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