
Multi-Level Security Requirements for Hypervisors

Paul A. Karger
IBM Thomas J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA
karger@watson.ibm.com

Abstract

Using hypervisors or virtual machine monitors for
security has become very popular in recent years, and
a number of proposals have been made for supporting
multi-level security on secure hypervisors, including
PR/SM, NetTop, sHype, and others. This paper looks
at the requirements that users of MLS systems will
have and discusses their implications on the design of
multi-level secure hypervisors. It contrasts the new
directions for secure hypervisors with the earlier
efforts of KVM/370 and Digital’s A1-secure VMM
kernel.

1 Purpose of this paper

There have been a number of recent efforts to
develop multi-level security (MLS) for hypervisors or
virtual machine monitors (VMMs), such as NetTop
[40], sHype [44], and a proposed combination of Xen
[17] and sHype [33]. There has been a lot of
confusion about what the requirements are to
adequately support multi-level security (MLS) in a
hypervisor. The hypervisor is being used to separate
multiple instances of untrusted operating systems,
running at different security levels. The purpose of
this paper is to clarify what end-users of MLS expect
to be able to do1, and what technical issues impact
those requirements at Common Criteria levels EAL4
and above.2 This paper presents no major new ideas or
innovations. The goal is to assist developers of
hypervisors to decide which of these ideas and features
are important to make multi-level security useful to the

1 The end-user requirements are derived from the author’s personal
experience designing, deploying, and supporting a variety of MLS
systems within the DoD and in designing high security hypervisors.
2 Trusted Information Systems, Inc. developed a proposed
interpretation of the Orange Book for Virtual Machine Monitors [10]
that attempted to clarify some of these issues, but it did not address
the networking issues on which this paper particularly focuses.

end-users. A hypervisor with fewer features is less
expensive to build and is easier to evaluate under the
Common Criteria. However, if the hypervisor is too
restrictive, then the customers will be unable to
implement the MLS applications that they want to run.
This paper identifies a set of features that are needed to
make the hypervisor useful, yet are still simple enough
to assure its security.

2 End-User Expectations

2.1 What does Multi-Level Secure Mean?

MLS systems can mean many things to many
people. What this paper will describe are the
requirements and implications of a multi-level secure
mode of operation as was defined many years ago in
DoD Directive 5200.28 [11] and in the implementing
manual [13].3 A system that runs in multi-level secure
mode has information at a variety of classification
levels4, but not all users are cleared for all information.
By contrast, most classified systems in the DoD today
run in system-high mode and have information at a
variety of classification levels, but all users are cleared
for the most sensitive information in the system. The
system may be a single machine or an entire network.
For example, the DoD’s SIPR network stores
information marked from Unclassified through Secret,
but all users are required to have at least a Secret
clearance. There is also a controlled mode of
operation in which all users are cleared to some level,
but not necessarily the highest level of information.
The first successfully deployed controlled mode

3 A more modern version of these definitions can be found in [6]
4 This paper will speak of security levels in most cases to make the
language simpler. However, using only hierarchic security levels is
an over-simplification of the model. The DoD security model is
actually a lattice-structure with both levels and categories. A point in
the lattice is usually called an access class, and any pair of access
classes may be comparable (<, =, or >) or they may be disjoint and
totally incomparable. See [18] for details.

system was the Multics system at the Air Force Data
Services Center in the Pentagon that processed Top
Secret information, but allowed users who were only
cleared for Secret. Under the old Orange Book
evaluation system [5] and as recommended in the
Yellow Books [4, 12], system-high systems were
typically evaluated B1 or below. Controlled mode
systems were typically evaluated at B2, and true multi-
level mode required B3 or higher. Translating to the
Common Criteria [7-9], B1 and below are roughly
EAL4 and below, B2 is roughly EAL5, and B3 and
higher are roughly EAL6 and higher.

This paper has focused on the use of MLS for the
defense applications, but they are by no means limited
to defense applications. MLS can be extremely useful
in commercial applications. An example use of MLS
in a frequent-flyer smart card application is shown in
[29, 30]. IBM has developed a new extended
mandatory access control model, designed to provide
multi-organizational MLS in a meaningful way to the
entire Internet. This is described in [25] and in section
3 of [47]. The development of multi-organizational
MLS for commercial use also has payoffs for the
military. Traditional military MLS models have been
single-organization models. Everyone in the
Department of Defense follows the same security
rules. However, this traditional single-organization
model has problems when multi-national coalition
forces must work together. Each country’s military
has its own security policies, and those policies do not
easily map into a single policy. By contrast, IBM’s
multi-organizational MLS, designed to handle many
different businesses on a single world-wide Internet, is
much better suited to modeling the many different
security policies of multi-national coalition forces.

2.2 What do Users Want to do with MLS

Systems?

The most basic requirement is that the MLS system
keeps highly classified information from leaking to
people who are not properly cleared. This requirement
is met by a system that implements the Bell and
LaPadula security model [18]. However, this
requirement can also be met by simply keeping data of
different classifications on different computer systems
and restricting access to those systems by clearance
levels. Most systems in the DoD do exactly that and
run in a system-high mode.

The biggest problem with system-high mode is that

sharing information across security levels is very hard.

Users at high levels of security want to be able to read
low-level information, even though they do not want to
contaminate that low-level information with high-level
secrets. Keeping multiple copies of the low level
information on different machines running at different
system-high levels is not acceptable. First, you need to
have significantly larger amounts of storage in such a
case, and keeping the data synchronized can be very
difficult. If you update the low-level data on a low-
level machine, that update must be replicated onto all
the other copies. Such replication is particularly
difficult, because machines running at different
system-high levels must NOT be networked together.
The DoD frequently has to resort to sneakernet to
apply these types of updates.

Users also want to downgrade information from

higher security levels to lower security levels. The
simplest form of this is the statutory downgrading
required after the passage of specific numbers of years.
Since statutory downgrading only happens after
multiple decades have passed, there is little need to
make it happen in real time, although there is a need
for efficiently downgrading large numbers of files
from archival storage.

However, there is another form of downgrading that

does need to be done quickly and in real time. A user
at a high security level may determine that a particular
piece of information needs to be made available to
someone at a lower security clearance. For example,
an intelligence analyst may determine from a spy’s
report that the enemy is going to attack at dawn. The
defenders who need to know about the upcoming
attack, but those defenders should not know who is the
spy. The analyst must sanitize the information,
removing any indicator of who the spy is, but leaving
the information that the enemy will attack at dawn.5
The analyst needs to be able to isolate the information
to be downgraded, ensure that the particular
information cannot be modified until the downgrade
operation has completed, and then release that
information to the recipient on a timely basis.

3 Implications of the Bell and LaPadula

Security Model

The Bell and LaPadula security model [18] imposes
a number of constraints on possible implementations of
MLS systems. In particular, Bell and LaPadula require

5 Sanitization without leaving indicators is often very tricky, but for
this paper, we assume that the analyst can easily determine which
information is safe to downgrade.

that each process in a single system (or each system-
high machine in a network) be identified at a particular
security level. That process is allowed to read lower-
classified information, but it is not allowed to write
files that are marked at a lower classification level.
This is to prevent Trojan horses from releasing
arbitrary information. Note that this is a basic
requirement of the model at evaluation levels EAL4
and above. It is not to be confused with covert channel
issues [34, 37] that only come into play at B2 or EAL5
and above.

The result of this no-write-down requirement is that

network connections between system-high systems are
only generally useful if the systems are at precisely the
same system-high level. Most network protocols
require two-way communications (if only for packet
acknowledgements), and acknowledgements cannot be
permitted from high to low. This requirement is made
clear in the Trusted Network Interpretation (TNI) [14]
of the Orange Book [5].6 It is possible to build truly
one-way networks. Such networks were first proposed
in chapter 7 of [26] and in [27]. Rushby and Randell
[43] proposed a complete implementation of such a
system, based on the Newcastle Connection, developed
at University of Newcastle. There have been several
commercial products evaluated in Australia7 to
implement one-way networks of one kind or another.
These products from BAE Systems, Compucat, and
Tenix Defence Systems all provide very limited
communications capabilities.8

Why are these one-way networks so limited? Most
network protocols use two-way communications to
implement both flow control and error control. If you
cannot have two-way communications, then there

6 The TNI [14] explicitly calls for strictly one-way networking at
level B2 in section 3.2.1.3.4. However, in the B1 sections of the
TNI, section 3.1.1.3.1 requires accurate labels on information
transferred between network trusted computing base (NTCB)
partitions, and section 3.1.1.4 requires that subjects and objects used
for communication with other components are under control of the
NTCS partition. The phrase “under control” is critical here, because
the distinction between overt communications channels that must be
secure at B1 and covert communications channels that need not be
secure until B2 is whether or not they are “under control” of the
TCB. Since the subjects and objects for communication are under
control of the NTCB, the issues of one-way communications and
packet acknowledgements are NOT covert channel issues. This is an
inconsistency in the TNI and not an unexpected one. The TNI has
been criticized in a number of ways for inconsistencies like this in
[45].
7http://www.dsd.gov.au/infosec/evaluation_services/epl/dap.html
8 The BAE Systems product evaluation report [3] indicates that it
may have covert channel issues that are discussed in classified
supplementary reports. The covert channel situation seems better on
the other two products.

needs to be a trusted intermediary that accept and error
check all messages sent by the sender, even if the
receiver is refusing all input. This means that the
intermediary may need huge amounts of buffer
memory to hold hours or days worth of traffic. In
addition, many protocols that run on top of TCP need
two-way communications. For example, the FTP
protocol [41] cannot run over a one-way network. The
above-mentioned products use their own proprietary
protocol to transfer files from low to high.

4 Hypervisor Implications

There are two classes of hypervisors that must be

considered when examining the technical implications
of MLS for hypervisors. The two classes are pure
isolation hypervisors and sharing hypervisors.

4.1 Pure Isolation Hypervisors

A pure isolation hypervisor simply divides a

machine into partitions, and permits no sharing of
resources between the partitions (other than CPU time
and primary memory). Implementing a pure isolation
hypervisor is very easy, because the only security
policy to be enforced is isolation. IBM’s EAL5-
evaluated PR/SM system [2] for the z/Series
mainframes is a good example of a pure isolation
hypervisor. There is essentially no sharing between
partitions in PR/SM. PR/SM does have features for
certain very limited forms of sharing (such as channel
to channel connections, etc.), but under the EAL5
evaluation certificate, such sharing is absolutely
forbidden. If a customer site turned on such sharing,
they would no longer be running an evaluated
configuration.

The partitions of a pure isolation hypervisor are

essentially just like a collection of system-high
separate computers. Each partition has its own disks
and network connections, and if one partition is
unclassified and the other is secret, then there cannot
even be a network connection between them.

A valid question is, “Who would want a pure

isolation hypervisor? You can get the same results by
running several separate machines.” In the case of a
z/Series mainframe, there is a good reason.
Mainframes are so expensive that the ability to
partition one system into several isolated systems will
save the customer lots of money, even if no sharing is
permitted.

However, for smaller systems, such as small
departmental servers or desktop or workstation clients,
the benefits of a pure isolation hypervisor are much
harder to justify. Additional separate systems are
sufficiently cheap with modern technology that the
inherent performance costs and complexity of
hypervisors become significant issues.

One could argue for a pure isolation desktop client
as an alternative to four or five clients that some DoD
end-users have find room for in their offices. One
such pure isolation desktop client is NetTop [40]9,
developed by the NSA specifically to reduce the
number of distinct client machines that an analyst must
have on their desktop. NetTop allows separate
partitions to connect to separate external networks, but
allows no sharing of any kind between partitions.
However, the end user of NetTop or other pure
isolation hypervisors will almost immediately want to
transfer information from one client to another, and
they will get very frustrated when they can’t.

Thus, pure isolation hypervisors are really only

useful for customers of the largest and most expensive
servers. Using multiple separate machines makes more
sense for smaller configurations.

4.2 Sharing Hypervisors

Sharing hypervisors permit significant resource

sharing between partitions. z/VM10 is the best example
of a sharing hypervisor. Virtual machines under VM
can share either virtual or physical disk, network
connections, etc. In the early days, two virtual

9 The paper on NetTop [40] describes it as a high-assurance system.
However, this description by the NSA is quite inaccurate. High
assurance conventionally means evaluation at levels EAL6 or above.
EAL4 and EAL5 can be considered medium assurance, although
some would classify EAL4 as low assurance. Anything lower than
EAL4 is certainly low assurance. NetTop is based on SE/Linux [38,
48] which has never been evaluated. Regular Linux kernels have
been evaluated to EAL3 and are under evaluation at EAL4. Linux
itself is so complex that it is likely to never reach high assurance
without major reimplementation. SE/Linux, while it adds security
features to Linux, also significantly increases the complexity of
Linux [31] which makes it even less likely to ever achieve a high
assurance evaluation. A quote from [45] well summarizes the need
for genuine high assurance: “That which must be Trusted had best be
Trustworthy.”
10 z/VM is the latest version of IBM’s primary virtual machine
monitor product. IBM invented the concept of hypervisors or virtual
machine monitors in the mid 1960s at the Cambridge Scientific
Center. The first prototype system was CP/40 [15, 36] on a specially
modified System 360/40. The first version available outside of IBM
was CP-67/CMS [22] for the System 360/67. The first fully
supported product was VM/370 [22]. A full history of VM has been
written by Varian [49].

machines under VM communicated by connecting the
output of the virtual card punch of one into the input of
the virtual card reader of another. Secured versions of
sharing hypervisors can support a variety of secure
applications, including fast, easy low to high sharing,
sophisticated downgrading, etc. The idea of a secure
sharing hypervisor originated with Madnick and
Donovan [39]. The best examples of such secure
sharing hypervisors are KVM/370 [46] and Digital’s
A1-secure VMM [32].

The most critical feature of a secure sharing
hypervisor is a secure shared file store11. The secure
shared file store allows a high level partition to have
read-only access to low-level data, while a low-level
partition gets read-write access to the same data. This
avoids the clumsy one-way networking approaches
described in section 3. Only a single copy of the data
is required and updates are visible immediately to all
partitions.12

The secure shared file store is so important, because

it makes a variety of MLS applications possible. The
most obvious is the secure read-down capability
described in the previous paragraph. However,
downgrading applications also need a secure shared
file store. This is because the downgrading application
needs to isolate the file to be downgraded, allow
trusted programs and/or human beings to review what
is to be downgraded, and only after all electronic or
human approvals have been completed are the
markings on the file changed. During that whole
process that could take minutes or even hours, the
candidate file must not be modified in any way by
other than totally trusted software. Once approved, the
remarking must be an atomic operation – either it
totally completes or it doesn’t happen at all. A secure
shared file store makes this much easier to implement
and to assure correctness.

11 A secure shared file store is simply a secure file system available at
the hypervisor level, rather than at the guest operating system level.
A guest operating system might store its entire file system within a
single file of secure shared file store. The mini-disks of z/VM are a
good example of a secure shared file store.
12 Properly synchronizing those updates, so that all partitions see
consistent date requires a mechanism, such as version numbers [23]
or event counts [42] to solve the secure readers-writers problem.

5 Evolving from a Pure Isolation
Hypervisor to a Sharing Hypervisor

An obvious question is what has to be done to

evolve from a pure isolation hypervisor to a sharing
hypervisor. The major constraints on this evolution
are that the add-ons must be secure, but they also must
perform very well. It is very easy for a hypervisor
implementation to add huge amounts of overhead to a
system, and adding such overhead needlessly could
easily result in customers abandoning either security or
hypervisors or both.

5.1 One-Way Network Options

As discussed in section 3, it is possible to
implement semi-usable one-way networks, if you have
a highly trusted intermediary. The intermediary must
have a very large buffer store that is totally protected.
The easiest way to construct such a buffer is in a
secure shared file store. The reason that a huge buffer
is needed is because there cannot be any flow control
from a high partition to a low partition. Even if the
high partition cannot accept more packets, the
intermediary must continue to accept traffic and store
it until the high partition can again accept input. This
is discussed in some detail in chapter 7 of [26]. You
could give the intermediary access to an entire real
disk drive as its buffer store, but based on the principle
of least privilege, you would like a different
intermediary for each pair of security levels.
Managing those buffers in a secure file store will be
much easier than with many separate real physical
drives.

Another way to implement a one-way network is
with one of the Australian-evaluated one-way network
products that were mentioned in section 3. The
product from Tenix Defence Systems deserves careful
examination, because it even supports a one-way cut
and paste capability (although only for Windows
operating systems). However, these products all use
hardware add-ons that are external to the hypervisor
and would therefore require a separate physical
network card for each partition.

5.2 Secure Shared File Store Options

A secure shared file store need not be a fully
general-purpose file system. Most files in the file store
will be virtual disks (or mini-disks as called in z/VM).
A virtual disk contains an entire guest OS file system
within it, so the virtual disk is likely to be large and is

not likely to change its size very often. The secure
shared file store can easily insist that such files always
be contiguous and always be of fixed length. The
other use for secure file store is to support
downgrading operations. Files to be downgraded are
likely to be much smaller than entire virtual disks, but
once created, they never change at all, so again, fixed
size contiguous files are acceptable. Since there may
be many of these files and their size is likely to be
small, using entire disk drives is not a viable option.
They also have relatively short lifetimes while the data
is being reviewed and then the data is likely to be
moved into the virtual disks of the intended destination
partition.

The secure shared file store could be implemented

in two ways – as a subsystem of the hypervisor or as a
separate highly trusted partition. Either approach can
be made to be secure, but the overriding consideration
must be performance. I/O operations are often the
Achilles heel for performance in a hypervisor. Many
workloads will be extremely I/O intensive and some
will have downgrades occurring frequently. However,
this is implemented, minimizing the cost of context
switching into and out of the secure shared file store
will be crucial.

If the secure file store is a subsystem of the

hypervisor, the calls can be made as cross-ring calls
that can often be implemented with little performance
overhead and without having to flush caches and
translation buffers. If the secure file store is in a
separate partition, then the interface is essentially a
message-passing interface. Lauer and Needham [35]
have shown the duality of subroutine calls and
message-passing calls, but in section 6.8 of [24],
Karger argues that the calling interface will always (or
at least almost always) will have better performance.
This can be seen in the hypervisor context as follows.
If the secure shared file system is a subsystem of the
hypervisor itself, then a call to perform a read or a
write consists of a cross-ring call into the kernel,
followed by a cross-ring return. The calls and returns
should require no flushing of translation buffers or
caches. Between the call and the return, the file
system must perform I/O and those operations may
have context switches, depending on the driver
architecture, of course.

By contrast, if the secure shared file system is

implemented in a separate partition, then a call to
perform a read or a write consists of a cross-ring call
into the kernel to initiate a message pass, followed by a
full context switch to the file system partition and a

cross-ring return out to the file system code itself. The
file system code now performs I/O, just as the file
system subsystem would with essentially the same
performance overheads for communicating to and from
drivers. However, when the I/O has completed, the
file system code must now do a cross-ring call into the
kernel to initiate a message pass back to the caller, the
kernel must do a context switch to the calling partition,
followed by a cross-ring return to the actual calling
code in the guest OS. The exact amount of overhead
for the extra context switches to and from a different
partition will depend on the precise implementation, of
course, but even if the underlying CPU supports
multiple address spaces in the TB simultaneously, the
overhead will be significant, just from register saving,
clearing, and restoring.13 In a CPU without multiple
address space support (such as the VAX or current
generation x86 processors), the context switching
overhead could easily be doubled or more. In an I/O
intensive workload, this type of overhead could be
prohibitive. Real decisions must be made on real
performance benchmarks, of course. It is always
dangerous to assume how a hypervisor will perform
just from theoretical analyses. Section 7.3 of [21]
shows how initial performance assists on the VAX
VMM proved to be not very useful and how only
measurement of those initial designs led to the proper
optimizations.

Even if the secure shared file store is implemented
as part of the hypervisor, this does not mean that the
code needs to be dispersed all over the hypervisor,
leading to increased complexity. As required at the
higher levels of assurance of the Common Criteria, the
hypervisor should be implemented as a layered
architecture, with the file store in separate layers from
the other parts of the hypervisor. An example of such
a layered design for a secure file store can be seen in
[32].

However the secure shared file store is
implemented, the most important point of this paper is
that the complexity and cost of a one-way network
solution is likely to be comparable to that of a secure
shared file store, yet the file store approach makes
implementing sophisticated multi-level applications
much simpler.

13 See [28] for details on the costs of register saving, clearing, and
restoring in these cases, together with possible optimization
techniques.

6 I/O Memory Management Units

A variety of processors are starting to deploy I/O
memory management units (MMUs) that can
significantly help performance by allowing a
hypervisor partition to directly control unshared I/O
devices. In most computers, I/O devices reference
main memory using absolute addresses. This means
that I/O drivers must be completely trusted, because
they can address any location of main memory. An
I/O MMU would provide the same concepts of virtual
address translation and protection to I/O drivers that
MMUs provide to the CPU. With an I/O MMU, a
device driver would be constrained to only using those
memory locations allocated to it by the operating
system, just like an application program is similarly
constrained. With such hardware support, most I/O
drivers could become ordinary unprivileged programs.
(The exception would be I/O drivers for shared multi-
user devices, such as disks or networks. Such I/O
drivers must provide secure multiplexing of those
shared devices.)

I/O MMUs are not a new idea. The use of an I/O

MMU was first proposed in 1975 for the Multics
Secure Front-End Processor (SFEP) [19], and the first
practical implementation was for the Honeywell
SCOMP processor [20] which received the first-ever
A1 security evaluation in 1985. Examples of modern
implementations of I/O MMUs can be found in section
2.19 of [1] and in [16].

7 Conclusion

This paper has shown what some of the critical
issues are in adding multi-level security (MLS) to a
hypervisor. If the users are content with a pure
isolation hypervisor that makes sharing between
partitions extremely difficult, then an approach such as
NetTop is viable. A pure isolation hypervisor, such as
PR/SM, can be extremely cost effective at sharing very
expensive server hardware, such as IBM’s z/Series
mainframes. However, the paper has shown that many
important applications cannot be easily implemented
on a pure isolation hypervisor, and that implementing
such applications creates the need for a secure file
store, even at Common Criteria level EAL4. The
paper contains theoretical analyses suggesting that
implementing such a file store as a hypervisor
subsystem will likely give much better performance,
but tempers those recommendations with evidence that
purely theoretical performance analysis of hypervisors
can be misleading. Regardless of the implementation

approach, the performance of such a secure file store
will be extremely critical to the success of any
hypervisor design.

8 Acknowledgements

I want to especially thank Dave Safford for his
suggestions and for pushing me to publish this paper. I
would also like to acknowledge the useful comments
on the paper provided by John Griffin, Ron Perez, J. R.
Rao, Reiner Sailer, Leendert Van Doorn, and the
anonymous referees.

9 References

1. AMD64 Virtualization Codenamed “Pacifica”
Technology: Secure Virtual Machine Architecture Reference
Manual, Publication No. 33047, Revision 3.01, May 2005,
Advanced Micro Devices: Sunnyvale, CA. URL:
http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/33047.p
df

2. Certification Report for Processor Resource/ System
Manager (PR/SM) for the IBM eServer zSeries 900, BSI-
DSZ-CC-0179-2003, 27 February 2003, Bundesamt für
Sicherheit in der Informationstechnik: Bonn, Germany.
URL:
http://www.commoncriteriaportal.org/public/files/epfiles/017
9a.pdf

3. Certification Report: BAE SYSTEMS - Trusted Filter
Version 1.0, Certificate Number: 2001/19, July 2001,
Defense Signals Directorate - Australasian Certification
Authority: Kingston, ACT, Australia. URL:
http://www.dsd.gov.au/infosec/evaluation_services/epl/netw
ork_security/BAESystems_TrustedFilter.html

4. Computer Security Requirements -- Guidance for
Applying the Department of Defense Trusted Computer
System Evaluation Criteria in Specific Environments, CSC-
STD-003-85, 25 June 1985, DoD Computer Security Center:
Ft. George G. Meade, MD. URL:
http://www.radium.ncsc.mil/tpep/library/rainbow/index.html

5. Department of Defense Trusted Computer System
Evaluation Criteria, DOD 5200.28-STD, December 1985:
Washington, DC. URL:
http://csrc.nist.gov/publications/history/dod85.pdf

6. DoD Information Technology Security Certification and
Accreditation Process (DITSCAP), DoD Instruction 5200.40,
30 December 1997, Department of Defense: Washington,
DC. URL:
http://www.dtic.mil/whs/directives/corres/pdf/i520040_1230
97/i520040p.pdf

7. Information technology - Security techniques --
Evaluation criteria for IT security -- Part 1: Introduction and
general model, ISO/IEC 15408-1, 1999, International
Organization for Standardization.

8. Information technology - Security techniques --
Evaluation criteria for IT security -- Part 2: Security
functional requirements, ISO/IEC 15408-2, 1999,
International Organization for Standardization.

9. Information technology - Security techniques --
Evaluation criteria for IT security -- Part 3: Security
assurance requirements, ISO/IEC 15408-3, 1999,
International Organization for Standardization.

10. A Proposed Interpretation of the TCSEC for Virtual
Machine Monitor Architectures, 31 March 1989, Trusted
Information Systems, Inc.: Glenwood, MD.

11. Security Requirements for Automatic Data Processing
(ADP) Systems, DoD Directive 5200.28, 18 December 1972,
Department of Defense: Washington, DC.

12. Technical Rationale Behind CSC-STD-003-85:
Computer Security Requirements -- Guidance for Applying
the Department of Defense Trusted Computer System
Evaluation Criteria in Specific Environments, CSC-STD-
004-85, 25 June 1985, DoD Computer Security Center: Ft.
George G. Meade, MD. URL:
http://www.radium.ncsc.mil/tpep/library/rainbow/index.html

13. Techniques and Procedures for Implementing,
Deactivating, Testing, and Evaluating Secure Resource-
Sharing ADP Systems, DoD 5200.28-M, January 1973,
Department of Defense: Washington, DC.

14. Trusted Network Interpretation of the Trusted Computer
System Evaluation Criteria, NCSC-TG-005, Version-1, 31
July 1987, National Computer Security Center: Ft. George
G. Meade, MD. URL:
http://www.radium.ncsc.mil/tpep/library/tcsec/index.html

15. Adair, R.J., R.U. Bayles, L.W. Comeau, and R.J. Creasy,
A Virtual Machine System for the 360/40, Report 320-2007,
May 1966, IBM Cambridge Scientific Center: Cambridge,
MA.

16. Armstrong, W.J., R.L. Amdt, D.C. Boutcher, R.G.
Kovacs, D. Larson, K.A. Lucke, N. Nayar, and R.C.
Swanberg, Advanced Virtualization Capabilities of POWER5
Systems. IBM Journal of Research and Development,
July/September 2005. 49(4/5): p. 523-532. URL:
http://www.research.ibm.com/journal/rd/494/armstrong.html

17. Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
Art of Virtualization. in Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles
(SOSP). 19-22 October 2003, Bolton Landing, NY: ACM
Press. URL:
http://www.cl.cam.ac.uk/Research/SRG/netos/papers/2003-
xensosp.pdf

18. Bell, D.E. and L.J. LaPadula, Computer Security Model:
Unified Exposition and Multics Interpretation, ESD-TR-75-
306, March 1976, The MITRE Corporation, Bedford, MA:
HQ Electronic Systems Division, Hanscom AFB, MA. URL:
http://csrc.nist.gov/publications/history/bell76.pdf

19. Biba, K.J., S.R. Ames, E.L. Burke, P.A. Karger, W.R.
Price, R.R. Schell, and W.L. Schiller, A Preliminary
Specification of a Multics Security Kernel, WP-20119, April
1975, The MITRE Corporation: Bedford, MA.

20. Broadbridge, R. and J. Mekota, Secure Communications
Processor Specification, ESD-TR-76-351, Vol. II, June
1976, Honeywell Information Systems, Inc., McLean, VA:
HQ Electronic Systems Division, Hanscom AFB, MA.

21. Hall, J.S. and P.T. Robinson. Virtualizing the VAX
Architecture. in 18th International Symposium on
Computer Architecture. May 1991, Toronto, ON, Canada:
published in Computer Architecture News, vol. 19. p. 380-
389.

22. Hendricks, E.C. and T.C. Hartmann, Evolution of a
Virtual Machine Subsystem. IBM Systems Journal, 1979.
18(1): p. 111-142. URL:
http://domino.research.ibm.com/tchjr/journalindex.nsf/SysVo
lumes?OpenView

23. Hinke, T.H. and M. Schaefer, Secure Data Management
System, RADC-TR-75-266 [NTIS AD A019201], November
1975, Rome Air Development Center: Griffiss AFB, NY.

24. Karger, P.A., Improving Security and Performance for
Capability Systems, Computer Laboratory Technical Report
No. 149, October 1988, University of Cambridge:
Cambridge, England.

25. Karger, P.A., Multi-Organizational Mandatory Access
Controls for Commercial Applications, RC 21673 (97655),
22 February 2000, IBM Research Division, Thomas J.
Watson Research Center: Yorktown Heights, NY. URL:
http://domino.watson.ibm.com/library/CyberDig.nsf/home

26. Karger, P.A., Non-Discretionary Access Control for
Decentralized Computing Systems, S. M. & E. E. thesis
1977, Laboratory for Computer Science, Massachusetts
Institute of Technology: Cambridge, MA. URL:
http://ncstrl.mit.edu:80/Dienst/UI/2.0/Describe/ncstrl.mit_lcs
%2fMIT%2fLCS%2fTR-179

27. Karger, P.A. Non-Discretionary Security for
Decentralized Computing Systems: Host to Host Protocols.
in Trends and Applications: 1978 Distributed Processing.
18 May 1978, National Bureau of Standards, Gaithersburg,
MD: IEEE. p. 32-39.

28. Karger, P.A., Using Registers to Optimize Cross-
Domain Call Performance, in Proceedings of the Third
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS)
3-6 April 1989: Boston, MA. p. 194-204.

29. Karger, P.A., V.R. Austel, and D.C. Toll. Using a
Mandatory Secrecy and Integrity Policy on Smart Cards and
Mobile Devices. in EUROSMART Security Conference.
13-15 June 2000, Marseilles, France: p. 134-148.

30. Karger, P.A., V.R. Austel, and D.C. Toll. Using
Mandatory Secrecy and Integrity for Business to Business
Applications on Mobile Devices. in Workshop on
Innovations in Strong Access Control. 25-27 September
2000, Naval Postgraduate School, Monterey, CA: published
on CD-ROM. URL: http://www.acsac.org/sac-
tac/wisac00/wed0830.karger.pdf

31. Karger, P.A. and R.R. Schell. Thirty Years Later:
Lessons from the Multics Security Evaluation. in
Proceedings of the 18th Annual Computer Security
Applications Conference. 9-13 December 2002, Las Vegas,
NV: IEEE Computer Society. p. 119-126. URL:
http://www.acsac.org/2002/papers/classic-multics.pdf

32. Karger, P.A., M.E. Zurko, D.W. Bonin, A.H. Mason,
and C.E. Kahn, A Retrospective on the VAX VMM Security
Kernel. IEEE Transactions on Software Engineering,
November 1991. 17(11): p. 1147-1165.

33. Kerner, S.M., IBM Offers Support for Xen.
internetnews.com, 19 January 2005. URL:
http://www.internetnews.com/dev-news/article.php/3461481

34. Lampson, B.W., A note on the confinement problem.
Communications of the ACM, October 1973. 16(10): p.
613-615.

35. Lauer, H.C. and R.M. Needham, On the duality of
operating system structures, in Operating Systems: Theory
and Practice, D. Lanciaux, Editor. 1979, North-Holland:
Amsterdam. p. 371-384.

36. Lindquist, A.B., R.R. Seeber, and L.W. Comeau, A
Time-Sharing System Using an Associative Memory.
Proceedings of the IEEE, December 1966. 54(12): p. 1774-
1779.

37. Lipner, S.B., A comment on the confinement problem.
Operating Systems Review, 19-21 November 1975. 9(5): p.
192-196. Proceedings of the Fifth Symposium on Operating
Systems Principles.

38. Loscocco, P. and S. Smalley. Integrating Flexible
Support for Security Policies into the Linux Operating
System. in Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference (FREENIX '01).
2001, Boston, MA. URL:
http://www.nsa.gov/selinux/doc/freenix01.pdf

39. Madnick, S.E. and J.J. Donovan. Application and
Analysis of the Virtual Machine Approach to Information
System Security. in Proceedings of the ACM SIGARCH-
SIGOPS Workshop on Virtual Computer Systems. 26-27
March 1973, Cambridge, MA: Association for Computing
Machinery. p. 210-224. URL:
http://portal.acm.org/citation.cfm?id=803961

40. Meushaw, R. and D. Simard, NetTop: Commercial
Technology in High Assurance Applications. National
Security Agency Tech Trend Notes, Fall 2000. 9(4): p. 3-
10. URL: http://www.vmware.com/pdf/TechTrendNotes.pdf

41. Postel, J. and J. Reynolds, File Transfer Protocol (FTP),
RFC 959, October 1985, Network Working Group. URL:
http://www.ietf.org/rfc/rfc959.txt

42. Reed, D.P. and R.K. Kanodia, Synchronization with
Eventcounts and Sequencers. Comm. ACM, February 1979.
22(2): p. 115-123.

43. Rushby, J. and B. Randell, A Distributed Secure System.
IEEE Computer, July 1983. 16(7): p. 55-67. URL:
http://www.csl.sri.com/users/rushby/abstracts/computer83

44. Sailer, R., T. Jaeger, J.L. Griffin, S. Berger, L. van
Doorn, R. Perez, and E. Valdez, Building a General-purpose
Secure Virtual Machine Monitor, RC23537 (W0502-132), 25
February 2005, IBM Research Division, Thomas J. Watson
Research Center: Yorktown Heights, NY. URL:
http://domino.watson.ibm.com/library/CyberDig.nsf/home

45. Schaefer, M., W.C. Barker, and C.P. Pfleeger. Tea and I:
An Allergy. in IEEE Symposium on Security and Privacy.
1-3 May 1989, Oakland, CA: IEEE Computer Society. p.
178-182.

46. Schaefer, M., B. Gold, R. Linde, and J. Scheid. Program
Confinement in KVM/370. in Proceedings of the 1977 ACM
Annual Conference. 16-19 October 1977, Seattle, WA: p.
404-410.

47. Scherzer, H., R. Canetti, P.A. Karger, H. Krawczyk, T.
Rabin, and D.C. Toll. Authenticating Mandatory Access
Controls and Preserving Privacy for a High-Assurance
Smart Card. in 8th European Symposium on Research in
Computer Security (ESORICS 2003). 13-15 October 2003,
Gjøvik, Norway:Lecture Notes in Computer Science Vol.
2808. Springer Verlag. p. 181-200.

48. Smalley, S., Configuring the SELinux Policy, NAI Labs
Report #02-007, June 2002, NAI Labs: Glenwood, MD.
URL: http://www.nsa.gov/selinux/policy2-abs.html

49. Varian, M. VM and the VM Community: Past Present,
and Future. in SHARE 89, Sessions 9059-9061. August
1997. URL: http://pucc.princeton.edu/~melinda/25paper.pdf

