
Multi-level Software Reconfiguration for Sensor Networks

Rahul Balani, Chih-Chieh Han, Ram Kumar Rengaswamy, Ilias Tsigkogiannis,
Mani Srivastava

University of California at Los Angeles
420 Westwood Plaza

Los Angeles, California, USA

{rahulb, simonhan, ram, ilias, mbs}@ee.ucla.edu

ABSTRACT

In-situ reconfiguration of software is indispensable in embed-
ded networked sensing systems. It is required for re-tasking
a deployed network, fixing bugs, introducing new features
and tuning the system parameters to the operating environ-
ment. We present a system that supports software recon-
figuration in embedded sensor networks at multiple levels.
The system architecture is based on an operating system
consisting of a fixed tiny static kernel and binary modules
that can be dynamically inserted, updated or removed. On
top of the operating system is a command interpreter, im-
plemented as a dynamically extensible virtual machine, that
can execute high-level scripts written in portable byte code.
Any binary module dynamically inserted into the operat-
ing systems can register custom extensions in the virtual
machine interpreter, thus allowing the high-level scripts ex-
ecuted by the virtual machine to efficiently access services
exported by a module, such as tuning module parameters.
Together these system mechanisms permit the flexibility of
selecting the most appropriate level of reconfiguration. In
addition to detailing the system architecture and the design
choices, the paper presents a systematic analysis of flexibil-
ity versus cost tradeoffs provided by these mechanisms.

Categories and Subject Descriptors: C.3 [Special -
Purpose and Application-Based Systems]: Real-time and
embedded systems

General Terms: Performance, Design, Reliability

Keywords: Virtual Machine, Sensor Networks, Reprogram-
ming, Reconfiguration, Multi-tasking

1. INTRODUCTION
Embedded in buildings [18], forests [4], machinery [5] etc.

as a part of the infrastructure, the sensor networks are used
in uncontrollable environments, whereby users often do not
have exact information about the sensing data or the net-
work characteristics. So, they must be able to reprogram or
reconfigure the sensor network after deployment [9]. In ad-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

dition, they are increasingly being seen as a shared resource
with multiple concurrent users. Hence, they accommodate
a variety of services over their lifetime. This emphasizes
the ability to retask and re-use the deployment on demand.
However, it is not possible to have precise information about
all future operation scenarios of a sensor network before de-
ployment. Hence, the design should be flexible enough to
accommodate the new requirements, while simultaneously
respecting the severe resource constraints imposed by typi-
cal sensor nodes.

Current research in sensor networks has focused on achiev-
ing a single point in design space. Various reconfiguration
mechanisms proposed earlier make a trade-off in flexibility
vs. update cost as shown in figure 1. Update cost is defined
as the network energy required to retask or reconfigure the
sensor network. Full image binary upgrades in TinyOS [11]
provide maximum flexibility by allowing arbitrary changes
to the functionality, but incur unacceptable update cost.
Modular binary upgrades in systems like SOS [10] provide
almost similar flexibility as the full image upgrade but at
a significantly lower cost. Virtual machines provide a more
cost efficient way to update application level functionality
of the system. However, the virtual machine scripts are
severely restricted in the flexibility of updates. Parameter
tuning frameworks provide the least expensive and least flex-
ible way to change software. A more detailed discussion of
these mechanisms is deferred till section 2.

We believe that choosing a fixed design point as above,
restricts the applicability of the system to a few scenarios.
Changing applications often require the underlying run-time
system to dynamically transition from one operating point
to the other with least overhead. Application Specific Vir-
tual Machine (ASVM) [16], based on the Maté [15] virtual
machine framework for TinyOS, proposes an architecture for
building domain-specific run-times. To the best of authors’
knowledge, it is the first attempt at providing two design
choices in the same system combined with an ease of use.
But, given the high update cost in TinyOS, it restricts fre-
quent re-use of same sensor network deployment for another
domain (unless of-course, the user has precise information
about the future before initial deployment, which we argue,
is often not possible). Systems providing modular binary
upgrades, like SOS, overcome this limitation, but incur a
higher update cost for simple application-level modifications
like parameter reconfiguration. Porting parameter tuning
frameworks to the above systems will solve only a part of
the problem as they loose out on the benefits provided by a
virtual machine.

112

Figure 1: Software Reconfiguration in Sensor Net-
works

In this paper, we present a system that supports flexible
software reconfiguration of sensor networks. It integrates the
three design alternatives (excluding full binary upgrades)
discussed above, into one complete system. The architec-
ture consists of SOS kernel [10], that allows incremental up-
grades to the system by dynamically linking binary mod-
ules at run-time. A virtual machine (VM), implemented on
top of SOS, executes application scripts in response to some
events. The design, partly inspired by the ASVM and Maté
framework, enables dynamic extensibility of the virtual ma-
chine at run-time. Essentially, it allows the users to define
the abstraction boundary between the native code and vir-
tual machine script on-the-fly. Shifting the boundary helps
trade-off update cost for execution efficiency and flexibility.
Hence, the name - Dynamically extensible Virtual Machine
(DVM). Our primary intellectual contribution is the design,
implementation, and evaluation of the DVM architecture
that is based on the design principles discussed above. The
DVM source code is a part of the SOS distribution and can
be downloaded from [3].

Three unique features of DVM make it different from ex-
isting architectures.

• The SOS binary modules can expose an interface to
the virtual machine. Henceforth, we will refer to such
modules as scriptable modules. DVM leverages the
power of efficient modular upgrades in SOS to allow
these modules to register custom extensions to the vir-
tual machine at run-time. Therefore the set of func-
tionality available to the virtual machine and the scripts
is dynamic. This helps a sensor network deployment
to be re-used for different domains in a cost efficient
manner.

• The application scripts can interact with the script-
able binary modules running natively on SOS. These
scriptable modules can expose their configurable pa-
rameters to the virtual machine through a published
interface. Thus, the scripts provide a very concise and
flexible way to reconfigure module parameters accord-
ing to the operating environment.

• Besides allowing users to install and update the scripts,
it enables them to modify, at run-time, the set of events

to which the VM responds. This is crucial for retasking
or multi-tasking the system as different applications
often react to a different set of events.

The complete virtual machine architecture consists of two
parts. (i) Core VM framework, which runs on the sensor
nodes and is responsible for executing scripts. (ii) A high-
level language, which is used to write application scripts, and
is compiled to the virtual machine instruction set. This pa-
per describes only the core VM architecture. The language
design is left as future work, but given due consideration
while choosing the VM instruction set. It is assumed that,
for now, the application scripts are written manually in the
VM instruction set, but later, they will be generated by the
language compiler.

The outline of the paper is as follows. The related work
in the area of software reconfiguration is described in sec-
tion 2. An architecture to support multi-level reconfigura-
tion contains two core components - SOS operating system
and the Dynamic Virtual Machine. Section 2 also provides
a brief background about the SOS operating system and its
features that are crucial to the design of DVM. The archi-
tecture of the dynamic virtual machine is described in sec-
tion 3. It also discusses its unique features and the various
design issues that arise due to its dynamic nature. Section 4
evaluates the performance overhead of the system for micro-
benchmarks and analyzes the trade-offs in cost vs. flexibility
provided by the DVM through the case study of an outlier
detection application. We conclude in section 5.

2. RELATED WORK
There have been many proposals for implementing soft-

ware reconfiguration in resource constrained sensor networks.
They can be classified into four major categories as discussed
in the previous section (figure 1). We present related works
in every category.

Full Image Upgrades: TinyOS [11] is a popular op-
erating system for sensor nodes that generates a monolithic
binary image of the entire application. Deluge [12] is a net-
worked bootloader and dissemination protocol that performs
full image upgrades of TinyOS applications. The high up-
date cost is primarily due to the large size of the monolithic
binary image (30-40 KB) that needs to be transferred re-
liably to the entire network. Installing the full image also
disrupts the ongoing applications on the nodes, resulting in
a loss of work and resources that has already been spent
in processing the previous data. Optimizations to the full
image upgrades include sending a diff of the new image into
the network. Such approaches have been proposed in [20]
and [13]. The main drawback of such approaches is the
that the complex algorithm to patch the diff images needs
to execute on the resource constrained nodes.

Modular Binary Upgrades: Systems that support
modular binary upgrades comprise mainly of a run-time
loader and linker. The loader is responsible for tracking the
storage of the binary modules in the program memory and
allocating appropriate resources for them to execute. The
linker is responsible for resolving any references made by the
modules to the kernel or other modules in the system.

SOS [10] and Contiki [6] operating systems allow mod-
ular binary upgrades at run-time. The modules are in-
stalled seamlessly into the system and don’t cause process-
disruption as mentioned above. The diff based optimizations

113

(suggested for full image upgrades) are also applicable to the
modular binary upgrades.

SOS : The architecture of SOS consists of a thin ker-
nel that is statically installed on all the nodes in the net-
work. The rest of the system and application components
are implemented as modules. Modules are binary software
components that can be dynamically installed on a node at
run-time. The SOS kernel provides support for loading and
unloading modules at run-time, besides a rich set of services
such as dynamic memory allocation, software timers, sensor
manager and high-level I/O interface.

Inter-module communication in SOS can be synchronous
or asynchronous. Asynchronous communication between
the modules occurs through message passing. Modules post
messages to other modules which are queued by the SOS ker-
nel and dispatched to the destination module. The module
is implemented as a message handler that processes the re-
ceived messages. Synchronous communication between the
modules occurs through a process of dynamic linking. Every
module indicates the set of functions that it subscribes from
other modules and the set of functions that is provides to
the rest of the system. The dynamic linker tracks down and
links all the publish subscribe pairs in the system during the
load time of a module. These functions are referred to as
dynamic functions in the latter sections.

Virtual Machines: Maté [15] was the first virtual ma-
chine architecture proposed for the resource constrained sen-
sor devices. It had very limited flexibility and minimal sup-
port for concurrency. The Application Specific Virtual Ma-
chines (ASVM) [16] proposed by Levis et. all addressed the
limitations of Maté. It provides a customizable and exten-
sible abstraction boundary that is fixed during the compi-
lation of the virtual machine. This enables the generation
of very concise and powerful scripts for implementing ap-
plication logic. DVM significantly improves the capabilities
of ASVM by allowing the users to change this abstraction
boundary at run-time.

Agilla [7] is a mobile agent architecture for sensor nodes.
The primary focus of Agilla is to provide primitives for effi-
cient code propagation and exploring programming models
based upon mobile agents. VM* [14] is a system that in-
terprets JAVA bytecodes on the sensor nodes. The sensor
network application is written in JAVA and compiled to class
representation. VM* tools compact the class representation
and automatically synthesize a virtual machine that natively
implements some of the system classes. We were unable to
evaluate our system against the VM* as its source code was
unavailable for distribution.

Parameter Updates and Query Frameworks: SNMS
[22] is a framework for updating parameters of TinyOS com-
ponents written in NesC [8] programming language. SNMS
has very limited flexibility but it also has a very low update
cost.

TinyDB [19] is a SQL-like query framework for gathering
data from sensor networks. The TinyDB framework allows
re-tasking of the software by moving around points of data
aggregation in the network. VanGo [9], a high rate data
collection system for sensor networks, aims to narrow down
the fundamental gap between the data collection and data
transmitting capabilities of sensor nodes. It uses flexible
transcoding to enable online calibration of data processing
algorithms so as to reduce the amount of data transmission
without loosing precision.

3. DYNAMIC VIRTUAL MACHINE
In this section, we first describe the design of various com-

ponents which make up the DVM. Emphasis is given to the
specific design choices which enable unique features of the
DVM system. We briefly discuss various consistency issues
which arise due to the dynamic nature of DVM. Next sec-
tion elaborates on the mechanisms which help the system
achieve its goals of flexible reconfiguration. The term re-
configuration is used here in the broader sense of enabling
parameter tuning, retasking and multi-tasking of the sensor
network deployment.

The outlier detection (OD) application is used as an ex-
ample to explain the functionality and various features of
the system. Figure 2 shows the application dataflow graph.
It samples the light sensor at a sample rate P. a(n) is the
current sensor reading, a[0:S] is the buffer consisting of S

such readings, and r[0:S] are the ratings calculated by the
distance based Outlier Detection module for each reading.
Distance between pairs of readings is calculated using

D[i, j] = |a[i] − a[j]| (1)

The readings classified as outliers are not included while
calculating simple average in Action. Implementation of the
application using DVM will consist of two scripts - (i) init
script, to initialize the application parameters (P, S, <f, T>)
and the timer; and (ii) timer handler, to be executed once
at each timer expiration. The outlier detection block is also
referred to as the core OD block later in this text.

Figure 2: Outlier Detection (OD): Dataflow

3.1 DVM Architecture
The design of Dynamic Virtual Machine (DVM) is shown

in figure 3. The concurrency manager in the DVM is func-
tionally equivalent to its counterpart in the ASVM. It is
responsible for sharing of resources while ensuring race-free
execution of the application scripts. The scheduler and the
capsule store develop on the basic ideas, borrowed from
ASVM, to support dynamic addition of new instructions and
reduced memory (RAM) usage, respectively. However, the
dynamic nature of the DVM requires additional components
such as Event Manager, Basic Library, Extension Libraries
and the Resource Manager. Event Manager is responsible
for handling various events generated in the system, while
the Resource Manager performs simple admission and in-
stallation control for scripts. The two libraries implement
the various instructions recognized by the DVM. All these
components are a part of the SOS kernel and are not dy-
namically loadable, except the Extension libraries.

The DVM defines two major abstractions: handlers and
operations [16]. Handlers are code routines that run in re-
sponse to events. Operations are the units of execution func-
tionality 1.

1The terms ’operations‘ and ’instructions‘ are used inter-
changeably in this text.

114

Figure 3: DVM Architecture

DVM requires reliable delivery of scripts, and binary mod-
ules implementing the Extension library, for consistent op-
eration across the network. A reliable code dissemination
protocol has been implemented, by modifying the Trickle
protocol [17], for both SOS and DVM. This paper does not
discuss reliable distribution further as it is orthogonal to the
issue considered here. The following sections describe some
components of DVM highlighting their contribution towards
its dynamic features and related issues.

3.1.1 Resource Manager

Memory is one of the most severely constrained resources
on a typical sensor node. It gains more significance in sys-
tems like SOS where it is allocated dynamically at run-time.
The Resource Manager is required to deal with varying lev-
els of memory usage to ensure minimal operating conditions
for the DVM scripts. It performs two important functions:
Admission control and installation control for scripts.

All scripts operate on their individual stacks and manip-
ulate local and global variables. They also need space to
store their state which includes their ID, program counter
and resources held or required, besides various other vari-
ables. Typical sensor nodes like the Berkeley Mica motes [2]
based on AVR micro-controller [1] have limited memory (4
KB RAM). Thus, it is not possible to admit each and every
script into the system. Moreover, scripts can specify de-
pendency amongst themselves in the script headers. Allow-
ing incompatible scripts to execute concurrently can lead to
corruption of data and/or incorrect results. The Resource
Manager performs admission control by ensuring there is
enough memory for execution of all dependent scripts. It
guarantees memory for one script to allow the users to per-
form corrective action like evicting other scripts to free up
resources used by them.

Once admitted, the scripts need to be installed into the
system so that they can be invoked for handling appropri-
ate events. This procedure should cause least disruption of
the currently executing scripts to save work that has already
gone into executing them. Hence, the script is installed only
if there is no other script being executed at that time, and no
script is marked ready to run at the scheduler. In case the
above check fails, the resource manager queues the script
for installation later. The memory overhead imposed by
this approach is dependent on the length of the wait queue

in the resource manager, which is configurable at compile
time. It is roughly three bytes per queue element. Mean-
while, the entry into scheduler’s run queue is blocked. The
event handlers invoked during this period are enqueued in
the concurrency manager until the installation is complete.
As a result, the response time of the system increases for
certain events.

3.1.2 Event Manager

An event in DVM is specified by the tuple < Module Iden-
tity, Message Type>. This maps to asynchronous messages
in SOS described in section 2. The event information is car-
ried along with the script in the form of meta-data and is
extracted by the capsule store at the time of initialization.
Capsule store is mainly responsible for storing the scripts.

As stated in section 1, the ability to change the set of
recognized events at run-time is crucial to flexible retasking
of the sensor network. The event manager is responsible
for binding the handler script to its corresponding event
at run-time. This architecture improves the flexibility of
the DVM to incorporate new events. An event can invoke
multiple scripts. The reverse is also true - a script can have
multiple event definitions in its header, and can be installed
to handle multiple events. Each instance requires separate
memory for script state, stack and local variables. Thus, it
may not be always possible to admit all the instances of the
script. The policy decision - on whether to install none or
as many as possible instances - is indicated to the resource
manager through the use of a flag in script header.

The script invocation at an event is a two step process.
First, the Concurrency Manager analyzes a script and tries
to obtain locks on all the resources required by it. On suc-
cess, the script state is submitted to the scheduler for exe-
cution, or marked as waiting for resources.

3.1.3 Operation Libraries

The operation libraries are responsible for implementing
the DVM instruction set. Each library is an SOS module
that provides a function called execute, which decodes all
the instructions and calls respective functions. It can be
categorized into a Basic or an Extension library depend-
ing on type of operations implemented by it. There is only
one Basic library, and it implements operations directly sup-
ported by the DVM. The choice of the operations supported
by the Basic library define the programming language for
the DVM. This is a crucial design decision as it directly
impacts the flexibility and the efficiency of the scripts. It
includes arithmetic operations, stack operations, buffer and
variable access operations, which constitute the majority of
any application script. In addition to these, the operations
to enable script-module interaction are included in the ba-
sic library. The commonly used SOS kernel services such
as timers, sensor management and radio messaging are also
available as basic operations to the DVM scripts. All these
operations are required for meaningful execution of scripts
irrespective of application requirements.

The use of only basic library operations, excluding script
module interaction, pushes the abstraction boundary to-
wards low level operations. This sacrifices execution effi-
ciency and flexibility for lower update cost. The version of
OD application implemented in the basic instruction set is
referred to as OD-default. Figure 4 shows the structure of
the timer handler scripts for OD-default and other versions

115

Figure 4: OD: Timer handler script consists of 3
parts - buffering sensor data, outlier detection com-
putation and action on processed data.

of the application discussed in section 3.2. The text in bold
shows a portion of the outlier detection calculations, which
occupy 112 bytes in OD-default.

Extension library modules permit language extensions by
providing additional application specific instructions. These
libraries are loadable at run-time, and thus allow the users to
dynamically shift the abstraction boundary towards higher
level operations. This results in higher execution efficiency
at the cost of higher update energy. Flexibility is not sacri-
ficed as the basic library resides permanently in the system.
The Extension libraries publish execute as a dynamic func-
tion, which is subscribed to by the scheduler. The scheduler
calls execute in the appropriate library for every instruction.
More details on this mechanism are given in section 3.2.2.

3.1.4 Scheduler

The Scheduler supports addition of custom DVM func-
tionality at run-time. It is responsible for fetching an opcode
from the capsule store and partially decoding it to determine
the implementation library. Hence, it must have information
about all the Extension libraries present in the system. A
script depending on a library, which is not yet installed in
the system, is not executed untill the required library is re-
ceived and installed at the node. Thus, whenever a library is
added or removed from the system, it is required to inform
the scheduler so that it can take appropriate action.

An addition or removal of library may cause inconsistency
in the system due to corruption of data and/or production
of incorrect results due to a change in implementation of
certain instructions. Thus, all the script states and shared

Figure 5: Script-module interaction: call operation
and a new instruction.

variables are reset in order to maintain consistency in such
a case. This is referred to as the VM-reboot. The disruption
caused is not considered significant as the libraries are not
expected to be updated frequently.

Rest of the scheduler is similar to Maté. It uses a sim-
ple round robin scheduler and employs VM-reboot on script
failure during execution to maintain consistency of shared
data amongst the scripts.

3.2 Features
DVM allows customization of the abstraction boundary

between the virtual machine script and native code at run-
time. In this section, we first describe the script-module in-
teraction enabling mechanism which provides the basis for
above customization. It is supported in the Basic library and
is mainly used for parameter reconfiguration and supporting
custom application-specific functionality. Another benefit of
this mechanism is that it allows the scripts to access com-
plex application specific functionality, which otherwise could
have been very difficult to express in basic operations.

Next, we describe a mechanism to register this function-
ality as a regular DVM instruction. The difference between
these two features is subtle and is aptly shown in the figure 5.
The latter sacrifices update cost to provide higher flexibility
and marginally lower execution cost than the former. Fi-
nally, we describe the modifications to the DVM event set
in the light of script-module interactions. The focus here is
on multi-tasking as opposed to retasking described in sec-
tion 3.1.2.

3.2.1 Script-module interaction

The binary modules in the system expose an interface
to the DVM. These modules can be added and removed
from the system at any time. DVM provides synchronous
and asynchronous communication interfaces for interaction
between the scripts and the dynamic modules.

The call operation invokes a synchronous function call in
the destination module. Essentially, it is replacing a part of
the script operations with native C code. It pushes the ab-
straction boundary towards higher level operations, allowing
the application to reduce interpretation overhead at the cost
of higher update energy. For instance, the piece of script re-
sponsible for computing outliers in our application, can be

116

replaced by a single call into an SOS module implementing
OD, which returns the same result (figure 4). The function
in OD module takes the data buffer, size and parameters
(f, T) as arguments. This is referred to as the OD-synch
application. It results in 30x improvement in execution cost
for performing outlier detection (push operands + serialize
+ core OD, table 3(a)) at the cost of up to 3.5 times higher
update energy as compared to OD-default (section 4).

The synchronous functions provided by a module are iden-
tified through the tuple < Module Identity, Function Iden-
tity>. This tuple is present in the bytecode of the script,
which implies that it is a constant known at compile time.
In our example, the core OD function can be identified by
<150,5>. The concurrency manager checks for the presence
of scriptable modules accessed by a script before submit-
ting it for execution. This prevents run-time failures due to
absence of scriptable modules. Though, the script can be
written to handle such errors, we argue against it to keep
the script simple and concise.

The parameters to the synchronous function call are seri-
alized and stored in a buffer that is pushed onto the operand
stack. The function invoked in the destination module is ac-
tually a stub that de-serializes the parameters and invokes
the actual function within the module. The return value
of the function is again serialized by the stub and returned
back to the virtual machine in the form of a buffer. This
is shown in figure 5. The prototype of the stub code is
fixed (figure 6). It is required to make the operation flexible
enough to interact with any SOS module loaded at run-
time. Hence, the presence of this stub is necessary to sup-
port dynamic reconfiguration and retasking with the use of
this mechanism. Currently, the stub needs to be manually
written in the module, but we are working on its automatic
generation. However, the requirement to include the stub at
compile time often restricts flexibility as the user is expected
to know about its exact usage scenario. This goes against
our basic assumption of incomplete usage knowledge before
deployment. Section 3.2.2 removes this restriction, albeit at
a higher update cost.

A typical use of the call mechanism is to get or set the
application parameters exposed by an SOS module. Setting
the parameters helps in tuning the application to its environ-
ment, or changing its control flow depending on the design
of the module and the parameters exposed by it. The call

operation can also be used in run-time debugging where a
script can periodically retrieve the current state of the mod-
ule and send it to the base station for analysis. This usage
is well-suited to the call mechanism as it is reasonable to
expect the user to provide the ability to access these parame-
ters at run-time by compiling in the stub before deployment.

Figure 6: OD-synch Application: Stub code in OD
module (id=150) for interaction via call

Serialization of parameters imposes an argument depen-
dent overhead on script size and execution. For every call

operation, the dynamic virtual machine links to the appro-
priate function in the destination module through a run-
time linking mechanism, called subscribe, provided in SOS.
Though, subscribe is expensive in terms of execution, se-
rialization is generally the major constituent of the total
overhead for functions which require parameters. The se-
rialization and subscription overhead thus introduced, can
outweigh the execution benefits gained by using native code
instead of the DVM instructions. We observed this for sim-
ple applications like calculating exponentially weighted mov-
ing average (EWMA). To retain the flexibility of the call

operation, we can not do away with subscribe for increasing
efficiency. However, the subscription result can be cached
and reused as a simple optimization. The cache size and
refresh policy still need some discussion and evaluation, and
hence, are left as future work.

The post operation allows the scripts to interact asyn-
chronously with the SOS modules. It provides same level
of flexibility as the synchronous approach described above,
but with 1.1x higher execution overhead and decreased re-
liability. This mechanism uses message dispatching in SOS,
which has a higher overhead in SOS as compared to the dy-
namic function call. It is also based on best effort semantics.
It could fail due to numerous reasons such as insufficient
memory or the absence of destination module. This implies
that the post operation might fail despite the module being
present in the system.

Operation GET LIGHT DATA in figure 4 is an example of a
split-phase interaction between the script and the module
providing an API to access sensor readings. It is initiated
by a synchronous function call from the script to the sensor
module, and is completed when the script receives the data
asynchronously [15]. It is not associated with the subscrip-
tion overhead of call instruction as the initial synchronous
call is made to a fixed function known at compile time. In
future, we plan to extend it to include any arbitrary module
providing such a service.

3.2.2 Addition/Modification of new instructions at
run-time

DVM allows extension of its default instruction set by ad-
dition of Extension library modules that are implemented in
native code. It provides a mechanism to convert an interface,
exposed by a module, to a regular instruction recognized by
the DVM. Essentially, it removes the need to serialize or
de-serialize the function parameters by accessing these pa-
rameters directly from the stack. Hence, it also removes the
stub-compile-in restriction discussed in the previous section.
In the modified OD-new application shown in figure 4, the
CALL operation is replaced by OUTLIER and the operations
to prepare the argument buffer are discarded.

Extension library, containing the OUTLIER instruction,
publishes its execute function upon installation (figure 7).
The scheduler subscribes to this function when the library
is added to DVM, and stores the pointer for future use. As
a result, the overhead of subscribe is amortized over multi-
ple executions of the instruction. This amortization, along
with the removal of parameter serialization from the script,
improves the execution efficiency by a factor of 2.6 (serialize
+ core OD, table 3(a)), with only a small memory overhead
of 2 bytes per Extension library.

117

Figure 7: Extension library: execute() function.
Modified from original to enable clear understand-
ing.

In the execute function, OUTLIER instruction is essen-
tially a dynamic function call into the module implementing
its functionality. Hence, to execute the instruction, sched-
uler calls execute, which further calls the function in the OD
module. This is referred to as the indirect instruction in lat-
ter parts of this paper. It implicitly assumes that the module
is present in the system at the time of execution. Thus, it
is less reliable than the simple script-module interaction de-
scribed in previous section, as there are no run-time checks
that span across two or more levels of indirection.

In this particular example, it is also possible to imple-
ment the core outlier detection function completely inside
the Extension Library as it is a stateless service provided
to the DVM. This approach is later referred to as the direct
instruction. It is more reliable than the previous one as it
doesn’t have that extra level of indirection, and is marginally
more efficient in execution time (section 4). But, the indirect
approach provides more flexibility as it removes the need of
a stub in the module providing the script-accessible func-
tion. Thus, modules can be made scriptable at run-time
without the need to inject re-compiled modules with ap-
propriate stubs. This promotes re-use of dynamic functions
within the DVM-SOS system.

Hence, this mechanism is more flexible and results in bet-
ter execution efficiency than the call operation. However,
an overhead of this approach is the energy required to trans-
mit and receive the Extension Library at run-time. Section 4
also shows that an Extension Library is bigger in size as
compared to the module providing the OUTLIER function.
This is because of the constant overhead imposed to enable
interaction with the scheduler and access operands from the
stack. Thus, it is encouraged to group instructions into as
few libraries as possible to reduce the significance of this
overhead.

3.2.3 Run-time modification of events

The previous two sections described script-module inter-
action where the interaction was initiated by the script.
DVM provides another mechanism where it allows SOS mod-
ules to invoke the script(s) and pass data to them. This is
achieved through the creation of new events with higher se-
mantic values. For instance, in figure 2, an SOS module
implementing the part inside the dotted box, can generate
a DVM event whenever the outlier detection is complete. A
number of actions can be performed on the resulting data,
like calculating simple average, broadcasting the ratings etc.

for the application in consideration. This provides extreme
flexibility in using the same (partially) processed data for
a variety of application requirements emerging at run-time.
Thus, it promotes multi-tasking through the use of multiple
scripts to handle the same event.

This, in a way, pushes the abstraction boundary towards
higher level operations, hence restricting update flexibility
for increased execution efficiency. It results in 1.6x faster
execution times as compared to both OD-synch and OD-
new applications. However, the update cost in this approach
varies depending on the kind of update required. An update
to the event action will be more energy efficient as compared
to previous approaches, while an update to parameters of the
event flow graph may be as expensive as an update to OD-
sos, i.e. if an appropriate interface has not been exposed for
controlling the application parameters. This modification is
referred to as the OD-event application in later sections.

4. EVALUATION
The previous section described the design and implemen-

tation of DVM. It also discussed various features which help
achieve flexible reconfiguration of sensor networks. In this
section, we first try to analyze the DVM overhead over na-
tive code execution in SOS. We, then evaluate the trade-off
between execution efficiency and update cost provided by
the proposed system through the case study of outlier de-
tection (OD) application. The DVM system and OD appli-
cation were implemented and tested on the Mica2 motes [2],
which are based on the AVR AtMega 128L micro-controller
(7.3 Mhz, 4 KB RAM, 128 KB internal flash) [1]. Evalua-
tion results presented in this paper were obtained using the
Avrora simulator [21].

4.1 Micro-benchmarks
Table 1 measures the overheads imposed by DVM in code

size, memory and interpretation over the SOS kernel. The
DVM requires 334 bytes of memory for its basic operation,
including 8 shared variables and 4 shared data buffers of
32 bytes each. The execution of a script in DVM requires
interpretation and concurrency management. Concurrency
management in DVM is similar to the corresponding one in
ASVM.

Code size
SOS Kernel DVM

38 KB 13 KB

Memory
Shared data Core DVM

156 B 178 B

Interpretation
Opcode fetch 404

Opcode decode 66

(CPU cycles)
Stack- Push 42
Stack- Pop 37

Table 1: DVM Overheads

The interpretation overhead measures the cost to fetch
an opcode, decode it, and perform stack operations. The
corresponding costs for SOS are almost negligible as these
operations are directly supported by the RISC-based micro-
controller. Thus, it can be expected that for even a simple
operation like increment-by-1, the overhead will be approxi-
mately 550 CPU cycles. Then, some of the DVM operations,
esp. math related, are overloaded to constrain the number of

118

opcodes. This increases the overhead even further because
of embedded type-checking.

It is important to note that the high cost of fetching an
opcode from the capsule store is the result of an architecture-
specific optimization. The AVR 128L micro-controller has
very less data memory (RAM) as compared to program
memory (flash). We chose to store the script bytecode on the
flash to free up RAM from the burden of storing the script,
whose size can vary from tens to hundreds of bytes. Thus, we
sacrificed execution efficiency for significantly lower memory
consumption.

These results help in explaining the huge cost difference
between native code and DVM operations as seen in the
next section.

4.2 Application Case Study : Outlier
Detection

Experimental Setup : The motes are initially assumed
to be installed with the base SOS kernel including the DVM
core. The application modules and scripts are sent over the
radio at run-time. Energy required to install them is highly
dependent on the routing protocol and network density. For
our experiments using the modified Trickle protocol and a
grid placement with uniform density, it was found that the
energy required to install them was directly proportional to
the size of modules and scripts. Hence, code size provides
a good measure of the initial setup and update cost. The
execution time for each version was calculated as the time
taken to fill up the buffer with S sensor readings, perform
outlier detection, and remove the outliers from the simple
average calculation. The application was executed for 10
minutes and same parameters (S = 4, P = 2sec, f = 0.40,
T = 100.00) and data set were used for all the experiments.

Results : Table 2(a) compares the various versions of
the OD application for their execution cost, code size and
memory requirements. It lists the applications in decreas-
ing proportion of their functionality implemented in native
code. The execution times observed follow an increasing
trend as expected from the micro-benchmarks. The mem-
ory requirements reported in the table is the overhead over
the SOS kernel and core DVM usage. In all DVM related
versions, the majority of memory overhead is due to space
required for the script state.

It can be observed that the size of SOS modules is signif-
icantly higher than the corresponding scripts. This is due
to two main reasons. First, the DVM primitives are at a
higher abstraction level than the primitives available to the
native code. For example, the scripts invoke the timer ser-
vice through a SETTIMER opcode while the module access it
through the ker timer start SOS system call. The native
code that corresponds to the invocation of the SOS system
call is larger than the DVM opcode. Second, the modules
implement their own event management while the DVM per-
forms the event management for the scripts 2.

Each version of the application has different execution
costs for each component (figure 2) as shown in table 3(a).
The differences mainly arise due to implementation in native
code vs. virtual machine script. Buffer readings refer to the
execution cost for buffering the light sensor readings, while
next column gives the cost to push arguments, to core OD
function, on the respective stack. Serialization costs in OD-

2We are using the terms event and message interchangeably

Table 2: Outlier Detection Application Comparisons

(a) Execution cost, code size, memory

Application
Code Size (bytes)

Execution Cost Memory
SOS Module DVM Script
OD Library Init Timer (CPU Cycles) (bytes)

OD-sos 1304 - - - 4,933 15
OD-event 1142 - 4 60 93,829 153
OD-new

- 1356 22 85 153,151 145
(direct)
OD-new

684 882 22 85 153,274 147
(indirect)
OD-synch 684 - 22 90 158,310 138

OD(default) - - 22 211 531,557 138

(b) Initial code size of updates

Application Update Component (initial size)
Application OD function Parameters to Action
Parameters OD function

OD-sos 1304 1304 1304 1304
OD-event 1142 1142 1142 60
OD-new

22 1356 1441 85
(direct)
OD-new

22 684 1651 85
(indirect)
OD-synch 22 684 774 90
OD(default) 22 211 211 211

event refer to serializing the result before passing it to the
action script. For OD-default, the cost to push operands
is merged into the core OD value as it does not call any
function explicitly. It stands out in core-OD costs due to
implementation in basic script operations. Marginal differ-
ences in OD-new vs. OD-event / OD-sos are due to dynamic
function call overheads.

Table 3(b) lists the breakup of core OD costs for OD-new
and OD-synch versions. It shows that OD-synch incurs a
little higher cost mainly due to subscription overhead per
invocation. The cost to fetch operands for the call opera-
tion in OD-synch is constant and independent of the num-
ber of arguments. It fetches < module identity, function
identity > from the flash, and pops two operands from
the stack for the argument buffer to the OD() function
and result. On the other hand, operand fetch cost for OD-
new versions depends on the number of arguments to the
OD() function. It may lead one to believe that for higher
number or arguments, the cost for OD-new versions may in-
crease beyond that of OD-synch. However, the total cost for
OD-synch will still dominate due to high serialization over-
head as shown in table 3(a). Other miscellaneous costs are
due to opcode decode in the libraries and dynamic function
call overheads. The indirect version has the highest mis-
cellaneous overhead as expected due to an extra dynamic
function call on top of execute().

Analysis : Typical sensor nodes are mainly constrained
by limited memory and energy availability. Since, table 2(a)
shows that all OD versions have similar memory consump-
tion, with the exception of OD-sos, the design choice should
be based on energy consumption of the network. The to-
tal energy consumption per node is the sum of network and
execution energy. In reconfiguring or retasking the sensor
nodes, network energy to distribute the new updates of-
ten has a significant impact on design decisions. Thus, ta-
ble 2(b) brings out the trade-off between execution efficiency
and update cost to help us analyze the available design alter-
natives. It broadly classifies various reconfiguration options

119

Table 3: Outlier Detection: Distribution of execu-
tion costs

(a) Breakup of total execution costs

Application Buffer Push Serialize Core Action
readings operands OD

OD-sos 1544 209 - 2353 827
OD-event 1544 209 1197 2353 88,526
OD-new

58,328 4206 - 2923 87,694
(direct)
OD-new

58,328 4206 - 3046 87,694
(indirect)
OD-synch 58,328 4206 3719 3959 87,694
OD-default 58,328 - - 385,535 87,694

(b) Breakup of core OD costs

Application Fetch Subscribe OD(...) Other
operands + Stub Misc.

OD-new
583 - 2137 203

(direct)
OD-new

583 - 2137 326
(indirect)
OD-synch 886 813 2137 123

as updates to: (i) Application parameters, (ii) OD function,
(iii) Number and/or type of arguments to OD, and (iv) Ac-
tion to be taken on the (partially) processed data. We con-
sider the effect of these updates independently of each other
to keep the analysis simple.

Application Parameters : An update to application pa-
rameters consists of updating either all or few of P, S, or
<f, T>. OD-default, OD-synch and OD-new versions have
lower update costs as it is required to change only the init
script. The rest require bigger SOS modules to be sent
out, i.e. if they do not provide script-accessible functions
to change their parameters. In this case, and all the cases
discussed below, it is difficult to pick out a clear winner be-
cause the total energy consumption of the nodes is highly
dependent on the frequency of the updates, which we claim
is usage dependent and thus, difficult to know accurately
before deployment. For instance, OD-sos will have lower
energy consumption than others if the updates are spaced
out well enough so as to make execution energy dominate
the total energy consumption.

A simple calculation of this optimal frequency for all the
options is possible for applications with a fixed sample rate
3. But, for purely event-driven applications, or applica-
tions with a dynamic sample rate, it becomes difficult to
determine this parameter before deployment. The only so-
lution in these cases is to monitor live data after deployment,
and then make a smooth transition to the desired operating
point. The ability to make this transition at run-time is the
main contribution of our system. An important question
still remains - how do we make the initial choice?. We sub-
sequently try to answer this question below. Our answers
are guided by an important observation - initial deployments
are often very dynamic and susceptible to frequent changes;
later, as the applications get tuned to the environment, up-

3We get a simple linear system of equations for each option,
which can be solved easily by several computational tools.
To calculate the network energy, the equations also require a
network constant that depends on the topology and routing
protocol as mentioned earlier. Execution cost from experi-
mental results can be used to calculate execution energy.

dates become rarer. Hence, flexibility provided by the up-
date also becomes an important concern while choosing the
initial operating point.

OD function : A modification to the core OD function,
such as a change in equation 1, will require an SOS module
to be replaced for all versions except OD-default. Here, it
is difficult to pick an option just by observing, as the tran-
sitions in update cost are not as drastic as in the previous
case. Intuitively, OD-synch and OD-new (indirect) seem to
be a safe option as they have medium update and execution
cost as compared to others. According to the authors, OD-
new (indirect) is a better choice to start here as it provides
more flexibility and better execution efficiency than both
the synch and default option.

Parameters to OD function : The third update scenario
describes the worst case for above, where number and type of
arguments to the OD function also change. This necessitates
replacement of the existing extension library with a newer
version providing an appropriate interface to the function in
OD-new case. Making similar arguments as the last case,
we believe that OD-synch makes a good initial choice for a
dynamic deployment.

Action : Last update scenario considers addition, modi-
fication or removal of the script responsible for processing
data received from the SOS module. This efficient multi-
tasking is the sole benefit of OD-event over OD-sos. OD-
event is also a clear choice above other DVM-involved op-
tions as it is incurs lesser execution cost.

It is important to note here that a combined requirement
of more than one scenarios, which will mostly be the case,
will complicate the analysis tremendously. While calculat-
ing energy consumption for even fixed-rate applications, we
will need more information about the usage scenario than
before. For instance, we will need to know the expected rel-
ative frequency of each update and assign weights to them
accordingly. This goes against our central hypothesis of in-
complete information before deployment.

The results shown in this section indicate that OD-new
(indirect) achieves a mid-point in the execution efficiency -
update cost spectrum. Our analyses from section 3.2 also
show that it is more flexible than the OD-synch, new (di-
rect) and default approaches. Thus, it is recommended to
start the deployment by operating at this point in the de-
sign space, unless there are compelling reasons, like extreme
memory constraints, for not doing so. Later, as usage sce-
nario becomes clear, users have the option to move to farther
ends of the design spectrum depending on long-term usage
trends.

5. CONCLUSION
The emerging operating scenarios for sensor networks re-

quire the ability to support unforeseeable applications and
multiple users. It is often not possible to know the exact
usage scenario before deployment. Thus, flexible techniques
to reconfigure the software after deployment have become a
prerequisite for sensor networks. The proposed system pro-
vides several alternatives to update the network, each with
a unique cost versus flexibility trade-off. Its architecture
comprises of the SOS kernel and a Dynamically Extensible
Virtual Machine implemented on top of it. The main fea-
tures of the system include script-module interaction, lan-
guage set extension and the dynamic set of events recognized
by the DVM. It is observed that it is often difficult to de-

120

terministically choose an initial optimal operating point for
a network prior to its deployment. The script-module in-
teraction, along with the language set extension provide a
reasonable starting point as they achieve mid-points in the
flexibility vs. cost tradeoff.

Future Work : The ability to manage memory dynam-
ically in SOS provides us with lots of interesting optimiza-
tions to explore. Currently, allocation of memory for the
script state is done only at script admission time. This
memory can be de-allocated only by explicit eviction of a
script by the user. An interesting future direction will be
to implement a light-weight garbage collector which auto-
matically reclaims unused script memory for use by other
applications on the system.

DVM allocates a stack of fixed size for each instance of a
script irrespective of its actual requirement. This is found
to be very restrictive for simple scripts like the init script in
our example. A conservative solution to this problem is to
calculate the worst case stack requirement while compiling
the script, and allocate space accordingly at script admis-
sion. We believe that this approach will be highly restrictive
on the low memory sensor nodes. Hence, we plan to use dy-
namic memory service provided by SOS to reallocate more
stack space for the scripts if they exhaust their pre-allocated
space. The reallocation will be limited by a maximum al-
lowed stack space to prevent buggy or malicious scripts from
harming the co-existing applications. The initial and max-
imum limits on the stack space will be determined empiri-
cally.

As stated in previous sections, work is already going on to
develop a high level language and a compiler for the DVM
framework. An automatic stub code generator is also being
developed so that it is convenient to make a module script-
able at compile time.

6. ACKNOWLEDGMENTS
This paper is based upon work supported by NSF award

0306408, ONR award # N00014-06-1-0253, and by the
Center for Embedded Networked Sensing. Any opinions,
findings and conclusions or recommendations expressed in
this papers are those of the author(s) and do not necessarily
reflect the views of the NSF, ONR, or CENS.

7. REFERENCES
[1] Avr ATMEGA micro-controller.

http://www.atmel.com/products/avr/.

[2] Mica2 motes (UC Berkeley/Crossbow).
http://www.xbow.com/.

[3] SOS-1.x project. http://nesl.ee.ucla.edu/projects/sos-1.x.

[4] Neon: Addressing the nation’s environmental challenges.
http://www.neoninc.org/, November 2003.

[5] R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan,
L. Krishnamurthy, N. Kushalnagar, L. Nachman, and
M. Yarvis. Design and deployment of industrial sensor
networks: Experiences from the north sea and a semiconductor
plant. In Third ACM Conference on Embedded Networked
Sensor Systems (SenSys), November 2-4, 2005.

[6] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In
Proceedings of the First IEEE workshop on Embedded
Networked Sensors, 2004.

[7] C. Fok, G.-C. Roman, and C. Lu. Rapid development and
flexible deployment of adaptive wireless sensor network
applications. Technical report, Washington University,
Department of Computer Science and Engineering, St. Louis,
2004.

[8] D. Gay, P. Levis, R. von Behren, and M. Welsh. The nesc
language: A holistic approach to networked embedded systems.
In Proceedings of Programming Language Design and
Implementation, 2003.

[9] B. Greenstein, A. Pesterev, C. Mar, E. Kohler, J. Judy,
S. Farshchi, and D. Estrin. Collecting high-rate data over
low-rate sensor network radios. Technical report, CENS
Technical Report 55, UCLA, 2005.

[10] C. C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava.
Sos: A dynamic operating system for sensor networks. In
Third International Conference on Mobile Systems,
Applications, And Services (Mobisys), 2005.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In Proceedings of the ninth internation conference on
Architectural support for programming languages and
operating systems, 2000.

[12] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
Proceedings of the second internation conference on
Embedded Networked Sensor Systems, 2004.

[13] J. Jeong and D. Culler. Incremental network programming for
wireless sensors. In Proceedings of the First IEEE
Communications Society Conference on Sensor and Ad-Hoc
Communications and Networks (SECON), 2004.

[14] J. Koshy and R. Pandey. Vm*: Synthesizing scalable runtime
environments for sensor networks. In Proceedings of the third
international conference on Embedded Networked Sensor
Systems, 2005.

[15] P. Levis and D. Culler. Mate: A tiny virtual machine for
sensor networks. In Proceedings of the tenth international
conference on Architectural support for programming
languages and operating systems, 2002.

[16] P. Levis, D. Gay, and D. Culler. Active sensor networks. In
Proceedings of the second international conference on
Networked Systems Design and Implementation (NSDI),
2005.

[17] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code maintenance and
propagation in wireless sensor networks. In First
USENIX/ACM Symposium on Network Systems Design and
Implementation (NSDI), 2004.

[18] J. P. Lynch, S. Seth, and D. M. Tilbury. Feasibility of
real-time distributed structural control upon a wireless sensor
network. In 42nd Allerton Conference on Communication,
Control, and Computing, September 2004.

[19] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor networks.
In In proceedings of SIGMOD, 2003.

[20] N. Reijers and K. Langendoen. Efficient code distribution in
wireless sensor networks. In Proceedings of the 2nd ACM
internation conference on Wireless sensor networks and
applications, 2003.

[21] B. L. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable sensor
network simulation with precise timing. In Fourth
International Conference on Information Processing in
Sensor Networks (IPSN), 2005.

[22] G. Tolle and D. Culler. Design of an application-cooperative
management system for wireless sensor networks. In Second
European Workshop on Wireless Sensor Networks (EWSN),
2005.

121

