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Abstract
Traditional graphics hardware architectures implement

what we call the push architecture for texture mapping.   Local
memory is dedicated to the accelerator for fast local retrieval of
texture during rasterization, and the application is responsible
for managing this memory.  The push architecture has a
bandwidth advantage, but disadvantages of limited texture
capacity, escalation of accelerator memory requirements (and
therefore cost), and poor memory utilization.  The push
architecture also requires the programmer to solve the bin-
packing problem of managing accelerator memory each frame.
More recently graphics hardware on PC-class machines has
moved to an implementation of what we call the pull
architecture.  Texture is stored in system memory and
downloaded by the accelerator as needed. The pull architecture
has advantages of texture capacity, stems the escalation of
accelerator memory requirements, and has good memory
utilization.  It also frees the programmer from accelerator texture
memory management.  However, the pull architecture suffers
escalating requirements for bandwidth from main memory to the
accelerator.  In this paper we propose multi-level texture caching
to provide the accelerator with the bandwidth advantages of the
push architecture combined with the capacity advantages of the
pull architecture.  We have studied the feasibility of 2-level
caching and found the following:  (1) significant re-use of
texture between frames; (2) L2 caching requires significantly
less memory than the push architecture;  (3) L2 caching requires
significantly less bandwidth from host memory than the pull
architecture; (4) L2 caching enables implementation of smaller
L1 caches that would otherwise bandwidth-limit accelerators on
the workloads in this paper. Results suggest that an L2 cache
achieves the original advantage of the pull architecture –
stemming the growth of local texture memory – while at the
same time stemming the current explosion in demand for texture
bandwidth between host memory and the accelerator.

1 Introduction
Acceleration hardware for real-time 3D graphics has

become mainstream.  Once available primarily on high-end
workstations [1, 17], 3D rasterization hardware has been
available (even standard) on the PC platform since about 1995.
While the performance and image quality of initial products
were below the standard for the workstation market (cf. [14]),
intense competition among many Independent Hardware
Vendors (IHVs) has driven both performance and quality to
within range of (sometimes beyond) workstation 3D graphics.

One feature of greater importance on the PC platform is
texture mapping. Texture mapping is a rendering process whereby
2D images are mapped onto polygons as the polygons are rasterized
into pixels.  Texture mapping allows the graphics programmer to
create an illusion of much greater realism in a 3D scene than would
otherwise be possible simply with surface primitives such as
polygons. It is well known that texture mapping is memory-
intensive, both in terms of capacity and bandwidth (cf. [26]).

Workstation graphics hardware has with few exceptions been
an implementation of what we call the push architecture (Figure
1a).  Large fast memories are co-located with the acceleration
hardware so that when pixels from the texture (called texels) are
required, they can be retrieved with low latency and high
bandwidth.  This was the original architecture adopted by IHVs on
the PC platform as well.  The push architecture has an advantage
that since local memory is dedicated to graphics, the memory
subsystem can be designed to provide exactly the bandwidth
required. The push architecture has several disadvantages.  First,
historically for any date d graphics programmers want more
textures at higher resolution than can be stored by the push
architecture on date d. Demand for textures and resolution has
exceeded capacity even on the high-end InfiniteReality [17] whose
common configuration includes 64 MB of local texture memory.
Second, when the programmer wants to use more textures than fit in
texture memory, he or she (or the software driver) must write what
is essentially a segment manager.  This is provably a hard problem
since textures are of variable size, and is exacerbated since it also
includes synchronization between CPU and accelerator.  Third, the
push architecture in general forces the programmer (or driver
software) to download entire textures to the accelerator,1 an
inefficient use of valuable memory since generally only a fraction
of the texels is required.

To stem an apparently unbounded escalation in the size of
texture memory dedicated to the accelerator, Intel Corporation
proposed and promoted the adoption of what we call the pull
architecture (Figure 1b).  Textures are stored in system memory,
and the accelerator pulls texels from system memory to accelerator
on-chip memory as required.  There is no local external memory for
texture.  To provide the I/O bandwidth required for texturing from
system memory, Intel defined and has implemented the Accelerated
Graphics Port (AGP) between core logic and the accelerator [16].
Version 1.0 of this specification provides for up to 512 MB/s of
bandwidth dedicated to graphics.  The pull architecture has several
advantages.  First, it places texture in system memory, relaxing
capacity constraints and thereby curbing the growth of local
memory associated with the accelerator.   Second, it has freed the
programmer from what was previously the bin-packing problem of
texture memory management.   Third, the accelerator only
downloads the texels (or blocks of texels) required. The pull
architecture also has disadvantages.  It forces system memory to be

                                                                
1 A clever scheme to “clip” the MIP pyramid to the viewing frustum

has been introduced at the high end [17], but this technique saves memory
only for extremely large textures (e.g. 32K x 32K), and still has the
disadvantage that it requires download of more texture blocks than used.



designed to support the bandwidth required by texture mapping.
It also forces the AGP standard (and implementations) to keep
pace with escalating demand for texture bandwidth.  Some high-
end accelerator parts designed to implement the pull architecture
are even today rate-limited by their ability to retrieve texture
from system memory [27].

While high-end accelerator boards continue to implement
the push architecture, the bulk of IHVs have moved to the pull
architecture.  This has achieved the desired result of stemming
the growth of local frame buffer size, but it has had the effect of
moving a growing bandwidth requirement from local memory to
core logic and system memory.  We would like to allow the
unfettered growth of texture capacity while at the same time
allowing the unfettered growth of texture mapping performance.
This is the goal of multi-level texture caching and the proposed
architecture of Figure 1c.

2 Background
2.1 Texture Mapping

Creating a realistic image of a three dimensional scene
requires projecting the geometry, which is typically composed
of planar polygons, into screen space for display.  To give the
geometry a realistic appearance, texture maps must be mapped
from texture space onto the vertices of the polygons and then
perspectively projected correctly into screen space [2, 12, 13,
23].  The resulting projection in screen space is sampled at the
pixel locations to generate the final display.  The process of
sampling polygons in screen space is referred to as scan
conversion, or rasterization.  The scan conversion process
iteratively steps across the polygon’s pixels in screen space
<x,y>, finds the corresponding points in texture space <u,v>,
then accesses the texture to obtain the texels for use in coloring
the pixels.  When the viewer is distant from the surface
(minification), adjacent pixels may map to corresponding texels
that are far apart in texture space. When the viewer is close to
the surface (magnification), many pixel steps may be required to
move from one texel to the next in texture space.  Such
variations in step size in texture space lead to poor locality of
reference and also cause aliasing unless properly filtered
textures are used [4, 5].  Texture mip maps, properly filtered and
interpolated provide a well-known solution to both problems.

With mip mapping, the texture is stored at many resolutions called
MIP levels [31].  Each level is a one-quarter filtered image of the
lower MIP level.  During scan conversion the texture space step
size is used to select an appropriate MIP level which will yield an
approximately 1:1 mapping of texels to pixels.  The ratio of texels
to pixels is sometimes referred to as the texture compression, and is
used directly to select the proper MIP level (cf. [28]).  This process
gives antialiased texture mapping and also has good locality of
reference, but the transitions between MIP levels within large
polygons are objectionable and require interpolation.  Bilinear and
trilinear interpolation are the standard ways to mitigate these
problems (cf. [10, 28]).

2.2 Multi-Level Texture Tiling
Sequential texture memory accesses tend to be local spatially

in <u,v> within a MIP level, and also local to a MIP level.  It is
well known in computer graphics that advantage can be taken of the
first by storing texture images in tiles rather than linearly by <u,v>
(cf. [3]).  The second can be exploited by storing MIP levels
separately and addressing texture by a new tuple <u,v,m> (where m
is the MIP level).   In the current paper we take advantage of
separate MIP level storage as well as texture storage in tiles of tiles.
These both fit within a framework that might be called hierarchical
texture storage. For each texture used by an application in a
graphics system, there is today generally assigned a unique
identifier, tid.  In many systems today, each texture is generally
further partitioned into tiles (or blocks), each of which is uniquely
identified within the texture by an integer (which we call L2 for
later convenience).  Each of these tiles may be further partitioned
into tiles (or blocks) each of which may be uniquely identified
within its parent L2 block by an integer (say, L1). The
concatenation of <tid, L2, L1> can then be used to identify a unique
tile within a tile among all the textures employed by the application.
This addressing lends itself well to 2-level texture caching, and is
shown pictorially in Figure 2.  In the figure, each MIP level is
represented as a smaller square below and to the left of its higher-
resolution parent.  Within a texture, L2 block numbers are assigned
sequentially from the first block of the lowest MIP level to the last
block of the highest MIP level.  Each new level of the MIP begins
with a unique L2 block.  Within an L2 block the L1 sub-blocks are
assigned unique numbers only within the scope of that block.
Translation from <u,v,m> to this tiled representation is
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straightforward and can be done in integer arithmetic in a small
number of shifts, additions, and a table look-up.

2.3 Level 1 Texture Caching
Texture caching has been proposed, studied, and previously

implemented [11, 20, 26, 30].  In fact, IHVs designing for AGP
texture access have no (apparent) choice but to cache textures on
chip because of the high latencies of the pull architecture.
Previous texture caching strategies have implicitly been Level 1
(L1) caching strategies.  One previous proposal has been for
disk caching of texture tiles [20].  Hakura’s study of L1 texture
caching provides a nice taxonomy of general issues that must be
addressed [11], in particular the effects of storage format (tiled
vs. linear), tile and cache-line size, cache addressing and
associativity, cache size, and rasterization order.  We discuss
these in turn.

Talisman proposes texture tiles 8 texels by 8 texels in size
(8x8) [26], Winner employs 2x2 tiles [30], and the authors are
aware of commercial architectures that employ 4x4 tiles.
Hakura studies the difference in hit rate and bandwidth
requirements between 4x4 and 8x8 and finds that although 8x8
tiles lead to better cache hit rate, they require more download
bandwidth (the larger the tile the lower the utilization).
Consistent with our goal to reduce bandwidth to system memory
and in order to study L2 parameters with respect to a fixed L1
cache implementation, we have restricted our attention to 4x4
L1 tiles of 32-bit texels.

Consistent with processor cache design [22], Hakura points
out that the L1 cache line size need not be the same as the L1
tile size.  His results show that miss rates are always higher
when the line size is less than the tile size, but that for 2x2 and
4x4 tiles2 miss rates are reduced when the line size is greater.
This suggests that when one tile is downloaded, it is efficacious
to download its neighbors as well. However, his results also
suggest that while miss rates drop, bandwidth increases when
this technique is employed.  We have also restricted our
attention to L1 cache lines the same size as L1 tiles.

The associativity of the Talisman L1 texture cache is not
discussed in [26].  Winner describes an interesting L1 cache that
takes advantage of traversal order in texture space to choose
blocks for replacement, although the implementation appears to
be a modified fully associative cache.  Hakura studies fully, set-
associative, and direct-mapped caches, and argues that 2-way set
associative is of sufficient associativity to avoid conflict misses
with trilinear interpolation.  We follow Hakura’s lead with
respect to associativity, and study multi-level texture caching
with a 2-way set-associative L1 cache.

                                                                
2 Their results do not address the latter case for 8x8 tiles.

Talisman proposes a 4 KB cache, Winner does not report
cache size, and Hakura studies cache sizes from 4 KB to 128 KB.
The latter’s results suggest that in fact a 2-way set associative cache
of 16 KB achieves results almost as good as a 32 KB cache of the
same associativity.  We follow this lead and study L1 cache sizes of
16 KB.  A 16 KB cache would require about 400K gates, most of
the 3D gate budget of an accelerator today for the volume market.
While 16 KB will clearly be feasible in the future, a 2 KB cache is
comfortably in range even at the low-end in the immediate future.
We have chosen to restrict our attention to these two cache sizes –
one at the “low end” (2 KB) and one at the “high end” (16 KB).

Finally, Hakura studies the effect on texture locality of
rasterization by tiles, rather than in linear scanline order as is more
often done.  While his results do show tiled rasterization results in
better texture locality, it is not always cost-effective to rasterize this
way.  In particular, for smaller or skinnier triangles, tiled
rasterization leads to lower hardware utilization.  For this reason we
study multi-level texture caching assuming that primitives are
rasterized in scanline order (cf. [10]).

3 Work Loads and Methodology
We have employed the Intel Scene Manager (ISM) [24], a

scene management and rendering package that we use internally at
Intel to explore new graphics algorithms and alternative hardware
architectures.  This package reads and manages scene databases,
provides object-space visibility culling, geometry processing, and
rasterization.  We have instrumented ISM in order to study the
texture access patterns underlying L2 texture caching (section 4.2),
and have also integrated into it a transaction-accurate hardware
simulator for L2 caching (section 5.3).   Results reported in this
paper have been measured with a screen resolution of 1024x768.

3.1  Work Loads
We have employed two workloads in the current study: the

Village and the City.  The Village is a database courtesy of Evans
and Sutherland Corporation.  The City is a database developed at
UCLA. We have employed scripted animations for both:  a walk-
through of the Village and a fly-through of the City.  Selected
images from the animations are shown in Figure 12 at the end of
this paper.

3.2 Statistics
To study texture access patterns we have instrumented ISM by

adding calls to our own tracing library from appropriate code sites.
This tracing library calculates the virtual texture address <tid, L2,
L1> as described in section 2.2 and tracks all pixel references
during each frame. We have gathered statistics for L1 tile sizes of
4x4and 8x8, and L2 sizes of 8x8, 16x16 and 32x32 texels.  We have
assumed that textures are stored in main memory in their original
depth but are expanded to 32 bits by the accelerator for cache
storage.  We have also assumed that the push architecture can
download and store in local memory textures in their original depth.
All texture accesses have been measured with point-sampling  in
order to provide a picture of basic texture locality in the absence of
more advanced filtering.  The statistics library records textures as
they are loaded and deleted, and the L2 blocks and L1 sub-blocks
accessed each frame (total and those not accessed the previous
frame).

3.3  Simulation
To study the L2 caching algorithm of section 5.2 we have

implemented a transaction-accurate (but not cycle-accurate)
simulator.  This simulator implements L2 caching above a 2-way
set-associative L1 cache.   L1 tags are the “same” <tid, L2, L1>
used for L2 virtual addresses.   This implicitly implements the “6D
blocked representation” for collision avoidance suggested by
Hakura [11].  However, the calculation of L2 and L1 require a
choice of tile sizes.  In a real implementation, these would likely be
chosen to match the sizes chosen for L2 cache.  However, in

Texture (tid) L2 blocks (L2) L1 blocks (L1)

Figure 2.  Hierarchical texture addressing for L2 caching.
Representation of virtual texture address <tid, L2, L1>.



simulation this leads to different L1 cache behavior for different
choices of L2 cache parameters.  We have instead chosen to
implement an L1 cache with a fixed tag calculation across all L2
tile sizes, in particular with L2 tiles 16x16.  Finally, the
animations produced by the simulator match those produced by
the original rendering package.

4 Locality and Working Sets
We distinguish four types of locality in texture mapping:

(1) Intra-triangle locality.  Pixels within a triangle naturally
share blocks of texture.  (2) Intra-object locality.  Graphics
objects generally comprise multiple triangles.  Triangles within
an object naturally share blocks of texture (e.g. as within a
tessellated sphere).   (3) Intra-frame locality.  Objects within a
frame may share textures (e.g. street pavement, sky, bricks in a
building), especially as hardware becomes more common that
supports multiple textures applied to the same object.  (4) Inter-
frame locality.  Generally the viewpoint moves only
incrementally between frames.  Texture blocks employed during
one frame are likely used during the next.

L1 texture caching is designed primarily for the intra-
triangle working set, but can be expected to absorb some of the
intra-object working set as well.  The goal of L2 texture caching
is to absorb L1 misses when the intra-triangle and intra-object
working set exceeds L1 cache size, and to absorb the inter-
object and inter-frame working set.

4.1 Expected Inter-Frame Working Set
In this section we derive an expression for expected inter-

frame working set. We begin with screen resolution R.  During
any given frame, we may define the depth complexity d as the
average number of pixels that are rendered for each pixel
location.  That is, the number of pixels Npix generated during
rasterization is Npix = R * d.  In general the accelerator attempts
to choose a correct MIP level so that texture compression is 1:1,
that is Ntex = Npix.  When the accelerator downloads blocks of
tiled textures, it must download at least Bmin blocks, where Bmin

= Ntex / (texels/block).  However, not every texel in every block
is generally used (internal fragmentation), nor is every texel
used only once (repeated textures and re-use between objects).
The actual number of blocks used B is a function of block
utilization, that is B = Bmin / utilization.  For 32-bit texels, the
working set W is then B * texels/block, or in bytes W = (R * d *
4) / utilization.

W is plotted in Figure 3. As can be seen, for very low
utilization the inter-frame working set should require significant
memory.  However, for utilization at or above 25% the inter-
frame working set should be under 64 MB at reasonable depth
and resolution.  Today’s higher-end PC NT workstation designs
are already configured with 64 MB of texture memory.  When
utilization is at or above 50% and depth is 1, the inter-frame
working set should be under 16 MB.  This requirement is in
range of today’s lower-end PC NT workstation designs.  At
greater depth complexity, inter-frame working set clearly
increases, and it may be efficacious to support L2 texture
caching by z-buffering before texture block retrieval.  This is
discussed further in section 6.

Table 1 shows statistics and expected inter-frame working
set for the Village and City animations.  As can be seen, both
databases reuse textures.  The Village reuses textures within
frames and makes use of repeated textures.  The City only
repeats textures (not obvious from these statistics is that the City
does not substantially reuse textures between objects).

4.2 Measured Inter-Frame Working Sets
The memory requirements of texture mapping each frame

are shown in Figure 4.  This figure shows the system memory in
use for textures (in all architectures), the minimum local

accelerator memory required by the push architecture, and the
minimum local accelerator memory required by the L2 caching
architecture.  The push architecture requirements are based on the
assumption that textures are replaced in local memory only at frame
boundaries, but that the application has a perfect replacement
algorithm (i.e. that it can predict exactly the textures required in the
upcoming frame).  The L2 caching architecture requirements are
based on the assumption that active blocks used more than once
during the frame are not replaced before they are required again.

Note that L2 caching can achieve important local memory
savings over the push architecture. L2 caching requires about 3.9
MB (1.5 MB) versus about 12 MB (7.4 MB) required by the push
architecture for the Village (City).  These correspond to factors of
between 3x and 5x savings in local memory when “minimum”
statistics are compared.  Note also that 16x16 L2 tiles do not require
significantly more memory than 8x8 tiles but can provide some
savings over memory requirements with 32x32 tiles.
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Figure 3.  Expected inter-frame working set W as function of
resolution R, depth complexity d, and cache block utilization.

Village City
Depth complexity, d 3.8 1.9
Block utilization 4.7 7.8
Expected working set, W 2.43 MB .73 MB

Table 1.  Statistics and expected inter-frame working set W of the
Village and City animations (1024x768 for 16x16 L2 tiles).

Focusing specifically on 16x16 L2 tiles, Figure 5 shows the
total versus the new memory required for texture blocks accessed
during one frame that were not accessed the previous frame.  Total
memory is the sum of all active blocks multiplied by block size.
New memory is the sum of new blocks accessed multiplied by
block size. Note that the inter-frame working set changes only
slowly for both the Village and City animations.   On average only
about 150 KB (40 KB) of required textures are new each frame in
the Village (City).



Finally, Figure 6 shows the potential savings in texture
download bandwidth that L2 caching offers.  This figure shows
the minimum total bandwidth required to download tiles to L1
cache, and also the minimum bandwidth required specifically to
download L1 tiles that were not used in the previous frame.
These numbers are conservative in that they only count once
each L1 tile required during the frame.  The total download
bandwidth is the minimum bandwidth required by the pull
architecture in the absence of L2 caching.  The bandwidth to
download only new L1 tiles is the minimum bandwidth required
with L2 caching.  Clearly L2 caching offers the potential for
extremely significant savings in host memory and AGP
bandwidth.  Averaged over all frames, 2 MB (510 KB) of L1
tiles are hit each frame in the Village (City), while only 110 KB
(23 KB) of these are new.

5 Level 2 Texture Caching
5.1 L2 Cache Organization

The problem of collisions is paramount in texture caching.
Hakura has investigated the issue of collisions in L1 texture caching
[11], but because L1 size is limited the expected collisions are
between blocks within a single texture.  L2 texture caching
introduces collisions between textures.  Consider three common
cache organizations: direct-mapped, set-associative, and fully
associative.  With potential collisions between textures, the problem
of designing a direct-mapped L2 cache is that of finding a hashing
function that uniform-randomly distributes virtual blocks <tid, L2,
L1> over a much smaller space of physical blocks.  This is quite
different from the problem of finding a hashing function for L1
caching, where intra-triangle locality is virtually assured by the
proper choice of MIP level. Pixels are rasterized in some order
within a triangle, and in general except for very large triangles there
is strong pixel-to-pixel spatial coherence in texture space that can
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be exploited to avoid collisions.  Even in this simple case, 2- or
4-way set-associative L1 caches are preferred because of
collisions between MIP levels.  The goal of L2 caching is to
accommodate three additional working sets: intra-object, intra-
frame, and inter-frame.  Intra-object working sets introduce the
complication (especially for large textures) that collisions
between disparate blocks within the textures must also be
avoided.  This is because the triangles that result from
tessellation of arbitrary surfaces may be delivered to the
rasterization engine in arbitrary order (e.g. consider the triangle-
strip tessellation of a sphere).  Intra- and inter-frame working
sets introduce the complication that collisions between blocks of
different textures must be avoided.  This in turn introduces an
implicit requirement that the hashing function be a function not
only of spatial but also of temporal locality.  Similarly,
organizing an L2 cache set-associatively would mitigate rather
than solve the problem of finding an acceptable hashing
function. Both direct-mapped and set-associative caches are
made more difficult by the trend in graphics hardware to support
simultaneous mapping from multiple textures. Collisions can be
viewed as a block replacement problem that results from
restricting the placement of an L2 texture tile to a restricted set
of physical locations within the L2 cache [18].  Such restriction
is inherent in set-associative (and direct-mapped) caches.  While
it may be possible to find a hashing function that leads to good
replacement behavior in a direct-mapped or set-associative L2
texture cache, we have not pursued this direction. The only
apparent alternative is to design a fully associative L2 cache.
The working set results of Section 4.2 suggest that an L2 cache
should be on the order of MB rather than KB.  A fully
associative cache of this size is clearly beyond feasibility on the
PC platform in the forseeable future.

Alternatively we have chosen to treat the problem of L2
texture caching as a problem of virtual memory (cf. [15, 18, 25]),
in a cache organization similar in spirit to that used on the MU5
(where on-processor addresses were virtual, with translation to
real addresses via “current page registers” in a Store Access
Control Unit [19]).  We may view each L2 tag <tid, L2, L1> as
the address of a virtual texture block that must be mapped to a
physical texture block within L2 cache memory.  To proceed in
this way then, we require a texture page table to translate from
virtual texture addresses of the form <tid, L2, L1> into physical

addresses within L2 cache memory.  We also require a replacement
algorithm.  We a priori expect Least Recently Used (LRU) page
replacement to be a good choice for replacing texture pages in an
L2 cache.  We have chosen to study L2 texture caching with LRU
approximated by the “clock” algorithm (cf. [15, 25]).  While more
recent algorithms for approximating LRU may be less “peaky” in
their behavior (cf. [8]), clock is a simple and robust algorithm that is
still used in practice.

5.2 Structures and algorithms
Principal data structures and cache control are covered in this

section, and shown more precisely in pseudo-code in the Appendix.
Control flow in L2 caching is shown in Figure 7. When a texel is
required during rasterization, the accelerator first calculates the
virtual texture block <tid, L2, L1> that holds that texel and
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determines if the required L1 block is in L1 cache (steps A and
B).  If the desired block is in L1 cache the accelerator retrieves
the desired texel. If not, the accelerator checks the L2 cache for
the L1 block.  This is done in two steps because we employ a
technique referred to as sector mapping.3  Rather than download
each full L2 block, we download only the L1 sub-block required
by each L1 miss (leaving vacant the remaining L1 sub-blocks to
be downloaded on demand).  We do so in order not to exceed
the download bandwidth of the pull architecture (which has no
L2 cache and downloads L1 blocks directly from L3 to L1).  So,
continuing at step C, the accelerator first determines if a
physical l2_block has been allocated to the virtual L2 block
<tid, L2>.  At step E on a full L2 miss a physical block has not
yet been allocated, and the accelerator finds a victim to
relinquish a block currently in use.  The accelerator then
allocates the found l2_block for use by the virtual block <tid,
L2>.  If (or once) a physical block is allocated, the accelerator
determines if the desired <L1> sub-block has yet been
downloaded (step D).   If not, the accelerator must download
that block to L2 cache (step F).  Since L2 cache memory is
under the control of the accelerator and downloading from main
memory passes through the accelerator itself, we take the
opportunity to remove latency by downloading into L1 cache in
parallel with the download to L2 cache at step F.

The principle data structures of L2 caching are shown in
Figure 8.  The Texture Page Table (t_table[]) provides the
means to map from  virtual block <tid, L2, L1> to a physical L1
block in L2 Cache Memory (L2_cache[]). The page table must
be sufficiently large to hold an entry for every <tid, L2> block
that may be active in system memory at once.4  Allocation of
t_table[] space is done by host driver software.
                                                                

3 Sector mapping was employed on the IBM System/360 Model 85
to conserve cache tag comparators in a fully associative cache [15].  Our
use of sector mapping is to conserve page table entries.

4 For example, if the system allows 32 MB of texture in system
memory and L2 blocks are 16x16 texels by 32 bits, the t_table[] must
comprise 32 K-entries.

Mapping from virtual block <tid, L2, L1> is done in two steps.
First, an index into t_table[] is built from <tid, L2>.  Second, the
entry at that index is checked to determine if the <L1> sub-block
has yet been downloaded.  To build an index into t_table[], we
leverage on some standard machinery for managing textures. Even
today the host software driver keeps track of textures as the
application loads and deletes them, and informs the accelerator
whenever the application changes the current texture. We require
an extension to the accelerator’s register set to identify the current
texture’s contiguous entries in the table from tstart to tstart + tlen.
The t_table[] is then indexed by tstart + <L2>.  If a physical block
has been allocated to the virtual block, l2_block is non-zero and is
the physical block number in L2_cache[].  This corresponds to step
C of Figure 7.  The sector[] field of each t_table[] entry holds a bit
for each L1 sub-block.  If this bit is set the corresponding L1 sub-
block has been downloaded (step D).

Finally, replacement in the L2 cache is driven by the Block
Replacement List (BRL[]).  There are the same number of entries in
the BRL[] as there are blocks in the L2_cache[].  The index of a
given block in L2_cache[] is the same as its index into the
replacement list.  As already noted we employ the “clock”
algorithm to approximate LRU (cf. [15]).  The BRL[]  serves as
circular FIFO for “clock”.  For each entry that corresponds to a
physical block in L2_cache[], there is an index t_index into the
t_table[] virtual block to which the physical block has been
allocated, and a bit that reflects recent activity (active).  When a
victim is required, the clock algorithm marches around the BRL[] to
find an entry with no recent activity, at the same time clearing the
active bits of entries it encounters.  During normal operation,
whenever a physical l2_block is accessed, the accelerator sets the
active bit corresponding to that block’s entry in the BRL[] .  The
accelerator notifies a victim chosen for replacement by using
t_index to clear the virtual block’s ownership (l2_block).  The
accelerator allocates a physical block by setting t_index to the
virtual block’s index in t_table[] and by setting that entry’s
l2_block to the physical block’s index into L2_cache[] and the
BRL[].
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Figure 8.  The primary data structures of L2 caching.



It remains to describe how texture table entries are
deallocated. This can be done easily for the current texture by
iterating over the page table entries from tstart to tstart+ tlen,
and for each entry with an allocated block, clearing the
appropriate BRL[] entry and clearing the page table entry itself.
This can be done by the accelerator or by the host if the
appropriate data structures are memory-mapped.

5.3 Simulation Results
5.3.1 L1 cache behavior

Figure 9 shows L1 miss rates (by cache size) over the
Village animation.  These results corroborate Hakura’s graphs
that show that 16 KB caches result in hit rates almost as good as
32 KB caches [11].  Note also that even for 2 KB caches, peak
miss rates do not exceed 4% for bilinear or 5% for trilinear.
Average hit rates over all frames are shown in Table 2.
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Figure 9.  L1 miss rate by cache size (Village).

L1 size
(KB)

BL hit rate
(%)

TL hit rate
(%)

Village 2 97.16 96.34
16 99.11 98.94

City 2 97.46 96.72
16 99.38 99.26

Table 2 .  Average L1 hit rates bilinear (BL) and trilinear (TL).

5.3.2 Bandwidth
The download bandwidths required with and without L2 cache

are shown in Figure 10.  Averages over all frames are shown in
Table 3.  The figure and table show results for trilinear animations
and L2 caches of 16x16 tiles.  Similar results were observed for
tiles 8x8 and 32x32.  These results apply to the pull and L2 caching
architectures.  Results are not shown for push architecture
download bandwidths, as these depend on the specific replacement
and packing algorithms employed by the application.

Without L2 caching, it is clear that download bandwidth
requirements of the pull architecture are high, even with 16 KB L1
caches.  With even a 16 KB L1 cache (but no L2 cache) the Village
would require 475 MB/s average download bandwidth at 30 Hz.
This exceeds the delivered bandwidth of AGP (and does not even
account for peak requirements).  With a 2 KB L1 cache (but no L2
cache) the Village would require sustained bandwidth of 1.6 GB/s
at 30 Hz.  With the same 2 KB L1 cache, even a 2 MB L2 cache
would reduce Village download bandwidth requirements to an
average 92 MB/s at 30 Hz.  Even a 2 MB L2 cache saves the
Village animation between 5x and 18x in bandwidth over a vanilla
pull architecture (for 16 KB and 2 KB L1 caches, respectively).

These results in turn suggest that not only may an L2 cache be
used to stem the escalating demands for main memory and AGP
bandwidth, but that an L2 cache can reduce the size of L1 cache
required for target performance.  Of course, the difference in
bandwidth must be absorbed by the local L2 cache memory system,
but this is one of the goals of the proposed architecture – to move
graphics bandwidth to local memory without the push architecture’s
escalation in capacity requirements.

Even a 2 MB L2 cache accommodates the inter-frame working
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set of the City animation over almost all frames (with exception
between frames 50 and 100).  A 4 MB L2 cache accommodates
the inter-frame working set about half of the time, and an 8 MB
L2 cache accommodates this working set all of the time for the
Village.  These numbers may be compared with the maximum
of the minimum inter-frame working set measured in section
4.2.  The larger memory required in practice arises from
approximation by LRU (and approximation of LRU by clock)
versus perfect replacement.  However, it is clear that even when
the inter-frame working set is not always accommodated, L2
caching requires less local memory than the push architecture
(which requires minimum 8 and 12 MB for the City and Village,
respectively).  At the same time L2 caching frees the application
from texture memory replacement and packing.

Village
(MB/frame)

City
 (MB/frame)L2 size

(MB)
L1 size
(KB) BL TL BL TL

2 2 1.90 3.05 0.01 0.17
4 2 0.09 1.65 0.01 0.01
8 2 0.03 0.04 0.01 0.01

None 2 21.20 54.60 9.20 23.90
None 16 6.70 15.80 2.30 5.40

Table 3.  Average AGP and system memory bandwidth required
(MB/frame) for the Village and City for bilinear (BL) and
trilinear (TL) filtering, with and without L2 cache.

5.4 Implementation and Performance
5.4.1 Implementation

L2 cache size (MB)
2 4 8

Page table size to support:
… 16 MB host texture (KB) 64 KB
… 32 MB host texture (KB) 128 KB
… 64 MB host texture (KB) 256 KB
… 256 MB host texture (KB) 1024 KB
… 1 GB host texture (KB) 4096 KB
BRL for active bits only (KB) .25 KB .5 KB 1 KB
BRL sans active bits (KB) 8 KB 16 KB 32 KB

Table 4.  Memory requirements of L2 caching structures given
L2 tiles of 16x16 texels.

The implementation of L2 texture caching is driven
primarily by the sizes of the structures required.  These in turn
depend on the target texture capacity of the platform and the L2
cache and tile sizes.  The memory requirements of L2 caching
structures are shown in Table 4 assuming L1 tile sizes of 4x4
texels and assuming t_table[] and BRL[] entries are aligned on
16-bit boundaries.  Shown are the KB of data structures required
for L2 cache memories of 2, 4, and 8 MB when L2 tiles are
16x16 texels.

It is clear that to support 2+ MB of L2 cache, the cache
blocks themselves must reside in external DRAM of some sort.
Today’s PC graphics subsystems have relatively high-bandwidth
channels to local memory (SGRAM, fast SDRAM, or RDRAM)
for color- and z-buffers.  The continued growth of memory
density encourages the use of some of this memory and
bandwidth for L2 cache since screen resolution grows more
slowly than memory capacity or bandwidth.  Higher-end push
architectures allocate a separate channel and separate memory
for texture.  In such architectures that channel/memory may be
retargeted for L2 cache.

It is also clear from Table 4 that in the immediate future

texture page tables and the t_index field of the block replacement
list must be stored in external DRAM.  We propose that both be
stored in the same memory as L2 cache blocks.  While the storage
of page tables in external memory could significantly increase the
latency of access on L1 misses, a page table Translation Lookaside
Buffer (TLB) can effectively mitigate page table access latency.
This is addressed in section 5.4.3.  Since the t_index field of the
BRL[] need only be read/written when a victim has been found for
replacement, it is not in the critical path of the clock algorithm.
Finally, storage for the active bits of the BRL[] are best left on chip
since an active bit must be set for every L2 reference.  The memory
required for BRL[] active bits (Table 4) suggest that this may
comfortably be done with on-chip SRAM.

5.4.2 Performance
In this section we develop a simple model to compare the

expected performance of an L2 caching architecture to the expected
performance of the pull architecture.  Let the hit rate to L1 cache be
h1, and in the caching architecture the full and partial hit rates5 to
L2 cache be h2full and h2partial.  Let the time to access a texel be t1
when the texel is in L1 cache, and in the L2 caching architecture let
t2full, t2partial, t2miss be the times to access a texel on a full L2 hit,
partial L2 hit, and L2 miss respectively.  Finally let t3 be the texel
access time in the pull architecture on an L1 miss.  Then the
average access times Apull and AL2 of the pull and L2 caching
architectures respectively are given by:

Apull = h1 t1 + (1 – h1)(t1 + t3)
AL2 = h1 t1 + (1 – h1)[t 1 + h2full t2full + h2partial t2partial +
         (1 – h2full – h2partial) t2miss]
Let us express t2partial, t2full, and t2miss as functions of t3.  It is

standard wisdom in graphics hardware design that the accelerator
may only take 50% of host memory bandwidth.  Ignoring many
details, let us assume that the accelerator memory and host memory
subsystems are of similar design/bandwidth, so that local
accelerator memory is 2x the performance of host memory.  We
further assume it is possible to pipeline the algorithm in Figure 7 so
that t2full  ≈  ½ t3.  The main challenge in achieving this goal is in
average fast access to the texture page tables.  Texture table TLB
results are discussed in section 5.4.3.

Continuing the derivation of a simple performance model, we
assume that the cost of downloading to L1 and L2 on a partial L2
hit is comparable to the cost of downloading to L1 alone, that is
t2partial  ≈  t3.

The cost of a full L2 miss is more difficult to estimate. On a
full page miss, the clock algorithm must search the active bits of the
BRL[] to find a victim and must read-modify-write three locations
in external DRAM (the t_index of BRL[], the t_table[] entry of the
victim, and the t_table[] entry of the new owner).   While it should
be possible to pipeline the accesses to external memory with
downloading the L1 sub-block from main memory, the clock’s
search of the active bits can be of variable cost.  We have studied
this cost, and have found that extreme BRL[] searches tend to be
“peaky” – lasting only a frame or two.  We have also found that if
the active bits were searched 16 at a time (in our workloads for 2-
and 4-MB L2 caches), a victim could always be found within 32
cycles.  This cost is comparable to the time to download an L1
block from host memory (ignoring latency).  However, we leave the
cost of a full L2 miss a variable for subsequent exploration, that is
t2miss  ≈  c t3.

Combining these results we have that

                                                                
5 We report these as L2 rates given that an L1 miss has occurred (i.e.

as a conditional probability).  We do so in part because unlike with
processor multi-level caches, inclusion is not guaranteed (L1 block A that is
loaded into L1 cache from L2 block B may remain in L1 even after B has
been replaced in L2).



Apull = h1 t1 + (1 – h1)(t1 + t3) = t1 + (1 – h1) t3
AL2  = h1 t1 + (1 – h1)(t1 + f  t3) = t1 + (1 – h1) f t3
where f = c – (c – ½) h2full – (c – 1) h2partial

and c = t2miss / t3.
f must clearly be less than 1 for the performance of an L2

caching architecture to match or exceed that of the standard pull
architecture.  Let us call f the fractional advantage of the L2
caching architecture (the ratio of the L2 architecture’s cost on
L1 miss divided by the pull architecture’s cost on L1 miss).
Using measured L1 hit rates (Tables 5 and 6), and choosing a
value for c, we can calculate the expected fractional advantage f
of L2 caching.  We assume arbitrarily that a full L2 miss costs
no more than 8x the cost of downloading an L1 block to L1
cache (c = 8).  The fractional advantage is shown in Table 7.  As
can be seen, even when a full L2 miss is quite expensive, we
expect overall performance of the L2 caching architecture to
exceed that of the pull architecture.

Village h2full (%) City h2full (%)L2 size
(MB)

L1 size
(KB) BL TL BL TL

2 2 91.03 94.41 99.89 99.31
16 71.46 80.66 99.54 96.95

4 2 99.56 96.97 99.89 99.94
16 98.61 89.40 99.56 99.75

8 2 99.85 99.92 99.89 99.94
16 99.52 99.74 99.56 99.75

Table 5.  Average L2 full hit rate h2full (%) for the Village and
City for bilinear (BL) and trilinear (TL).

Village h2partial (%) City h2partial (%)L2 size
(MB)

L1 size
(KB) BL TL BL TL

2 2 8.30 5.18 .10 .64
16 26.42 17.92 .42 2.81

4 2 .41 2.81 .10 .06
16 1.28 9.82 .41 .23

8 2 .14 .07 .10 .06
16 .44 .24 .41 .23

Table 6.  Average L2 partial hit rate h2partial (%) for the Village
and City for bilinear (BL) and trilinear (TL).

Village CityL2 size
(MB)

L1 size
(KB) BL TL BL TL

2 2 0.59 0.53 0.50 0.50
16 0.79 0.59 0.50 0.51

4 2 0.50 0.51 0.50 0.50
16 0.51 0.55 0.50 0.50

8 2 0.50 0.50 0.50 0.50
16 0.51 0.50 0.50 0.50

Table 7.  Fractional advantage f of L2 caching (ratio of the L2
architecture’s cost on L1 miss to the pull architecture’s cost on
L1 miss).  The cost of a full L2 miss has been assumed to be
bounded by 8x the cost of downloading an L1 block (c = 8).

5.4.3 Texture Page Table TLB
Simulated behavior of a Translation Lookaside Buffer

(TLB) for the Texture Page Table is shown in Figure 11.
Replacement for multi-entry TLB’s was round robin.  Shown are
the results with trilinear filtering and for 2 KB L1 and 2 MB L2
caches of 16x16 tiles. Average TLB hit rates for the Village and
City over 411 and 525 frames (respectively) are shown in Table
8. Results for other L2 cache sizes were essentially identical.
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Figure 11.  Texture Table TLB hit rates for the Village as a
function of number of entries (tiles 16x16, trilinear filtering).

# TLB entries Village hit rate (%) City hit rate (%)
1 36% 36%
2 63% 63%
4 74% 75%
8 81% 82%
16 91% 92%

Table 8.  Average TLB hit rates for the Village and City as a
function of number of TLB entries (tiles 16x16, trilinear filtering).

6 Conclusions and Future Work
We distinguish two existing architectures.  The traditional push

architecture has co-located a large texture memory with the
graphics accelerator, requiring the application to bin pack the
textures required during each frame.  This architecture suffers from
application complexity and texture capacity limitations.  The more
recent pull architecture textures directly from main memory,
relaxing capacity constraints but introducing main memory and
graphics I/O bandwidth as the bottleneck and requiring their
performance to escalate with a steeper graphics performance curve.

In this paper we have proposed an intermediate architecture
based on multi-level texture caching.  Textures are still pulled from
main memory, but an L2 cache intermediates between the host and
L1 cache.  We have found that L2 caching may use 3x to 5x less
local memory than the push architecture, and even a 2 MB L2 cache
saves from 18x to 140x the download bandwidth over the pull
architecture.  A simple performance model suggests that L2 texture
caching should also result in better performance than the pull
architecture.

At least several optimizations to the current work are worth
investigation.  First, z-buffering before allocating and loading L2
cache blocks should reduce texture depth to something close to one,
and may significantly save both local texture memory and block
download bandwidth.  Second, alternative algorithms to “clock”
deserve investigation to avoid “peaky” behavior.  Third, while
expected-case analysis predicts that L2 texture caching should scale
well to high-end machines and scenes, investigation with
“workloads of the future” are worthy of pursuit.



Appendix
struct {
     Bit active
     int t_index /* zero if no block allocated */
} BRL[ Nblocks ]           /* BRL[] is indexed by 0 ≤  k < Nblocks */

struct {
     Bit_vector sector[]  /* sub-block loaded flags */
     Int l2_block  /* zero if no block allocated */
} t_table[ Ntentries ];     /* t_table[] is indexed by 0 ≤  k < Nentries */

struct {
     Byte ram[ l2_block_size ]
} L2_cache[ Nblocks ]   /* L2_cache[] is indexed by 0 ≤  k < Nblocks */

struct texture {
     int tstart
     int tlen
     Address         L3_start
     … additional fields required by texture-mapping …
} current_texture

int clock_index  /* current clock index into BRL[] */
int l2_block_size /* size in bytes of an L2 cache block */
int l1_block_size /* size in bytes of an L1 cache block */
Address l2_base_addr /* starting address of L2 cache memory */

Calculate <tid, L2, L1>
t = current_texture.tstart + L2
addr  = l2_base_addr + (t_table[t].l2_block – 1) * l2_block_size +
             L1 * l1_block_size
test1 = <tid, L2, L1> is in L1 cache
if(  test1 ) {                                                       /* L1 hit */
     Retrieve the desired texel(s)
} else {                                                             /* L1 miss */
    test2 = t_table[t].l2_block is non-zero
    test3 = t_table[t].sector[L1]
    if( test2 ) {
        if( test3 ) {                                               /* L2 full hit */
            Load L1 sub-block from L2 cache at addr into L1 cache
            BRL[ t_table[t].l2_block – 1 ].active = 1
        } else {                                                     /* L2 partial hit/miss */
            Load L1 sub-block from system memory into L2 cache
                     at addr, and into L1 cache
            t_table[t].sector[L1] = 1
            BRL[ t_table[t].l2_block - 1 ].active = 1
    } else {                                                         /* L2 full miss */
        while( BRL[ clock_index ].active ) {      /* Find a victim */
            BRL[ clock_index ].active = 0
            clock_index = (clock_index + 1) mod Nblocks

        }
        if(BRL[ clock_index ].t_index )
             Clear t_table[ BRL[ clock_index ].t_index – 1 ]
        Load L1 sub-block from system memory into L2 cache
               at addr, and into L1 cache
        BRL[ clock_index ].t_index = t + 1
        t_table[t].l2_block = clock_index + 1
        clock_index = clock_index + 1
        t_table[t].sector[L1] = 1
        BRL[ t_table[t].l2_block – 1 ].active = 1
    }
}
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Figure 12.  Snapshots from the animation work loads employed in this paper:  Village (left) and City (right).


