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Abstract

Background: Heart failure (HF) has been recognized as a global pandemic with a high rate of hospitalization,
morbidity, and mortality. Although numerous advances have been made, its representative molecular signatures
remain largely unknown, especially the role of genes in HF progression. The aim of the present prospective follow-
up study was to reveal potential biomarkers associated with the progression of heart failure.

Methods: We generated multi-level transcriptomic data from a cohort of left ventricular heart tissue collected from
21 HF patients and 9 healthy donors. By using Masson staining to calculate the fibrosis percentage for each sample,
we applied lasso regression model to identify the genes associated with fibrosis as well as progression. The genes
were further validated by immunohistochemistry (IHC) staining in the same cohort and qRT-PCR using another
independent cohort (20 HF and 9 healthy donors). Enzyme-linked immunosorbent assay (ELISA) was used to
measure the plasma level in a validation cohort (139 HF patients) for predicting HF progression.

Results: Based on the multi-level transcriptomic data, we examined differentially expressed genes [mRNAs,
microRNAs, and long non-coding RNAs (lncRNAs)] in the study cohort. The follow-up functional annotation and
regulatory network analyses revealed their potential roles in regulating extracellular matrix. We further identified
several genes that were associated with fibrosis. By using the survival time before transplantation, COL1A1 was
identified as a potential biomarker for HF progression and its upregulation was confirmed by both IHC and qRT-
PCR. Furthermore, COL1A1 content ≥ 256.5 ng/ml in plasma was found to be associated with poor survival within
1 year of heart transplantation from heart failure [hazard ratio (HR) 7.4, 95% confidence interval (CI) 3.5 to 15.8, Log-
rank p value < 1.0 × 10− 4].

Conclusions: Our results suggested that COL1A1 might be a plasma biomarker of HF and associated with HF
progression, especially to predict the 1-year survival from HF onset to transplantation.
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Background
Heart failure (HF), a chronic condition characterized by

structural and functional impairment of the heart, has been

recognized as a global pandemic and is increasing in preva-

lence [1–3]. During the past decades, the diagnosis of HF

has been mainly based on echocardiography including dila-

tion of left ventricular (LV) and cardiac dysfunction (left

ventricular ejection fraction, or LVEF, < 40%). Regardless of

the etiology, it has shown that the underlying mechanisms

contributing to the progression of HF can lead to stereotyp-

ical changes in gene expression [4]. Therefore, investigation

of transcriptional profiles and related changes may gain

new insights into its molecular mechanisms, helping us de-

velop better diagnostic and prognostic strategies.

Cardiac fibrosis is a requisite component that under-

lies nearly all forms of HF. With the advent of anti-

fibrotic pharmacologic therapies, fibrosis has become an

important therapeutic target in HF patients [5]. More-

over, fibrosis disrupts the myocardial architecture,

thereby predisposing the progression of cardiac diseases

to HF [6]. To our knowledge, there have been limited

studies reporting the role of specific fibrosis genes in HF

progression which can be used as biomarkers in diagno-

sis and prognosis. Recent advances in transcriptional

profiling allow us to not only investigate the mRNA

level, but also non-coding RNA including microRNA

(miRNA) and long non-coding RNA (lncRNA). Studies

have reported that several mRNAs (e.g., CORIN, CTGF,

and POSTIN), miRNAs (e.g., miR-1, miR-133 and miR-

423-5p), and lnRNAs (e.g., H19 and HOTAIR) might

play roles in the pathogenic mechanisms leading to HF

[7–11]. Although these studies have reported many

promising findings, a systematic investigation of multiple

types of expression and their regulation in HF will likely

reveal more dynamic and regulatory signatures related

to fibrosis in HF, thus helping us better understand the

development and progression of HF.

In this study, we collected the left ventricular tissue from

21 HF patients and 9 healthy donors for whole transcrip-

tome sequencing (mRNA and lncRNA) and small RNA se-

quencing (miRNA). Our functional enrichment analysis of

differentially expressed genes (DEGs) revealed significant

pathways, including extracellular matrix (ECM) that might

play important roles in HF. By constructing the dysfunc-

tional regulatory networks, several miRNAs (e.g., miR-129-

5p and miR-190-5p) and lncRNAs (e.g., BANCR and

PDZRN3-AS1) were pinpointed to be critical in HF. Using a

lasso regression method, several genes, especially ECM-

related genes, were identified to contribute to fibrosis, a

main feature of HF. In particular, an upregulation of

COL1A1 in HF, which was regulated by miRNA miR-190-

5p and lncRNA MSTRG.16534 in our regulatory network,

was found to be related to fibrosis. Interestingly, the

COL1A1 content in plasma was found to contribute to the

progression of HF, suggesting that it might be a potential

plasma biomarker to predict the heart transplantation

(HTx) within 1 year from HF onset. These findings sug-

gested the possible roles of ECM, in particular via a COL1A1

regulatory module, in the progression of HF. The flowchart

of our study is illustrated in Fig. 1.

Methods
Human LV tissue acquisition and RNA extraction

This study complies with the ethical guidelines of the

1975 Declaration of Helsinki. All participants provided

written informed consent at the time of enrollment. We

recruited 21 heart failure patient hearts from Fuwai Hos-

pital heart transplantation database with left ventricle

(LV) tissue obtained at the time of HTx and preserved

in liquid nitrogen. The 9 healthy LV heart samples were

obtained from brain-death donors with normal circula-

tory supply, who were not suitable for transplantation

due to the technical or non-cardiac reasons such as

body-weight mismatch by following the guideline of

China Transplant Services. All of patients received

standard drug therapy against HF before HTx [12]. In-

formation of demographic characteristics, comorbidities,

ultrasonic cardiogram, medication, and arrhythmia his-

tory was collected and summarized in Table 1.

The total RNA was extracted from the frozen LV

samples using the Trizol protocol. RNA concentration

was measured using Qubit® RNA Assay Kit in Qubit® 2.0

Flurometer (Life Technologies, CA, USA), and RNA in-

tegrity was assessed using the RNA Nano 6000 Assay Kit

of the Bioanalyzer 2100 system (Agilent Technologies,

CA, USA). Only RNA samples with a total amount of at

least 6 μg and RNA integrity number (RIN) of at least

6.9 (range 6.9 to 8.5, mean ± SD 7.9 ± 0.4) were used

for subsequent library construction and sequencing

(Additional file 1: Table S1).

RNA library preparation, clustering, and sequencing

A total amount of 3 μg RNA per sample was used as in-

put material for RNA library preparation. First, riboso-

mal RNA was removed by Epicentre Ribo-zero™ rRNA

Removal Kit (Epicentre, USA), and rRNA-free residue

was cleaned up by ethanol precipitation. Next, sequen-

cing libraries were generated using the rRNA-depleted

RNA by NEBNext® Ultra™ Directional RNA Library Prep

Kit for Illumina® (NEB, USA) following the manufac-

turer’s recommendation. Briefly, fragmentation was car-

ried out using divalent cations under elevated

temperature in NEBNext First Strand Synthesis Reaction

Buffer (5X). First-strand cDNA was synthesized using

random hexamer primer and M-MuLV Reverse Tran-

scriptase (RNaseH−). Second-strand cDNA synthesis was

subsequently performed using DNA Polymerase I and

RNase H. In the reaction buffer, dNTPs with dTTP were
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replaced by dUTP. Remaining overhangs were converted

into blunt ends via exonuclease/polymerase activities.

After adenylation of 3′ end of DNA fragments, NEBNext

Adaptor with hairpin loop structure was ligated to pre-

pare for hybridization. To select cDNA fragments of

preferentially 150~200 bp in length, the library frag-

ments were purified with AMPure XP system (Beckman

Coulter, Beverly, USA). Then, 3 μl USER Enzyme (NEB,

USA) was used with size-selected, adaptor-ligated cDNA

at 37 °C for 15 min followed by 5 min at 95 °C before

PCR. PCR was performed with Phusion High-Fidelity

DNA polymerase, Universal PCR primers, and Index (X)

Primer. Finally, the products were purified (AMPure XP

system) and library quality was assessed on the Agilent

Bioanalyzer 2100 system. The clustering of the index-

coded samples was performed on a cBot Cluster Gener-

ation System using TruSeq PE Cluster Kit v3-cBot-HS

(Illumia) according to the manufacturer’s instructions.

After cluster generation, the libraries were sequenced on

an Illumina Hiseq 2500 platform and 150-bp paired-end

reads were generated.

Small RNA library construction, clustering, and

sequencing

A total amount of 3 μg total RNA per sample was used

as input material for the small RNA library preparation.

Sequencing libraries were generated using NEBNext®

Multiplex Small RNA Library Prep Set for Illumina®

(NEB, USA) following the manufacturer’s recommenda-

tion, and index codes were added to attribute sequences

to each sample. Briefly, NEB 3′ SR Adaptor was directly

and specifically ligated to 3′ end of miRNA, siRNA, and

piRNA. After the 3′ ligation reaction, the SR RT Primer

hybridized to the excess of 3′ SR Adaptor (that

remained free after the 3′ ligation reaction) and trans-

formed the single-stranded DNA adaptor into a double-

stranded DNA molecule. This step is important to

prevent adaptor-dimer formation. In addition, dsDNAs

were not substrates for ligation mediated by T4 RNA

Ligase 1 and therefore did not ligate to the 5′ SR

Adaptor in the subsequent ligation step. 5′ end adapter

was ligated to 5′ end of miRNA, siRNA, and piRNA.

Then first-strand cDNA was synthesized using M-MuLV

Reverse Transcriptase (RNase H−). PCR amplification

was performed using LongAmp Taq 2X Master Mix, SR

Primer for Illumina and index (X) primer. PCR products

were purified on an 8% polyacrylamide gel (100 V, 80

min). DNA fragments corresponding to 140~160 bp (the

length of small non-coding RNA plus the 3′ and 5′

adaptors) were recovered and dissolved in 8 μl elution

buffer. Finally, library quality was assessed on the Agi-

lent Bioanalyzer 2100 system using DNA High Sensitiv-

ity Chips. The clustering of the index-coded samples

was performed on a cBot Cluster Generation System

using TruSeq SR Cluster Kit v3-cBot-HS (Illumia) according

to the manufacturer’s instructions. After cluster generation,

Fig. 1 Flowchart for uncovering novel molecular signatures in heart failure using multi-transcriptome approach. a Clinical specimen collection
and multi-level RNA sequencing. b Pipeline for mRNA, lncRNA, and microRNA (miRNA) analysis. c Construction of regulatory networks in heart

failure using differentially expressed mRNAs, miRNAs, and lncRNAs. d Lasso regression analysis of the association between gene expression and
fibrosis percentage in heart failure tissue. e Experimental validation of COL1A1 being associated with HF progression

Hua et al. BMC Medicine            (2020) 18:2 Page 3 of 16



the libraries were sequenced on an Illumina Hiseq 2500

platform and 50 bp single-end reads were generated.

Heart failure validation cohort

To validate whether the COL1A1 content in plasma

would be used as a biomarker for HF progression, we re-

cruited 139 samples from an independent heart failure

cohort in Fuwai Hospital. These patients were qualified

heart failure diagnosis and received HTx. In selection of

validation samples, those patients were excluded if they

were combined with any of the following conditions: (1)

hepatitis virus positive such as HBV and HCV, (2) liver

cirrhosis or liver cancer, (3) pulmonary fibrosis or mye-

lofibrosis, (4) malignant tumor, or (5) other system

diseases. In addition, all the patients had standard medi-

cation treatment without mitral valve modeling. The

blood samples of these patients were collected and pre-

served before HTx.

Histology, electron microscopy, and Masson analysis

To calculate the fibrosis percentage for each sample, tis-

sue processing, section making, HE staining, and Masson

trichrome staining were performed according to the pre-

viously published procedures [13]. All of the staining

sections were scanned as digital images by a slice scan-

ner to further analysis [14]. We performed the Masson

analysis by calculating percentages of tissue components

with hue, saturation, and intensity independently by

three researchers at least one time per person. In each

whole section, five randomly selected fields were evalu-

ated under microscope (× 200) from epicardial to endo-

cardial region per whole slice, with excluding trabecular

and scar tissue [15].

Besides, the ultrathin section of transplanted heart tis-

sue was described briefly as follows: both ventricles of

transplanted heart tissue were routinely fixed in 2.5%

glutaraldehyde in 0.1M/L phosphate buffer (pH 7.3) and

post-fixed in buffered 1% osmium tetroxide. Then, the

images were acquired by transmission electron

microscope.

Data pre-processing, de novo assembly, and annotation

The raw sequence reads of mRNA/lncRNA were cleaned

by removing the RNA adapters and trimming the low-

quality bases (Q < 20). For mRNA-seq, approximately

1.33 billion clean reads were generated after removing

the adapter by Cutadapt program (version 1.9). Among

all the clean reads, more than 97.60% had the Phred-like

quality score at the Q20 level (an error probability of

1%). RNA sequencing tags were only considered when

they mapped to the same DNA strand as indicated by

GRCh38.p11 annotation using HISAT2 (version 2.1.0)

[16]. After assembly, approximately 96.74% of the total

clean reads were mapped to the reference transcriptome.

The fragments per kilobase of transcript per million

mapped reads (FPKM) value of 186,363 transcripts was

calculated based on StringTie (version 1.3.4) with default

parameters [16]. mRNA with low expression were ex-

cluded, defined as those with FPKM less than 1 in more

than 80% samples. For lncRNAs, we did not remove the

low expressed transcripts, while we identified the poten-

tial long non-coding transcripts by filtering out short

transcripts (default 200 nt) and removing single exon

transcripts based on the FEELnc tool (version 0.11-2)

[17]. The remaining transcripts were then used to per-

form the following analysis.

Table 1 Selected characteristics at presentation in 21 heart
failure patients and healthy donors

Basic information Heart failure patients
n (percentage of 21)

Healthy
donors

p value

Age (years) 34.6 ± 15.9 41.7 ± 4.0 0.07

Male (percentage) 13 (61.9) 9(100) 0.07

NYHA functional class, n (percentage of 21)

II 2 (9.5)

III 7 (33.3)

IV 12 (57.1)

Comorbidities

Diabetes mellitus 2 (9.5)

Smoking history 5 (23.8)

Pulmonary hypertension 5 (23.8)

Tricuspid regurgitation 12 (57.1)

Mitral regurgitation 17 (81.0)

Ultrasonic cardiogram

LVEF (%) 27.6 ± 9.8

LA (mm) 44.7 ± 4.8

IVS-thickness (mm) 8.2 ± 1.1

LVEDD (mm) 65.1 ± 16.6

Arrhythmia history, n (percentage of 21)

Atrial fibrillation 4 (19.0)

Premature ventricular
contraction

6 (28.6)

Ventricular tachycardia 4 (19.0)

Ventricular fibrillation 1 (4.8)

CRBBB 3 (14.3)

Drug therapy, n (percentage of 21)

ASA 2 (9.5)

Amio 4 (19.0)

β-Blocker 15 (71.4)

Digoxin 16 (76.2)

ACEI/ARB 17 (81.0)

CCB 3 (14.3)

Diuretic 18 (85.7)
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For miRNAs, mature miRNA and precursor miRNAs

of human were obtained from miRBase (Release 22)

[18]. The reads were first subjected to adapter removal

through the Cutadapt program. Approximately 609.59

million clean reads were obtained after removing the

adapters and further pre-processed by miRDeep2 [19].

The known mature miRNA expression profile was gen-

erated by using the quantifier module of the miRDeep2

package that gives the read counts for the known miR-

NAs. Specifically, 479.49 million reads (78.70%) were

mapped to mature human miRNAs. For the pre-

processing of miRNA data, we removed miRNAs with a

missing value in > 10% of the samples. According to the

miRNA sequence database miRBase [20] (Release 22),

there were 2620 mature human miRNAs. Our analysis

resulted in 604 expressed miRNAs in our samples.

Identification of differentially expressed mRNAs, miRNAs,

and lncRNAs

The differentially expressed mRNAs and lncRNAs be-

tween the samples with and without HF were detected

by Ballgown (version 2.16.0) [16] based on the expres-

sion levels obtained from StringTie with threshold of ad-

justed p value less than 0.05. We further required the

DEGs or DElncs to have more than twofold changes.

Similarly, the DEmiRs were obtained by using DEseq2

(version 1.24.0) [21] R package with Benjamini-

Hochberg (BH) [22] adjusted p value less than 0.05 and

more than twofold changes.

We performed functional enrichment analysis of the

DEGs using the online tool WebGestalt (2019 version)

[23]. We used all the genes only detected in our study as

the reference geneset. The pathways and GO terms with

adjusted p value < 0.05 were considered being statisti-

cally enriched. To better interpret the results, we con-

structed a DEG GO term associated network by using

the plugin module ClueGO [24] in Cytoscape [25] with

the default parameters. In this network, a node repre-

sents a gene or a term while an edge indicates that a

gene belongs to a term. To investigate the functions of

the DElncs, we identified their potential targets based on

the FEELnc tool with default parameter since classifying

lncRNAs with mRNAs could help predict the functions

of lncRNAs [17]. For the DEmiRs, we performed micro-

RNA Enrichment Analysis and Annotation (miEAA)

with Over Representation Analysis (ORA) [26] to detect

the significantly enriched categories. The adjusted p

value cutoff was set to 0.05.

Construction of regulatory network for HF

To construct the miRNA-gene regulatory network, the

target genes of miRNAs were collected from both com-

putational prediction and experimental validation. Three

computational methods were employed to predict the

target genes of miRNAs, including PITA [27], miRanda

(August 2010 Release) [28], and TargetScan (Release 7.1)

[29]. We selected the miRNA and target gene pairs sup-

ported by at least two tools to avoid false positives [30].

We further collected experimentally determined miRNA

target genes deposited in miRTarBase (Release 7.0) [31].

In total, a set of 502,768 miRNA-gene interactions in-

volving 2600 miRNA and 16,732 genes were obtained.

To build the miRNA-DEG regulatory network, we con-

sidered only the DEmiRs as they were more likely to be

related to HF. Furthermore, we required the miRNAs to

be negatively correlated with the target genes (all were

DEGs in this analysis) or regulate DEGs through its tar-

get genes. The relationship was measured by the Spear-

man’s correlation coefficient (p value< 0.05) in the HF

samples.

Similarly, we constructed a lncRNA-gene interaction

network by including DElncs and their co-expressed

DEGs (p value< 0.05 for Spearman’s correlation coeffi-

cient). This was built on the assumption that lncRNAs

may regulate their target genes, although they may not

directly bind to the genes [32].

Identification of fibrosis-related genes based on lasso

regression

To identify the genes that were most associated with fi-

brosis, we fitted a lasso regression model for feature se-

lection. We used the gene expression as the exposure

variable and the fibrosis percentage for each sample as

the response variable. By applying to our dataset, it

would pick up a group of genes whose expression profile

could best explain the fibrosis level in HF patients. Here,

the percentage of fibrosis was calculated following the

method in Ref. [13]. Among the 21 HF samples, 18 had

the data for the percentage of fibrosis.

In this study, we applied the Python package scikit-learn

(version 0.20.0) to solve the problem mentioned above.

Immunohistochemical analysis of COL1A1

Immunohistochemical staining of COL1A1 was per-

formed according to the following protocol. Formalin

fixed paraffin-embedded sections of LV were

dewaxed by methanol, subjected to antigen retrieval

(heat mediation in an EDTA buffer, pH = 9.0),

blocked for 30 min, incubated at 4 °C overnight with

anti-collagen I antibody at 1:200 dilution (Abcam,

ab34710), then incubated at room temperature with

a secondary antibody: HRP conjugated rabbit IgG.

The whole slice was scanned by a digital scanner,

and the COL1A1-positive area within the slice was

calculated by Image-Pro Plus Version 6.0 (Media

Cybernetics).
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Validation of COL1A1 expression by quantitative real-time

PCR (qRT-PCR)

Total RNA was extracted according to the Trizol proto-

col while complementary DNA (cDNA) was synthesized

by PrimeScript RT Master Mix kit (Takara, RR036A).

Each cDNA was diluted by 20 folds and then used as a

template for qRT-PCR assay using SYBR Green Master

Mix (Thermo Fisher Scientific, A25742). The qRT-PCR

was performed in a 10 μl reaction volume by Applied

Biosystems®ViiA7 Real-Time Thermo Fishers (Thermo

Fisher Scientific, USA). Three technical replicates were

assayed for each reaction. The procedure for qRT-PCR

was as follows: 30 s at 95 °C for denaturation, followed

by 40 cycles at 95 °C for 10 s, 60 °C for 20 s and 72 °C for

20 s. The relative expression value of the selected genes

was calculated using the 2−ΔΔCT method in the Applied

Biosystems®ViiA7 Real-Time PCR Systems. The primers

of COL1A1 were F: 5′-GATTCCCTGGACCTAAAG

GTGC-3′ and R: 5′-AGCCTCTCCATCTTTGCC

AGCA-3′. The primers for GAPDH were F: 5′-

GGAGCGAGATCCCTCCA-3′ and R: 5′-GGCTGT

TGTCATACTTCTCATGG-3′.

Quantitative enzyme-linked immunosorbent assay (ELISA)

Frozen plasma samples that were stored in a − 80 °C

freezer were quickly thawed at 37 °C, followed by putting

on ice. Human COL1A1 ELISA kit (Abcam, ab210966)

was used to analyze plasma samples. All procedures were

performed according to the manufacturer’s protocol.

Results
Clinical and pathological description of the study cohort

All the enrolled patients in this study were collected

from Fuwai Hospital heart transplantation database, in-

cluding 21 HF patients and 9 healthy donors. The base-

line demographic and clinical characteristic of the

patients and healthy donors are summarized in Table 1.

Patients in our study were diagnosed by clinical and

pathological performance: 18 of them were diagnosed as

dilated cardiomyopathy (DCM) and the remaining 3 as

myocarditis. All patient presenting end-stage HF were

treated with standard medication treatment before HTx.

The mean ± standard deviation (SD) age was 34.6 ± 15.9.

Among them, 61.9% of the patients were men and 90.5%

of the patients were with NYHA class III (n = 7, 33.3%)

or IV (n = 12, 57.1%). Most patients (n = 19, 90.5%) had

reduced LVEF (< 40%), and only 1 patient had HF with a

preserved LVEF (≥ 50%). LVEF was not available for one

patient (4.8%) and the LVEF ± SD was 27.6 ± 9.8%. Few

patients (n = 2, 9.5%) had diabetes mellitus history, five

patients (23.8%) had smoking history, and some patients

(n = 5, 23.8%) companied with pulmonary hypertension.

Since the ventricle had enlarged, some patients were

with different extent of regurgitation of tricuspid or

mitral, or both. Six patients (n = 6, 28.6%) had premature

ventricular contraction and most patients had been

treated with diuretic (n = 18, 85.7%), ACEI/ARB (n = 17,

81.0%), digoxin (n = 16, 76.2%), or β-blocker (n = 15,

71.4%). All healthy donors were males with the mean ±

SD age being 41.7 ± 4.0, which was not significantly dif-

ferent from that of the heart failure patients (41.7 ± 4.0

vs. 34.6 ± 15.9, t test p value = 0.07). The sex was not sig-

nificantly different between heart failure patients and

healthy donors [13(61.9%) vs. 9(100%), Fisher’s exact test

p value = 0.07]. In addition, the LVEF of healthy donors

was required more than 60% before the donation. The

detailed clinical information can be found in Add-

itional file 1: Table S1.

As shown in Fig. 2a, b, the LV dilatation and dysfunc-

tion, evaluated by cardiac magnetic resonance (CMR),

were found to occur frequently. In addition, fibrosis in

different regions of the LV was found in late gadolinium

enhancement (Fig. 2b). Figure 2 c–f show typical patho-

logical characteristics in a HF sample (sample ID: S16).

The end-stage HF patients were characteristic with the

dilated ventricle cavity (Fig. 2c). Typical features of the

heart tissue that underwent HF included different de-

grees of cardiomyocyte hypertrophy and sarcoplasmic

degenerative changes such as the appearance of vacuoli-

zation (Fig. 2d). Massive fibrosis was found around the

interstitial or perivascular regions (Fig. 2e). The ultra-

structure performance also indicated myofilament

changes that were apparent in degenerated cardiomyo-

cytes (Fig. 2f).

The transcriptomic landscape of HF

RNA-seq data process, quality check, and analysis were

described in “Methods”. The detailed sequence statistics,

including number of reads, alignment, and mapping in-

formation for each sample were summarized in Add-

itional file 2: Table S2. In this study, we refer mRNA to

protein-coding gene and lncRNA for long non-coding

gene (Table 2). As shown in Fig. 3a–c, principal compo-

nent analysis (PCA) was first performed for the expres-

sion profiles of mRNAs, lncRNAs, and miRNAs. All

three RNA types could largely distinguish HF patients

from healthy controls. Interestingly, lncRNA expression

profiles had the best performance in distinguishing HF

from healthy controls, reinforcing the importance to fur-

ther investigate their underlying mechanism in HF. In

Fig. 3d–f, volcano plots showed downregulated (blue

nodes) and upregulated (red nodes) genes. We identified

126 mRNAs, 16 lncRNAs, and 42 miRNAs that were dif-

ferentially expressed in HF versus control samples by re-

quiring the absolute log2-transformed fold change (FC)

> 1 and adjusted p value < 0.05 by the BH method. Fur-

thermore, unsupervised hierarchical clustering of the ex-

pression profiles for the differentially expressed mRNAs
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revealed a distinct expression signature of HF compared to

healthy samples as shown in Fig. 3g–i. It is suggested that

HF samples had distinct transcriptomic changes at multiple

molecular levels when compared to control samples.

We further performed the functional enrichment ana-

lysis of the differentially expressed genes (DEGs). Several

well-known diseases related to HF were significantly

enriched, such as cardiovascular disease (BH adjusted p

value = 7.13 × 10− 11) and vascular diseases (BH adjusted

p value = 6.72 × 10− 11) as shown in Fig. 4a (Detailed in-

formation was shown in Additional file 3: Table S3).

Among the significantly enriched Gene Ontology (GO)

Biological Process (BP) pathways, some fibrosis-related

terms stood out, such as extracellular matrix (GO:

0031012) (BH adjusted p value = 1.55 × 10− 15) and regu-

lation of blood pressure (BH adjusted p value = 4.10 ×

10− 7) [33, 34]. To better interpret the results, we con-

structed a DEG GO term network (Fig. 4b). From this

network, it would be interesting to see those genes

associated with multiple terms, especially multiple

categories defined by GO terms in a parent-child relation-

ship. In our network, the gene POSTN was involved in 17

terms (degree = 17) in five categories. POSTN is critical in

cardiac development and remodeling, and the expression

was found to be consistent with the percentage of myocar-

dial fibrosis [35]. Hence, genes with a high degree in this

network might provide promising candidates for further

investigation, such as ACE2, KLF4, JAK2, and NR4A3.

To investigate the function of the differentially

expressed lncRNAs and miRNAs (hereafter, we abbrevi-

ated as DElncs and DEmiRs), we identified their poten-

tial targets. The detail information of the DElncs is

provided in Additional file 4: Table S4. In total, we iden-

tified 15 potential target genes for 15 DElncs through

126 interactions. Among them, some have been already

reported to be involved in cardiac diseases, such as

CORIN and EGLN3 [36, 37]. For the DEmiRs, 21 miR-

NAs have been reported to be associated with the

Fig. 2 Clinic pathological characteristics of heart failure in this study. a cardiac magnetic resonance (CMR) demonstrating short axis T1-weighted
imaging of dilated ventricles and dysfunction. b Short axis LGE imaging of fibrosis in ventricle walls. c Macroscopic performance of the dilated
cardiomyopathy (DCM). d Different degrees and sarcoplasmic degenerative change of cardiomyocytes in hematoxylin eosin (HE) stain. e Fibrosis

feature of a heart failure patient. f An ultrastructural image of DCM

Table 2 Summary statistics of the sequencing data

mRNA and lncRNA Total reads* Concordantly aligned 0
time

Concordantly aligned
once

Concordantly aligned ≥ 2
times

Average alignment rate (%)
(mean ± SD)

1,325,391,991 92,160,909 1,124,273,057 108,958,025 96.74 ± 0.38

miRNA Total reads* Mapped Unmapped Mapping rate (%) (mean ± SD) Unmapping rate (%) (mean ±
SD)

609,591,685 479,490,657 130,101,028 78.70 ± 7.01 21.30 ± 7.01

*Data for 21 HF and 9 control samples
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development of HF according to the Human microRNA

Disease Database (HMDD) [38]. We further used micro-

RNA Enrichment Analysis and Annotation (miEAA)

[26] to detect the significantly enriched categories. As

shown in Additional file 5: Table S5, several enriched

pathways were related to HF [26]. Taken together, these

findings may indicate the potential roles of the DElncs

and DEmiRs in the development of HF.

Regulatory network analysis revealed novel signatures

of HF

With the HF-associated coding mRNA and non-coding

RNA molecules from the above analyses, we next con-

structed miRNA-mRNA and lncRNA-mRNA regulatory

networks in order to identify novel regulators in the devel-

opment of HF. Here, we only focused on the regulation be-

tween differentially expressed mRNAs, lncRNAs, and

miRNAs since they are more likely to play important roles

in HF.

For DEGs and DEmiRs, the regulatory network com-

prised 18 DEmiRs and 63 DEGs through 86 regulatory

interactions (Fig. 5a). Since ECM-associated terms are

associated with fibrosis and highly significantly enriched

in DEGs, we particularly examined the regulator cross-

talk associated with ECM. We found that miR-1-3p,

miR-155-5p, miR-190a-5p, and miR-548ar-3p associated

with fibrotic genes such as COL1A1, COL14A1, and

COLQ. Among them, miR-190a-5p (downregulated in

HF samples) regulated the largest number (n = 16) of up-

regulated DEGs, most of which are involved in ECM,

suggesting miR-190a-5p may be a main regulator in

ECM associated with HF.

In addition to the miRNA regulatory network, the dys-

regulation of lncRNA expression is known to be associ-

ated with various diseases. Therefore, we constructed a

Fig. 3 Differential gene expression analysis. a–c Principal component analysis (PCA) of mRNAs (a), lncRNAs (b), and microRNAs (miRNAs) (c),
respectively. Each dot represents one sample. Blue: heart failure (HF) samples. Red: control samples. d–f Volcano plots showing mRNA (d), lncRNA
(e), and miRNA (f) differential expression. Red and blue dots denote significantly upregulated and downregulated genes, respectively. g–i

Heatmap plots showing differentially expressed mRNAs, lncRNAs, and miRNAs among the samples. X-axis: sample IDs starting with a D denote HF
samples and samples with a C for control samples
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Fig. 4 Functional enrichment and network analysis of differentially expressed mRNA genes (DEGs) in heart failure (HF). a Top 20 most significantly
enriched disease terms. b Pathway network for HF DEGs. A circle node denotes the GO BP term. A diamond node denotes a DEG involved in the

enriched pathway. Node color denotes different categories
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lncRNA-mRNA regulatory network for HF by including

DEGs and DElncs. Figure 5b shows the resultant

lncRNA-mRNA network, which includes 16 lncRNAs (8

upregulated and 8 downregulated) and 92 DEGs,

connected by 185 lncRNA-mRNA interactions. Among

these lncRNAs, LOC101926975, LOC101927179, and

MSTRG.16534 were found to interact with multiple

DEGs, suggesting that they might have important regula-

tory roles in HF. Interestingly, the lncRNA MSTRG.16534

was associated with multiple ECM-related genes in the

network, and most of these ECM genes were also

regulated by miR-190a-5p. These results reinforced the

important roles of ECM in the development of HF, sug-

gesting that miR-190-5p and MSTRG.16534 might have

synergistic regulatory roles in the molecular mechanism

of HF.

As previous studies have reported that lncRNA could

compete with miRNA and regulate miRNA-mediated

target repression, we next constructed a miRNA-

lncRNA-mRNA co-regulatory network. We required

that miRNAs and lncRNAs have significant expression

relationships based on Spearman’s correlation coefficient

Fig. 5 Gene expression regulatory networks in heart failure. a microRNA-mRNA regulatory network. b lncRNA-mRNA regulatory network. c
microRNA-lncRNA-mRNA co-regulatory network. mRNAs, microRNAs, and lncRNAs are denoted by circle, triangle, and pentagon nodes,

respectively. Red, orange, and purple nodes are upregulated expression and other color for downregulated expression. The edges represent
differently weighted regulation. Edge width is proportional to the Spearman correlation coefficient between the linking nodes. Here, an arrow
indicates activation relation while an edge ending with -| indicates repression
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(p value < 0.05). We investigated the co-regulatory net-

work to examine whether such co-regulations have im-

portant roles in HF. As a result, we identified several

feed-forward loops (FFLs) potentially associated with HF

[39]. For example, two genes ABAT and PTGDS, which

were associated with multiple HF-related pathways such

as regulation of blood pressure and positive regulation

of muscle contraction [40], were jointly regulated by

miR-129-5p and LOC101927179 as shown in Fig. 5c.

The miR-129-5p was reported to be upregulated in peri-

toneal dialysis and was suggested to be a potential thera-

peutic target for the amelioration of peritoneal fibrosis

in peritoneal dialysis [41].

Collectively, our regulatory network analysis identified

many potential modules and molecules that might play

important roles in HF development, especially fibrosis.

Among them, ECM genes and their miRNA and lncRNA

regulators are promising markers in HF.

Identifying myocardial fibrosis genes based on lasso

regression

Based on the results mentioned above, ECM and its re-

lated genes were indicated to play important roles in the

development of HF while ECM is a driver of progressive

fibrosis. Here, we attempted to detect fibrosis-related

genes, aiming to provide new insights into the ventricu-

lar function in HF patients. Among the 21 HF patients,

18 had available data for the percentage of fibrosis

(Additional file 6: Table S6, Fig. 6a). This clinical data

was used for the following analysis.

We collected three sets of genes to investigate the rela-

tionship between these genes and fibrosis. These are

genes previously implicated in HF, including DEGs,

GWAS genes, and HF-related genes reported in litera-

tures and available from GeneCards [42]. Figure 6b

shows the distribution of Spearman’s correlation coeffi-

cient for each gene with fibrosis. We also included a set

of random genes with the same size of DEGs. As shown

in Fig. 6b, DEGs had the highest correlation with fibrosis

compared to GWAS genes and the HF-related genes.

Next, we applied the lasso regression to the DEGs to de-

tect fibrosis-related genes.

By fitting a lasso regression model, we found 33 out of

the 126 DEGs to be associated with fibrosis (non-zero

coefficients), denoted as fibrosis-associated genes (Fig. 6c,

Additional file 7: Table S7). Among these 33 candidate

genes, we found several genes that were previously im-

plicated in HF, such as NPPA (already well known for

HF) and FSTL3 (an extracellular regulator in heart [43]).

Another gene is COL1A1 which had upregulated in our

study. The overexpression COL1A1 was reported to be

highly correlated with liver fibrosis [44]. Furthermore,

39.39% (13 out of 33) of the fibrosis-associated genes

were included as informative genes which were defined

as genes involved in pathway enrichment (Fisher’s exact

test, p value = 1.05 × 10− 26). Our functional enrichment

analysis of these 33 fibrosis-associated genes revealed that

they were significantly enriched in extracellular space (p

value = 3.67 × 10− 9), extracellular region (p value = 3.35 ×

10− 7), and extracellular matrix (p value = 6.05 × 10− 6). It is

well known that ECM components are subject to modulate

the proliferation, migration, and activation of cardiac fibro-

sis. These results further supported that ECM might play a

major role in the development of cardiac diseases, especially

the fibrosis in HF.

COL1A1 as a potential fibrotic marker for HF progression

Since HF is largely a consequence of increased myocar-

dial stiffness caused by excessive cardiac fibrosis, the

percentage of the fibrosis can affect the survival of the

patients. Here, we collected the time period of each pa-

tient from initial symptoms to heart transplantation

(HTx) and from HF onset to HTx, respectively (Add-

itional file 6: Table S6). In this study, the event of HTx

was of our interest and we referred the survival time as

the time from initial symptoms to HTx or the time from

HF onset to HTx, respectively.

Based on the Pearson’s correlation coefficient between

gene expression and survival information in HF samples,

we identified four fibrosis-associated genes to be signifi-

cantly associated with survival rate. These genes were

ASPN, COL1A1, COLQ, and IGFBP3. We then applied

the Kaplan-Meier test to estimate the relationship be-

tween survival data and the expression level of these

genes by separating patients into two groups (one group

with expression ≥median and the other with <median).

As shown in Fig. 6d, e, only one gene, COL1A1, showed

a negative correlation with both types of survival status

(p value = 6.1 × 10− 3 for initial symptoms to HTx and p

value = 0.04 for HF onset to HTx). This is consistent

with the observation that the expression of COL1A1 was

positively correlated with fibrosis and the patients with a

high COL1A1 expression needed HTx in a much shorter

period than those with a low COL1A1 expression. These

results further implied that COL1A1 represents a fibrosis

signature and is associated with HF progression. Due to

the relatively small number of samples, this finding war-

rants further validation.

Experimental validation of COL1A1 as a potential

biomarker in HF progression

HTx has been the most efficient treatment for end-stage

HF. However, there is very limited finding regarding the

biomarkers for the survival from HF onset to HTx. Our

results revealed that COL1A1 was potentially associated

with fibrosis and might be a novel biomarker for HF

progression. To further validate results mentioned

above, we performed the immunohistochemistry (IHC)
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staining assay of the left ventricles in the analysis cohort.

Among our 30 samples, only 21 HF samples and 6 nor-

mal samples could be further used for the IHC staining

assay (Fig. 7a). Based on the quantitative analysis of

COL1A1-positive area in the whole slice prepared by

Imge-Pro Plus, we found that the proportion of

COL1A1-positive area in HF was much larger than

normal control (13.61 ± 2.55% vs. 3.76 ± 0.64%, t-test p

value = 1.1 × 10− 3, Fig. 7b). To further validate the ex-

pression of COL1A1 as a marker in HF versus normal

controls, we performed the quantitative real-time PCR

(qRT-PCR) assay of the COL1A1 gene expression in an

independent cohort including 20 HF samples and 9 nor-

mal controls. As shown in Fig. 7c, the relative expression

of COL1A1 showed significantly higher expression in HF

samples than normal controls (4.07 ± 0.48 vs. 1.13 ± 0.22,

t-test p value = 4.1 × 10− 4). Taken together, both IHC

and qRT-PCR validation data supported that COL1A1

was significantly upregulated in HF samples from patho-

logical and gene transcription aspects.

Based on the previous studies, plasma biomarkers can

offer great promise to further dissect the underlying dis-

ease processes, which are important in diagnosis, prog-

nosis, and HF treatment [45, 46]. Thus, we attempted to

investigate whether the COL1A1 content in plasma

would be used as a biomarker for HF progression. We

then examined the plasma COL1A1 content in another

and a larger cohort comprising 139 HF patients, with

Fig. 6 Detecting fibrosis related genes in HF. a Distribution of LV fibrosis percentage in the 18 HF samples. b Violin plot of Spearman’s correlation
coefficients between fibrosis percentage and genes from three sets. c Selected fibrosis-related genes by coefficient based on lasso regression. d
Two groups of HF patients as defined according to the COL1A1 expression showed significantly different survival time (initial symptom to HTx). e

Two groups of HF patients as defined according to the COL1A1 expression showed significantly different time from heart failure to HTx
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each patient having the corresponding progression

data from HF to HTx. Here, the plasma COL1A1

content was evaluated based on ELISA (see

“Methods”). By calculating the Pearson’s correlation

coefficient between plasma COL1A1 content and HF

survival time, we found they were significantly anti-

correlated with each other (Pearson’s correlation coef-

ficient r = − 0.3382, p value < 1.0 × 10− 4).

The patients who progressed to HTx rapidly within 1 year

is more clinically important. To examine the difference, we

separated the 139 HF patients into two groups: those from

HF onset to HTx within 1 year (n = 29) and those from HF

onset to HTx by longer than 1 year (n = 110). Furthermore,

we used this dataset as gold standard. After obtaining the

plasma COL1A1 content, we can define a plasma COL1A1

content threshold for the patients being transplanted within

1 year versus longer than 1 year. In addition, the diagnostic

efficiency of plasma COL1A1 expression level for survival

from HF onset to HTx was also calculated. As shown in

Fig. 7d, the plasma COL1A1 content could distinguish 1-

year HTx group with an AUC (area under the ROC curve)

score of 0.789 (cutoff value = 256.5 ng/ml, p value < 1.0 ×

10− 4), in comparison with 0.656 for 3-year HTx and 0.624

for 5-year HTx. These results further suggested that plasma

COL1A1 content greater than 256.5 ng/ml in plasma was

statistically associated with poor survival within 1 year [haz-

ard ratio (HR) 7.4, 95% confidence interval (CI) 3.5 to 15.8,

Log-rank p value < 1.0 × 10− 4, Fig. 7e]. Taken together, our

data indicated that the plasma COL1A1 content (greater

than 256.5 ng/ml) might be used as a potential biomarker

of HF progression, especially 1 year after onset of HF.

Discussion
HF is a clinical syndrome caused by structural and func-

tional defects in the myocardium resulting in impair-

ment of ventricular filling or the ejection of blood. It has

been defined as a global pandemic, and its prevalence

has been increased recently, with a high rate of the asso-

ciated hospitalization, morbidity, and mortality [1–3]. So

far, a standardized medical treatment has been success-

ful in the early stages of HF. However, pharmacological

management has a limited role in advanced HF cases.

Therefore, further studies are needed to develop novel

therapeutic agents, such as regenerative and gene therapy.

This requires a deep understanding of the molecular

mechanisms underlying HF development and progression.

Since it is very difficult to obtain clinical patient sam-

ples with advanced HF for molecular mechanistic stud-

ies, most investigations on HF have applied animal

disease models to explore the molecular mechanism of

HF. In our study, we collected heart tissues from 21 HF

patients and 9 healthy donors instead of using blood

samples. We further performed a systematic investiga-

tion of the gene expression changes at multi-

transcriptional levels and regulatory networks including

mRNAs, lncRNAs, and miRNAs for HF patients. Ac-

cording to PCA analysis, HF and control samples were

better distinguished by lncRNA expression than mRNA

Fig. 7 Validation of COL1A1 gene expression by IHC and qRT-PCR and a predictor for 1-year survival from HF onset. a The demonstrations of IHC
results of normal controls and HF patients, the upper is from a region of LV from a normal control and the under is from a HF patient. b IHC

staining of COL1A1 shows proportion of COL1A1-positive area of whole slice in HF is higher than normal control. c qRT-PCR results of COL1A1
gene expression in left ventricles of normal and HF hearts. d Plasma COL1A1 levels could distinguish the 1-year HTx from non-HTx when using
cutoff value 256.5 ng/ml (AUC = 0.789, p value < 1.0 × 10− 4). e COL1A1 level ≥ 256.5 ng/ml was statistically associated with poor survival
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and miRNA expression. Although it is preliminary, this

observation might motivate us to find potential lncRNA

biomarkers for diagnose and prognosis of HF in future.

So far, the knowledge of lncRNA in HF has been very

limited. Besides, we did not collect more clinical infor-

mation except sex and age of the healthy donors for the

DE analysis in the present work. If we could collect

more detailed information of healthy donors such as

smoking and drinking, we could correct for performing

DE analysis.

With the advent of anti-fibrotic pharmacologic therap-

ies, fibrosis has become an important therapeutic target

in HF. Thus, understanding the mechanisms contribut-

ing to fibrosis will help us identify therapeutic targets. In

this study, we identified several genes associated with fi-

brosis, some of which have been reported in literature,

such as ELN and POSTN [47, 48]. In addition, we identi-

fied several novel fibrosis associated genes for further

validation, such as NR4A3, PTGDS, TNC, miR-190a, and

miR-708-5p. For example, a previous study reported that

PTGDS could mediate biosynthesis of PGD2 to promote

cardiomyocyte survival [49]. This might imply that

PTGDS gene identified in our study could serve as a po-

tential therapeutic target for HF treatment. Furthermore,

our network analysis revealed that microRNA: mir-129-

5p and lncRNA: LOC101927179 might regulate the ex-

pression of PTGDS in the same network, which was as-

sociated with fibrosis (Fig. 6c) and the survival rate

(Additional file 7: Table S7). Our results also consist-

ently indicated that ECM was enriched among DEGs

and fibrosis-related genes, suggesting that ECM is one

major mechanism contributing to fibrosis.

The persistence of myocardial fibrosis will lead to the

development of adverse changes in ventricular structure,

eventually leading to the progression to HF. Although

transcriptomic approaches have been applied to identify

genes involved in the fibrotic process in previous studies,

the specific fibrosis-related genes in HF development

and further contributed to the HF progression is still not

well known. With the survival rate and gene expression

data in this study, we identified a fibrosis-associated

gene, COL1A1, that was significantly associated with HF

progression. By performing IHC and qRT-PCR experi-

ments, the expression of COL1A1 was validated to be

highly upregulated in the HF samples. We were able to

further investigate COL1A1 content in plasma by using

another 139 HF samples. And we found that higher ex-

pression level of COL1A1 in plasma was associated with

poor survival from HF to HTx (Fig. 7e). To our know-

ledge, this is the first report to specify fibrotic gene asso-

ciated with HF progression. It is known that HF is

heterogeneous with different time from HF onset to

HTx ranging from 30 days to more than 5 years [50].

The plasma biomarkers might provide great promise to

further dissect the underlying disease processes. Our re-

sults indicated that the plasma COL1A1 content could

be a potential biomarker to distinguish the malignant

process of HF within 1-year after HF diagnosis with

higher diagnostic efficiency than longer survival condi-

tion (Additional file 8: Table S8). It will be helpful to as-

sess the HF patient regarding longer survival, as well as

to alleviate the overload of HF. It is important to further

study the mechanistic role of COL1A1 in fibrosis. There

are some reports of the association between COL1A1

and fibrosis in HF based on the mouse model or in other

diseases such as liver cancer [51–53]. In the present

work, we validated this relationship at the transcriptomic

level in the human heart tissue. Instead of further inves-

tigating how COL1A1 leads to fibrosis, we focused on

the potential role of COL1A1 in HF progression. Such

finding is much needed for clinical studies in heart

transplantation.

Readers should take caution of the results in our study

because the sample size is still relatively small. We used

30 patients (21 HF and 9 healthy donors, all heart tissue

samples) for discovery by a multi-omics approach. Our

top gene (COL1A1) identified in the 30 discovery cohort

samples was further validated by immunohistochemistry

staining in the same cohort and qRT-PCR using another

independent cohort (20 HF and 9 healthy donors), and an

additional 139 cohort patients for evaluation of plasma

COL1A1 content. This size of the heart failure cohort for

potential biomarker discovery is smaller than some of the

previous studies of HF [54, 55]. It is due to the fact that all

the HF patients, including the 139 HF cohort, received

heart transplantation, which is different from the previous

studies [55]. Considering this limitation, our findings need

further validation by recruiting more HF patients with re-

lated clinical data and additional functional work to illus-

trate specific roles of plasma COL1A1 level on HF

progression in the future. Furthermore, most HF patients

included in the study for multi-transcriptomic analysis

were young (mean age 34.6), and much younger than the

general patient population. Our preliminary analysis did

not find any significant difference by checking family his-

tory and etiology of these HF patients. Since most HF pa-

tients are older than our samples, the results in this study

might include some unique features of this specific popu-

lation and further investigation is warranted in future.

Moreover, we found that there were two HFpEF samples

in our study cohort. In future, when there is larger cohort

and more comprehensive data available, we will extend

the study of mechanism of early-onset and late-onset HF

as well as the different subtypes of HF.

Conclusions
We performed a systematic investigation of the gene

expression at multi-transcriptional levels and then
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explored a co-regulatory network using differentially

expressed mRNAs, miRNAs, and lncRNAs. Our network

analysis not only provided a high-level view of the func-

tional changes but also pinpointed several critical regula-

tors. By examining the relationship between fibrosis

percentage and gene expression, we identified several

genes and their regulatory networks that might be re-

lated to fibrosis. Furthermore, the fibrosis associated

gene COL1A1 was found to be associated progression of

HF. COL1A1 content in plasma could be used as a po-

tential biomarker for HF progression, especially for pre-

dicting the 1-year survival from HF onset to HTx.
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