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Introduction

• The goal in designing a coded modulation

system is to achieve a good trade-off

between coding gain, decoding complexity,

and decoding delay.

Multi:level coding is a powerful technique

for constructing bandwidth efficient coded

modulation codes. Good multi-level coding

schemes can be designed by using previously

known codes as component codes.

• Multi-stage decoding provides a simple

decoder implementation for multi-level

codes with a small loss in coding gain.

For coded QAM, the total power gain over

uncoded QAM is composed of two parts:

the coding gain (7(C)) and the shaping gain
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• At a bit error rate of 10 -5 _ 10 -6, the

maximum coding gain is about 7.5 dB, and

the maximum shaping gain is about 1.5 dB.

• Because these gains can be achieved

independently, for coded QAM we focus on

coding gain only and choose the signal set to

be Z g (N dimensional integer lattice).

• For coded MPSK, we also focus only on

coding gain, since no shaping gain is possible.

• The phase invariant property (or phase

symmetry) is useful in resolving carrier-phase

ambiguity and ensuring rapid carrier-phase

resynchronization after a temporary loss of

synchronization. It is desirable for a coded

modulation system to have as much phase
!

symmetry as possible.

We present necessary and sufficient conditions

for a QAM code to be 90 ° rotationally

invariant, and some 90 ° rotationally invariant

multi-level codes are constructed.
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Multi-level Trellis Coding Based on Set

Partitioning

• Figure 1 shows a multi-level trellis coding

- scheme based on set partitioning. A0 is a

signal set_ Ai is a subset of Ai-l_ and Am is

- the all-zero vector. C1, C2,..., Cm represent

the different component codes_ and the

overall multi-level code is denoted by C.
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Fig. 1 Multi-level trellis coding based on set partitioning



Related previous work

• Leech (1964) and Leech and Sloane (1971)

used a multi-level structure to construct

lattices.

• Multi-level codes using "proper indexing"_

which is the same as Ungerboeck_s "set

partitioning", of two dimensional signal sets

was proposed by Imai and Hirakawa (1977).

They also presented a multi-stage decoding

method using a posteriori probabilities

based on channel statistics.

• Ginzburg (1984) designed multi-level

multi-phase codes for a continuous channel

by using set partitioning and algebraic block

codes.

• Sayegh (1986) showed how Imai and

Hirakawa's method can be combined with

set partitioning to create multi-level block

coded modulation systems.

• Pottie and Taylor (1989) proposed a

hierarchy of codes to match the partitioning

of signal sets by generalizing Imai and

Hirakawa_s and Ginzburg's coding schemes.
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• Calderbank (1989) investigated the path

multiplicity for a variety of multi-level codes.

• Tanner (1990?)studied linking subspaces of

vector spaces to guarantee a large minimum

separation between signals in the resulting

signal set so that good multi-level codes can

be designed.

Basic multi-level trellis codes

• This construction is based on two-way

partition chains_ where all component codes

are binary codes (block or convolutional).

• Let Ai be the minimum squared Euclidean

distance (MSED) of Ai for i - 0, 1,..., m.

• Let di be the minimum Hamming distance

of binary code Ci for i - 1, 2,..., m.

• Then the _ of the multi-level code is

(Leech _ Sloane, Ginzburg, Sayegh, etc.)

D(C)- min{diAi_l, 1 < i < m}



• The normalized redundancy p(C) is defined

as (Forney) the number of redundant bits

per two dimensional signal (symbol).

w

• The spectral efficiency _(C) is defined as

(Ungerboeck) the number of information

bits per two dimensional signal (symbol).

• Basic multi-level codes with normalized

redunduncy p(C) = 1 bit/symbol were

presented by Yamaguchi and Imai (1987).

Basic multi-level codes with smaller

normalized redundancies can be constructed

by using two-way partition chains with

multi-dimensional signal sets and binary

convolutional or block codes. Some four and

eight dimensional basic multi-level codes

were constructed by Wu and Zhu (19907).

We present some new basic multi-level codes

based on set partitioning of one and two

dimensional signal sets. Some of these new

codes have non-integer normalized

redundancies p(C).

w
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• Example 1. A three-level trellis code using

an 8-PSK signal set with mapping by set

partitioning is shown in Figure 2.
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• Let C1 be a 16-state rate-l/4 convolutional

code with minimum free Hamming distance

16,

C2 an 8-state rate-3/4 convolutional code

with free distance 4,

C3- P_, the (n, n-1) single parity check code.

• The spectral efficiency of this multi-level

code is

_7(C) - 1 + (n- 1)In bits/symbol

• The minimum free squared Euclidean

distance is

D(C) -- rain{0.586 x 16, 2 x 4, 4 x 2}

--8

• The nominal coding gain (Ungerboeck)

uncoded QPSK is

D(C) )7(C) - 101og10 D(QPSK) - 6.02dB.

over

• The 256-state, rate-2/3, _(C)- 2 bits/symbol

Ungerboeck code has D(C)- 7.515 and

7(C) - 5.75 dB.
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Multi-Stage Decoding of Example 1

• A three-level multi-stage decoder for Example

1 is shown in Figure 3.

r
i

B2
I _I D3

v

Fig.3 Multi-stage decoding for Example I
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• The normalized complexity ND of

multi-stage decoding is the number of

required binary operations (additions and

comparisons) per 2 dimensional symbol.

• For a 2_-state_ k input bit_ n output bit

convolutional (trellis) code, the

Add-Compare-Select (ACS) operation of the

Viterbi algorithm requires 2k additions and a

comparison of 2k numbers_ or 2k- i binary

comparisons_ for each of the 2_ states_ so its

complexity is 2k+'+l - 2 _. (This number

should be normalized to the complexity per

2 dimensional symbol.)
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First-sta_e of Decoding

• For each state transition period_ the symbol

metrics of both QPSK subsets (see Figure 4)

must be computed.

Complexity- 2 binary operations/symbol
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• Then the branch metrics within each state

transition period must be computed by

adding the four symbol metrics on each

branch.

Complexity -- 6 binary operations/symbol

• The ACS operation of the Viterbi algorithm

is then used to determine the surviving path

at each state.

Complexity- 12 binary operations/symbol
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Second-stage of Decoding

• The decoded information from the first stage

is passed on to the second-stage.

• For each state transition period, the symbol

metrics of both BPSK subsets (see Figure 5)

must be computed.

Complexity ---- 2 binary operations/symbol
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• Then the branch metrics within each state

transition period must be computed by

adding the four symbol metrics on each

branch.

Complexity -- 6 binary operations/symbol

The ACS operation of the Viterbi algorithm

is then used to determine the surviving path

at each state.

Complexity- 30 binary operations/symbol

• If the parallel transitions in the trellis are

resolved by table-look-up_ the complexity

reduces to 14 binary operations/symbol.
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Third-stage of Decoding (assume n = 32)

The decoded information from the first and

second stages is made available to the third

stage.

• For each state transition period, the metrics

of both the 0 and 1 symbols must be

computed.

Complexity- 2 binary operations/symbol

• In this case, the branch metrics are the

symbol metrics computed above (one symbol

per trellis branch).

• After 8 branches (32 symbols) in the first

and second trellis are decoded_ the Viterbi

algorithm is used to make a decoding

decision for the block code C3- P32-

Complexity -- 6 binary operations/symbol

• The total decoding complexity is ND- 66

binary operations per 2 dimensional symbol,

or ND = 50 not counting the parallel

transitions.
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• If we take C3 to be Pn, where n --+ c_ (i.e., a

2-state, non-redundant, catastrophic trellis

code), the multi-level code has 1 + 3 + 4 --

8 input bits and 4 -F 4 + 4 -- 12 output bits

for every four 8-PSK transmitted symbols.

Overall, this can be viewed as a 16 x 8 x 2

-- 256-state 8-dimensional trellis code.

• Without considering the computation of the

symbol and branch metrics_ the ACS

complexity of maximum likelihood decoding

of the overall trellis code is

(28+8+1 -- 28)/4 = 215 - 2 6 > 3 x 10 4

binary operations/2 dimensional symbol.

• Note that the complexity of the multi-stage

decoder in this example is only about 0.2%

of the complexity of the overall maximum

likelihood decoder.

• However, the performance of the multi-stage

decoder is close to that of the maximum

likelihood decoder.

• For the 256-state Ungerboeck code, the ACS

complexity alone is 1792 binary

operations/symbol.
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• Example 2. The one dimensional partition

chain Z/2Z/4Z/... has MSED 1/4/16/... (see

Figure 6).

...00 ...01 ...10 ...11 ...00 ...01 ...10 ...11

(MSED=I)

...00 ...I0 ...00 ...I0

(MSED=4)

...01 ...II ...01 ...11
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O-----O-----O .-

...10

O----O---O----_

...01

-----O
W

...10

(MSED=16)

Fig.6 Set partitioning of Z

...01

-0_0---0 _.

...11
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Fig.7 Multi-level code of Example 2.

Let C1 be a 16-state rate-l/4 convolutional

code with minimum free Hamming distance 16_

C2 be an 8-state rate-3/4 convolutional code

with free distance 4_

and C3, C4,... be rate-1 codes (no coding).

• Since there are two levels of coding, this is

a two-level code (see Figure 7).

-* The normalized redundancy p(C) is 2 bits

per symbol.

• The MSED is

D(C) --min{1 × 16, 4 x 4, 16}---16

2O



• The nominal coding gain (Forney) is

v(C) - 10 log10
D(C)

2p(C)
= 6.02(dB)

• This code has the same nominal coding gain

and normalized redundancy as the

24-dimensional Leech lattice A24 but much

less decoding complexity.

Due to a large path multiplicity, the effective

coding gain of this two-level code is less than

the nominal coding gain. To reduce the path

multiplicity, we can choose longer

convolutional codes (with larger constraint

lengths and free distances).

For example, if C1 is a 32-state rate-l/4

convolutional code with free distance 18 and

C2 is a 32-state rate-3/4 convolutional code

with free distance 5, the path multiplicity is

reduced and the effective coding gain is

closer to 6.02 dB.
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=,-sing multi-stage decoding, an additional

_ss of coding gain occurs, but the decoding

5mplexity is less than a 64-state

ngerboeck code and much less than the

.eech lattice A24.

_le 1. Comparison of multi-level trellis codes

_1 other codes (spectral efficiency _](C)- 4

r/symbol) using 8-PAM modulation

)des _S Ri 7(C)

o-level 16&=8 1/4 3/4 5.81

_ ,-level 32 &= 8 1/4 &= 3/4 5.81

;b-level 32 &: 32 1/4 &: 3/4 5.81 350
i i ....

256 5.81 ._ 1264

_gerb0eck 32 2/3 4.77 232

_gerb0eck 64 2/3 5.44 456

ND D

116 14

130 16

2O

5

6

_le decoding delay of a multi-level trellis code

_ proportional to

D _I

/rare Ni is the dimensionality of the signals

_osets) associated with a branch transition of

[_e ith component code and Ki is the

nstraint length of the ith component code.
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Multi-level trellis codes based on a set

partition chain with strictly increasing distances

Multi-level trellis codes using

multi-dimensional signal sets can achieve

higher spectral efficiencies (lower normalized

redundancies) than multi-level codes based on

two dimensional signal sets.

• For two-way partitioning of multi-dimensional

signal sets, the MSED at successive partition

levels may be equal. For example, the

partition chain Z4/D4/RZ4/RD4/2Z4/2D4/... of

the four dimensional integer lattice Z 4 has

., where R represents
distances 1/2/2/4/4/8/R_ = 2, and D4 is thethe rotation opera_lon,

densest known four dimensional lattice.

• Reducing the number of component codes

reduce the decoding delay and the path

multiplicity.

can

I
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Some partition levels can be joined to form a

new multi-way partition chain with strictly

increasing distances. For example_ the

partition chain Z4/D4/RD4/2D4/... has

distances 1/2/4/8/.... Since [Z4/D4[ = 2 and

IRiD4/Ri+ID4[ = 4 for i = 0, 1, 2,..., the first

component code can be a binary code, and

other component codes can be binary input,

4-ary output codes or codes over G_F(4).

• The lower bound on the MSED of these

multi-level codes is given by

D(C) > rain{diAl_l, 1 <_ i <_ m}

where di is now the minimum free Hamming

distance of code Ci (binary or 4-ary).

24



Example 3. This code is based on the partition

chain Z4/D4/RD4/... and includes two component

codes (see Figure 8):

C1 is an 8 state rate-3/4 convolutional code with

free distance 4 and C2 is an (N, N-l) block code

over GF(4) with minimum distance 2 (4 states).

1 1
• The normalized redundancy is p(C) - -_+ -_,

MSED is 4, and the nominal coding gain is

_(C) - 5.64
3.01

N
(dB) -5.48 dB (N- 19)

the

• The decoding complexity is ND -- 37, and the

decoding delay is D- 24 (excluding the

decoding delay of the block code).

Information
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Fig.8 Multi-level code of Example 3.

• The 64-state, rate-4/5 Ungerboeck code for Z 4

has 7(C) - 5.48 dB, ND _ 496, and D - 12.
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Combined Ungerboeck-type and multi-level

trellis codes

• For the above two classes of multi-level codes,

each output symbol of a component encoder

corresponds to a single coset of a subset of a

signal constellation (two dimensional or

multi-dimensional). For Ungerboeck-type

codes_ all the encoder output symbols

associated with a single trellis branch

correspond to a single coset of a subset of a

signal constellation. Ungerboeck-type codes

can be used as component codes at some levels

in conjunction with a multi-way partition

chain.

• Instead of using several high rate codes at

higher levels of partitioning_ we use an

Ungerboeck-type code to reduce the decoding

delay and path multiplicity.

• The usual lower bound on the MSED cannot

be applied to this construction. A more

general lower bound on the MSED of these

multi-level codes (Kasami _ Lin) is given by

D(C) >_ min{D(C{), i _< i < m}

where D(Ci) is the MSED of code Ci.
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Example 4. The encoding structure is shown

in Figure 9.

• Let C1 be a 16-state rate-l/4 convolutional

code with minimum free Hamming distance

C2 a 16-state rate-7/8 trellis code with MSED

8 (Pietrobon, Deng, et.al., 1990).
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I
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Fig.9 Multi-level code of example 4.

• The 64-state, rate-4/5, T/(C) = 2, 4 x 8-PSK

code constructed by Pietrobon, Deng, et.al.

(1990) has

D(C) - 7.029, _(C) - 5.46 dB

D-12.

, ND ,,_ 496, and
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• Encoding procedure:

The information sequence is divided into

blocks of 8 bits each:

the first bit in each block enters encoder C1,

and the 4 output bits specify 4 consecutive

cosets of 4x (8-PSK/QPSK),

the other 7 bits of the block enter encoder C2

and the 8 output bits specify a 4x QPSK

signal.

• The spectral efficiency of this multi-level code is

_(C) = 8/4 = 2 bits/symbol

• The MSED is

D(C) = min{16 x 0.586, 8} = 8

where D(C1) = 16 x 0.586.

• The nominal coding gain over uncoded QPSK

is 7(C)= 6.02 dB.

• The decoding complexity for multi-stage

decoding is ND _ 100 binary operations per

symbol.

• The decoding delay is only D- 16_

less than a multi-level code with

which is

more stages.
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Generalized multi-level trellis codes

The previous examples were all based on

Ungerboeck's set partitioning. A modified set

partitioning method can be used to construct

generalized multi-level trellis codes.

• Example 5. The four dimensional 8-state code

C(Z4/RD4) constructed by Wei (1987) has

MSED 4. Mapping the same binary code to

RZ 4,,n_._._ rather than Z4/RD4, we obtain a

trellis code, denoted by C2(RZ4/294), with

h/ISED 8. Using an 8-state rate-l/3

convolutional code as the first component code

61(22/R_ 2) and C2(RZ4/294) as the second

component code gives the two-level trellis code

shown in Figure 10.
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Fig. 10 Multi-level code of Example 5.
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• Encoding procedure:

The information sequence is divided into

blocks of a specified number of bits according

to the desired spectral efficiency:

the first 2 bits in each block enter encoder C1,

and the 6 output bits specify 6 consecutive

cosets of Z2/RZ 2, i.e., 3 consecutive cosets of

Z4/RZ 4,

the next 6 bits of the block enter encoder C2,

and the 9 output bits specify 3 consecutive

cosets of RZ4/2D4.

Together with uncoded bits, each coded block

determines 3 consecutive four dimensional

signals, i.e._ 6 two dimensional signals.

• Note that the first coding level partitions a six

dimensional signal set whereas the second

coding level partitions a four dimensional

signal set.

• The nominal coding gain is 7(C) - 5.52 dB,

which is 1.00 dB greater than Wei's code.

• The decoding delay of this two-level code is

D- 15, whereas the delay of Wei's code is

D=6.

• The decoding complexity of this two-level code

is ND- 56_ whereas the complexity of Wei_s

code is ND- 44.
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Example 6. Consider the generalized multi-level

trellis code shown in Figure 11.

The first component code_ associated with the

partition Z/2Z, is a 32 state rate-l/2 convolu-

tional code with free distance 8.

The second component code_ associated with

the partition 2ZS/2Ds, is a single parity check

block code of length N.

Information
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Fig. 1 1 Multi-level code of Example 6.
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• Encoding procedure (spectral efficiency -- m

bits/symbol):

• The information sequence is divided into

blocks of 4Nm bits each, with three

subsequences of length 4N, N- 1, and

4Nm-4N- (N- 1) corresponding to C1, C2, and

uncoded bits, respectively.

• Each output bit of encoder C1 specifies a coset

of partition Z/2Z, i.e., 8N output bits specify

N cosets of ZS/2Z s.

• Each output bit of encoder C2 specifies a coset

of 2ZS/2Ds, i.e., N output bits specify N cosets

of 2ZS/2Ds.

Together with the 4Nm- 4N- (N- 1) uncoded

bits, each coded block of N eight dimensional

signals, i.e., 4N two dimensional signals

contains 4Nm bits of information and the

spectral efficiency in m bits/symbol.
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The normalized redundancy is p(C) - 1 +-_N

and the MSED is 8. Therefore the nominal

coding gain is

3'(C) - 6.02
3.01

4N (dB).

• The decoding complexity is ND- 140 and the

decoding delay (excluding the block code) is

D-5.

• The 128-state, rate-4/5 Ungerboeck code for

Z 8 has 7(C)- 5.27 dB, number of nearest

neighbors Nfree - 112, No _ 992_ and D - 28.
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• In general, let Ao be a signal set and A(o1) be a

h th A A - A_ 1) A_I!set suc at o x... x o, x..-x ,

J0 ko

for some integers jo, ko >_ 1.

• If there are 2m sets AW"_ and A_i)' for_xi-1

i- 1, 2,..., m, where A(_m) is the empty set,

satisfying the following conditions:

A(i--1) A(i--1) !2 A(i)(1) "xi-I x... x .Ll.i_ 1 --A 1 x... x

3i ki

for i- 2, 3,..., m, and for some ji, ki >__1;

(2) A(i) D A! i) for i -- 1 2, . m;_i-I -- _ _ • •

then we can construct a multi-level code

having the form shown in Figure 12:

C = C1 (A_I)/A[ 1))
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Fig. 12 The generalized multi-level coding scheme

• The MSED of this multi-level code is lower

bounded by

D(C) > min{D[Ci(A!i)_t/A!i))] , I < i < m}

where D[Ci( A(i)--,-1/A!i))]is MSED of the ith

component code.
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Level spanning multi-level trellis codes

• Level spanning provides an approach to

constructing rotationally invariant multi-level

trellis codes.

• However_ the lower bound on MSED

generalized multi-level codes may not

this class of codes.

of

hold for

Example 7. Consider the multi-level coding scheme

shown in Figure 13.

w
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uncoded bits

r

I_/RZ -

-way)

4
RZ IRD4

(2-way)

4

RD4/2Z

(2-way)

4

2Z /2D4

(2-way)

2D4

v

r

y

C
01-..,

o

_b

o

t-

r_
t-,

L

Fig. 13 Four dimensional multi-level trellis code

with level spanning of Example 7
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C1 is a 16-state rate-2/3 Ungerboeck code,

which has MSED 6 when used with the

partition Z2/RZ2/2Z 2.

• C2 is an 8-state rate-7/8 binary convolutional

code with free distance 3.

C3 is a 2-state (8, 7) block code with minimum

distance 2.

• Encoding procedure (spectral efficiency = m

bits/symbol):

• The information sequence is divided into

blocks of 16m bits each, with four

subsequences of length 16_ 7_ 7', and 16m- 30

corresponding to C1, C2, C3, and uncoded bits,

respectively.

• Each state transition period of encoder CI

outputs three bits which specify cosets of the

partitions Z4/D4, D4/.RZ 4, and RD4/2Z 4,

respectively_ i.e., 24 output bits specify 8

cosets of each partition.
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Each output bit of encoder C2 specifies a coset

of _RZ4/RD4, i.e., 8 output bits specify 8 cosets

of RZ4/RD4 .

• Each output bit of encoder C3 specifies a coset

of 2Z4/2D4, i.e., 8 output bits specify 8 cosets

of 2Z4/2D4 .

Together with 16m- 30 uncoded bits, each

coded block of 8 four dimensional signals, i.e.,

16 two dimensional signals, contains 16m bits

of information and the spectral efficiency is m

bits/symbol.

Since the MSED's ,of Z 4, D4, and RD4 are the

same as Z 2, RZ 2, and 2Z 2, respectively, the

MSED of C1 is the same as the corresponding

Ungerboeck code, i.e., D(CI)= 6. Therefore,

assuming the lower bound on MSED holds in

this case, D(C) = min{6, 3 x 2, 2 x 4, 8} = 6.

The normalized redundancy is p(C)--5/8, the

nominal coding gain is _/(C)- 5.90 dB, the

decoding complexity of multi-stage decoding is

No- 108, and the decoding delay is D -- 56.

However, due to the uncertainty regarding the

bound, the actual values of D(C) and 7(C) may

be less than stated above.
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• It can be shown that the two bits

corresponding to the partition levels D4/RZ 4

and RD4/2Z 4 are the only ones affected by a 90 °

phase rotation. So this code can be combined

with a differential encoder to achieve 90 °

rotational invariance as shown in Figure 14.
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Fig. 14 Diagram of four dimensional 90 rotationally

invariant encoder with a differential encoder
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Conclusions

• Several constructions for multi-level trellis

codes are presented and many codes with

better performance than previously known

codes are found. These codes provide a

flexible trade-off between coding gain_

decoding complexity_ and decoding delay.

• New multi-level trellis coded modulation

schemes using generalized set partitioning

methods are developed for QAM and PSK

signal sets.

• New rotationally invariant multi-level trellis

codes which can be combined with differential

encoding to resolve phase ambiguity are

presented.
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Appendix B

New Multi-Level Codes over GF(q)


