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Abstract

The tradeoff between receptive field size and efficiency is

a crucial issue in low level vision. Plain convolutional net-

works (CNNs) generally enlarge the receptive field at the

expense of computational cost. Recently, dilated filtering

has been adopted to address this issue. But it suffers from

gridding effect, and the resulting receptive field is only a s-

parse sampling of input image with checkerboard patterns.

In this paper, we present a novel multi-level wavelet CN-

N (MWCNN) model for better tradeoff between receptive

field size and computational efficiency. With the modified

U-Net architecture, wavelet transform is introduced to re-

duce the size of feature maps in the contracting subnetwork.

Furthermore, another convolutional layer is further used to

decrease the channels of feature maps. In the expanding

subnetwork, inverse wavelet transform is then deployed to

reconstruct the high resolution feature maps. Our MWCNN

can also be explained as the generalization of dilated fil-

tering and subsampling, and can be applied to many image

restoration tasks. The experimental results clearly show the

effectiveness of MWCNN for image denoising, single image

super-resolution, and JPEG image artifacts removal.

1. Introduction

Image restoration, which aims to recover the latent clean

image x from its degraded observation y, is a fundamental

and long-standing problem in low level vision. For decades,

varieties of methods have been proposed for image restora-

tion from both prior modeling and discriminative learning

perspectives [6, 27, 10, 11, 17, 44, 52]. Recently, convolu-

tional neural networks (CNNs) have also been extensively

studied and achieved state-of-the-art performance in several

representative image restoration tasks, such as single image

super-resolution (SISR) [16, 29, 32], image denoising [57],

image deblurring [58], and compressed imaging [34]. The
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Figure 1. The run time vs. PSNR value of representative CNN

models, including SRCNN [16], FSRCNN [14], ESPCN [45], VD-

SR [29], DnCNN [57], RED30 [37], LapSRN [31], DRRN [47],

MemNet [47] and our MWCNN. The receptive field of each model

are also provided. The PSNR and time are evaluated on Set5 with

the scale factor ×4 running on a GTX1080 GPU.

popularity of CNN in image restoration can be explained

from two aspects. On the one hand, existing CNN-based

solutions have outperformed the other methods with a large

margin for several simple tasks such as image denoising and

SISR [16, 29, 32, 57]. On the other hand, recent studies

have revealed that one can plug CNN-based denoisers into

model-based optimization methods for solving more com-

plex image restoration tasks [40, 58], which also promotes

the widespread use of CNNs.

For image restoration, CNN actually represents a map-

ping from degraded observation to latent clean image. Due

to the input and output images usually should be of the same

size, one representative strategy is to use the fully convolu-

tional network (FCN) by removing the pooling layers. In

general, larger receptive field is helpful to restoration per-

formance by taking more spatial context into account. How-

ever, for FCN without pooling, the receptive field size can

be enlarged by either increasing the network depth or us-

ing filters with larger size, which unexceptionally results

in higher computational cost. In [58], dilated filtering [55]
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is adopted to enlarge receptive field without the sacrifice

of computational cost. Dilated filtering, however, inher-

ently suffers from gridding effect [50], where the receptive

field only considers a sparse sampling of input image with

checkerboard patterns. Thus, one should be careful to en-

large receptive field while avoiding the increase of compu-

tational burden and the potential sacrifice of performance

improvement. Taking SISR as an example, Figure 1 illus-

trates the receptive field, run times, and PSNR values of

several representative CNN models. It can be seen that FS-

RCNN [14] has relatively larger receptive field but achieves

lower PSNR value than VDSR [29] and DnCNN [57].

In this paper, we present a multi-level wavelet CNN

(MWCNN) model to enlarge receptive field for better trade-

off between performance and efficiency. Our MWCNN is

based on the U-Net [41] architecture consisting of a con-

tracting subnetwork and an expanding subnetwork. In the

contracting subnetwork, discrete wavelet transform (DWT)

is introduced to replace each pooling operation. Since DWT

is invertible, it is guaranteed that all the information can

be kept by such downsampling scheme. Moreover, DWT

can capture both frequency and location information of fea-

ture maps [12, 13], which may be helpful in preserving de-

tailed texture. In the expanding subnetwork, inverse wavelet

transform (IWT) is utilized for upsampling low resolution

feature maps to high resolution ones. To enrich feature

representation and reduce computational burden, element-

wise summation is adopted for combining the feature maps

from the contracting and expanding subnetworks. More-

over, dilated filtering can also be explained as a special case

of MWCNN, and ours is more general and effective in en-

larging receptive field. Experiments on image denoising,

SISR, and JPEG image artifacts removal validate the effec-

tiveness and efficiency of our MWCNN. As shown in Fig-

ure 1, MWCNN is moderately slower than LapSRN [31],

DnCNN [57] and VDSR [29] in terms of run time, but can

have a much larger receptive field and higher PSNR value.

To sum up, the contributions of this work include:

• A novel MWCNN model to enlarge receptive field

with better tradeoff between efficiency and restoration

performance.

• Promising detail preserving ability due to the good

time-frequency localization of DWT.

• State-of-the-art performance on image denoising, SIS-

R, and JPEG image deblocking.

2. Related work

In this section, we present a brief review on the devel-

opment of CNNs for image denoising, SISR, JPEG image

artifacts removal, and other image restoration tasks. Specif-

ically, more discussions are given to the relevant works on

enlarging receptive field and incorporating DWT in CNNs.

2.1. Image denoising

Since 2009, CNNs have been applied for image denois-

ing [25]. These early methods generally cannot achieve

state-of-the-art denoising performance [2, 25, 53]. Recent-

ly, multi-layer perception (MLP) has been adopted to learn

the mapping from noise patch to clean pixel, and achieve

comparable performance with BM3D [8]. By incorporat-

ing residual learning with batch normalization [24], the D-

nCNN model by Zhang et al. [57] can outperform tradi-

tional non-CNN based methods. Mao et al. [37] suggest to

add symmetric skip connections to FCN for improving de-

noising performance. For better tradeoff between speed and

performance, Zhang et al. [58] present a 7-layer FCN with

dilated filtering. Santhanam et al. [43] introduce a recur-

sively branched deconvolutional network (RBDN), where

pooling/unpooling is adopted to obtain and aggregate multi-

context representation.

2.2. Single image super-resolution

The application of CNN in SISR begins with SRCN-

N [16], which adopts a 3-layer FCN without pooling and

has a small receptive field. Subsequently, very deep net-

work [29], residual units [32], Laplacian pyramid [31], and

recursive architecture [28, 47] have also been suggested to

enlarge receptive field. These methods, however, enlarge

the receptive field at the cost of either increasing computa-

tional cost or loss of information. Due to the speciality of

SISR, one effective approach is to take the low-resolution

(LR) image as input to CNN [14, 45] for better tradeof-

f between receptive field size and efficiency. In addition,

generative adversarial networks (GANs) have also been in-

troduced to improve the visual quality of SISR [26, 32, 42].

2.3. JPEG image artifacts removal

Due to high compression rate, JPEG image usually suf-

fers from blocking effect and results in unpleasant visual

quality. In [15], Dong et al. adopt a 4-layer ARCNN for

JPEG image deblocking. By taking the degradation model

of JPEG compression into account [10, 51], Guo et al. [18]

suggest a dual-domain convolutional network to combine

the priors in both DCT and pixel domains. GAN has also

been introduced to generate more realistic result [19].

2.4. Other restoration tasks

Due to the similarity of image denoising, SISR, and

JPEG artifacts removal, the model suggested for one task

may be easily extended to the other tasks simply by retrain-

ing. For example, both DnCNN [57] and MemNet [48] have

been evaluated on all the three tasks. Moreover, CNN de-

noisers can also serve as a kind of plug-and-play prior. By

incorporating with unrolled inference, any restoration tasks

can be tackled by sequentially applying the CNN denoiser-

s [58]. Romano et al. [40] further propose a regularization
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by denoising framework, and provide an explicit functional

for defining the regularization induced by denoisers. These

methods not only promote the application of CNN in low

level vision, but also present many solutions to exploit CN-

N denoisers for other image restoration tasks.

Several studies have also been given to incorporate

wavelet transform with CNN. Bae et al. [5] find that learn-

ing CNN on wavelet subbands benefits CNN learning, and

suggest a wavelet residual network (WavResNet) for image

denoising and SISR. Similarly, Guo et al. [20] propose a

deep wavelet super-resolution (DWSR) method to recover

missing details on subbands. Subsequently, deep convo-

lutional framelets [21, 54] have been developed to extend

convolutional framelets for low-dose CT. However, both of

WavResNet and DWSR only consider one level wavelet de-

composition. Deep convolutional framelets independent-

ly processes each subband from decomposition perspec-

tive, which ignores the dependency between these subband-

s. In contrast, multi-level wavelet transform is considered

by our MWCNN to enlarge receptive field without informa-

tion loss. Taking all the subbands as inputs after each trans-

form, our MWCNN can embed DWT to any CNNs with

pooling, and owns more power to model both spatial con-

text and inter-subband dependency.

3. Method

In this section, we first introduce the multi-level wavelet

packet transform (WPT). Then we present our MWCNN

motivated by multi-level WPT, and describe its network ar-

chitecture. Finally, discussion is given to analyze the con-

nection of MWCNN with dilated filtering and subsampling.

3.1. From multi-level WPT to MWCNN

In 2D discrete wavelet transform (DWT), four filters, i.e.

fLL, fLH , fHL, and fHH , are used to convolve with an im-

age x [36]. The convolution results are then downsampled

to obtain the four subband images x1, x2, x3, and x4. For

example, x1 is defined as (fLL ⊗ x) ↓2. Even though the

downsampling operation is deployed, due to the biorthogo-

nal property of DWT, the original image x can be accurately

reconstructed by the inverse wavelet transform (IWT), i.e.,

x = IWT (x1,x2,x3,x4).
In multi-level wavelet packet transform (WPT) [4, 13],

the subband images x1, x2, x3, and x4 are further processed

with DWT to produce the decomposition results. For two-

level WPT, each subband image xi (i = 1, 2, 3, or 4) is

decomposed into four subband images xi,1, xi,2, xi,3, and

xi,4. Recursively, the results of three or higher levels WPT

can be attained. Figure 2(a) illustrates the decomposition

and reconstruction of an image with WPT. Actually, WP-

T is a special case of FCN without the nonlinearity layer-

s. In the decomposition stage, four pre-defined filters are

deployed to each (subband) image, and downsampling is

DWT
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(b) Multi-level wavelet-CNN architecture

Figure 2. From WPT to MWCNN. Intuitively, WPT can be seen

as a special case of our MWCNN without CNN blocks.

then adopted as the pooling operator. In the reconstruction

stage, the four subband images are first upsampled and then

convolved with the corresponding filters to produce the re-

construction result at the current level. Finally, the original

image x can be accurately reconstructed by inverse WPT.

In image denoising and compression, some operations,

e.g., soft-thresholding and quantization, usually are re-

quired to process the decomposition result [9, 33]. These

operations can be treated as some kind of nonlinearity tai-

lored to specific task. In this work, we further extend WPT

to multi-level wavelet-CNN (MWCNN) by adding a CN-

N block between any two levels of DWTs, as illustrated in

Figure 2(b). After each level of transform, all the subband

images are taken as the inputs to a CNN block to learn a

compact representation as the inputs to the subsequent level

of transform. It is obvious that MWCNN is a generalization

of multi-level WPT, and degrades to WPT when each CNN

block becomes the identity mapping. Due to the biorthog-

onal property of WPT, our MWCNN can use subsampling

operations safely without information loss. Moreover, com-

pared with conventional CNN, the frequency and location

characteristics of DWT is also expected to benefit the p-

reservation of detailed texture.

3.2. Network architecture

The key of our MWCNN architecture is to design the C-

NN block after each level of DWT. As shown in Figure 3,

each CNN block is a 4-layer FCN without pooling, and

takes all the subband images as inputs. In contrast, differen-

t CNNs are deployed to low-frequency and high-frequency

bands in deep convolutional framelets [21, 54]. We note

that the subband images after DWT are still dependent, and

the ignorance of their dependence may be harmful to the

restoration performance. Each layer of the CNN block is

composed of convolution with 3 × 3 filters (Conv), batch

normalization (BN), and rectified linear unit (ReLU) oper-

ations. As to the last layer of the last CNN block, Conv

without BN and ReLU is adopted to predict residual image.

Figure 3 shows the overall architecture of MWCNN

which consists of a contracting subnetwork and an expand-

ing subnetwork. Generally, MWCNN modifies U-Net from

three aspects. (i) For downsampling and upsampling, max-
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Figure 3. Multi-level wavelet-CNN architecture. It consists two parts: the contracting and expanding subnetworks. Each solid box corre-

sponds to a multi-channel feature map. And the number of channels is annotated on the top of the box. The network depth is 24. Moreover,

our MWCNN can be further extended to higher level (e.g., ≥ 4) by duplicating the configuration of the 3rd level subnetwork.

pooling and up-convolution are used in conventional U-

Net[41], while DWT and IWT are utilized in MWCNN. (ii)

For MWCNN, the downsampling results in the increase of

feature map channels. Except the first one, the other CN-

N blocks are deployed to reduce the feature map channel-

s for compact representation. In contrast, for convention-

al U-Net, the downsampling has no effect on feature map

channels, and the subsequent convolution layers are used to

increase feature map channels. (iii) In MWCNN, element-

wise summation is used to combine the feature maps from

the contracting and expanding subnetworks. While in con-

ventional U-Net concatenation is adopted. Then our final

network contains 24 layers. For more details on the setting

of MWCNN, please refer to Figure 3. In our implementa-

tion, Haar wavelet is adopted as the default in MWCNN.

Other wavelets, e.g., Daubechies 2 (DB2), are also consid-

ered in our experiments.

Denote by Θ the network parameters of MWCNN, and

F (y;Θ) be the network output. Let {(yi,xi)}
N
i=1 be a

training set, where yi is the i-th input image, xi is the cor-

responding ground-truth image. The objective function for

learning MWCNN is then given by

L(Θ) =
1

2N

N
∑

i=1

∥F (yi;Θ)− xi∥
2
F . (1)

The ADAM algorithm [30] is adopted to train MWCNN

by minimizing the objective function. Different from VD-

SR [29] and DnCNN [57], we do not adopt the residual

learning formulation for the reason that it can be natural-

ly embedded in MWCNN.

3.3. Discussion

The DWT in MWCNN is closely related with the pooling

operation and dilated filtering. By using the Haar wavelet as

an example, we explain the connection between DWT and

sum-pooling. In 2D Haar wavelet, the low-pass filter fLL is

defined as,

fLL =

[

1 1
1 1

]

. (2)

One can see that (fLL ⊗ x) ↓2 actually is the sum-pooling

operation. When only the low-frequency subband is consid-

ered, DWT and IWT will play the roles of pooling and up-

convolution in MWCNN, respectively. When all the sub-

bands are taken into account, MWCNN can avoid the infor-

mation loss caused by conventional subsampling, and may

benefit restoration result.

To illustrate the connection between MWCNN and dilat-

ed filtering with factor 2, we first give the definition of fLH ,

fHL, and fHH ,

fLH =

[

−1 −1
1 1

]

, fHL=

[

−1 1
−1 1

]

, fHH =

[

1 −1
−1 1

]

. (3)

Given an image x with size of m× n, the (i, j)-th value of

x1 after 2D Haar transform can be written as x1(i, j) =
x(2i − 1, 2j − 1) + x(2i − 1, 2j) + x(2i, 2j − 1) +
x(2i, 2j). And x2(i, j), x3(i, j), and x4(i, j) can be de-

fined analogously. We also have x(2i − 1, 2j − 1) =
(x1(i, j)− x2(i, j)− x3(i, j) + x4(i, j)) /4. The dilated

filtering with factor 2 on the position (2i − 1, 2j − 1) of

x can be written as

(x⊗2 k)(2i− 1, 2j − 1) =
∑

p+2s=2i−1,

q+2t=2j−1

x(p, q)k(s, t), (4)

where k is the 3×3 convolution kernel. Actually, it also can

be obtained by using the 3×3 convolution with the subband

images,

(x⊗2k)(2i−1, 2j−1)=((x1−x2−x3+x4)⊗k) (i, j)/4. (5)

Analogously, we can analyze the connection between di-

lated filtering and MWCNN for (x ⊗2 k)(2i − 1, 2j),
(x⊗2 k)(2i, 2j− 1), (x⊗2 k)(2i, 2j). Therefore, the 3× 3
dilated convolution on x can be treated as a special case of

4× 3× 3 convolution on the subband images.

Compared with dilated filtering, MWCNN can also

avoid the gridding effect. After several layers of dilated

filtering, it only considers a sparse sampling of locations

with the checkerboard pattern, resulting in large portion of

information loss (see Figure 4(a)). Another problem with

dilated filtering is that the two neighbored pixels may be

based on information from totally non-overlapped locations
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(a) (b) (c)

Figure 4. Illustration of the gridding effect. Taken 3-layer CNNs

as an example: (a) the dilated filtering with factor 2 surfers large

portion of information loss, (b) and the two neighbored pixels are

based on information from totally non-overlapped locations, (c)

while our MWCNN can perfectly avoid underlying drawbacks.

(see Figure 4(b)), and may cause the inconsistence of local

information. In contrast, Figure 4(c) illustrates the recep-

tive field of MWCNN. One can see that MWCNN is able to

well address the sparse sampling and inconsistence of local

information, and is expected to benefit restoration perfor-

mance quantitatively and qualitatively.

4. Experiments

Experiments are conducted for performance evaluation

on three tasks, i.e., image denoising, SISR, and compres-

sion artifacts removal. Comparison of several MWCNN

variants is also given to analyze the contribution of each

component. The code and pre-trained models will be given

at https://github.com/lpj0/MWCNN.

4.1. Experimental setting

4.1.1 Training set

To train our MWCNN, a large training set is constructed by

using images from three dataset, i.e. Berkeley Segmentation

Dataset (BSD) [38], DIV2K [3] and Waterloo Exploration

Database (WED) [35]. Concretely, we collect 200 images

from BSD, 800 images from DIV2K, and 4, 744 images

from WED. Due to the receptive field of MWCNN is not

less than 226× 226, in the training stage N = 24× 6, 000
patches with the size of 240 × 240 are cropped from the

training images.

For image denoising, Gaussian noise with specific noise

level is added to clean patch, and MWCNN is trained to

learn a mapping from noisy image to denoising result. Fol-

lowing [57], we consider three noise levels, i.e., σ = 15, 25

and 50. For SISR, we take the result by bicubic upsampling

as the input to MWCNN, and three specific scale factors,

i.e., ×2, ×3 and ×4, are considered in our experiments. For

JPEG image artifacts removal, we follow [15] by consider-

ing four compression quality settings Q = 10, 20, 30 and 40

for the JPEG encoder. Both JPEG encoder and JPEG image

artifacts removal are only applied on the Y channel [15].

4.1.2 Network training

A MWCNN model is learned for each degradation setting.

The network parameters are initialized based on the method

described in [22]. We use the ADAM algorithm [30] with

α = 0.01, β1 = 0.9, β2 = 0.999 and ǫ = 10−8 for

optimizing and a mini-batch size of 24. As to the other

hyper-parameters of ADAM, the default setting is adopted.

The learning rate is decayed exponentially from 0.001 to

0.0001 in the 40 epochs. Rotation or/and flip based da-

ta augmentation is used during mini-batch learning. We

use the MatConvNet package [49] with cuDNN 6.0 to train

our MWCNN. All the experiments are conducted in the

Matlab (R2016b) environment running on a PC with In-

tel(R) Core(TM) i7-5820K CPU 3.30GHz and an Nvidia

GTX1080 GPU. The learning algorithm converges very fast

and it takes about two days to train a MWCNN model.

4.2. Quantitative and qualitative evaluation

In this subsection, all the MWCNN models use the same

network setting described in Sec. 3.2, and 2D Haar wavelet

is adopted.

4.2.1 Image denoising

Except CBM3D [11] and CDnCNN [57], most denois-

ing methods are only tested on gray images. Thus, we

train our MWCNN by using the gray images, and compare

with six competing denoising methods, i.e., BM3D [11], T-

NRD [10], DnCNN [57], IRCNN [58], RED30 [37], and

MemNet [48]. We evaluate the denoising methods on

three test datasets, i.e., Set12 [57], BSD68 [38], and Ur-

ban100 [23]. Table 1 lists the average PSNR/SSIM result-

s of the competing methods on these three datasets. We

note that our MWCNN only slightly outperforms DnCN-

N by about 0.1 ∼ 0.3dB in terms of PSNR on BSD68.

As to other datasets, our MWCNN generally achieves fa-

vorable performance when compared with the competing

methods. When the noise level is high (e.g., σ = 50), the

average PSNR by our MWCNN can be 0.5dB higher than

that by DnCNN on Set12, and 1.2dB higher on Urban100.

Figure 5 shows the denoising results of the images Test011

from Set68 with the noise level σ = 50. One can see that

our MWCNN is promising in recovering image details and

structures, and can obtain visually more pleasant result than

the competing methods. Please refer to the supplementary

materials for more results on Set12 and Urban100.

4.2.2 Single image super-resolution

Following [29], SISR is only applied to the luminance chan-

nel, i.e. Y in YCbCr color space. We test MWCNN on

four datasets, i.e., Set5 [7], Set14 [56], BSD100 [38], and
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Table 1. Average PSNR(dB)/SSIM results of the competing methods for image denoising with noise levels σ = 15, 25 and 50 on datasets

Set14, BSD68 and Urban100. Red color indicates the best performance.
Dataset σ BM3D [11] TNRD [10] DnCNN [57] IRCNN [58] RED30 [37] MemNet [48] MWCNN

Set12

15 32.37 / 0.8952 32.50 / 0.8962 32.86 / 0.9027 32.77 / 0.9008 - - 33.15 / 0.9088

25 29.97 / 0.8505 30.05 / 0.8515 30.44 / 0.8618 30.38 / 0.8601 - - 30.79 / 0.8711

50 26.72 / 0.7676 26.82 / 0.7677 27.18 / 0.7827 27.14 / 0.7804 27.34 / 0.7897 27.38 / 0.7931 27.74 / 0.8056

BSD68

15 31.08 / 0.8722 31.42 / 0.8822 31.73 / 0.8906 31.63 / 0.8881 - - 31.86 / 0.8947

25 28.57 / 0.8017 28.92 / 0.8148 29.23 / 0.8278 29.15 / 0.8249 - - 29.41 / 0.8360

50 25.62 / 0.6869 25.97 / 0.7021 26.23 / 0.7189 26.19 / 0.7171 26.35 / 0.7245 26.35 / 0.7294 26.53 / 0.7366

Urban100

15 32.34 / 0.9220 31.98 / 0.9187 32.67 / 0.9250 32.49 / 0.9244 - - 33.17 / 0.9357

25 29.70 / 0.8777 29.29 / 0.8731 29.97 / 0.8792 29.82 / 0.8839 - - 30.66 / 0.9026

50 25.94 / 0.7791 25.71 / 0.7756 26.28 / 0.7869 26.14 / 0.7927 26.48 / 0.7991 26.64 / 0.8024 27.42 / 0.8371

Table 2. Average PSNR(dB) / SSIM results of the competing methods for SISR with scale factors S = 2, 3 and 4 on datasets Set5, Set14,

BSD100 and Urban100. Red color indicates the best performance.
Dataset S RCN [46] VDSR [29] DnCNN [57] RED30 [37] SRResNet [32] LapSRN [31] DRRN [47] MemNet [48] WaveResNet [5] MWCNN

Set5

×2 37.17 / 0.9583 37.53 / 0.9587 37.58 / 0.9593 37.66 / 0.9599 - 37.52 / 0.9590 37.74 / 0.9591 37.78 / 0.9597 37.57 / 0.9586 37.91 / 0.9600

×3 33.45 / 0.9175 33.66 / 0.9213 33.75 / 0.9222 33.82 / 0.9230 - - 34.03 / 0.9244 34.09 / 0.9248 33.86 / 0.9228 34.18 / 0.9272

×4 31.11 / 0.8736 31.35 / 0.8838 31.40 / 0.8845 31.51 / 0.8869 32.05 / 0.8902 31.54 / 0.8850 31.68 / 0.8888 31.74 / 0.8893 31.52 / 0.8864 32.12 / 0.8941

Set14

×2 32.77 / 0.9109 33.03 / 0.9124 33.04 / 0.9118 32.94 / 0.9144 - 33.08 / 0.9130 33.23 / 0.9136 33.28 / 0.9142 33.09 / 0.9129 33.70 / 0.9182

×3 29.63 / 0.8269 29.77 / 0.8314 29.76 / 0.8349 29.61 / 0.8341 - - 29.96 / 0.8349 30.00 / 0.8350 29.88 / 0.8331 30.16 / 0.8414

×4 27.79 / 0.7594 28.01 / 0.7674 28.02 / 0.7670 27.86 / 0.7718 28.49 / 0.7783 28.19 / 0.7720 28.21 / 0.7720 28.26 / 0.7723 28.11 / 0.7699 28.41 / 0.7816

BSD100

×2 - 31.90 / 0.8960 31.85 / 0.8942 31.98 / 0.8974 - 31.80 / 0.8950 32.05 / 0.8973 32.08 / 0.8978 32.15 / 0.8995 32.23 / 0.8999

×3 - 28.82 / 0.7976 28.80 / 0.7963 28.92 / 0.7993 - - 28.95 / 0.8004 28.96 / 0.8001 28.86 / 0.7987 29.12 / 0.8060

×4 - 27.29 / 0.7251 27.23 / 0.7233 27.39 / 0.7286 27.56 / 0.7354 27.32 / 0.7280 27.38 / 0.7284 27.40 / 0.7281 27.32 / 0.7266 27.62 / 0.7355

Urban100

×2 - 30.76 / 0.9140 30.75 / 0.9133 30.91 / 0.9159 - 30.41 / 0.9100 31.23 / 0.9188 31.31 / 0.9195 30.96 / 0.9169 32.30 / 0.9296

×3 - 27.14 / 0.8279 27.15 / 0.8276 27.31 / 0.8303 - - 27.53 / 0.8378 27.56 / 0.8376 27.28 / 0.8334 28.13 / 0.8514

×4 - 25.18 / 0.7524 25.20 / 0.7521 25.35 / 0.7587 26.07 / 0.7839 25.21 / 0.7560 25.44 / 0.7638 25.50 / 0.7630 25.36 / 0.7614 26.27 / 0.7890

Table 3. Average PSNR(dB) / SSIM results of the competing methods for JPEG image artifacts removal with quality factors Q = 10, 20,

30 and 40 on datasets Classic5 and LIVE1. Red color indicates the best performance.
Dataset Q JPEG ARCNN [15] TNRD [10] DnCNN [57] MemNet [48] MWCNN

Classic5

10 27.82 / 0.7595 29.03 / 0.7929 29.28 / 0.7992 29.40 / 0.8026 29.69 / 0.8107 30.01 / 0.8195

20 30.12 / 0.8344 31.15 / 0.8517 31.47 / 0.8576 31.63 / 0.8610 31.90 / 0.8658 32.16 / 0.8701

30 31.48 / 0.8744 32.51 / 0.8806 32.78 / 0.8837 32.91 / 0.8861 - 33.43 / 0.8930

40 32.43 / 0.8911 33.34 / 0.8953 - 33.77 / 0.9003 - 34.27 / 0.9061

LIVE1

10 27.77 / 0.7730 28.96 / 0.8076 29.15 / 0.8111 29.19 / 0.8123 29.45 / 0.8193 29.69 / 0.8254

20 30.07 / 0.8512 31.29 / 0.8733 31.46 / 0.8769 31.59 / 0.8802 31.83 / 0.8846 32.04 / 0.8885

30 31.41 / 0.9000 32.67 / 0.9043 32.84 / 0.9059 32.98 / 0.9090 - 33.45 / 0.9153

40 32.35 / 0.9173 33.63 / 0.9198 - 33.96 / 0.9247 - 34.45 / 0.9301

Urban100 [23], because they are widely adopted to eval-

uate SISR performance. Our MWCNN is compared with

eight CNN-based SISR methods, including RCN [46], VD-

SR [29], DnCNN [57], RED30 [37], SRResNet [32], Lap-

SRN [31], DRRN [47], and MemNet [48]. Due to the

source code of SRResNet is not released, its results are

from [32] and are incomplete.

Table 2 lists the average PSNR/SSIM results of the com-

peting methods on the four datasets. Our MWCNN per-

forms favorably in terms of both PSNR and SSIM index-

es. Compared with VDSR, our MWCNN achieves a no-

table gain of about 0.4dB by PSNR on Set5 and Set14.

On Urban100, our MWCNN outperforms VDSR by about

0.9∼1.4dB. Obviously, WaveResNet et al. [5] sightly out-

perform VDSR, and also is still inferior to MWCNN. We

note that the network depth of SRResNet is 34, while that

of MWCNN is 24. Moreover, SRResNet is trained with

a much larger training set than MWCNN. Even so, when

the scale factor is 4, MWCNN achieve slightly higher P-

SNR values on Set5 and BSD100, and is comparable to S-

RResNet on Set14. Figure 6 shows the visual comparison-

s of the competing methods on the images Barbara from

Set14. Thanks to the frequency and location characteristics

of DWT, our MWCNN can correctly recover the fine and

detailed textures, and produce sharp edges. Furthermore,

for Track 1 of NTIRE 2018 SR challenge (×8 SR) [1],

our improved MWCNN is lower than the Top-1 method by

0.37dB.

4.2.3 JPEG image artifacts removal

In JPEG compression, an image is divided into non-

overlapped 8 × 8 blocks. Discrete cosine transform (D-

CT) and quantization are then applied to each block, thus

introducing the blocking artifact. The quantization is deter-

mined by a quality factor Q to control the compression rate.

Following [15], we consider four settings on quality factor,

e.g., Q = 10, 20, 30 and 40, for the JPEG encoder. Both

JPEG encoder and JPEG image artifacts removal are only

applied to the Y channel. In our experiments, MWCNN is

compared with four competing methods, i.e., ARCNN [15],

TNRD [10], DnCNN [57], and MemNet [48] on the two

datasets, i.e., Classic5 and LIVE1 [39]. We do not consid-

er [18, 19] due to their source codes are unavailable.

Table 3 lists the average PSNR/SSIM results of the com-

peting methods on Classic5 and LIVE1. For any of the four

quality factors, our MWCNN performs favorably in terms

of quantitative metrics on the two datasets. On Classic5 and

LIVE1, the PSNR values of MWCNN can be 0.2∼0.3dB

higher than those of the second best method (i.e., Mem-
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Ground Truth

Ground Truth (PSNR / SSIM) BM3D [11] (24.98 / 0.7412) TNRD [10] (24.98 / 0.7308) DnCNN [57] (25.56 / 0.7723)

IRCNN [58] (25.56 / 0.7711) RED30 [37] (25.97 / 0.7788) MemNet [48] (25.98 / 0.7957) MWCNN (26.33 / 0.8113)

Figure 5. Image denoising results of “Test011” (BSD68) with noise level 50.

Ground Truth

Ground Truth (PSNR / SSIM) VDSR [29] (25.79 / 0.7403) DnCNN [57] (25.92 / 0.7417) RED30 [37] (25.99 / 0.7468) SRResNet [32] (25.93 / 0.746)

LapSRN [31] (25.77 / 0.7384) DRRN [47] (25.75 / 0.7404) MemNet [48] (25.69 / 0.7414) WaveResNet (25.63 / 0.7372) MWCNN (26.46 / 0.7629)

Figure 6. Single image super-resolution results of “barbara” (Set14) with upscaling factor ×4.

Ground Truth

Ground Truth (PSNR / SSIM) ARCNN [15] (31.81 / 0.8109) TNRD [10] (31.70 / 0.8076))

DnCNN [57] (31.79 / 0.8107) MemNet [48] (32.08 / 0.8178) MWCNN (32.43 / 0.8257)

Figure 7. JPEG image artifacts removal results of “womanhat” (LIVE1) with quality factor 10.

Net [48]) for the quality factor of 10 and 20. Figure 7 shows

the results on the image womanhat from LIVE1 with the

quality factor 10. One can see that MWCNN is effective in

restoring detailed textures and sharp salient edges.

4.2.4 Run time

Table 4 lists the GPU run time of the competing methods

for the three tasks. The Nvidia cuDNN-v6.0 deep learn-

ing library is adopted to accelerate the GPU computation

under Ubuntu 16.04 system. Specifically, only the CNN-

based methods with source codes are considered in the

comparison. For three tasks, the run time of MWCNN

is far less than several state-of-the-art methods, including

RED30 [37], MemNet [47] and DRRN [47]. Note that the

three methods also perform poorer than MWCNN in terms

of PSNR/SSIM metrics. In comparison to the other method-

s, MWCNN is moderately slower by speed but can achieve

higher PSNR/SSIM indexes. The result indicates that, in-

stead of the increase of network depth/width, the effective-

ness of MWCNN should be attributed to the incorporation

of CNN and DWT.

4.3. Comparison of MWCNN variants

Using image denoising and JPEG image artifacts as ex-

amples, we compare the PSNR results by three MWC-

Table 4. Run time (in seconds) of the competing methods for the

three tasks on images of size 256×256, 512×512 and 1024×1024:

image denosing is tested on noise level 50, SISR is tested on scale

×2, and JPEG image deblocking is tested on quality factor 10.
Image Denoising

Size TNRD [10] DnCNN [57] RED30 [37] MemNet [47] MWCNN

256×256 0.010 0.0143 1.362 0.8775 0.0586

512×512 0.032 0.0487 4.702 3.606 0.0907

1024×1024 0.116 0.1688 15.77 14.69 0.3575

Single Image Super-Resolution

Size VDSR [29] LapSRN [31] DRRN [47] MemNet [37] MWCNN

256×256 0.0172 0.0229 3.063 0.8774 0.0424

512×512 0.0575 0.0357 8.050 3.605 0.0780

1024×1024 0.2126 0.1411 25.23 14.69 0.3167

JPEG Image Artifacts Removal

Size ARCNN [15] TNRD [10] DnCNN [57] MemNet [37] MWCNN

256×256 0.0277 0.009 0.0157 0.8775 0.0531

512×512 0.0532 0.028 0.0568 3.607 0.0811

1024×1024 0.1613 0.095 0.2012 14.69 0.2931

NN variants, including: (i) MWCNN (Haar): the de-

fault MWCNN with Haar wavelet, (ii) MWCNN (DB2):

MWCNN with Daubechies-2 wavelet, and (iii) MWCN-

N (HD): MWCNN with Haar in contracting subnetwork

and Daubechies-2 in expanding subnetwork. Then, abla-

tion experiments are provided for verifying the effective-

ness of additionally embedded wavelet: (i) the default U-

Net with same architecture to MWCNN, (ii) U-Net+S: us-

ing sum connection instead of concatenation, and (iii) U-

Net+D: adopting learnable conventional downsamping fil-
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Table 5. Performance comparison in terms of average PSNR (dB) and run time (in seconds): image denosing is tested on noise level 50

and JPEG image deblocking is tested on quality factor 10.
Dataset Dilated [55] Dilated-2 U-Net [41] U-Net+S U-Net+D DCF [21] WaveResNet [5] MWCNN (Haar) MWCNN (DB2) MWCNN (HD)

Image Denoising (σ = 50)

Set12 27.45 / 0.181 24.81 / 0.185 27.42 / 0.079 27.41 / 0.074 27.46 / 0.080 27.38 / 0.081 27.49 / 0.179 27.74 / 0.078 27.77 / 0.134 27.73 / 0.101

BSD68 26.35 / 0.142 24.32 / 0.174 26.30 / 0.076 26.29 / 0.071 26.21 / 0.075 26.30 / 0.075 26.38 / 0.143 26.53 / 0.072 26.54 / 0.122 26.52 / 0.088

Urban100 26.56 / 0.764 24.18 / 0.960 26.68 / 0.357 26.72 / 0.341 26.99 / 0.355 26.65 / 0.354 - / - 27.42 / 0.343 27.48 / 0.634 27.35 / 0.447

JPEG Image Artifacts Removal (PC=10)

Classic5 29.72 / 0.287 29.49 / 0.302 29.61 / 0.093 29.60 / 0.082 29.68 / 0.097 29.57 / 0.104 - / - 30.01 / 0.088 30.04 / 0.195 29.97 / 0.136

LIVE1 29.49 / 0.354 29.26 / 0.376 29.36 / 0.112 29.36 / 0.109 29.43 / 0.120 29.38 / 0.155 - / - 29.69 / 0.112 29.70 / 0.265 29.66 / 0.187

ters instead of Max pooling. Two 24-layer dilated CNNs

are also considered: (i) Dilated: the hybrid dilated convolu-

tion [50] to suppress the gridding effect, and (ii) Dilated-2:

the dilate factor of all layers is set to 2. The WaveRes-

Net method in [5] is provided to be compared. Moreover,

due to its code is unavailable, a self-implementation of deep

convolutional framelets (DCF) [54] is also considered in the

experiments.

Table 4 lists the PSNR and run time results of these

methods. And we have the following observations. (i) The

gridding effect with the sparse sampling and inconsistence

of local information authentically has adverse influence on

restoration performance. (ii) The ablation experiments in-

dicate that using sum connection instead of concatenation

can improve efficiency without decreasing PNSR. Due to

the special group of filters with the biorthogonal and time-

frequency localization property in wavelet, our embedded

wavelet own more puissant ability for image restoration

than pooling operation and learnable downsamping filters.

The worse performance of DCF also indicates that indepen-

dent processing of subbands harms final result. (iii) Com-

pared to MWCNN (DB2) and MWCNN (HD), using Haar

wavelet for downsampling and upsampling in network is

the best choice in terms of quantitative and qualitative eval-

uation. MWCNN (Haar) has similar run time with dilated

CNN and U-Net but achieves higher PSNR results, which

demonstrates the effectiveness of MWCNN for tradeoff be-

tween performance and efficiency.

Note that our MWCNN is quite different with DCF [54]:

DCF incorporates CNN with DWT in the view of decompo-

sition, where different CNNs are deployed to each subband.

However, the results in Table 5 indicates that independent

processing of subbands is not suitable for image restora-

tion. On the contrary, MWCNN combines DWT to CNN

from perspective of enlarging receptive field without infor-

mation loss, allowing to embed DWT with any CNNs with

pooling. Moreover, our embedded DWT can be treated as

predefined parameters to ease network learning, and the dy-

namic range of subbands can be jointly adjusted by the CN-

N blocks. Taking all subbands as input, MWCNN is more

powerful in modeling inter-band dependency.

As described in Sec. 3.2, our MWCNN can be extend-

ed to higher level of wavelet decomposition. Nevertheless,

higher level inevitably results in deeper network and heav-

ier computational burden. Thus, a suitable level is required

Table 6. Average PSNR (dB) and run time (in seconds) of MWC-

NNs with different levels on Gaussian denoising with the noise

level of 50.
Dataset MWCNN-1 MWCNN-2 MWCNN-3 MWCNN-4

Set12 27.14 / 0.047 27.62 / 0.068 27.74 / 0.082 27.74 / 0.091

BSD68 26.16 / 0.044 26.45 / 0.063 26.53 / 0.074 26.54 / 0.084

Urban100 26.08 / 0.212 27.10 / 0.303 27.42 / 0.338 27.44 / 0.348

to balance efficiency and performance. Table 6 reports the

PSNR and run time results of MWCNNs with the levels of

1 to 4 (i.e., MWCNN-1 ∼ MWCNN-4). It can be observed

that MWCNN-3 with 24-layer architecture performs much

better than MWCNN-1 and MWCNN-2, while MWCNN-4

only performs negligibly better than MWCNN-3 in terms

of the PSNR metric. Moreover, the speed of MWCNN-3

is also moderate compared with other levels. Taking both

efficiency and performance gain into account, we choose

MWCNN-3 as the default setting.

5. Conclusion

This paper presents a multi-level wavelet-CNN (MWC-

NN) architecture for image restoration, which consists of a

contracting subnetwork and a expanding subnetwork. The

contracting subnetwork is composed of multiple levels of

DWT and CNN blocks, while the expanding subnetwork

is composed of multiple levels of IWT and CNN blocks.

Due to the invertibility, frequency and location property of

DWT, MWCNN is safe to perform subsampling without in-

formation loss, and is effective in recovering detailed tex-

tures and sharp structures from degraded observation. As

a result, MWCNN can enlarge receptive field with better

tradeoff between efficiency and performance. Extensive ex-

periments demonstrate the effectiveness and efficiency of

MWCNN on three restoration tasks, i.e., image denoising,

SISR, and JPEG compression artifact removal.

In future work, we will extend MWCNN for more gen-

eral restoration tasks such as image deblurring and blind

deconvolution. Moreover, our MWCNN can also be used

to substitute the pooling operation in the CNN architectures

for high-level vision tasks such as image classification.
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