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Multi-level zero-inflated Poisson regression
modelling of correlated count data with
excess zeros

Andy H. Lee, Kui Wang Department of Epidemiology and Biostatistics, School of Public
Health, Curtin University of Technology, Perth, WA, Australia, Jane A. Scott Division of
Developmental Medicine, University of Glasgow, UK, Kelvin K.W. Yau Department of
Management Sciences, City University of Hong Kong, Hong Kong and Geoffrey J.

McLachlan Department of Mathematics, University of Queensland, Brisbane, Qld., Australia

Count data with excess zeros relative to a Poisson distribution are common in many biomedical applica-
tions. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression
model. Often, because of the hierarchical study design or the data collection procedure, zero-inflation
and lack of independence may occur simultaneously, which render the standard ZIP model inadequate.
To account for the preponderance of zero counts and the inherent correlation of observations, a class
of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using
an expectation-maximization algorithm, whereas variance components are estimated via residual max-
imum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level
ZIP model is then generalized to cope with a more complex correlation structure. Application to the
analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the
approach.

1 Introduction

Data with many zeros are often encountered in medical and public health studies. Failure
to account for the extra zeros may result in biased parameter estimates and misleading
inferences. For semi-continuous data with clumping at zero, two-part models mix-
ing a discrete point mass (with all mass at zero) and a continuous random variable
are applicable.1 In addition to cross-sectional data, where the unit of observation is
measured once, zero-inflation may also occur with repeated measures or longitudinal
semi-continuous data. Mixed-distribution model with correlated random effects has
been proposed to account for the simultaneous excess zeros and the correlation among
measurements on the same unit of observation.2−5

When the non-zero part is a discrete random variable, a popular approach to analyse
count data with excess zeros is to use a zero-inflated Poisson (ZIP) regression model.6 The
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ZIP distribution is a mixture of the Poisson distribution and a degenerate component
of point mass at zero. Its regression setting allows for covariates in both the Poisson
and binary parts of the model. Böhning7 reviewed the related literature and provided
a variety of examples from different disciplines; see also Ridout et al.8 for a review of
the ZIP methodology. Interpretation of the ZIP analysis from a Bayesian perspective is
discussed by Angers and Biswas.9 In a medical context, a possible explanation for the
excess of zeros might be due to the fact that the patient is cured after the treatment and so
no realization of symptom being monitored will occur 10 p.159. Further applications of
the ZIP regression model can be found in dental epidemiology,11 occupational health,12

child growth and development,13 and health service research.14 Moreover, tests for zero-
inflation in count data are available in the literature.15−17

Often, because of the hierarchical study design or the data collection procedure,
zero-inflation and lack of independence may be present simultaneously as a con-
sequence of the inherent correlation structure and underlying heterogeneity. This is
particularly prevalent in medical research where patients are typically nested within
physicians or hospitals. Extensions of the ZIP model to handle clustered observa-
tions have been proposed recently. Hall,18 Wang et al.19 and Hur et al.20 considered
ZIP regression models with cluster-specific random effects, whereas Yau and Lee21

incorporated distinct random effects for the Poisson and binary components of a
two-part hurdle model for repeated counts. In a hurdle model, the logistic compo-
nent is used to distinguish the zero and non-zero responses, whereas the non-zero
observed counts are modelled via a truncated Poisson regression model. Such a
conditional setting enables the interpretation of covariate effects through event inci-
dence and frequency in the respective logistic and truncated Poisson components.
Marginal models for clustered count data with excess zeros have also been devel-
oped as alternatives to the inclusion of random effects. The marginal approach either
ignores the data dependency during estimation and then applies a robust sandwich
estimate of the parameter variance–covariance matrix,22 or utilizes generalized esti-
mating equations with a dependence working correlation matrix into the model fitting
algorithm.23

The focus of this paper is on modelling discrete hierarchical data with a preponderance
of zero counts. After briefly reviewing the standard ZIP model, a multi-level ZIP
regression model incorporating random effects to account for the data dependency
is presented in Section 2. Model fitting procedure via an expectation-maximization
(EM) algorithm is described in Section 3. In the presence of excess zeros, the tech-
nique provides better predictions than those obtained by fitting the corresponding
multi-level Poisson regression model. An application in Section 4 concerning the
formula feeding of infants, where the nested data collected from a longitudinal
study exhibit repeated high frequency of zero counts, demonstrates the practical use-
fulness of the technique. Further generalizations of the ZIP methodology, including a
score test for zero-inflation and an extension of the method to handle autocorrelation
for serial count data, are presented in Section 5. Finally, some discussions are given in
Section 6.
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2 Multi-level ZIP regression model

Suppose a discrete count response variable Y follows a ZIP distribution:

P(Y = 0) = φ + (1 − φ)e−λ

P(Y = y) = (1 − φ)
λye−λ

y!
, y = 1, 2, . . .

where 0 < φ < 1 so that it incorporates more zeros than those permitted under the
Poisson assumption (φ = 0), whereas φ < 0 corresponds to the zero-deflated situation.24

The ZIP distribution may be regarded as a mixture of a Poisson (λ) and a degenerate
component placing all its mass at zero. Further properties, including a graphical repre-
sentation and interpretation in terms of its (unobserved) two-point heterogeneity, can
be found in Böhning et al.11

For independent counts Yj ( j = 1, . . . , n), Lambert6 proposed a ZIP regression model
to examine the effects of risk factors or confounders by allowing both logλ and the
logistic transform of φ to be linear functions of some covariates. Maximum likelihood
estimation of the regression coefficients can be performed via an EM algorithm. The
model fitting procedure has been implemented in statistical packages such as STATA.25

Recently, the ZIP regression model has been extended to the random effects setting,
whereby random components wi and ui are incorporated within the logistic and Poisson
linear predictors to account for the dependence of observations within clusters.19,20

Similarly, a two-part conditional model was proposed to analyse repeated measures
data.21 These random effects ZIP models are cluster-specific in the sense that the random
effects wi and ui so introduced are specific to the ith cluster. In the following, a multi-level
ZIP regression model is developed to handle correlated count data with extra zeros.

Without loss of generality, consider the three-level hierarchical situation where
Yijk represents the kth observation of the jth individual within the ith cluster (i =

1, 2, . . . , m; j = 1, 2, . . . , ni; k = 1, 2, . . . , nij). Let n =
∑m

i=1 ni be the total number of
individuals and N =

∑m
i=1

∑ni
j=1 nij gives the total number of observations. The obser-

vations may be taken to be independent between clusters, but certain within-cluster and
within-individual correlations are anticipated, which can be modelled explicitly through
random effects attached to the linear predictors:

log

[

φijk

(1 − φijk)

]

= ξijk = aT
ijkα + wi + sij

log(λijk) = ηijk = xT
ijkβ + ui + vij

Here, the covariates aijk and xijk appearing in the respective logistic and Poisson com-
ponents are not necessarily the same, and α and β are the corresponding vectors of
regression coefficients. The vectors wi and ui denote the cluster random effects, whereas
sij and vij are the random variations at subject level. Writing w = (w1, . . . , wm)T,
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u = (u1, . . . , um)T, s = (s11, . . . , s1n1 , s21, . . . , s2n2 , . . . , sm1, . . . , smnm)T, and v =

(v11, . . . , v1n1 , v21, . . . , v2n2 , . . . , vm1, . . . , vmnm)T, the three-level ZIP regression model
can be expressed in vector form as:

log

[

φ

(1 − φ)

]

= ξ = Aα + Rww + Rss

log(λ) = η = Xβ + Ruu + Rvv

where A, X, Rw, Rs, Ru and Rv are design matrices. For simplicity of presentation, the
random effects w, s, u and v are assumed to be independent and normally distributed
with mean zero and varianceσ 2

w,σ 2
s ,σ 2

u andσ 2
v , respectively. Although other distributions

such as log-gamma can be adopted, normally distributed random effects are the preferred
choice and interpretation of parameters becomes more straightforward.20 A complex
correlation structure can also be specified for the random components to accommodate
the simultaneous clustering and repeated measures design, depending on the nature of
the data collected and the context of the study.

3 Model estimation

Estimation of the multi-level ZIP regression model parameters can be achieved following
the restricted maximum likelihood approach within the generalized linear mixed mod-
els (GLMMs) framework.26 Construction of the GLMM penalized likelihood simply
requires the log-likelihood function treating the random component as conditionally
fixed, and the logarithm of the probability density function of the random effects. By
assuming a multivariate normal distribution for the random effects, the corresponding
probability density function can be easily constructed, thus permitting the specification
of complex correlation structure in the variance components. The advantage of the
GLMM approach is that estimation of parameters avoids high-dimensional integra-
tions but only requires second-order derivatives and an appropriate iterative numerical
scheme.

In the manner of Wang et al.,19 the penalized log-likelihood is given by l = l1 + l2, with
l1 being the log-likelihood function when the random effects are conditionally fixed and
l2 the log density of the random effects. If the random effects are treated as parameters,
then the negative of l2 can be viewed as a penalty function on the random effects:

l1 =
∑

yijk=0

log

(

exp(ξ) + exp(− exp(ηijk))

1 + exp(ξ)

)

+
∑

yijk>0

[

yijkηijk − exp(ηijk) − log(yijk!) − log(1 + exp(ξ))
]
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l2 = −
1

2

[

m log
(

2πσ 2
u

)

+ σ−2
u uTu + n log

(

2πσ 2
v

)

+ σ−2
v vTv

]

−
1

2

[

m log
(

2πσ 2
w

)

+ σ−2
w wTw + n log

(

2πσ 2
s

)

+ σ−2
s sTs

]

The α coefficients can be interpreted in terms of the proportion of excess zeros, whereas
the β coefficients relate to the mean response in the Poisson part. Heterogeneity among
clusters and between individuals is allowed through the random effects w, u, s and
v. Estimation proceeds by maximizing l1 with the variance components fixed at their
current values and then updating the values of the variance components using restricted
maximum likelihood (REML) estimates obtained by consideration of l2.26

To ensure the convergence and stability in the estimation of the parameters
and random effects in l1, the EM algorithm is used as adopted in Meng.27 The EM algo-
rithm was also used for overdispersed count data.28 The complete-data log-likelihood
is constructed as lC = lξ + lη, where

lξ =
∑

ijk

(

zijkξijk − log(1 + exp(ξijk))
)

−
1

2

[

m log
(

2πσ 2
w

)

+ σ−2
w wTw + n log

(

2πσ 2
s

)

+ σ−2
s sTs

]

lη =
∑

ijk

(1 − zijk)
(

yijkηijk − exp(ηijk) − log(yijk!)
)

−
1

2
[n log(2πσ 2

v ) + σ−2
v vTv]

−
1

2
[m log(2πσ 2

u ) + σ−2
u uTu]

and zijk is an unobserved binary variable indicating whether yijk comes from the latent
class zero (zijk = 1) or non-zero (zijk = 0). Treating the realization of the occurrence of
extra zeros as a missing latent variable permits the decomposition of the complete-data
log-likelihood lC into two orthogonal components lξ and lη, so that parameter estimation
can be performed by maximizing these two functions separately. The EM algorithm

proceeds by alternating between (a) replacing zijk by its conditional expectation z
(g)

ijk
,

where g denotes the gth iteration, under the current estimates α̂(g), ŵ(g), ŝ(g), β̂(g), û(g)

and v̂(g) (E-step):

z
(g)

ijk
=

{

1

1+exp[−aT
ijk

α̂(g)−ŵ
(g)
i −ŝ

(g)
ij −exp(xT

ijk
β̂(g)+û

(g)
i +v̂

(g)
ij )]

if yijk = 0

0 if yijk ≥ 1

and then (b) with the zijk’s fixed at z
(g)

ijk
, maximizing lξ and lη (M-step) separately for

{α̂(g+1), ŵ(g+1), ŝ(g+1)} and {β̂(g+1), û(g+1), v̂(g+1)}, in view of the orthogonal partition
lC = lξ + lη. Details are given in the Appendix. The estimation procedure has been
implemented as a macro in S-Plus.
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4 Application

International health authorities recommend that infants be exclusively breastfed for 6
months, then introduction of complementary foods and continued breastfeeding until
12 months of age and then thereafter as long as mutually desired.29 The introduction
of supplementary bottles of formula is likely to lead to reduced breast milk production
which may help explain why only 50% of women in Australia are still breastfeeding
at 6 months postpartum.30 It is thus important to determine factors affecting the
frequency of formula feeds by breastfeeding women. A longitudinal infant feeding
study was conducted in Perth, Australia, between September 1992 and April 1993.31,32

At the baseline survey, information was collected on maternal age (years), parity
(1=multiparous, 0=primiparous) and infant sex (1=male, 0=female), along with eth-
nic origin (1= Australia born, 0=elsewhere) and suburb of residence. A total of 466
breastfeeding mothers were initially recruited. The cohort was followed-up by telephone
interview at 14 and 24 weeks postpartum. After excluding those stopped breastfeeding
before 24 weeks and lost to follow-up, complete data were available for n = 209 sub-
jects residing in m = 15 Perth suburbs, on which this analysis was based. The outcome
variable of interest was Y=number of bottle feeds that an infant had received in the 24 h
prior to the interview.

In this longitudinal study, two repeated observations were taken per individual
(mother–infant pair) who were in turn nested within clusters (random suburbs in
metropolitan Perth). The observed number of bottle feeds, given in Table 1, ranged
from 0 to 4 (overall mean=0.11) at 14 weeks and 0 to 8 (overall mean=0.349) at 24
weeks. Assuming a separate Poisson distribution at each time point, the expected num-
ber of zeros is 187 and 147, respectively. Therefore, 6 and 33 extra infants were exclusively
breastfed relative to those expected under the Poisson assumption. The zero-inflation is
also evident according to the χ2

1 score test statistics15 of 31.7 and 149 at first and second
follow-ups, respectively.

For this data set, 42% of the infants were male. The average age of women was 29
years (SD=5.2), the majority of them being multiparous (73.2%) and born in Australia
(73.7%). Table 2 presents the results of fitting multi-level Poisson and multi-level ZIP

Table 1 Observed and predicted number of bottle feeds at 14 and 24 weeks from multi-level
Poisson and multi-level ZIP regression models

Number of Predicted frequency Predicted frequency
bottle feeds Observed frequency from multi-level Poisson from multi-level ZIP

14 weeks 24 weeks 14 weeks 24 weeks 14 weeks 24 weeks

0 193 180 190 164 193 180
1 12 9 16 31 10 13
2 2 9 2 7 4 8
3 1 6 1 3 1 4
4 1 2 0 2 1 2
5 0 1 0 1 0 1
6 0 0 0 1 0 1
7 0 1 0 0 0 0
8 0 1 0 0 0 0
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Table 2 Parameter estimates and standard errors for multi-level Poisson, multi-level ZIP and multi-level ZIP
(exchangeable correlation) regression models (m = 15 clusters, n = 209 subjects, N = 418 observations)

Multi-level Multi-level ZIP
Poisson Multi-level ZIP (exchangeable correlation)

Logistic part Poisson part Logistic part Poisson part

Intercept −3.377 (0.977) 3.724 (1.210) 1.142 (0.815) 3.773 (1.219) 1.137 (0.774)
Maternal age 0.046 (0.033) −0.084 (0.041)* −0.043 (0.027) −0.082 (0.042)* −0.042 (0.026)
Infant sex 0.330 (0.332) 0.104 (0.411) 0.696 (0.288)* −0.050 (0.403) 0.576 (0.268)*
Parity −1.014 (0.367)* 0.131 (0.446) −1.020 (0.315)* 0.329 (0.444) −0.793 (0.290)*
Ethnic origin −0.311 (0.356) 0.216 (0.436) −0.015 (0.296) 0.285 (0.438) 0.050 (0.280)
Time 1.155 (0.239)* −0.146 (0.449) 0.867 (0.340)* −0.157 (0.445) 0.929 (0.343)*
σ 2 (cluster) 0.154 0.041 0.032 0.215 0.002
σ 2 (subject) 1.670 0.163 0.153 0.340 0.090
ρ (subject) – – – 0.591 0.369

∗
P -value <0.05.

regression models to the hierarchical data. Under the Poisson model, only the effects of
parity and time (0 = 14 weeks, 1 = 24 weeks) on bottle feeding are statistically signi-
ficant after adjusting for the individual and random clustering effects. However, under
the ZIP model, the infant sex also exerts significant impact on the number of bottles
that an infant received at 14 weeks of age or 24 weeks of age, whereas maternal age is
negatively associated with the probability of excess zeros in the logistic part.

Primiparous women gave more bottles of formula than multiparous women. This
finding probably reflects a woman’s confidence in her ability to provide sufficient breast
milk to meet the needs of her growing infant. It is likely that primiparous women, with
no prior experience of breastfeeding, will be less confident in their breast milk supply
and thus tend to provide a greater number of supplementary formula feeds than more
experienced mothers. Similarly, infants received a great number of bottles at 24 weeks
than at 14 weeks. The significant time effect is not surprising and may be related to a
mother’s return to paid employment. By 24 weeks, more mothers have either returned
to work or are preparing to return to work. This often necessitates the replacement of
breastfeeds with bottle feeds in preparation for infants being left in the care of others.

According to the ZIP model, male infants received a higher frequency of formula feeds
than female infants. This finding is consistent with the literature33 and confirms the gen-
eral perception by mothers that male infants have higher nutritional needs and should
therefore receive non-breast milk fluids and foods earlier and in greater quantities than
their female counterparts. The ZIP model provides additional insights on the practice of
supplementary feeding, in that older mothers appear to be less likely to exclusively breast-
feed, probably due to work or domestic commitments which divert their full attention
from their infants.

Compared with the multi-level Poisson model, variations in the random components
of the multi-level ZIP model have been substantially reduced after incorporating the
logistic part to model the zero-inflation probability. It should be remarked, however,
that use of the Wald or likelihood ratio test for assessing the variance parameter terms
are not recommended.20 Table 1 shows the predicted number of bottle feeds for both
models, which are computed by summing the predicted probability of Y under each
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model. The results suggest that the multi-level ZIP model can predict the frequency of
bottle feeding better than the multi-level Poisson model, especially the number of zeros.

5 Zero-inflation test and model extensions

5.1 Score test for zero-inflation
In many applications where a preponderance of zero counts is observed, it is important

to assess whether the ZIP model assumption is indeed appropriate. In the literature,
tests for zero-inflation have been developed for independent data.15−17,34 A score test
for correlated count data is outlined below. The advantage of the score statistic lies in
its computational convenience; only a fit of the null Poisson mixed model is required.
For simplicity of presentation, we assume the random effects arise from the clustering
of observations. The penalized log-likelihood function l = l1 + l2 becomes

l1 =
∑

yijk

[

yijkηijk − exp(ηijk) − log(yijk!)
]

, l2 = −
1

2

[

m log
(

2πσ 2
u

)

+ σ−2
u uTu

]

Letting τ = σ 2
u , the score function U(β, u, τ) and the Fisher information matrix

ℑ(β, u, τ) are obtained from the first and second derivatives of l with respect to β, u
and τ . The score statistic for testing zero-inflation is given by

S(β̃, ũ, τ̃ ) = UT(β̃, ũ, τ̃ )ℑ̃−1U(β̃, ũ, τ̃ )

where ℑ̃ is evaluated at the REML estimate (β̃, ũ, τ̃ ). It can be shown that S has an
asymptotic χ2

1 distribution under the null hypothesis H0: φ = 0 against H1: φ �= 0.

Simulation studies further confirm that the χ2
1 approximation is satisfactory under a

wide range of conditions.35

Applying the score test to the infant feeding study data, the score statistics are 9.88 at
14 weeks and 38.45 at 24 weeks postpartum, which are highly significant with reference
to the asymptotic χ2

1 distribution, providing strong evidence of zero-inflation in this
correlated data set.

5.2 Multi-level ZIP regression model with autocorrelation
For the present application, data were collected at two time points (14 and 24 weeks

postpartum). When repeated measures are taken over time, the resulting panel data can
still be modelled within the multi-level ZIP regression framework by assuming a serial
dependence correlation structure such as autoregressive process for the random effects
sijk and vijk. The logistic and the Poisson parts are modelled as follows:

log

[

φijk

(1 − φijk)

]

= ξijk = aT
ijkα + wi + sijk

log(λijk) = ηijk = xT
ijkβ + ui + vijk
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With a first-order autoregressive correlation structure for random effect vectors s and v
of dimension N, Rs and Rv become N × N identity matrices. Let s and v be distributed
as N(0, σ 2

s Bs(ρs)) and N(0, σ 2
v Bv(ρv)) respectively, where B· represents a block diagonal

matrix with block size determined by the number of serial counts for each individual and
ρ· denotes the corresponding autocorrelation parameter for a first-order autoregressive
process within each block.

The estimation procedure essentially follows that of Sections 2 and 3, with correspond-
ing changes in the model setup, EM algorithm and variance component estimation listed
below.

(1) The penalty function l2 is replaced by

l2 = −
1

2

[

m log
(

2πσ 2
u

)

+ σ−2
u uTu + N log

(

2πσ 2
v

)

+ σ−2
v vTB−1

v v
]

−
1

2

[

m log
(

2πσ 2
w

)

+ σ−2
w wTw + N log

(

2πσ 2
s

)

+ σ−2
s sTB−1

s s
]

(2) Following from procedure (1), the complete-data log-likelihood lC = lξ + lη is
modified as

lξ =
∑

ijk

(

zijkξijk − log(1 + exp(ξijk))
)

−
1

2

[

m log
(

2πσ 2
w

)

+ σ−2
w wTw + N log

(

2πσ 2
s

)

+ σ−2
s sTB−1

s s
]

lη =
∑

ijk

(1 − zijk)
(

yijkηijk − exp(ηijk) − log(yijk!)
)

−
1

2
[N log(2πσ 2

v ) + σ−2
v vTB−1

v v]

−
1

2
[m log(2πσ 2

u ) + σ−2
u uTu]

(3) In the E-step of the EM algorithm, under the current estimates α̂(g), ŵ(g), ŝ(g), β̂(g),
û(g) and v̂(g):

z
(g)

ijk
=

{

1

1+exp[−aT
ijk

α̂(g)−ŵ
(g)
i −ŝ

(g)

ijk
−exp(xT

ijk
β̂(g)+û

(g)
i +v̂

(g)

ijk
)]

if yijk = 0

0 if yijk ≥ 1

(4) In the M-step of the EM algorithm, the required changes in the first and second
derivatives of lξ and lη are

∂lξ

∂s
= RT

s

∂lξ

∂ξ
− σ−2

s B−1
s s,

∂lη

∂v
= RT

v

∂lη
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(5) In the variance component estimation, the information matrix is defined as

ℑα,w,s,β,u,v = H +
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(6) The estimating equations for σ 2
s and σ 2

v now become

σ̂ 2
s =

[ŝTB−1
s ŝ + tr(B−1

s V33)]

N
, σ̂ 2

v =
[v̂TB−1

v v̂ + tr(B−1
v V66)]

N

(7) The estimating equations for ρs and ρv are given by
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]
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v

∂Bv

∂ρv
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v )

]

(8) The estimating equations in procedure (7) can be reduced to cubic equations so
that the estimation of the autocorrelation parameters ρs and ρv may be achieved
by numerical techniques solving the cubic equations involved.36

For the infant feeding study with two time points, the size of each block in the block
diagonal variance–covariance matrices for the random effect vectors s and v is reduced
to 2. Consequently, the autocorrelation parameter becomes an exchangeable correlation
between successive observations of the same individual. Results of fitting the multi-level
ZIP (with exchangeable correlation) regression model are given in Table 2. The effects
of covariates are rather similar to those obtained under the multi-level ZIP model.
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In addition, an appreciable correlation between observations of the same individual is
found (0.591 in logistic part and 0.369 in Poisson part).

5.3 Other extensions
With appropriate modification of the probability distribution function, the method of

incorporating random effects in the linear predictors can be generalized to the class of
zero-modified models.24 Although additional parameters are specified under such set-
tings, the parameter estimation procedure essentially follows the derivations in Sections
2 and 3 and proceeds by maximizing the penalized log-likelihood via an EM algorithm.
Furthermore, multi-level negative binomial or zero-inflated negative binomial regres-
sion models for overdispersed count data with extra zeros can be developed in a similar
manner.37

6 Discussion

This paper proposes a multi-level ZIP regression model to analyse hierarchical count data
containing extra zeros. The method can provide insight into the source of excess zeros
and the apparent heterogeneity, while accommodating the within-cluster and within-
individual correlations inherent from the data structure. Application to the longitudinal
infant feeding study illustrates the usefulness of the approach. In the presence of extra
zeros, the multi-level ZIP regression model enables the researchers to draw sensible and
valid conclusions, in terms of identifying significant factors that affect the frequency of
complementary bottle feeds, as well as distinguishing women who are likely to exclusively
breastfeed from those who supplement with formula feeds. The results are logical and
consistent with the breastfeeding literature.

For the multi-level ZIP regression model, estimation of parameters is facilitated using
an EM algorithm in conjunction with the penalized likelihood and REML estimating
equations for variance components. Section 5 outlines a score test for zero-inflation to
assess the ZIP assumption and the possibility of extending the model to more complex
settings. For single-level random effects ZIP models, alternative numerical integration
can be applied to yield a maximum marginal likelihood solution, in which integration
over the random effects distribution is approximated numerically using Gauss–Hermite
quadrature.20 However, such computations become complex with additional random
effects for multi-level data.
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Appendix A

A.1 M-step of the EM algorithm
With the variance parameters (σ 2

w, σ 2
s ) and (σ 2

u , σ 2
v ) held fixed, the M-step of the EM

algorithm provides estimates of the parameters and is performed using the following
two sets of recursive equations:
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û
v̂



 =

[

β0
u0
v0

]

+ ℑ−1
β,u,v



















∂lη

∂β

∂lη

∂u

∂lη

∂v



















where {α0, w0, s0} and {β0, u0, v0} are initial values of the parameters and are replaced
by their updated estimates in each iteration. The first and second derivatives of lξ for the
logistic part are given by
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where ∂lξ/∂ξ = z − exp(ξ)/(1 + exp(ξ)) and ∂2lξ/∂ξ∂ξT = Diag[−exp(ξ)/

(1 + exp(ξ))2].
The first and second derivatives of lη for Poisson part are given by
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where ∂lη/∂η = (1 − z)(y − exp(η)) and ∂2lη/∂η∂ηT = Diag[−(1 − z) exp(η)].

A.2 Variance component estimation
Estimation of variance of random effects requires the calculation of the information

matrix. The expectation of the second derivatives are
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Then the information matrix is given by

ℑα,w,s,β,u,v = H +
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Denoting the inverse of ℑα,w,s,β,u,v by V = (Vij), i = 1, . . . , 6 and j = 1, . . . , 6, so that
V22, V33, V55 and V66 are block matrices corresponding to random effects w, s, u and v,
respectively. Then

σ̂ 2
w =

[ŵTŵ + tr(V22)]

m
, σ̂ 2

s =
[ŝTŝ + tr(V33)]

n

σ̂ 2
u =

[ûTû + tr(V55)]

m
, σ̂ 2

v =
[v̂Tv̂ + tr(V66)]

n

Finally, the square root of diagonal elements of the block matrices V11 and V44 provides
the respective standard errors for the estimates of regression coefficients α and β.




