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ABSTRACT Malware detection is an essential task in cyber security. As the trend of malicious attacks
grows, unknown malware detection with high accuracy becomes more and more challenging. The current
deep learning-based approaches for malware detection are typically trained with large amounts of samples
using labeled and existing malware families in the training set, thus, their capability to detect new unseen
malware (such as a zero-day attack) is limited. To address this issue, we propose a new one-shot model called
‘‘Multi-Loss Siamese Neural Network with Batch Normalization Layer’’ that can work with fewer samples
while providing high detection accuracy. Our model utilizes the Siamese Neural Network to detect new
variants of malware that is trained with only a few samples. Our model is equipped with batch normalization
andmultiple loss functions to address the overfitting issue, due to the use of small samples, that can create the
vanishing gradient problem as a result of binary cross-entropy loss, and feature embedding space to improve
the detection accuracy. In addition, we illustrate a way to convert raw binary files into malware gray scale
images, to work with the popular Siamese Neural Network by generating the positive and negative pairs for
training. Our experimental results show that our model outperforms existing similar methods.

INDEX TERMS Siamese neural network (SNN), malware detection, vanishing gradient problem, feature
embedding space, zero-day attack.

I. INTRODUCTION

Malware is an urgent and pressing problem for the cyberse-
curity industry. Malware attacks cause an enormous amount
of social and economic damage. Modern security software,
widely deployed, utilises machine learning to facilitate the
accurate and timely identification of malware. However,
employing these algorithms requires training a machine
learning model with thousands or millions of known mal-
ware samples that are labelled and representative of future
samples [1]. In most real-world scenarios, it is often difficult
to obtain that kind of large number of malware samples
with proper labels, especially if they are new variants of
polymorphic code, and possibly not seen before (e.g., a zero-
day attack).

Malware features are generally extracted by using two
different types of analysis techniques: static and dynamic
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respectively. Signature-based static features are extracted by
disassembling the code and analyzing the execution trace to
identify any malicious patterns. On the other hand, dynamic
features are extracted from executing the code in a virtual
environment and by generating a behavioral report based
on the execution trace. The behavioral report is analyzed to
capture the behavior of malicious code. Dynamic analysis
is typically regarded to have more advantages than static
features, because it provides better information for detecting
accurate malware. This includes dynamic code loading and
system calls. Despite the advantages, executing the malicious
code in a virtual environment comes with a several chal-
lenges. For example, it may not trigger the conditions that
are critical in detecting malware in a real environment. More-
over, it generally demands more significant time, resources
and professional knowledge. For example, dynamic analy-
sis may need to activate the Command & Control (C&C)
server [2]. Hence, a simpler way to extract dynamic features is
needed.
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The analysis of raw byte sequences has been regarded to
be most promising [3]–[5], thus, a new method based on the
raw executable technique known as ’’malware visualization’’
has been proposed. Nataraj et al. [6] utilizes a technique to
visualize malware binaries resulted in the dynamic analysis
as gray-scale images then classify them based on the similar
image layout and texture. Though promising, another issue
involved with effective malware detection is with the size of
malware samples, especially if deep learning-based technique
is utilized. In the majority of cases, a deep learning model
typically require tens of thousands (or even millions) of data
points to train to achieve accurate classification, such as seen
in Malconv [4]. Unfortunately, it is often difficult to find such
a large number of samples for training. To address this issue,
data augmentation technology has been used to increase the
sample size and diversity of samples (e.g., different malware
families) [7].
Extending further from the data argumentation, a new type

of neural networkmodel calledN-shot learning (or also called
as one-shot or few-shot) have been proposed which can make
full use of prior information to improve the performance of
the model under more constraint input samples. As name
implies, the N-shot learning aims at building a task from
one or very few training examples. These latest techniques
have been applied in malware detection with some degree of
successes. Li et al. [8] proposed a methodology for detecting
malware with binary classifier. Though claimed to produce
better accuracy with smaller sample, their proposal does not
take account into the details of malware classes and the
intra-class features. Kalash et al. [9] and Pascanu et al. [10]
proposed a network for classifying malware based on mal-
ware samples only without getting benign samples involved
in detection. As these existing methods do not contain the
comparisons among different samples involved (e.g., benign
vs malware, cross referencing among the same or different
families of samples), the binary cross-entropy loss tends
to show slow convergence and unstable performance [11],
and the distance between the pairs generated from same
family is not considered. Furthermore, as these models tend
to ignore the embedding space of inter-class, the perfor-
mance of accuracy may be limited, since the same malware
image may have large distances in the feature embedding
space due to the changed part of executable file. However,
these malware pairs are supposed to share similar labels
and contribute to a loss term via the same label (as seen
in Figure 1(a)).
To address these issues associated with the existing meth-

ods, we propose Multi-Loss Siamese Neural Network with
Batch-Normalization. With added Batch-Normalization and
the combination of two loss functions, hence the name multi-
loss, our model provides a better similarity distance mea-
sure resulting in achieving high detection accuracy (as seen
in Figure 1(b)). The main contributions of our proposal are as
follows:
• We introduce a strategy to convert a binary file, such as
Andro-Dumpsys dataset, into the image files that can

FIGURE 1. Improving the similarity distance in an embedding space.

feed into an N-shot based neutral network model such
as a Siamese Network.

• Our proposed model is tuned such as way that it can
workwell on a small amount of training datasets. Specif-
ically, this is done by appropriately setting the network
parameters for the data augmentation and adding batch
normalization to avoid overfitting that could have caused
due to the use of small datasets.

• The multiple loss function is useful to improve the fea-
ture embedding space in the Siamese Neural Network
for binary classification. In the feature embedding space,
the distance of each positive pair that belongs to the same
class become small.

• Our experimental results illustrate that our proposed
model achieves higher accuracy than the baseline meth-
ods in one-shot classification tasks inmalware detection.

II. RELATE WORK

In this section, we discuss the state of the art in the use of
deep leaning techniques for malware detection. In one of
the earliest adoptions of a deep learning technique for mal-
ware analysis, Kalash et al. [9] used a Convolutional Neural
Network (CNN) to detect malicious code and showed detec-
tion results on the gray images of the Malimg Dataset [6].
From there, Wang et al. [12] employed multiple CNNs to
detect Android malware including the architecture for the
use of the activation function based on Rectified Linear
Unit (ReLU) to increase sparseness and dropout to prevent
over-fitting. In many cases, deep learning researchers gen-
erally use the combined convolutional and pooling layer
with the full-connection layer to enhance feature extrac-
tion capability. This approach is further defined to combine
CNN and deep auto-encoder to learn more flexible model
and reduce the training time. A Recurrent Neural Network
(RNN) [13] is a class of artificial neural networks where
connections between nodes form a directed graph along a
temporal sequence which allows to exhibit temporal dynamic
behavior. Unlike other feed forward based neural network
models, RNN can use their internal states, kept in the mem-
ory, to process sequences of inputs. This makes it more
applicable to tasks such as sentence classification [14] and
speech recognition [15]. Pascanu et al. [10] employed a RNN
technique to detect malware by constructing an API call
language model. Their proposal used the hidden state of the
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model which encodes the history of previous event as the
fixed-length feature vector that is given to loss function of
logistic regres- sion. Xiao et al. [16] considered that there
exists some semantic information in system call sequences,
much like the structure of natural language by treating one
system call sequence as a sentence in the language and
then constructing a classifier based on the Long Short-Term
Memory (LSTM) language model. In this model, two LSTM
models are trained respectively by the system call sequences
from malware and those from benign samples. Accord-
ing to these models, two similarity scores are computed.
Finally, the classifier determines whether the application
under analysis is malicious or trusted by examining the score.
Tobiyama et al. [17] investigated the application of Deep
Neural Networks (DNN) to classify malware process.
In their project, the authors trained a Recurrent Neural
Network (RNN) to extract the features of malware behav-
ior followed by further training the Convolutional Neural
Network (CNN) to classify the feature images which are
generated by the extracted features from the trained RNN.
However, these models are trained on the large scale of
samples.

III. OUR MODEL

In this section, we introduce our model along with the provi-
sion of the structure and step by step guide to construct the
training samples.

A. MALWARE IMAGES

In our approach, we take malware detection as a visualiza-
tion task by converting malware binary code into malware
images then running a classification task using a deep learn-
ing approach. To feed into our proposed model, the malware
binary code needs to be converted into an appropriate input
format as seen in Figure 2.

FIGURE 2. Input image conversion.

Firstly, the binary malware code is read as a vector of 8 bit
unsigned integers. This 1D vector of 8 bit unsigned integers is
converted into 2D vectors with the fixed width for various file
sizes (see Table 1) and the height corresponding to the actual
size of the original file, as proposed by Nataraj et al. [6].
Further, we convert the 2D vector to form the gray images in
the range [0, 255]. At this stage, the converted gray images are

in various dimension (e.g., vary in size with different height
and width) as shown in Table 1.

TABLE 1. Image width for various file sizes.

These various image dimensions would result in the fully
connected layer in a neural network to occur errors due to
inconsistency in the dimensions across different input sam-
ples. To avoid such problems, we use a bi-linear interpolation
method [18] to make the images uniform to 105× 105.
In addition, the malware images come from different mal-

ware families. The understanding of the origin of the malware
family can be captured by examining the texture of malware
images. For example, the texture of two malware images
from the same family would be similar but slightly different
in texture (as seen in Figure 3 (b) and (e)). The similarity
in the image texture is because many variants of malware in
the same family are usually developed based on the original
malware and share many similar characteristics (i.e., malware
signatures). Figure 3 illustrates the different texture of differ-
ent malware families.

FIGURE 3. The samples of different malware family.

B. THE OVERVIEW

We utilize a Siamese Neural Network (SNN) as a key com-
ponent. Our model is mainly composed of two main parts;
the shared neural network and multi-loss structure respec-
tively. The shared neural network is further composed of a
convolutional neural network, a batch normalization layer,
pooling layer whereas the multi-loss structure is composed
of the two loss functions and fully connected layers. This
general overview of our approach is shown in Figure 4. Our
proposed model goes through three phases; malware image
pre-processing, training, and testing respectively.
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FIGURE 4. Flowchart.

• The pre-processing phase: the input images are prepared
from the binary format (of Android malware) into gray
images (as seen in Section 3.1). The images are divided
into two different groups: positive pairs and negative
pairs and feed into two separate CNN neural networks
(i.e., branches of the Siamese Neural network).

• The training phase: we create the pairs of images which
are concatenated with samples selected from the same or
different classes. The dimension of N -image batch size
is n, x, and y. Overall of the batches are separated into
two aspects equally and labeled as 1, or 0 respectively,
where N is the batch size, n is the randomly selected
sample in the categories, x is the width of image and
y is the height of image.

Put more formally, our approach can be written as follows.
Note that we define the each malware images as Ei, where
dimension is 150 × 150 pixels. Table 2 lists the notation and
their descriptions.

TABLE 2. The used notations in this paper.

1) INPUTTED MATRIX

We use < E+i ,E
+
j > and < E+i ,E

−
j > to denote the positive

pairs and negative pairs respectively. The form of the inputted
matrix Ei are concatenated as:

Ei = [Eni ;E
x
i ;E

y
i : E

z
i ] (1)

where Eni is the number of sample, and Exi is the width
pixels, Eyi is the height pixels. the Ezi is the RGB channels

for the image. For instance, if the image is RGB the Ezi will
be 3. In this proposal, our processed images are grayscale,
therefore the value of Ezi is 1.

2) NETWORK STRUCTURE

As shown in Figure 5, our model has a pair of convolutional
networks which share the parameters, the weights W ∈ Rd .
The main advantage of shared weights, is that we can sub-
stantially lower the degrees of parameters to optimize and
avoid overfitting as the weight are shared with some other
neurons. The pair of convolutional networks is inputted with
a unit matrix. This can be represented as:

Fw(Ei) =< Fw(E
+
i ),Fw(E

−
i ) > (2)

where the Fw is the feature representation of inputted matrix
of Ei which is generated by the model. Generally, this model
gw: Rn 7→ Rd is parameterized by weights w;

3) MULTI-LOSS TRAINING

Given a Siamese Neural Network structure gw and the
inputted matrix Et . We aim to learn a model which predict
the probability of malware with the multi-loss function which
jointly optimizes identification loss and detection loss for
malware detection, which is defined as follows:

L(dw, yd , xi, yi) = L1(dw, yd )+ λL2(xi, yi) (3)

where λ is a hyper-parameter to weight the relative and
importance of each loss.

C. MAIN COMPONENTS

The main components of our improved Siamese Neu-
ral Network includes: 1) the batch normalization layer is
added for normalizing the output of the previous activation;
2) multi-loss structure is added for improving the feature
embedding space, as seen in Figure 5.
In a Siamese network gw, there are typically two symmet-

rical branches which shares the same learned weights. A pair
of images is entered as a representation of certain features
into each branch. Within a branch, the pair of images go
through a series of convolutional layers, pooling layers, and
fully connected layers. Generally, the top layer in each branch
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FIGURE 5. The overall network structure.

Algorithm 1 Pseudo-Code of Our Proposed Algorithm

Pairs generator:E = G(x1, x2, . . . , xn);
Initialization weights and biases as [19];
function Euclid dw(x1, x2);
Binary_crossentropy L1; Softmax L2;
Input : Training set Ei, support set Es, Target label Lt ,

Hyper-parameters λ

Output: [Predicted PairLabel]
1) Training Stage with forward and backprogation ;
while not reach to iterations do

Fw(x1) = One branch of Siamese with batch
normalization layer ;
Fw(x2) = One branch of Siamese with batch
normalization layer ;
dw(x1, x2) = Fw(x1)− Fw(x2);
Loss of PairLabel = L1(dw);
Loss of ClassLabel = L2((Fw(x1));
Loss of ClassLabel = L2((Fw(x2));
Total loss = L1 + λL2

2) Testing Stage;
while not reach to iterations do

if Es[index].Predict_binarylabel = Lt [index] then
return correct + 1

Accuracy = 100× correct/iterations;

uses softmax activation function to classify the pairs of the
image to see whether the pair belongs to the same category.
Mathematically, the similarity between a pair of images

(x1, x2) within Euclidean distance can be computed by a
Siamese Neural Network (SNN) and it can be described as

dw(x1, x2) = ‖Fw(x1)− Fw(x2)‖2 (4)

In this equation, if x1 and x2 are similar, the dw(x1, x2) will
be close to zero, otherwise they are dissimilar. However,
previous research [20] only employed the logistic loss for

malware detection, as shown in Eq.(5), to measure the simi-
larity between the inputted images.

L(w) =
p

∑

i=1

(1− yi)fp(d
i
w)+ yifq(d

i
w) (5)

where yi is the label for the input pair of images, if the images
(x1, x2) are similar, the yi = 1, otherwise, yi = 0 denote that
they are dissimilar.

D. BATCH NORMALIZATION(BN) LAYER

However, in a typical SNN, the vanishing gradient problem
would occur mainly because the distribution of training data
points have changed or shifted as the distribution gradually
approaches the upper and lower limits of the interval of the
nonlinear function value. This happens since the parame-
ters of the preceding layers change at the training stage.
Accordingly, the distribution changes at the current layer
such that the current layer needs to constantly readjust to
new distributions. This problem is especially severe for deep
networks, because small changes in shallower hidden layers
would be amplified as they propagate within the network
resulting in significant shift in deeper hidden layers. Our
model adds Batch Normalization (BN) [21] to reduce these
unwanted shifts to speed up training and to produce more
reliable models. With this additional layer, the network can
use higher learning rate without vanishing or exploding gra-
dients. Furthermore, it also regularizes the network such that
it is easier to generalize, and avoids the use dropout to mit-
igate overfitting. The network also becomes more robust to
different initialization schemes and learning rates. As in [21],
the BN framework is considered primarily for convolutional
neural networks. Both the input and output of a BN layer are
four dimensional tensors, which are denoted as Ib,c,x,y and
Ob,c,x,y, respectively. These dimensions correspond to exam-
ples within a batch b, channel c, and two spatial dimensions
x, y respectively. For input images, the channels correspond
to the RGB channels. BN applies the same normalization for

171546 VOLUME 8, 2020



J. Zhu et al.: Multi-Loss Siamese Neural Network With Batch Normalization Layer for Malware Detection

all activation in a given channel,

Ob,c,x,y← γc
Ib,c,x,y − µc
√

σ 2
c + ǫ

+ βc ∀b, c, x, y (6)

where µc denotes 1
|ω|

∑

b,x,y Ib,c,x,y from all input activations
in channel c, whereωmeans all activations in channel c across
all features b in the entire mini-batch and spatial x, y loca-
tions. Subsequently, BN divides the centered activation by the
standard deviation µc (plus ǫ for numerical stability) which
is calculated analogously. During testing, running averages
of the mean and variances are used. Normalization is fol-
lowed by a channel-wise affine transformation parameterized
through γc, βc, which are learned during training.

E. MULTI-LOSS STRUCTURE

In our model, we introduce two loss functions: the softmax
loss (as the identification loss function) and logistic loss
(as the detection loss function), respectively. The softmax
loss is used to optimizing the feature embedding space which
is enhanced by the logistic loss that issued to calculate the
distance between pair of images. We provide that this style of
combined use of multi-loss functions allow the sharing of the
information better across different tasks thus contributing to
achieve better detection accuracy. In addition, the sharing of
the information by these two multi-loss functions also allows
our model to suffer less from overfitting when compare to
other similar models that use only a single loss function.

1) IDENTIFICATION LOSS

Generally, the identification loss plays the same role as
the general classification task. A softmax regression is usu-
ally used for the multi-class classification. In this proposal,
we employ softmax loss to enlarge the inter-class distinction
to optimize the feature embedding space to force the feature
representation corresponding to the data point of the same
class. This can be written as follows:

L1 = −
1

M

M
∑

i=1

log
e
W T
yi
xi + byi

∑N
j=1 e

W T
j xi+bj

(7)

where M is the number of batch size, yi denotes the label
(i.e., the number of malware class) and xi which denotes the
deep feature of malware. Wj ∈ R

d×n in the identification
fully connected layer and b ∈ R

n is the bias term. Finally,
the Eq.(7) is the part of two losses, which are optimized
jointly during the training.

2) DETECTION LOSS

In our approach, the malware samples belong to the same
class, which are positive pairs (labelled as 1) while a pair of
a malware sample and benign sample, or the malware from
different class are constructed to negative pairs (labelled as 0).
The distance of two images of positive pairs is expected to
closest when they are matched with each other. With these
considerations, the most suitable loss function for our model

is the logistic regression. Thus, the logistic regression for our
model can be given as follows:

L2 = −
1

M

M
∑

i=1

[yid fp(d
(i)
w )+ (1− yid )fq(d

(i)
w )] (8)

where yd is the label of image pairs, dw is the Euclidean
Distance between two images. Theoretically, the most similar
image is supposed to be the closest in the feature embedding
space.

3) MULTI-LOSS FUNCTION

Our model is trained by softmax loss and logistic loss and
finally both of them are converged. The identification loss of a
softmax function, which shares the fully connected layer with
detection loss, considers the feature of shared fully connected
layer as the input. Each pair of feature vectors independently
generates a loss term and its specific embedding space. It is
possible that the manifold feature is changed by the behavior
of malware code, because the same malware family not shar-
ing the specific class label, is only marked by the indicator,
yd of a pair. Furthermore, the features of all branches will be
feed into their final loss to be optimized. During the training
stage, the combined loss function is formulated as follows:

L = L1 + λL2 (9)

where λ is a hyper-parameter to balance the weight of two
loss function, which is set to 0.4. From the Eq.(7) we can
observe that each loss function is responsible for performing
a specific classification task, and this loss function assists
the prediction ability of the one-vs-one classifier with its
discriminative features.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of our proposal.
The experimental results have been obtained by running the
tests on the desktop with the 32GM RAM, Nvidia Quadro
P2000(5GB), and Xeon W-2133 CPU@3.6GHz.

A. DATASET AND SETUP

In this experiment, we employ the dataset from our collab-
orator [22] that has been widely used. The dataset consists
of 906 malicious binary files from 13 malware families.
The number of the malware samples from different malware
classes varied. Almost half of the classes have no more
than 25 malware samples, and some have only one as they
are new malware detected lately(e.g., Blocal and Newbak).
We increased the data size for every malware class to have
at least 30 samples using a manual data argumentation tech-
nique for malware diversity [1] using the parameters shown
in Table 3. A separate dataset containing 1,776 benign sam-
ples was randomly used as input pairs in the support set.

To train our model is conducted per mini-batch. Our model
randomly selects image pairs as half positive pairs and half
negative pairs. We randomly select anchor image pairs as
mini-batch to feed into the model. The batch size includes
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FIGURE 6. The examples of data augmentation.

TABLE 3. Data augmentation parameters.

the numbers of different randomly selected image pairs. The
initial learning rate was set to 0.00002. The maximum num-
ber of iterations was 15,000, and the batch size was 35.
After training, we save the parameter weights for testing.
The details of the parameters we set of training are shown
in Table 4.

TABLE 4. Training parameters.

B. N-WAY ONE-SHOT ACCURACY

The testing process conducts M times of N-way one-shot
learning tasks, where Q times of correct predictions con-
tribute to the accuracy calculated by the following formula:

Accuracy = (100 ∗ Q/m)% (10)

The evaluation of N -way one-shot learning at each test state,
we choose an anchor image from one class of test, and then
randomly selects N classes of images to form the support set
X = {xi}

N
i=1, where x1, ∀x ∈ X , where selected image’s class

is the same as the anchor image x̂, the other images in support
set are from different classes. The similarity score between x̂

FIGURE 7. Parameters comparison.

and other image is calculated through Siamese network. To be
specific, if the similarity score of feature vector of x1, which
can be represented as S = {si}Ni=1, that score is the maximum
of S the task can be labeled as a correct prediction. Otherwise,
it is regarded as the incorrect prediction. As we can see from
the Figure 8, our proposal worked efficiently by producing
the best accuracy compare to other similar models [20], [23]
and similar work [24]. Our proposed model produced the best
detection accuracy – that is, above 99% during the training
phase while around 90% during the testing phase. It must note
that our proposed model didn’t have any large decline in the
detection rate, as observed in other similar approaches, in the
presence of the increasing N-way pairs.

FIGURE 8. The accuracy of N-way one-shot learning for different methods.

C. DISTANCE MEASURE EFFECTIVENESS

We also conducted an experiment to analyze the effective-
ness of our algorithm on distance measure using Receiver
Operating Characteristic (ROC) curve. We denote f0(p) as
the probability density function of predictions p(x) from our
algorithm of negative pairs that are labeled as 0 and f1(p) are
the probability from positive pairs that are labeled 1. The true
positive rate (TPR) and false positive rate (FPR) for a given
discrimination threshold p are the integrals of the tails of these
distributions.

FPR(P∗) :=
∫ 1

p∗
f0(p)dp

TPR(P∗) :=
∫ 1

p∗
f1(p)dp (11)

The ROC curve is the function TPR(FPR) and thus the area
under the curve (AUC) is:

AUC =

∫ 1

0
TPR(FPR)D(FPR) (12)

from the equation we can see that the AUC (Area Under
the Curve) is the probability that a randomly chosen point
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from class 0 ranks below a randomly chosen point from
class 1. If the classifiers perform well, the AUC is to be
closer to 1. We benchmarked our model against the popular
original implementation of the Siamese Neural Network [25].
As Figure 9 shows, the result is on a set of points in the true
positive rate - false positive rate plane, which is the curve
for our data set. When the probability value of AUC is close
to 0.5, it means that an algorithm randomly guessing whether
a given sample is malware or benign.We respectively achieve
the AUC equals to 0.98, 0.97, and 0.91 respectively under
the 5-way, 10-way, and 15-way. It is noted that our model
always performs better as the AUC area of our proposal is
larger against other benchmark.

FIGURE 9. ROC curves under the N-way One-shot.

FIGURE 10. Feature Visualization Using t-SNE.

D. VISUALIZING NEAREST NEIGHBORS WITH T-SNE

Figure 10 displays the feature vectors of 4096 dimension
extracted from our model. With the PCA initialization,

t-Distributed Stochastic Neighbor Embedding (t-SNE) tech-
nique projects these feature vectors into two dimensional
for visualization. For this visualization, we only show the
positions of 15 image pairs which include 14 negative
pairs (blue circle point) and 1 positive pairs (red triangle
point). Compared with the original classifier, as shown in the
Figure 10 (a), the the positive pairs are isolated by another
negative pairs well in the Figure 10 (b). We also do multiple
positive pairs for visualizing this model performance. In the
Figure 10 (c), the blue area cover all 7 negative pairs, and it
only contains one wrong positive pair.

V. CONCLUSION AND LIMITATIONS

In this paper, we propose a new neural network model based
on one-shot learning for malware detection. This model effec-
tively solves the problem that the traditional model cannot
detect unknown malware, and further optimizes the feature
space so that positive samples from the same class have
a local distance greater than samples of different malware
classes.

The experiments showed that our algorithm performed
better than other base-line methods, such as Siamese Neural
Network, and KNN. For the further study, we plan to make a
use of other metric learning applied to our model to improve
recognition accuracy. We also have a plan to add the Spatial
Pyramid Pooling layer into Siamese network since it allows
the convolutional network taking arbitrary size of images to
avoid the information loss of malicious code. By adding this
layer, the arbitrary size of featuremaps can be adjusted via the
spatial pooling regions to be the appropriately proportional to
the size of the output matched with the fully connected layers.

However, there are a number of limitations of our current
proposed model. Our proposed model, for example, could not
correctly classify a polymorphic malware (i.e., disguised as a
new malware by changing or moving some parts of the code
elsewhere) but would recognize it as a newmalware [26]. The
validity of the synthetic data produced by the data argumen-
tation strategy we proposed has not been fully examined to
ensure whether the synthetic data captures the characteris-
tic of real malware. In addition, our current model can be
vulnerable to misclassification against adversarial attack if
the original data is modified, especially when the original
malware sample is in the raw binary file format.
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