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Abstract

In this paper, we propose a multi-manifold deep met-
ric learning (MMDML) method for image set classification,
which aims to recognize an object of interest from a set of
image instances captured from varying viewpoints or under
varying illuminations. Motivated by the fact that manifold
can be effectively used to model the nonlinearity of sam-
ples in each image set and deep learning has demonstrated
superb capability to model the nonlinearity of samples, we
propose a MMDML method to learn multiple sets of nonlin-
ear transformations, one set for each object class, to non-
linearly map multiple sets of image instances into a shared
feature subspace, under which the manifold margin of dif-
ferent class is maximized, so that both discriminative and
class-specific information can be exploited, simultaneous-
ly. Our method achieves the state-of-the-art performance
on five widely used datasets.

1. Introduction

Image set classification has been an important problem
in computer vision in recent years [1, 2, 3, 4, 5, 6, 7, 8, 10,
11, 13, 15, 16, 18, 22, 24, 26, 27, 28, 29, 34, 35, 36, 37,
38, 39, 40], especially when more and more data are eas-
ily accessible and multiple images of the same object are
easily captured nowadays. There are many practical appli-
cations for image set classification such as visual surveil-
lance, multi-view camera network analysis, and personal al-
bum organization. Generally, image set classification aims
to recognize an object of interest from a set of image in-
stances captured from varying viewpoints or under varying
illuminations, which is different from the conventional im-
age classification where each training and testing example
is a single still image. Compared to a single image, an im-

Figure 1. The basic idea of our proposed image set classification
approach. For each image set, we model it as a manifold and pass
it into multiple layers of deep neural networks to nonlinearly map
each manifold into another feature space. Specifically, the deep
network is class-specific so that different classes have differen-
t parameters in their networks. In the top layer of these networks,
the maximal manifold margin criterion is used to learn the param-
eters of these manifold. In the testing stage, we apply these class-
specific deep networks to compute the similarity between the test-
ing image set and all training classes and the smallest distance is
used for classification.

age set offers us more useful information to describe objects
of interest. However, it is also more challenging to exploit
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discriminative information from image sets because there
are usually larger intra-class variations within a set, which
makes the classification task more difficult.

There have been a variety of studies on image set clas-
sification over the past decade [1, 2, 3, 4, 5, 6, 7, 8, 10, 11,
13, 15, 16, 18, 22, 24, 26, 27, 28, 29, 34, 35, 36, 37, 38,
39, 40], and significant progresses have been made in re-
cent years [3, 4, 5, 11, 26, 27, 35, 37, 39, 40]. One key
challenge in image set classification is how to effectively
model and represent each image set because there are usual-
ly high nonlinearity of samples within a set. While existing
methods have achieved reasonably good performance in im-
age set classification, most of them usually make strong as-
sumptions such as singe Gaussian, Gaussian mixture mod-
els, subspace or mixture of subspaces to represent image
sets. In many real world applications, these assumptions
may not be held, especially when there are complex varia-
tions within a set.

In this paper, we propose a new multi-manifold deep
metric learning (MMDML) approach for image set clas-
sification, where the key idea of the proposed approach is
shown in Figure 1. Given each image set, we first mod-
el it as a nonlinear manifold because manifolds can effec-
tively describe the geometrical and structural information
of image instances within image sets. Motivated by the fac-
t that deep learning has demonstrated superb capability to
model the nonlinearity of samples, we propose a MMDML
method to learn multiple sets of nonlinear transformation-
s, one set for each object class, to nonlinearly map multiple
sets of image instances into a shared feature subspace, under
which the manifold margin of different class is maximized,
so that both discriminative and class-specific information
can be exploited, simultaneously. Experimental results on
five widely used datasets validate the effectiveness of the
proposed method.

2. Related Work

Image Set Classification: Existing image set classifica-
tion methods [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 16, 18,
22, 24, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 40] can be cat-
egorized into two classes: parametric and non-parametric.
For the first category, each image set is modeled as a spe-
cific distribution and then the Kullback-Leibler (KL) diver-
gence is used to compute the similarity of two image sets.
For example, Shakhnarovich et al. [28] modeled each image
set as a single Gaussian [28], Arandjelovic et al. [1] repre-
sented each image set as a Gaussian mixture model. The
key limitation of this class of methods is that if there is no
strong correlation between two image sets, such a paramet-
ric model cannot well characterize the image sets and hence
the similarity estimated is not effective. For the second cat-
egory, each image set is modeled as a subspace [13, 39], co-
variance descriptor [27, 35], affine or convex hull [2] or dic-

tionary [5, 26]. Then, the distance between these nonpara-
metric models is utilized to compute the similarity of two
image sets. However, most of these nonparametric methods
are linear models, which are generally not strong enough to
model image sets, especially when there are complex vari-
ations within a set. To address this, Hayat et al. [11] pre-
sented a deep learning approach for image set classification,
where multiple layers of non-linear reconstruction models
were used to model image set. While encouraging perfor-
mance was achieved, their approach is generative, which is
not discriminative enough to differentiate different objects.
In this work, we propose a discriminative deep learning ap-
proach to extract more discriminative information for image
set classification, and we achieve superior or very competi-
tive results on five widely used datasets.

Deep Learning: Recently, deep learning has attracted
increasing interest in computer vision and machine learn-
ing, and a variety of deep learning algorithms have been
proposed over the past few years [12, 14, 17, 20, 21]. Gen-
erally, deep learning aims to build high-level features by
learning hierarchical feature representations from raw data.
Representative deep learning models included deep stacked
auto-encoder [20], deep convolutional neural networks [40],
and deep belief network [12], and some of them have been
successfully employed in various vision applications such
as image classification [17], object detection [30], action
recognition [20], face verification [31], and visual track-
ing [33]. While significant progress has been achieved, little
attempt has been made on deep learning for image set clas-
sification. To our knowledge, [11] is the first work on using
deep learning for image set classification, where person-
specific nonlinear deep reconstruction models are learned
for classification. However, their method is unsupervised,
which may not be discriminative enough to extract nonlin-
ear information for classification. In this work, we propose
a discriminative deep learning method to exploit both the
nonlinear and discriminative information for image set clas-
sification.

3. Proposed Approach

Figure 1 shows the basic idea of our proposed MMDML
method, and the following subsections present the details of
the proposed method.

3.1. MMDML

Let 𝑋 = [𝑋1, ⋅ ⋅ ⋅ , 𝑋𝑐, ⋅ ⋅ ⋅ , 𝑋𝐶 ] be the train-
ing set of 𝐶 different classes, where 𝑋𝑐 =
[𝑥𝑐1, 𝑥𝑐2, ⋅ ⋅ ⋅ , 𝑥𝑐𝑖, ⋅ ⋅ ⋅ , 𝑥𝑐𝑁𝑐

] ∈ ℝ
𝑑×𝑁𝑐 denotes the

𝑐th image set, 1 ≤ 𝑐 ≤ 𝐶, 𝑁𝑐 is the number of samples
in this image set1, 𝑥𝑐𝑖 is the 𝑖th image in this image

1In the training set, there could be multiple image sets for some classes.
For this case, we merge image sets from the same person into a large image
set to learn the class-specific deep model.
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Figure 2. Illustration of the maximal manifold margin criterion used in our MMDML method. (a) There are thee intra-manifold neighbors
(denoted as the same circles) and six inter-manifold neighbors (denoted as the squares and triangles). (b) The intra-manifold neighbors. (c)
The inter-manifold neighbors. (d) The manifold margin is maximized after applying our MMDML method.

set, and 𝑑 is the feature dimension of each image. As
shown in Figure 1, we construct a deep neural network
for each class, and pass the image set 𝑋𝑐 into the 𝑐th
network. Assume there are 𝐿 + 1 layer in the work,
and 𝑑𝑙

𝑐 denote the number of nodes in 𝑙th layer of the
𝑐th network, where 1 ≤ 𝑙 ≤ 𝐿. For the image 𝑥𝑐𝑖, its
output of the first layer in the 𝑐th network is computed as:
ℎ1
𝑐𝑖 = 𝑠(𝑊 1

𝑐 𝑥𝑐𝑖 + 𝑏1𝑐), where 𝑊 1
𝑐 is the projection matrix

and 𝑏1𝑐 is the bias vector to be learned in the first layer of the
𝑐th network, 𝑠 is a nonlinear active function which applies
component-wisely, which is widely used in previous deep
learning algorithms [12, 14, 17, 20, 21]. Then, the output
of the first layer of this network is used as the input of the
second layer. Therefore, the output of the second layer is
ℎ2
𝑐𝑖 = 𝑠(𝑊 2

𝑐 ℎ1
𝑐𝑖 + 𝑏2𝑐), where 𝑊 2

𝑐 is the projection matrix
and 𝑏2𝑐 is the bias vector to be learned in the second layer of
the 𝑐th network, respectively. Similarly, the output for the
𝑙th layer is ℎ𝑙

𝑐𝑖 = 𝑠(𝑊 𝑙
𝑐ℎ𝑙−1

𝑐𝑖 + 𝑏𝑙𝑐), and for the top layer is:

ℎ𝐿
𝑐𝑖 = 𝑠(𝑊𝐿

𝑐 ℎ𝐿−1
𝑐𝑖 + 𝑏𝐿𝑐 ) (1)

where 𝑊𝐿
𝑐 is the projection matrix and 𝑏𝐿𝑐 is the bias vector

to be learned for the top layer of the 𝑐th network, respec-
tively.

To boost the image set classification performance, we ex-
pect that image sets from different classes can be well sep-
arated at the top layer of the learned deep networks. Since
each image set is modeled as a manifold, we aim to maxi-
mize the margin of different manifolds from different class-
es so that discriminative information is extracted for classi-
fication. While there have been several works on computing
the manifold-manifold distance [25, 34, 36], there is still a
lack of a formal definition of manifold-manifold distance.
In our work, for each sample ℎ𝐿

𝑐𝑖 from the 𝑐th manifold,
we compute two squared distances 𝐷1(ℎ

𝐿
𝑐𝑖) and 𝐷2(ℎ

𝐿
𝑐𝑖),

which measure the dissimilarity between this sample and

its intra-class and inter-class neighbors as follows:

𝐷1(ℎ
𝐿
𝑐𝑖) =

1

𝐾1

𝐾1∑

𝑝=1

∥ℎ𝐿
𝑐𝑖 − ℎ𝐿

𝑐𝑖𝑝∥22 (2)

𝐷2(ℎ
𝐿
𝑐𝑖) =

1

𝐾2

𝐾2∑

𝑞=1

∥ℎ𝐿
𝑐𝑖 − ℎ𝐿

𝑐𝑖𝑞∥22 (3)

where ℎ𝐿
𝑐𝑖𝑝 and ℎ𝐿

𝑐𝑖𝑞 are the feature representations at the top
layer of the 𝑝th intra-manifold and 𝑞th inter-manifold neigh-
bors, 𝐾1 and 𝐾2 are two parameters to define the neighbor-
hood size, respectively.

Let 𝑓𝑐 = {𝑊 1
𝑐 , 𝑊 2

𝑐 , ⋅ ⋅ ⋅ , 𝑊𝐿
𝑐 , 𝑏1𝑐 , 𝑏2𝑐 , ⋅ ⋅ ⋅ , 𝑏𝐿𝑐 } be the pa-

rameters of the 𝑐th network, we formulate the following op-
timization problem to maximize the margin between the 𝑐th
manifold and other manifolds:

min
𝑓𝑐

𝑁𝑐∑

𝑖=1

(
𝐷1(ℎ

𝐿
𝑐𝑖)− 𝐷2(ℎ

𝐿
𝑐𝑖)

)
(4)

The objective in (4) is to ensure that for each face sample
𝑥𝑐𝑖 from the 𝑐th class, the distance between it and the 𝐾1

intra-manifold neighbors is minimized and that between it
and the 𝐾2 inter-manifold neighbors is maximized, so that
large margin can be exploited for each sample in this man-
ifold. Figure 2 presents an illustration to show the key idea
of how these intra-manifold and inter-manifold neighbors
are constrained to maximize the manifold margin, where
𝐾1 and 𝐾2 are set as 3 and 6, respectively.

By applying the criterion in (4) on each sample from all
image sets in the training set, we formulate the following
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optimization problem for our MMDL modal:

min
𝑓1,𝑓2,⋅⋅⋅ ,𝑓𝐶

𝐻 = 𝐻1 +
𝜆

2
𝐻2

=

𝐶∑

𝑐=1

𝑁𝑐∑

𝑖=1

𝑔
(
𝐷1(ℎ

𝐿
𝑐𝑖)− 𝐷2(ℎ

𝐿
𝑐𝑖)

)

+
𝜆

2

𝐶∑

𝑐=1

𝐿∑

𝑙=1

(∥𝑊 𝑙
𝑐∥2𝐹 + ∥𝑏𝑙𝑐∥22

)
(5)

where 𝐻1 maximizes the manifold margins to exploit the
discriminative information for classification, and 𝐻2 regu-
larizes the parameters of these networks, 𝜆 is a parameter
to balance the contributions of different terms, and 𝑔(𝑎) is a
generalized logistic loss function to smoothly approximate
the hinge loss function 𝑎 = max(𝑎, 0), and is defined as
follows:

𝑔(𝑎) =
1

𝜌
log(1 + exp(𝜌𝑎)) (6)

where 𝜌 is the sharpness parameter.

Since ℎ𝐿
𝑐𝑖𝑝 and ℎ𝐿

𝑐𝑖𝑞 depend on the network parameter-
s 𝑊 1

𝑐 , 𝑊 2
𝑐 , ⋅ ⋅ ⋅ , 𝑊𝐿

𝑐 , and 𝑏1𝑐 , 𝑏2𝑐 , ⋅ ⋅ ⋅ , 𝑏𝐿𝑐 , which are also to
be learned in our method, the optimization function defined
in (5) is an egg and chicken problem. To address this, we
develop an iterative algorithm to obtain a local optimal so-
lution. Specifically, we first initialize the network parame-
ters with appropriate values and compute the intra-class and
inter-class neighbors, then, we update these parameters by
(5) until convergence.

We adopt the stochastic sub-gradient descent algorithm
to solve the optimization problem in (5) to obtain the param-
eters {𝑊 1

𝑐 , 𝑏𝑙𝑐}∣𝐿𝑙=1. The gradient of the objective function
𝐻 with respect to 𝑊 1

𝑐 and 𝑏𝑙𝑐 can be computed as follows:

∂𝐻

∂𝑊 𝑙
𝑐

=

𝑁𝑐∑

𝑖=1

(
𝛿𝑙𝑐𝑖(ℎ

𝑙−1
𝑐𝑖 )′ + 𝛿𝑙𝑐𝑖𝑝(ℎ

𝑙−1
𝑐𝑖𝑝 )

′ + 𝛿𝑙𝑐𝑖𝑞(ℎ
𝑙−1
𝑐𝑖𝑞 )

′)

+𝜆𝑊 𝑙
𝑐 (7)

∂𝐻

∂𝑏𝑙𝑐
=

𝑁𝑐∑

𝑖=1

(
𝛿𝑙𝑐𝑖 + 𝛿𝑙𝑐𝑖𝑝 + 𝛿𝑙𝑐𝑖𝑞

)
+ 𝜆𝑏𝑙𝑐 (8)

where 𝛿𝑙𝑐𝑖, 𝛿𝑙𝑐𝑖𝑝 and 𝛿𝑙𝑐𝑖𝑞 are three updating functions. For
the top layer (𝑙 = 𝐿), they are computed as follows:

𝛿𝑙𝑐𝑖 = 𝑔′(𝐷)(𝑅1 + 𝑅2)⊙ 𝑠′(𝑦𝐿
𝑐𝑖) (9)

𝛿𝑙𝑐𝑖𝑝 = −𝑔′(𝐷)𝑅1 ⊙ 𝑠′(𝑦𝐿
𝑐𝑖𝑝) (10)

𝛿𝑙𝑐𝑖𝑞 = −𝑔′(𝐷)𝑅2 ⊙ 𝑠′(𝑦𝐿
𝑐𝑖𝑞) (11)

where

𝐷 ≜ 𝐷1(ℎ
𝐿
𝑐𝑖)− 𝐷2(ℎ

𝐿
𝑐𝑖) (12)

𝑅1 ≜ 1

𝐾1

𝐾1∑

𝑝=1

(ℎ𝐿
𝑐𝑖 − ℎ𝐿

𝑐𝑖𝑝) (13)

𝑅2 ≜ 1

𝐾2

𝐾2∑

𝑝=1

(ℎ𝐿
𝑐𝑖 − ℎ𝐿

𝑐𝑖𝑞) (14)

𝑦𝑙
𝑐𝑖 ≜ 𝑊 𝑙

𝑐ℎ𝑙−1
𝑐𝑖 + 𝑏𝑙𝑐 (15)

𝑦𝑙
𝑐𝑖𝑝 ≜ 𝑊 𝑙

𝑐ℎ𝑙−1
𝑐𝑖𝑝 + 𝑏𝑙𝑐 (16)

𝑦𝑙
𝑐𝑖𝑞 ≜ 𝑊 𝑙

𝑐ℎ𝑙−1
𝑐𝑖𝑞 + 𝑏𝑙𝑐 (17)

For all other layers, 1 ≤ 𝑙 ≤ 𝐿 − 1, 𝛿𝑙𝑐𝑖, 𝛿𝑙𝑐𝑖𝑝 and 𝛿𝑙𝑐𝑖𝑞 are
computed as follows:

𝛿𝑙𝑐𝑖 = (𝑊 𝑙+1
𝑐 )𝑇 𝛿𝑙+1

𝑐𝑖 ⊙ 𝑠′(𝑦𝑙
𝑐𝑖) (18)

𝛿𝑙𝑐𝑖𝑝 = (𝑊 𝑙+1
𝑐 )𝑇 𝛿𝑙+1

𝑐𝑖𝑝 ⊙ 𝑠′(𝑦𝑙
𝑐𝑖𝑝) (19)

𝛿𝑙𝑐𝑖𝑞 = (𝑊 𝑙+1
𝑐 )𝑇 𝛿𝑙+1

𝑐𝑖𝑞 ⊙ 𝑠′(𝑦𝑙
𝑐𝑖𝑞) (20)

where the operation “⊙” denotes the element-wise multipli-
cation.

Then, we use the the following gradient descent algorith-
m to update the parameters 𝑊 𝑙

𝑐 and 𝑏𝑙𝑐 of our networks:

𝑊 𝑙
𝑐 = 𝑊 𝑙

𝑐 − 𝜇
∂𝐻

∂𝑊 𝑙
𝑐

(21)

𝑏𝑙𝑢 = 𝑏𝑙𝑢 − 𝜇
∂𝐻

∂𝑏𝑙𝑢
(22)

where 𝜇 is the learning rate, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑙 ≤ 𝐿.
The proposed MMDML method is summarized in Algo-

rithm 1.

3.2. Classification

Given a testing image set 𝑋𝑞 = [𝑥𝑞
1, 𝑥𝑞

2, ⋅ ⋅ ⋅ , 𝑥𝑞
𝑁𝑞

],
where 𝑥𝑞

𝑗 is the 𝑗th image (1 ≤ 𝑗 ≤ 𝑁𝑞) in this set and
𝑁𝑞 is the number of images in this set, we compute the dis-
tance between the testing set 𝑋𝑞 and each training set 𝑋𝑐,
and assign a label 𝐿𝑞 to the testing image set 𝑋𝑞 as follows:

𝐿𝑞 = argmin
𝑐

𝑑(𝑋𝑞, 𝑋𝑐), 1 ≤ 𝑐 ≤ 𝐶. (23)

Now, we discuss how to compute the distance 𝑑(𝑋𝑞, 𝑋𝑐)
in our experiments. For each sample 𝑥𝑞

𝑗 , we first use the
learned deep network from the 𝑐th class to map it into the
feature space ℎ𝑐(𝑥

𝑞
𝑗). Then, we compute the distance be-

tween ℎ𝑐(𝑥
𝑞
𝑗) and each training sample ℎ𝑐𝑖 in the feature

space from the 𝑐th manifold by using the Euclidean dis-
tance, then the smallest distance between ℎ𝑐(𝑥

𝑞
𝑗) and ℎ𝑐𝑖

is selected as the distance between 𝑥𝑞
𝑗 and the 𝑐th manifold.

Finally, we average all these point-to-manifold distance as
the distance between manifold 𝑋𝑞 and 𝑋𝑐.

4



Algorithm 1: MMDML
Input: Training set 𝑋 , network layer number 𝐿 + 1,

learning rate 𝜇, iterative number 𝑇 , parameter
𝜆, 𝐾1 and 𝐾2, and convergence error 𝜀.

Output: Parameters 𝑊 𝑙
𝑐 and 𝑏𝑙𝑐, 1 ≤ 𝑐 ≤ 𝐶,

1 ≤ 𝑙 ≤ 𝐿.
Step 1 (Initialization):

Initialize 𝑊 𝑙
𝑐 and 𝑏𝑙𝑐 with appropriate values.

Step 2 (Optimization by back prorogation):
for 𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝑇 do

Compute the intra-manifold and inter-manifold
neighbors.
for 𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝐿 do

Compute ℎ𝑙
𝑐𝑖, ℎ

𝑙
𝑐𝑖𝑝, and ℎ𝑙

𝑐𝑖𝑞 using the deep
networks.

end
for 𝑙 = 𝐿,𝐿− 1, ⋅ ⋅ ⋅ , 1 do

Obtain the gradients according to (7)-(8).
end
for 𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝐿 do

Update 𝑊 𝑙
𝑢, 𝑊 𝑙

𝑣 , 𝑏𝑙𝑢 and 𝑏𝑙𝑣 according to (21)-(22).
end
Calculate 𝐻𝑡 using (5).
If 𝑡 > 1 and ∣𝐻𝑡 −𝐻𝑡−1∣ < 𝜀, go to Return.

end
Return: 𝑊 𝑙

𝑐 and 𝑏𝑙𝑐, where 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑙 ≤ 𝐿.

3.3. Discussion

Both [11] and our approach are deep learning based im-
age set matching methods. The key difference is that our
model is supervised while theirs is unsupervised. Hence,
our method requires more labeled examples to learn the
model because more parameters to be estimated in our
method.

4. Experimental Results

We conducted image set classification experiments
on five publicly available datasets including the Hon-
da/UCSD [22], CMU Mobo [9], YouTube Celebrities
(YTC) [15], PubFig [19] face datasets, and the ETH-80 ob-
ject dataset [23]. We describe the details of the experiments
and results in the following.

4.1. Datasets

The Honda/UCSD dataset [22] contains 59 face video
sequences of 20 different persons. The number of frames
for these video varies from 12 to 645. There are large vari-
ations in facial expression and head pose in this dataset.

The Mobo dataset [9] was originally created for gait
recognition. There are 96 video sequences of 24 differ-
ent persons, and each person contains 4 videos captured
from different walking conditions, such as slow walking,
fast walking, inclined walking, and walking with a ball. For

each video, there are around 300 frames covering variations
of pose and expressions.

The YTC dataset [15] contains 1910 face video se-
quences of 47 different persons, who are celebrities such as
actors, actresses and politicians. Face videos in this dataset
were collected from YouTube under unconstrained condi-
tions. There are large variations of pose, illumination, and
expression on face videos in this dataset. Moreover, the
quality of face videos is very poor because most videos are
of high compression rate. The number of frames for face
videos varies from 7 to 400.

The PubFig dataset [19] contains 58797 images of 200
different persons. There are large variations of pose, illu-
mination, expression on face images because these real-life
face images were captured in unconstrained environments
from the internet.

The ETH-80 dataset [23] contains visual object images
from 8 different categories including apples, cars, cows,
cups, dogs, horses, pears and tomatoes. For each category,
there are 10 object instances and 41 images for each object
instance captured from different viewpoints.

4.2. Experimental Settings

For face videos in the Honda, Mobo and YTC datasets,
we employed the face detector presented in [32] to detec-
t each face image frame and then resized it into 20 × 20.
For face images in the PubFig dataset, we cropped face re-
gion of each face image according to the provided bounding
box position, and resized it into 20 × 20. We applied his-
togram equalization on each image from all these four face
datasets to remove the illumination effect. For the ETH-80
dataset, each object image was segmented from the simple
background and scaled to 20 × 20 for classification, which
is consistent to previous studies in [11, 27, 35]. Finally,
each image in all the five datasets was lexicographically in-
to a 400-dimensional feature vector. Unlike face recogni-
tion, the task on ETH-80 is to classify each image set of an
object into a pre-defined category.

For the Honda, Mobo and YTC datasets, image frames
extracted from each face video were considered as an image
set. For the PubFig dataset, we equally divided face images
of each person into three folds, where three different im-
age sets were constructed for evaluation. On the Honda and
Mobo datasets, we conducted experiments 10 times by ran-
domly selecting different training and testing sets. For the
YTC dataset, we employed the five fold cross validation s-
trategy by following the same setting in [11, 26, 27, 34, 35].
Specifically, we equally divided the whole dataset into five
folds (with minimal overlapping), where each fold contains
9 different images for each person. For each fold, 3 image
sets were randomly selected for training and the rest 6 were
used for testing. For the PubFig dataset, we used one fold
for training and the remaining two for testing by random-
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ly selecting different folds for training and testing. For the
ETH-80 dataset, we randomly selected 5 objects from each
category for training and the remaining 5 for testing. On
all the five datasets, the average classification rate and the
standard deviation were used to evaluate different image set
classification methods.

For our MMDML method, we designed our deep model
with two layers, and the feature dimensions for these lay-
ers were set as 400, 200, and 100, respectively. The learn-
ing rate 𝜇, parameter 𝜆, 𝐾1 and 𝐾2 were empirically set
as 0.0001, 0.00001, 5 and 20, respectively2. The parame-
ters 𝑊 𝑙

𝑢 and 𝑊 𝑙
𝑣 of our CDML model were initialized as

E ∈ ℝ
𝑑𝑙
𝑐×𝑑𝑙−1

𝑐 (𝑑𝑙
𝑐 is the feature dimension of the 𝑙th layer),

which is a matrix with ones on the diagonal and zeros else-
where. The bias vector 𝑏𝑙𝑐 was initialized as zero vectors.
For the active function, we used the non-saturating sigmoid
function in our experiments.

4.3. Results and Analysis

Comparison with State-of-the-Art Image Set Clas-
sification Methods: We first compared our MMDML
method with twelve state-of-the-art image set classification
methods, including Mutual Subspace Method (MSM) [38],
Discriminant Canonical Correlation analysis (DCC) [16],
Manifold-to-Manifold Distance (MMD) [36], Manifold
Discriminant Analysis (MDA) [34], Affine Hull based Im-
age Set Distance (AHISD) [2], Convex Hull based Im-
age Set Distance (CHISD) [2], Sparse Approximated Near-
est Point (SANP) [13], Covariance Discriminative Learn-
ing (CDL) [35], Dictionary-based Face Recognition from
Video (DFRV) [5], Local Multi-Kernel Metric Learning
(LMKML) [27], Set-to-Set Distance Metric Learning (SS-
DML) [40], and Simultaneous Feature and Dictionary
Learning (SFDL) [26]. We employed the implementations
of these compared methods provided by the original authors
except the DFRV method because the code of DFRV was
not publicly available. We implemented the DFRV method
by following the algorithm description in [5]. For all these
twelve compared methods, we used the default parameters
recommended by the corresponding papers. For the DC-
C, MDA, CDL and LMKML methods, if there is a single
image set from each class on the Honda, Mobo, and PubFig
datasets, we randomly and equally divided each training im-
age set into two subsets for discriminative learning, so that
the intra-class variation can be effectively modeled.

Table 1 tabulates the average classification rates and
standard deviations of different image set classification
methods on all the five datasets. We clearly see that our
MMDML method achieves higher classification rate than
all the other compared state-of-the-art methods on all the
five datasets. Compared to those unsupervised image set

2We tuned these parameters by using the 5-fold cross-validation strate-
gy on the training set of the YTC dataset.

Table 2. Average classification rates and the standard deviations
(%) of multi-manifold deep learning and multi-manifold shallow
learning methods on different datasets.

Method MMSML MMKML MMDML
Honda 95.5± 0.9 97.5± 0.4 100.0± 0.0
Mobo 94.5± 1.7 96.5± 1.4 97.8± 1.0
YTC 74.5± 3.5 76.7± 3.4 78.5± 2.8
PubFig 75.5± 2.4 80.4± 1.8 82.5± 1.2
ETH-80 90.5± 4.5 91.7± 4.3 94.5± 3.5

classification methods such as MSM, DCC, MMD, AHIS-
D, CHISD, SANP, and DFRV, our MMDML can extract dis-
criminative information in the learned deep networks. Com-
pared to those supervised image set classification methods
such as MDA, CDL, LMKML, SDDML, and SFDL, our
MMDML is a deep learning approach which explicitly ad-
dresses the nonlinear separation problem by learning multi-
ple sets of nonlinear transformations, so that more discrim-
inative, nonlinear, and class-specific information can be ex-
ploited to improve the classification performance.

Comparison with Different Multi-Manifold Learning
Strategies: We compared our MMDML with two other d-
ifferent multi-manifold learning strategies:

1. Multi-Manifold Shallow Metric Learning (MMSML):
We constructed the MMSML method by setting the
layer of each network to one and determining the ac-
tive function 𝑠(𝑧) = 𝑧 in our MMDML.

2. Multi-Manifold Kernel Metric Learning (MMKML):
We employed the kernel trick on the MMSL method to
the MMKML method by mapping each sample into a
high-dimensional feature space. Then, we performed
MMSML in the kernel space, where the RBF kernel
and the average of the distance over all pairs of sam-
ples was used for evaluation.

Table 2 shows the average classification rates and s-
tandard deviations of these three different multi-manifold
learning methods on different datasets. We see that our M-
MDML consistently outperforms MMSML and MMKM-
L on all datasets. Compared to MMSML, our MMDML
method can learn multiple hierarchical nonlinear transfor-
mations while the corresponding MMSML only learns mul-
tiple linear transformations, so that MMDML can discover
the nonlinear relationship of image sets in the learned fea-
ture space. Compared to MMKML, our MMDML can ex-
plicitly seek the nonlinear mapping for each image, so that
it can better describe the nonlinearity of samples to yield
better classification performance.

Convergence Analysis: We evaluated the convergence
of our MMDML versus different number of iterations. Fig-
ure 3(a) plots the value of the objective function of MMDM-
L versus different number of iterations on the YTC dataset.
We see that our MMDML converges in about 40 iterations.
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Table 1. Average classification rates and the standard deviations (%) of different image set classification methods on different datasets.

Method Honda Mobo YTC PubFig ETH-80 Year
MSM [38] 92.5± 2.3 96.5± 2.0 61.7± 4.3 57.4± 1.7 75.5± 4.9 1998
DCC [16] 92.6± 2.5 88.9± 2.5 65.8± 4.5 45.5± 1.5 91.8± 3.7 2006
MMD [36] 92.1± 2.3 92.5± 2.9 67.7± 3.8 46.3± 1.5 86.5± 4.5 2008
MDA [34] 94.5± 3.2 94.4± 2.5 68.1± 4.3 48.6± 1.6 89.2± 3.7 2009
AHISD [2] 91.5± 1.8 94.1± 1.5 66.5± 4.5 62.1± 1.4 78.6± 4.7 2010
CHISD [2] 93.7± 1.9 95.8± 1.3 67.4± 4.7 64.5± 1.5 79.7± 4.3 2010
SANP [13] 95.3± 3.1 96.1± 1.5 68.3± 5.2 78.5± 1.4 80.5± 4.7 2011
CDL [35] 97.4± 1.3 92.5± 2.9 69.7± 4.5 65.5± 1.5 86.5± 3.7 2012
DFRV [5] 97.4± 1.9 94.4± 2.3 74.5± 4.5 74.5± 1.4 87.5± 2.7 2012
LMKML [27] 98.5± 2.5 94.5± 2.5 75.2± 3.9 72.5± 1.5 92.5± 4.5 2013
SSDML [40] 93.5± 2.8 95.1± 2.2 74.3± 4.5 65.5± 1.7 87.5± 4.7 2013
SFDL [26] 98.5± 1.5 96.5± 2.3 75.7± 3.4 78.5± 1.7 90.5± 4.7 2014
MMDML 100.0± 0.0 97.8± 1.0 78.5± 2.8 82.5± 1.2 94.5± 3.5

0 20 40 60 80 100

−500

0

500

1000

1500

2000

2500

3000

Iteration Number

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue

(a)

5 10 15 20 25 30
50

55

60

65

70

75

80

Iteration number

C
la

ss
ifi

ca
tio

n 
ra

te
 (

%
)

(b)

Figure 3. (a) Convergence curve of MMDML on the YTC dataset. (b) Average classification rate versus different number of iterations of
MMDML on the YTC dataset.

We also computed the classification rate of MMDML
versus different number of iterations on the YTC dataset.
Figure 3(b) shows the average classification rate of M-
MDML versus different number of iterations on the YTC
dataset. We see that our MMDML achieves stable perfor-
mance in 20 ∼ 25 iterations.

Robustness Analysis: We examined the performance of
our MMDML when each image set contains different num-
ber of image samples. We randomly selected 𝑃 frames from
each image set and used them for model learning and clas-
sification. If one image set contains less than 𝑃 image sam-
ples, all images in this set were used for classification. Ta-
ble 3 shows the average classification rates of different im-
age set classification methods on the YTC dataset, where d-
ifferent number of samples per set were used for evaluation.
We see that the classification rate of our MMDML drops
less than other compared image set classification methods.
That is because in our MMDML method, the average point-

manifold distance is considered as the manifold margin so
that the performance of the approach depends less on the
number of image samples per set than other methods such
as MDA and MMD, which usually require enough samples
to model the set as a nonlinear manifold. Hence, our method
is not sensitive to the number of samples per set.

Computational Time: Lastly, we compared the com-
putational time of different image set classification meth-
ods on the YTC dataset. For the test stage, we computed
the classification time of classifying one image set with all
training image sets. Our hardware configuration is a 2.8-
GHz CPU and a 24GB RAM. Table 4 shows the time spent
on the train and test stages by different image set classifi-
cation methods with the Matlab software. We see that the
computational time of of our MMDML in the training stage
is generally higher than those of many existing methods
and the testing time is comparable to those of most exist-
ing methods.
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Table 3. Average classification rates and the standard deviation-
s (%) of different image set classification methods with different
number of images per set on the YTC dataset.

Method 50 frames 100 frames All frames
MSM [38] 57.6± 4.5 59.4± 4.7 61.7± 4.3
DCC [16] 59.6± 4.8 62.6± 4.3 65.8± 4.5
MMD [36] 61.2± 4.2 63.9± 4.4 67.7± 3.8
MDA [34] 62.1± 4.6 64.4± 4.7 68.1± 4.3
AHISD [2] 60.3± 4.6 63.5± 4.9 66.5± 4.5
CHISD [2] 61.2± 4.3 64.6± 4.8 67.4± 4.7
SANP [13] 63.3± 5.4 65.6± 5.7 68.3± 5.2
CDL [35] 65.3± 4.3 67.7± 4.7 69.7± 4.5
DFRV [5] 70.5± 4.7 72.5± 4.4 74.5± 4.5
LMKML [27] 71.2± 4.4 73.2± 3.7 75.2± 3.9
SSDML [40] 69.5± 4.7 72.3± 4.2 74.3± 4.5
SFDL [26] 72.3± 3.7 74.4± 3.4 75.7± 3.4
MMDML 75.5± 2.4 76.7± 2.6 78.5± 2.8

Table 4. Computation time (seconds) of different image set classi-
fication methods on the YTC dataset for training and testing (clas-
sification of one image set.

Method Train Test Method Train Test
MSM N.A 2.7 DCC 97.9 2.5
MMD N.A 3.5 MDA 178.5 3.2
AHISD N.A 8.4 CHISD N.A 6.7
SANP N.A 45.6 CDL 67.9 12.6
DFRV 8660.2 5.2 LMKML 4228.5 5.2
SSDML 23.3 2.5 SFDL 7545.3 6.4
MMDML 1534.3 5.4

5. Conclusion and Future Work

In this paper, we have proposed a multi-manifold deep
learning (MMDML) method for image set classification.
By jointly learning multiple sets of nonlinear transforma-
tions (one set for each class), our method nonlinearly maps
multiple sets of image instances into a shared feature sub-
space, so that discriminative, class-specific and nonlinear
information are exploited for classification. Experimental
results on five popular datasets have demonstrated that our
method achieves better performance than the state-of-the-
art image set classification methods.

For future work, we are interested in applying our pro-
posed method to other vision applications such as image
set based person re-identification and video-based action
recognition to further demonstrate its effectiveness.
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