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Multi-Method Analysis of MRI Images in Early
Diagnostics of Alzheimer’s Disease
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Abstract

The role of structural brain magnetic resonance imaging (MRI) is becoming more and more emphasized in the early
diagnostics of Alzheimer’s disease (AD). This study aimed to assess the improvement in classification accuracy that can be
achieved by combining features from different structural MRI analysis techniques. Automatically estimated MR features
used are hippocampal volume, tensor-based morphometry, cortical thickness and a novel technique based on manifold
learning. Baseline MRIs acquired from all 834 subjects (231 healthy controls (HC), 238 stable mild cognitive impairment (S-
MCI), 167 MCI to AD progressors (P-MCI), 198 AD) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
were used for evaluation. We compared the classification accuracy achieved with linear discriminant analysis (LDA) and
support vector machines (SVM). The best results achieved with individual features are 90% sensitivity and 84% specificity
(HC/AD classification), 64%/66% (S-MCI/P-MCI) and 82%/76% (HC/P-MCI) with the LDA classifier. The combination of all
features improved these results to 93% sensitivity and 85% specificity (HC/AD), 67%/69% (S-MCI/P-MCI) and 86%/82% (HC/
P-MCI). Compared with previously published results in the ADNI database using individual MR-based features, the presented
results show that a comprehensive analysis of MRI images combining multiple features improves classification accuracy and
predictive power in detecting early AD. The most stable and reliable classification was achieved when combining all
available features.
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Introduction

Alzheimer’s disease (AD) is the most common cause of dementia

globally and one of the major healthcare issues of the future. It has

been estimated that during the next four decades the prevalence of

AD will quadruple from 27 to 106 million by which time 1 in 85

persons worldwide will be living with the disease [1]. Even a

modest delay of one year in disease onset and progression could

reduce the number of cases by 9 million [1]. Interventions are

postulated to be most effective when directed at patients at the

earliest stages of the disease, which underlines the importance of

early diagnosis of AD [2]. Mild cognitive impairment (MCI) is a

heterogeneous syndrome that increases the risk of developing AD

markedly [3]. However, not all MCI subjects convert to AD and

some may even return to normal cognition [4].

The search for reliable biomarkers of AD-type pathology and

predictors of disease progression among MCI subjects is ongoing.

AD is characterized by neurofibrillary tangles and amyloid plaques

in the brain [5]. Degenerative changes in the human neurotrans-

mitter system lead to atrophy in selected brain regions [6]. The

most promising candidate biomarkers are the ones derived from

structural and functional neuroimaging as well as those measured

in cerebrospinal fluid (CSF) and plasma [7]. Amyloid-based

measures like the CSF-peptide Ab42 and the uptake of the PiB

tracer on positron emission imaging (PET) show the earliest AD-

type changes [7]. However, there is evidence that the number of

amyloid plaques reach their saturation levels already by the time

patients have clinically apparent symptoms of cognitive impair-

ment [8,9], whereas atrophy, neuronal loss, synaptic loss, and the

number of tangles increase with severity of illness [10]. These
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findings suggest that, although amyloid-based biomarkers may be

used as longitudinal markers of AD type pathology, they seem to

offer only limited insight into which MCI subjects will most likely

convert to AD in the near future. In a recently published dynamic

model of biomarker behavior in the AD spectrum, biomarkers

based on structural magnetic resonance imaging (MRI) have been

shown to be correlated with a progression from MCI to AD [11].

Such biomarkers could therefore improve the accuracy of early

AD diagnostics and reduce especially the amount of false positive

diagnoses. Besides providing chance for a more focused and earlier

intervention, structural MRI biomarkers of AD could also aid the

development of new disease-modifying drugs by acting as surrogate

markers of disease progression, reduce the number of subjects

needed to detect significant drug effect and provide quantitative

measures of treatment benefits [12].

It has been shown that the early diagnostics of AD can be

improved by using multiple different biomarkers simultaneously.

Usually these studies have combined MRI-based markers with

biomarkers based on positron emission tomography (PET) [13,14],

cerebrospinal fluid (CSF) [15,16] or both [17–19]. Achieved

results vary from no additional benefit [15,17] to significant

improvement [13,14,16,20]. However, availability of all three

biomarkers (CSF, PET, MRI) is not very common in clinical

practice since obtaining all measures is laborious for the patient

and clinician, induces delays and increases the costs of the

diagnosis significantly. Furthermore, measurements obtained from

CSF and PET are considered invasive. Recent studies focusing on

only structural MRI have reached correct classification accuracys

(CCR) of 76–94% in identifying healthy controls (HC) from

patients with AD and 64–82% in predicting which MCI subjects

will convert to AD in the imminent future [21–27]. The high

variation in these results can be attributed to differences in study

populations as well as evaluation designs. With the Alzheimer’s

Disease Neuroimaging Study (ADNI) [28], a large multi-center

study on MR imaging in AD has been established that is available

to the wider research community. Based on a large sub-group of

ADNI subjects, Cuingnet et al. [29] presented a comparison of ten

MRI-based feature extraction methods and their ability to

discriminate between clinically relevant subject groups. The ten

methods evaluated comprise five voxel-based methods, three

methods based on cortical thickness and two methods based on the

hippocampus. Best sensitivity/specificity values reported are 81%/

95% for AD vs HC, 70%/61% for S-MCI vs P-MCI and 73%/

85% for HC vs P-MCI.

In this paper we use the ADNI database to evaluate the ability

of the combination of different MR-based features to increase

classification accuracy. We evaluate the power of hippocampal

volume (HV), cortical thickness (CTH), tensor-based morphom-

etry (TBM) and features extracted from a recently proposed

manifold-based learning (MBL) framework to discriminate healthy

controls from subjects with AD and to predict conversion from

MCI to AD. For evaluation we used all 834 ADNI baseline images

that were available from the ADNI webpage. Compared to

previous work this paper aims at establishing the improvement in

accuracy and stability that can be achieved by combining more

than one MR-based feature. To the best of our knowledge it is the

first comprehensive study that analyzes MRI-derived features for

the full ADNI dataset. For direct comparison with the work by

Cuingnet et al. [29] we also evaluated all results on the subset used

in their work.

To test the influence of the classification method used, we utilized

both support vector machines (SVMs) and a linear discriminant

analys (LDA) to evaluate classification accuracy (CCR), sensitivity

(SEN) and specificity (SPE) in each experiment.

Materials and Methods

Subjects
In the ADNI study, brain MR images were acquired at regular

intervals after an initial baseline scan from approximately 200

cognitively normal older subjects (HC), 400 subjects with mild

cognitive impairment (MCI), and 200 subjects with early AD.

Detailled inclusion/exclusion criteria used for the different subject

groups in ADNI are defined in [30]. The AD group has scores

between 20–26 (inclusive) on the Mini-Mental State Examination

(MMSE) [31], and a Clinical Dementia Rating (CDR) [32] of 0.5

or 1.0. Furthermore, these subjects fulfil the NINCDS/ADRDA

criteria for probable AD [33]. MCI subjects included have MMSE

scores between 24–30 (inclusive), a memory complaint, have

objective memory loss measured by education adjusted scores on

Wechsler Memory Scale Logical Memory II, a CDR of 0.5,

absence of significant levels of impairment in other cognitive

domains, essentially preserved activities of daily living, and an

absence of dementia [30]. Healthy subjects have MMSE scores

between 24–30 (inclusive), a CDR of 0, are non-depressed, non

MCI, and nondemented. A more detailed description of the ADNI

study is given in Appendix S1.

All 834 ADNI subjects (231 HC, 238 S-MCI, 167 P-MCI, 198

AD) for which a 1.5T T1-weighted MRI scan at baseline was

available were included in this study. 167 subjects in the MCI

group converted to AD as of July 2011. We therefore

independently analysed progressive MCI (P-MCI) subjects and

subjects with a stable diagnosis of MCI (S-MCI).

Table 1 shows the demographics for the 834 study subjects.

Statistically significant differences in the demographics and clinical

variables between the study groups were assessed using Student’s

unpaired t-test. In this work, the difference was considered

statistically significant if pv0.05 if not stated otherwise. There

were more men than women in all other groups besides the AD

group. MMSE scores were significantly different in the pairwise

comparisons between all study groups. CDR scores of the HC and

AD groups are significantly different to the ones of the two MCI

groups. Healthy subjects had a significantly lower Geriatric

Depression Scale (GDS) compared to all other groups. Compared

to all other groups, AD subjects had significantly shorter education.

MRI Acquisition
Standard 1.5T screening/baseline T1-weighted images ob-

tained using volumetric 3D MPRAGE protocol with resolutions

Table 1. Subjects.

Group HC S-MCI P-MCI AD

N 231 238 167 198

Men 52% 66% 62% 52%

Age 76.02 (5.0) 74.85 (7.8) 74.6 (7.0) 75.68 (7.7)

MMSE 29.1* (1.0) 27.3* (1.8) 26.6* (1.7) 23.3* (2.0)

CDR 0 (0) 0.49 (0.05) 0.50 (0) 0.75 (0.25)

GDS 0.83* (1.14) 1.60 (1.42) 1.53 (1.30) 1.67 (1.42)

Education 16.0 (2.8) 15.6 (3.1) 15.7 (2.9) 14.7* (3.1)

APOE4 status
(e3e4/e4e4)

23%/2% 31%/8% 50%/16% 42%/18%

Months to
conversion

18.2 (10.1)

*means statistically significant different from all other groups.
doi:10.1371/journal.pone.0025446.t001

Early Diagnostics of AD Using MRI-Based Biomarkers
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ranging from 0.9 mm|0.9 mm|1.20 mm to 1.3 mm|1.3 mm

|1.20 mm were included from the ADNI database. For detailed

information of the MRI protocols and preprocessing steps see [34].

Feature extraction
All fully automated feature extraction methods described below

were applied to images that were preprocessed by the ADNI

pipeline.

Hippocampal volume. Baseline hippocampal volumes

were measured using an approach based on fast and robust

multi-atlas segmentation [35,36]. In this approach, multi-atlas

label propagation is applied in combination with atlas selection to

obtain the hippocampus segmentation. A set of hippocampus

atlases is selected from a pool of atlas images according to image

similarity with the query image. After registering all atlases to the

query image, a spatial prior is generated from the multiple label

maps. This spatial prior is then used to obtain a final segmentation

based on an expectation maximization (EM) segmentation

algorithm [37].

Cortical thickness. CTH is measured in the baseline

T1-weighted structural MR images by using an automated

computational surface-based method developed at the McConnell

Brain Imaging Centre, Montreal Neurological Institute, McGill

University, Montreal, Canada (http://www2.bic.mni.mcgill.ca/)

[38]. Individual MRI volumes were registered to standard space

using the ICBM152 template [39]. Intensity non-uniformities were

corrected [40] before the final brain mask was calculated [41].

Tissues were segmented into white matter (WM), grey matter (GM)

and cerebrospinal fluid (CSF) using the INSECT-algorithm [42]

and the magnitude of PVE was estimated by using the trimmed

minimum covariance determinant (TMCD) method [43]. The

brains were divided automatically into two separate hemispheres

and the inner and outer surfaces of the cortex were extracted

according to intersections between WM and GM (white matter

surface, WMS) as well as GM and CSF (grey matter surface, GMS)

using the Constrained Laplacian-Based Automated Segmentation

with Proximities (CLASP) algorithm [44]. The inner surface was

first formed by deforming an ellipsoid polygon mesh to the shape of

the WMS. GMS was obtained by further expanding the inner

surface. Each polygon mesh surface consisted of 81,920 polygons

and 40,962 nodes per hemisphere. The thickness of the cortex was

defined at each linked node as the distance between the two

concentrically linked polygon meshes on the WMS and the GMS.

This t-link metric has been proven to be the simplest yet most

precise way to determine cortical thickness [38]. Although MR

images were transformed to standard space to allow for group

analysis, thickness calculations were performed in each subject’s

native space. Finally, cortical thickness maps were smoothed with a

20 mm FWHM diffusion smoothing kernel to improve the signal-

to-noise ratio and statistical power [45]. The described toolbox did

not achieve satisfactory results on some study subjects because of i)

failure in tissue segmentation and brain masking (48 subjects) and ii)

failure in partial volume effect estimation (59 subjects). As a result

the pipeline crashed and CTH measures were not obtained for 76

subjects (24 control, 35 MCI, 17 AD). Also the cortical model of 31

subjects (10 control, 13 MCI, 8 AD) was completely deformed and

thus unusable. For these 107 subjects the CTH features were

considered as missing values. CTH features used in the classification

experiments are introduced below.

Tensor-based morphometry. The TBM analysis was

performed using a multi-template approach [46,47]. In TBM, a

template image is non-rigidly registered to a study image, and,

typically, the determinant of the Jacobian matrix (‘the Jacobian’) of

the deformation is used to measure the voxel-level morphometry.

Instead of using just one template image, we used 30 randomly

selected images (10 controls, 10 MCIs, and 10 ADs) from the

ADNI database as template images. The template images were

used also in the classification analysis to maximize the number of

subjects. Each template image was registered to a study image, and

Jacobian maps were computed for each template image. To

combine the results of multiple templates, all template images were

registered to the mean anatomical template generated from the 30

images, and all the results were normalized to this reference space

[47]. The combination of the results was performed by averaging

the ROI-wise feature values of all the templates as described in

detail below.

Manifold-based learning. In this machine learning

approach, non-linear dimensionality reduction with Laplacian

eigenmaps [48] is used to learn features to discriminate between

different subject groups. Laplacian eigenmaps estimates the low-

dimensional representation of a set of input images based on a

similarity graph that is defined with pairwise image similarities [48].

The hypothesis is that such a low-dimensional representation

captures the variability in the dataset in a more compact way than

pairwise image similarities directly. We estimate pairwise image

similarities from the intensity appearance in a region around

hippocampus and amygdala since both structures are known to be

affected by AD in an early stage. All images are aligned in a

template space using a coarse non-rigid registration (10 mm B-

spline control-point spacing, [49]). Such a coarse non-rigid

alignment ensures that corresponding brain structures are aligned

but still allows to measure subject-specific differences. After

performing dimensionality reduction, the first 20 dimensions of

the resulting manifold are used as features to perform classification

with the different methods used. More details on the theory and

application of this manifold learning approach can be found in

[20,50]. Figure 1 exemplarily shows a 2D embedding of a set of

ADNI images acquired from healthy controls and subjects with AD.

It can be seen that even two embedding dimensions give a relatively

good separation between both groups. In our experiments we used a

higher dimensional space allowing better discrimination.

ROI-wise features for CTH and TBM
Both CTH and TBM analyses produce local (point-wise)

information, either on cortical thickness or the volume. Thus,

the number of original features is enormous, and to make the

classification more efficient and robust, the number of features has

to be reduced. We evaluated both features in a statistical region of

interest (ROI) defined as detailed in Appendix S2. Figures 2 and 3

show t-values for statistically significant differences between study

groups for TBM and CTH respectively. A detailed description of

the definition of these statistical ROIs is given in Appendix S2.

Study design
Table 2 presents an overview on the features calculated for all

834 available ADNI baseline images. All feature values were

corrected for age and gender using a linear regression model

where control subjects were used as the training set, i.e., the

normal, not disease-related, age and gender related differences in

the classification features were removed. Feature selection was

then carried out on the corrected feature sets using stepwise

regression [51].

We used two subsets to perform classification:

I. All 834 available baseline images described in the subjects

section

II. 509 baseline images used by Cuingnet et al. [29] and detailed

in their publication.

Early Diagnostics of AD Using MRI-Based Biomarkers
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The following sections describe the definition of the statistical

ROIs and evaluation strategy used for the two datasets

respectively.

Dataset I. In order to perform the study using cross-

validation in the full dataset, it was divided into three equally

sized parts. One part was used to perform the statistical tests for

the CTH and TBM features, and the remaining two parts were

used to evaluate the classification accuracy. This was repeated

three times so that each part was once used to perform the

statistical tests. Afterwards, the results of the three repetitions were

averaged. The classification accuracy was evaluated using leave-N-

out cross validation on those subjects not included in the statistical

tests. Five percent of the evaluation subjects were regarded as the

test set, and the remaining 95% of the subjects were used to train a

classifier which was then applied to the test set. This was repeated

table-1-caption100 times, each time selecting randomly the test set

subjects. Finally, the results of the 100 repetitions were averaged.

Consequently, in overall, the classification evaluation was

performed using 300 (3|100) repetitions, and the results

presented in this paper are the average values of all these

classifications.

Dataset II. Statistical ROIs for CTH and TBM feature

extraction were calculated from the 325 baseline images that are

not part of dataset II. In order to allow direct comparison of

classification accuracy with the work by Cuingnet et al. [29],

separate training and testing sets for the different comparisons

were defined using the exact sub-groups reported in their

manuscript. Around 50% of all subjects are used to train the

different types of classifiers and the reported results are based on

classifying the remaining subjects.

Classification methods
We used two different widely used methods to perform

classification based on individual features and their combination:

Figure 1. 2D manifold embedding of a set of images acquired from healthy controls (red) and subjects with AD (blue).
doi:10.1371/journal.pone.0025446.g001

Figure 2. Results for voxelwise t-tests for statistically significant group differences with features extracted from TBM.
doi:10.1371/journal.pone.0025446.g002

Early Diagnostics of AD Using MRI-Based Biomarkers
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Linear discriminant analysis (LDA). Linear discriminant

analysis (LDA) is a widely used technique to find a linear

combination of features to best separate several classes [52]. In this

work we used LDA as implemented in the classify function in

Matlab with a multivariate normal density model with unin-

formative priors (p = 0.5).

Support vector machines (SVM). Support vector machines

use training data to find a separating hyperplane in the n-

dimensional training space that best separates two subject groups

[53]. Test subjects are then classified according to their position

relative to the defined hyperplane in the n-dimensional feature

space. We used the libSVM library to perform the analysis. The

radial basis function kernel was selected based on the guidelines

provided by the libSVM library (Software available 2.3.2011 at

http://www.csie.ntu.edu.tw/cjlin/libsvm).

Results

We used both classification methods to measure classification

accuracy based on individual features as well as the combination of

all features. The results for the comparisons HC vs AD, HC vs P-

MCI and S-MCI vs P-MCI in the full ADNI database are presented

in Tables 3, 4 and 5 respectively. Presented are classification

accuracy (CCR), sensitivity (SEN) and specificity (SPE). Further-

more, the 95% confidence interval for the classification accuracy is

estimated based on the multiple classification runs. Statistically

significant improvements achieved when combining all features are

marked with { (pv0.0001). To test for significance, unpaired t-tests

were carried out between distribution estimates for the correspond-

ing classification rates based on the multiple runs. All estimated

distributions passed a normality test using a Kolmogorov-Smirnov

test at a~0:05.

For direct comparison with work presented by Cuingnet et al.

[29], we performed classification based on the training- and testing

sets defined in their manuscript as described above. S-MCI and P-

MCI groups are defined in the same way as in the original

publication. Sensitivity and specificity values for the classification

in all three clinical pairings are reported in Table 6. Following the

clear advantage for LDA in the performance on the full dataset,

we only report results with this classifier for dataset II.

Discussion

In this study we assessed the automatic diagnostic capabilities of

4 structural MRI features (MBL, HC, CTH, TBM) separately and

combined in 834 baseline images acquired in the ADNI study.

When applied separately, TBM provided the overall best results,

closely followed by MBL. Combining all features improved

the results in all study experiments. Our results show how a

combination of different MRI-based features can improve results

based on only one measurement, resulting in a more powerful and

stable classifier. The most significant improvement of the combination

Figure 3. Results for t-tests for statistically significant group differences based on cortical thickness measurements.
doi:10.1371/journal.pone.0025446.g003

Table 2. Features used in the study.

Method No of features Description

Hippocampal volume (HV) 1 total volume of left and right hippopcampus

Cortical thickness 9 (HC vs AD) average cortical thickness within a ROI defined based on group-level statistical analysis

(CTH) 7 (HC vs P-MCI)

8 (S-MCI vs P-MCI)

Tensor-based morphometry (TBM) 84 average Jacobian of atrophic voxels within a ROI, weighted based on voxel-wise p-values

Manifold-based learning (MBL) 20 coordinates of a subject in a low-dimensional manifold space learned from pairwise image
similarities

doi:10.1371/journal.pone.0025446.t002

Early Diagnostics of AD Using MRI-Based Biomarkers
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over the best individual feature can be observed for HC vs P-MCI

with 5% units followed by 3 and 2% units for S-MCI vs P-MCI and

HC vs AD, respectively. These improvements lead to 20, 12 and 9

subjects more being correctly classified respectively when using the

combined feature set as compared to the best single feature for every

comparison. Comparing two classification approaches based on LDA

and SVMs resulted in a clear advantage of the former.

Several studies reported classification results using single MRI

methods for the HC/AD classification (Table 7). Liu et al. [24]

reported SEN/SPE of 92/90 in the classification of HC/AD

subjects using regional cortical volumes in the AddNeuroMed

dataset. McEvoy et al. [26] report a CCR of 89 on images from

the ADNI database using features from cortical thickness and

structural volumes. Vemuri et al. [54] present a SEN/SPE of 86/

86 on 380 subjects using the STAND score. In our study the

results obtained with single methods are lower (71–90) but almost

identical when the methods were combined. It should be noted,

however, that Liu and colleagues did not use cross-validation or

separate training/testing sets when producing the results which

could lead to overestimation of the results in a dataset outside the

study cohort. Gerardin et al. [23] acquired a high SEN/SPE of

96/92 by using hippocampal shape analysis, but the number of

subjects (25 HC, 23 AD) was quite low in order to produce results

with good generalizability. Westman et al. [55] reported a CCR of

82 for HC vs AD classification and 73 for HC vs P-MCI

classification by using various regional brain volumes. Our results

are substantially more accurate, the group sizes are larger and

clinical follow-up time is one year longer. Chupin et al. [21]

reported SEN/SPE of 75/77 (hippocampal volume) and Querbes

et al. [27] a CCR of 85 (cortical thickness), both lower than the

results acquired with the combination of features or TBM features

independently in our study.

Varying results concerning AD prediction (S-MCI/P-MCI

classification using baseline measurements) have been published

(Table 7): Querbes et al. [27] reported a CCR of 73, Liu et al. [25]

a SEN/SPE of 76/68, Chupin et al. [21] reported a SEN/SPE of

60/65 and Davatzikos et al. [15] SEN/SPE of 95/38. Our results

with separate and combined baseline features lie in the range of

these results (SEN/SPE 63/67, 64/66 and 67/69 when using HV,

MBL and the combined features, respectively).

There can be several explanations for the variation in the

reported results. A majority of the studies in this field have used

different statistical methods and MRI feature extraction strategies

on different datasets, which makes a comparison of the results

complicated. Also the variation in the size of the study samples and

the use (or ignoring) of cross-validation or separate training/testing

sets are important factors, which both have crucial impact on the

reliability and generalizability of the results. In Lötjönen et al.

[36], we demonstrated that choosing from a population of 350

cases several times 2/3 for the training set and 1/3 for the test set

and using hippocampus volume as a classification feature can lead

to any classification accuracy between 53% and 77%. This

observation is also confirmed by the high confidence intervals for

the classification accuracies reported in Tables 3, 4 and 5. This

shows that a fair comparison of methods based on the classification

accuracy is difficult if not exactly the same data and classification

approaches are used. Furthermore, since the ADNI study is still

ongoing, several subjects labeled as S-MCI will progress in the

future to the P-MCI group.

A recent study with a subset of ADNI subjects assessed the

classification performance of several structural MRI methods in

experiments comparable to our investigation [29]. Reported

Table 3. Classification results for HC vs AD.

Feature LDA SVM

CCR [95% CI] SEN SPE CCR [95% CI] SEN SPE

MBL 85{ [64 100] 87 83 85 [64 100] 87 83

HV 81{ [57 100] 81 79 81{ [57 100] 84 77

CTH 81{ [64 100] 89 71 82{ [57 100] 90 73

TBM 87{ [71 100] 90 84 87 [71 100] 89 84

All 89 [71 100] 93 85 86 [71 100] 94 78

{means statistically significant different from the combined results with
pv0.0001. CCR =Correct classification rate, SEN= Sensitivity, SPE = Specificity.
doi:10.1371/journal.pone.0025446.t003

Table 4. Classification results for HC vs P-MCI.

Feature LDA SVM

CCR [95% CI] SEN SPE CCR [95% CI] SEN SPE

MBL 78{ [54 100] 81 75 77{ [54 92] 84 69

HV 76{ [54 92] 77 76 78 [54 92] 83 71

CTH 77{ [54 100] 85 65 77 [54 100] 89 62

TBM 79{ [62 100] 82 76 80{ [62 100] 85 74

All 84 [62 100] 86 82 82 [62 100] 93 67

{means statistically significant different from the combined results with
pv0.0001.
doi:10.1371/journal.pone.0025446.t004

Table 5. Classification results for S-MCI vs P-MCI.

Feature LDA SVM

CCR [95% CI] SEN SPE CCR [95% CI] SEN SPE

MBL 65{ [36 86] 64 66 65{ [43 86] 77 48

HV 65{ [36 86] 63 67 62 [36 86] 83 33

CTH 56{ [29 86] 63 45 59 [36 79] 96 03

TBM 64{ [36 86] 65 62 64{ [36 86] 77 44

All 68 [43 93] 67 69 60 [36 86] 92 14

{means statistically significant different from the combined results with
pv0.0001.
doi:10.1371/journal.pone.0025446.t005

Table 6. Classification results based on a subset of ADNI that
was previously used for classification by Cuingnet et al. [29].

Feature HC vs AD HC vs P-MCI S-MCI vs P-MCI

SEN SPE SEN SPE SEN SPE

MBL 90 74 84 92 55 76

HV 80 69 75 76 63 70

CTH 85 75 86 59 72 35

TBM 93 76 90 84 63 59

All 94 76 94 89 69 54

doi:10.1371/journal.pone.0025446.t006
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SEN/SPE lie in the ranges 59/81–81/95 (HC vs AD) and 70/73–

73/85 (HC vs P-MCI). While most methods tested did not exceed

the accuracy of a random classifier for the discrimination between

S-MCI and P-MCI, the best results reported for this task were a

SEN/SPE of 62/69 when using hippocampal volume. To allow a

direct comparison of the results reported by Cuingnet et al. [29],

we evaluated our features on the exact same training- and testing

sets used in their paper. This direct comparison shows that our

results compare favourably to other, established methods in

neuroimaging. For HC vs AD classification, individual features in

our study give more sensitive but less specific results than most

methods in the previous publication. Combining all features gives

an overall better classification accuracy than the majority of

previously tested methods. Our results on the combined feature set

furthermore outperform the majority of methods tested by

Cuingnet et al. [29] when predicting MCI conversion as well as

all methods for the classification between HC and P-MCI. A

significant difference in classification accuracy can be observed

between the full ADNI dataset and this smaller subset used for

comparison with previous work. Reasons may include a strict

separation into trainin- and testing sets which may result in less

generalisability as well as the shorter follow-up period that was

considered to define progression to AD.

Some studies have also combined different biomarkers (CSF,

MRI, PET) with the idea of measuring different aspects of AD

pathology and thus improve the classification accuracy. Hinrichs

et al. [14] improved their HC/AD classification CCR by a few %

units to 81 by combining MRI and PET. Eckerström et al. [16]

studied the separation of a unified HC/S-MCI group from P-MCI

group with CSF proteins and manual hippocampal volumes. They

found CSF to be superior to MRI (SEN/SPE of 95/79 vs 86/66)

while the combination performed best (SEN/SPE 90/91).

However, it should be noted that the study sample in that

particular study was small (a total of 68 subjects) and neither cross-

validation or separate training/testing sets were used in order to

ensure good generalizability of the results. In Kohannim et al.

[17], the improvement from using multiple biomarkers was not

significant and Davatzikos et al. [15] reported marginal improve-

ments which, however, may be related to the fact that results with

only one biomarker were not very good to begin with.

Considering solely the classification accuracies of the present

study and those reported in literature, it seems questionable if the

collection of several biomarkers is worth the effort and resource. A

combination of different features extracted from a single MRI

seems to provide results that are comparable or better than those

obtained with other or multiple biomarkers. In a clinical point of

view, this is interesting since it means that a single MRI scan

provides not only aid to differential diagnostics of cognitive

impairment, but also reliably describes a persons phase in the HC/

AD continuum. MRI is also widely available, non-invasive and

often useful in the differential diagnostics of memory problems

thus making it a compelling option as the first biomarker that

would be obtained from a patient with mild memory problems.

However, a comprehensive differential diagnostics between AD

and non-AD cognitive impairments will still require assessment of

various different biomarkers. Also, it should be noted that the

computational techniques used in this paper are not widely

available in the clinical environment and thus limit their usage in

the clinical work at present.

Strengths of the presented study are i) the use of multiple

features extracted from one imaging modality, ii) large groups, iii)

rigorous validation process of the results using cross-validation,

and iv) results comparable or better than the ones published so far.

Our study has also some limitations that should be mentioned.

The results are obtained from a single (although collected from

multiple sites) cohort and should be also validated in other cohorts.

A longer clinical follow-up time would be needed to see if the

classification results of S-MCI/P-MCI experiment changed when

more of the MCI subjects converted to AD. Furthermore, the

ADNI study does not provide postmortem pathological confirma-

tion of the clinical status. With this limitation, individual subjects

might be wrongly categorized. Although a rigorous validation

process was used, optimally we need to establish standardized cut-

offs that would be well generalizable to other cohorts outside

ADNI. That is, however, beyond the possibilities of this study and

will require vast standardization and validation procedures. Also,

the CTH pipeline had problems especially with severely atrophied

brains or MRI scans with poor image quality. A more robust

pipeline would be desirable in order to guarantee a more reliable

feature extraction.

Table 7. Classification results of healthy control (HC), mild cognitive impairment (MCI) and Alzheimer’s disease subjects reported
in the recent literature.

Study N Features HC vs AD HC vs P-MCI S-MCI vs P-MCI

CCR SEN SPE CCR SEN SPE CCR SEN SPE

Liu et al. [24] 333 Cortical volumes 91 92 90 - - - - - -

Gerardin et al. [23]* 70 Hippocampus shape 94 96 92 - - - - - -

Chupin et al. [21]* 605 Hippocampus volume 76 75 77 - - - 64 60 65

Querbes et al. [27]* 382 Cortical thickness 85 - - - - - 73 75 68

Liu et al. [25] 312 Amygdala/caudate volumes - - - - - - 69 76 68

Davatzikos et al. [15]* 356 SPARE-AD index - - - - - - 56 95 38

Cuingnet et al. [29]* 509 Various - 81 95 - 73 85 - 62 69

Hinrichs et al. [14]* 159 MRI & PET 81 - - 60 92 14 - - -

Westman et al. [55] 351 Various volumes 82 - - 73 - - - - -

McEvoy et al. [26]* 398 Cortical thickness/various volumes 89 83 93 - - - - - -

Vemuri et al. [54] 380 STAND score - 86 86 - - - - - -

N =Number of study subjects,
* =ADNI dataset.
doi:10.1371/journal.pone.0025446.t007
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