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Abstract——The increasing penetration of various distributed

and renewable energy resources at the consumption premises,

along with the advanced metering, control and communication

technologies, promotes a transition on the structure of tradition‐
al distribution systems towards cyber-physical multi-microgrids

(MMGs). The networked MMG system is an interconnected

cluster of distributed generators, energy storage as well as con‐
trollable loads in a distribution system. And its operation com‐
plexity can be decomposed to decrease the burdens of communi‐
cation and control with a decentralized framework. Consequent‐
ly, the multi-microgrid energy management system (MMGEMS)

plays a significant role in improving energy efficiency, power

quality and reliability of distribution systems, especially in en‐
hancing system resiliency during contingencies. A comprehen‐
sive overview on typical functionalities and architectures of

MMGEMS is illustrated. Then, the emerging communication

technologies for information monitoring and interaction among

MMG clusters are surveyed. Furthermore, various energy

scheduling and control strategies of MMGs for interactive ener‐
gy trading, multi-energy management, and resilient operations

are thoroughly analyzed and investigated. Lastly, some challeng‐
es with great importance in the future research are presented.

Index Terms——Energy management system (EMS), microgrid,

communication, renewable energy, multi-energy system.

I. INTRODUCTION

IN recent years, the growing concerns on energy crisis andenvironmental pollutions caused by fossil fuels have led

to a widespread use of renewable energy sources (RESs)

such as solar, biomass, wind, and geothermal power. Never‐
theless, due to the inherent volatility and intermittency of

wind and solar energies, the direct integration of these RESs

into power grids may raise the problems with respect to reli‐
ability, energy efficiency, and power quality [1]. To this end,

the Consortium for Electricity Reliability Technology Solu‐
tion (CERTS) reports the concept of microgrid in [2] for the

hybridization of different RES technologies to enhance sys‐
tem schedulability and localized energy utilization. A mi‐
crogrid is referred as a self-sufficient distribution system

comprising various distributed generators (DGs), energy stor‐
age and controllable loads, and it can operate in the grid-con‐
nected or islanded mode [3]. Microgrids are often located

near the consumption sites at the low- or medium-voltage

level, and have a great potential for system enhancement on

the economic operation, peak shaving, reliability, resilience

and power quality, etc. [4]. Also, a large number of power

electronic devices used in the microgrid can contribute to im‐
prove its operation flexibility for mitigating fluctuating RES

outputs and strengthening the main power grid [5]. So far, a

lot of demonstration projects of microgrids have been de‐
ployed over the world such as Kythnos, Bornholm, Huata‐
condo, Sendai, and Eigg Island [6], and these projects can

promote the rural electrification and energy sustainability

with significant benefits for both consumers and society [7].

With the increasing penetration of various RESs at the

consumption premises, it has become infeasible to coordi‐
nate and accommodate a large amount of DGs in a single

microgrid due to the high uncertainties of RESs [8]. The re‐
cent advancements on power electronics, smart metering,

and communication technologies promote these microgrid

clusters to be networked to form a cyber-physical multi-mi‐
crogrids (MMGs) architecture for large-scale DG integra‐
tions [9]. The MMG system refers to an interconnected clus‐
ter of adjacent microgrids for coordinated energy manage‐
ment and interactive supports between each other [8]. Refer‐
ences [10] - [13] present that the interconnection of mi‐
crogrids can benefit from numerous aspects such as efficient

utilization of RESs, reduction of operation cost, black-start
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support, improvements of reliability and resiliency. MMGs

can also offer various auxiliary services including power flow

control, energy trading, energy storage sharing, corrective

maintenance, frequency and voltage regulations, etc. [9], [14].

For the stable and economic operations of MMGs, a multi-

microgrids energy management system (MMGEMS) is re‐
quired to manage and coordinate dispatchable DGs, control‐
lable loads, and energy trading among microgrids for main‐
taining dynamic power supply-demand balances [15]. The

operation objectives of MMGEMS can be summarized as fol‐
lows: ① to minimize the overall operation cost of MMGs in

the grid-connected mode [10]; ② to provide the reliable

power supply and stable voltage quality for customers in

each microgrid in the islanded mode [16]; ③ to maximize

the renewable energy utilization with the aggregation of un‐
certainties from various RESs and loads [11]; ④ to manage

information interactions among interconnected microgrids

while protecting customer privacy [17]; ⑤ to minimize ener‐
gy transmission losses from power exchanges with the main

grid and among networked microgrids [14]; ⑥ to maintain a

sustained power supply for critical loads with the apportion

of available resources among microgrids for resilient opera‐
tions during extreme events [13]; ⑦ to achieve the smooth

mode switching of MMGs including the off/on grid switch‐
ing and the combination of islanded operations [8].

So far, a few research works have been reported to investi‐
gate the existing important techniques for MMGs and MM‐
GEMS. Various types of MMGs at different voltage levels

are surveyed in [8] for rural, residential, office and industrial

applications. References [10] and [15] review the basic and

intuitive structures, functionalities, control objectives and

techniques for MMGs and MMGEMS. In [18], the island‐
ing, protection and control strategies for DC MMG clusters

are analyzed. However, these reviews mainly focus on the

physical structure and optimal operation of MMGs. Recent

developments in the MMGEMS such as the multi-carrier en‐
ergy management and resilient operation are not involved.

Moreover, the emerging advanced communication technolo‐
gies, especially wireless networks, are critical in MMGEMS

for the realization of reliable and secure information interac‐
tions among distributed microgrid clusters. Consequently, we

aim to fill this gap for a comprehensive understanding on

these important issues and techniques of MMGEMS.

In this paper, the recent development on the MMGEMS

are surveyed from the perspectives of architecture, communi‐
cation and scheduling strategies. Compared with the existing

studies on similar topics, the contributions of this paper in‐
clude: ① the typical architectures and functionalities of MM‐
GEMS as well as the emerging communication security is‐
sues are elaborated; ② various energy scheduling and con‐
trol strategies for MMGEMS, including decentralized dis‐
patch, energy trading, multi-energy management, and resil‐
ient operations, are thoroughly analyzed; ③ the main chal‐
lenging problems arising from the development of MM‐
GEMS such as large-scale complex optimization methodolo‐
gy, multi-energy couplings and 5G communication, are ex‐
plored. This paper can help power industry practitioners to

optimize the operation modes of the system and scheduling

strategies of MMGEMS for efficient utilization and accom‐

modation of RESs.

The remainder of this paper is organized as follows. Sec‐
tion II provides a comprehensive overview on the typical

functionalities and architecture of MMGEMS. The emerging

communication techniques and issues for decentralized mi‐
crogrid clusters are surveyed in Section III. Section IV inves‐
tigates the major aspects of energy scheduling strategies for

MMGEMS. Section V discusses several challenging prob‐
lems for the future development of MMGEMS. Finally, the

conclusion is presented in Section VI.

II. TYPICAL ARCHITECTURES OF MMGS AND MMGEMS

A. Architectures of MMGs

MMGs generally fall into three categories, namely AC

MMGs, DC MMGs, and AC/DC hybrid MMGs [19] - [21].

So far, AC MMGs are still the most widely-used MMGs as

AC MMGs take advantage of the original topology of the

power system. In DC MMGs, DGs, energy storage system

(ESS) and loads are commonly connected to a DC bus

through converters. The reactive power and eddy current

losses in DC MMGs can be neglected. Thus, DC MMGs can

provide lower operation cost than AC MMGs. The hybrid

MMGs combine the advantages of the AC microgrid and the

DC microgrid, exhibiting a high flexibility. Figure 1 presents

the architecture of a typical MMG system consisting of one

DC microgrid 1 and three AC microgrids 2-4. The electric

vehicle (EV), wind turbine (WT), microturbine (MT), photo‐
voltaic (PV) generator, and ESS in each microgrid are con‐
nected to a common bus through the power converter, the

microsource controller (MC) and the load controller (LC).

Microgrids 2 and 4 are three-phase microgrids, while mi‐
crogrid 3 is a single-phase microgrid. Each microgrid can op‐
erate in the islanded or grid-connected mode. When these mi‐
crogrids are interconnected to each other, each one can ex‐
change the power with the main power grid or other mi‐
crogrids. The optimal sizing and configuration of hybrid

MMGs have been analyzed and summarized in [22]-[24].
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Fig. 1. Architecture of a typical MMG system.
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B. Functionalities of MMGEMS

All microgrids in MMGs should be cooperatively man‐
aged in MMGEMS to ensure their economic and secure op‐
erations. In general, MMGEMS has four functionalities, i.e.,

information interaction, control and scheduling, resilient op‐
eration, and ancillary services, as shown in Fig. 2.

The information interaction module is responsible for pri‐
vacy protection, energy analysis, prediction of RES genera‐
tion and load demand, MMG state estimation and situation

awareness [9], [25]. The privacy protection is to protect the

energy consumption pattern of microgrids during informa‐
tion exchange processes [17]. The primary objectives of con‐
trol and scheduling modules are designed to optimally main‐
tain the power balance in MMG, and correlations between

different RESs are modelled based on the aggregated uncer‐
tainties to formulate optimal bidding strategies, thereby pro‐
moting the involved energy trades within MMGs [9]. Three

types of scheduling strategies, including centralized, decen‐
tralized and hybrid formats, are investigated in [14]-[16]. In

the centralized scheduling, the central controller of MMGs

collects detailed information from each microgrid as well as

the market information, and then makes decisions by execut‐
ing global optimization [15]. In the decentralized scheduling,

each microgrid controls all functions locally and indepen‐
dently, and shares essential global information with other mi‐
crogrid controllers through a consensus algorithm [10]. Fur‐
thermore, the hybrid scheduling can take the advantages of

centralized and decentralized scheduling strategies to allevi‐
ate the computation burden and protect the privacy of cus‐
tomers [14]. These modules can also provide the functions

for multi-energy conversion, on/off grid switching and volt‐
age/frequency regulation.

The resilient operation modules aim to improve the surviv‐
ability of MMG under various disturbances, cyber-attacks

and severe weather conditions [10]. Generally, the modules

are designed to prepare for unknown nature disasters and re‐
cover from major disruptions due to extreme events. The cy‐
ber security is essential to defend against cyber-attacks, as

MMG operations are heavily dependent on communication

technologies [13]. The ancillary service modules include mar‐
ket trading, demand response, congestion management, spin‐
ning reserve support, black start capacity and supporting in‐
teraction with the main grid [9]. Finally, the human-machine

interface module tries to solve the interoperability problem

of the above four modules and achieve real-time visualiza‐
tion.

C. Architectures of MMGEMS

So far, four types of MMGEMS architectures have been

developed in literatures, namely centralized, decentralized,

hybrid, and nested structures, as shown in Fig. 3.

A comprehensive comparison of the four MMGEMS archi‐
tectures is given in Table I. In the centralized MMGEMS

structure, all of the controllable generation and consumption

devices are controlled by a central controller, failing to pro‐
tect customer privacy. The central controller not only manag‐
es the power interaction among microgrids and the genera‐
tion scheduling of DGs [26], but also participates in market

bidding, stability control, and switching of microgrid opera‐
tion modes. In general, the centralized MMGEMS structure

can maximize the overall benefits of all MMGs [27], [28].

Nevertheless, the centralized MMGEMS structure requires a
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high computation capability as the penetration of renewable

generation continues to grow. The MMG system operates at

a high risk of paralysis if the central controller fails. Conse‐

quently, the development of the centralized MMGEMS struc‐
ture is largely limited.

In the decentralized MMGEMS structure, every microgrid

is an autonomous entity and has a local controller to maxi‐
mize its own profit [29]. The local controller monitors the

operation status of microgrid, and then independently deter‐
mines the operation condition of DGs and controllable loads.

The MMG system can still operate in the case of a local con‐
troller failure [30]. However, the decentralized MMGEMS

structure may bring in the competition between microgrids,

thus degrading the system-wide performance. The global op‐
timal control of microgrids can be realized through the infor‐
mation exchange among microgrids. Generally, the decentral‐
ized MMGEMS structure is suitable for the MMG system

with microgrids belonging to different owners.

The hybrid MMGEMS, which contains a central control‐
ler at the MMG system level and local controllers at the mi‐
crogrid level, is developed to overcome the disadvantages of

centralized and decentralized MMGEMS structures [36]. The

local controller of each microgrid performs local energy

management and optimization, and only informs the central

controller on the total amount of surplus/deficit energy. The

central controller is used for negotiating the control inconsis‐
tencies and economic conflicts between microgrids, ensuring

that the MMG system operates in a global optimal state

[37], [38]. Due to the two-level control and management ar‐
chitecture of hybrid MMGEMS, the local controller at the

microgrid level connects the central controller and customers

in the MMG system, so that there is only one information

connection point between customers and the central control‐
ler, thus resulting in the single-level privacy protection for

customers in MMGs [36]. Besides, the hybrid MMGEMS

structure has the advantages of flexibility and low operation

cost, making it popular in the MMG system [39]-[44].

The nested MMGEMS is a hierarchical structure with mul‐
tiple levels, and each microgrid constitutes a level of the

whole MMG system [45]. The privacy of customers with the

nested MMGEMS can be preserved due to the multiple lay‐

TABLE I

CHARACTERISTICS OF DIFFERENT MMGEMS ARCHITECTURES

MMGEMS
type

Centralized

Decentralized

Hybrid

Nested

Advantage

The minimization of conflicts
Reduced operation cost
Utilization of efficient components
of each microgrid

Easy standardization and
implementation

Reduction in external trading
High reliability in islanded operation

Strong privacy protection
Strong plug-and-play functionality
High computation efficiency
High tolerance for communication
error

Robust against single-point failures

Preserve customer privacy (single
level)

Less dependence on central
controller

Relatively high plug-and-play
flexibility compared with
centralized MMGEMS

High construction cost and
relatively low operation cost

Reduction on communication and
computation burden of central
controller

High system redundancy

Less operation cost compared with
hybrid MMGEMS

High resiliency
Strong privacy protection
Steady operation of microgrids
when the outermost controller
faults

Disadvantage

Dependence on central controller
Heavy computation burden
Sensitive to single-point failure
Weak plug-and-play functionality
Failure to preserve customer privacy
Sensitive to small system
modifications

Lack of adaptability and flexibility

Difficult to establish a consensus for all
microgrids

High operation cost and unawareness of
system-level resources

Low resiliency in islanded mode
High energy trading between MMG and
main grid

Expensive point-to-point (P2P)
communication

Easy disclosing of partial customer
privacy of microgrids by central
controller

Low resilient performance of
disconnected microgrids

If central controller is compromised, all
microgrids will operate independently

High dependence on communication
networks

Suboptimal operation
Computation time exponentially
expands as the number of
microgrids increases

High complex structure

Application case

Wanshan islands
MMG in China

Changdao MMG
in China
Yundian
Science Park
MMG in China

IIT-Bronzeville
MMG in
America

Luxi Island
MMG in China

Yuxi community
MMG in China

Under research

Methodology

Particle swarm
algorithm

Imperialistic
competitive algorithm

Mixed-integer linear
programming (MILP)

Sequential quadratic
programming

Column and constraint
generation algorithm

Gossip algorithm
Dynamic programming
Fuzzy map
Average consensus
algorithm

MILP
Hierarchical genetic
algorithm

Non-dominated sorting
genetic algorithm

Metaheuristic algorithm

MILP
Column and constraint
generation algorithm

Distributed optimization

Reference

[26]-[28]

[29]-[35]

[36]-[44]

[45]-[47]
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ered privacy structure. The microgrid at the lower-level only

transmits the information on its surplus/deficit energy

amount to the next upper-level microgrid, and the privacy da‐
ta of customers are mixed with the data of all microgrids at

the lower levels. Consequently, the MMG operator at the up‐
per level cannot unveil the energy consumption behaviors of

consumers at the lower levels, and the privacy of the inner‐
most microgrid is strongest while that of the outermost is

the weakest [46]. Furthermore, the local controller of the mi‐
crogrid at the top level can obtain the information on the to‐
tal amount of surplus/deficit energy of microgrids at all low‐
er levels through the layered information interaction. And

the total amount of surplus/deficit energy is considered as

the energy resources/loads in the topmost microgrid. Then,

the local controller at the top level can optimize the energy

management and scheduling of the whole MMG system, and

also performs the energy trading and exchanges with the util‐
ity grid considering the power balance and various security

constraints [47].

III. COMMUNICATION ISSUES IN MMGEMS

A. Communication and Networking Structures

With the development of information and communication

technologies, the traditional MMGs are gradually trans‐
formed into a cyber-physical system (CPS) with real-time

sensing, dynamic control and bidirectional information ex‐
change. To support the MMG operations, four types of com‐
munication networks are developed, i. e., P2P, mesh, aggre‐
gated and nested structures, as presented in Fig. 4. Here, the

aggregator represents the local controller of a microgrid, and

the nodes denote the distributed energy resources or electri‐
cal equipment and components with the information and

communication capabilities [48].

In the P2P structure, each node is directly connected to

the central controller and has no aggregators in the communi‐
cation network [48]. The central controller takes charge of

information collection and information exchange between

MMGs and DSO. The main advantages of P2P contain fast

control for critical loads, simple integration and low installa‐
tion cost. Nevertheless, P2P structure has the single-point of

failure (SPOF) problem as the broken central controller will

make the whole communication network paralyzed [49]. In

the aggregated structure, aggregators are embedded in the

MMG system to connect nodes and the central controller,

and shares the communication burden. This structure is suit‐
able for large-scale MMG system with frequent information

exchange [50], [51]. Nevertheless, aggregated structure also

has SPOF problem and its trip time is relatively higher than

P2P. In the mesh structure, communication connections gen‐
erally exist between various nodes/aggregators. These redun‐
dant connections can effectively solve SPOF, thereby improv‐
ing the flexibility and reliability of the communication net‐
work [52], [53]. However, the mesh structure has a high op‐
eration cost due to its redundancy. In the nested structure,

the information interaction only exists between adjacent ag‐
gregators due to the layered communication structure, thus

preserving the privacy of customers [45]. Besides, the main

benefits of the nested structure contain the effectiveness to

solve SPOF and low operation cost [47].

B. Communication Protocols and Techniques

Communication protocols refer to the principles and rules

that both communication parties must follow to realize a se‐
cure and reliable information exchange [48]. The protocols

in MMGs are similar to those of microgrids based on the en‐
hanced performance architecture [54]. Recently, the Internet

architecture is built based on transmission control protocol/

internet protocol for fulfilling the end-to-end communication

of autonomous microgrids in the MMG system [47], [53].

Wire and wireless communication technologies can be

used to form the communication link between two MMG de‐
vices. Wireless communication technologies have been wide‐
ly recognized for MMG communications due to its low in‐
vestment cost, quick deployment, widespread access and

high flexibility, while the wire communication will not suf‐
fer from interference problems [55]. So far, the commonly-

used wireless communication technologies in MMGs are gen‐
eral packet radio service (GPRS), global system for mobile

(GSM) communication, and Wi-MAX, etc. The wire net‐
work technologies include power line communication (PLC),

digital subscriber line (DSL) and optical fibers. The compari‐
son of these two types of technologies is given in Table Ⅱ
[48], [55]-[58]. According to their coverage ranges, the com‐
munication networks in MMGs can be divided into home-ar‐
ea network (HAN), field-area network (FAN), and wide-area

network (WAN) [56]. HAN and FAN are inside a building

and a microgrid [56], [57], respectively. WAN is generally

used for the communication between central controller in

MMGEMS or DSO and local controllers [58].

C. Communication Security

The MMG system is a typical CPS that facilitates its eco‐
nomic operation and real-time control. However, CPS may

also bring in cyber-attacks to degrade the communication se‐
curity of MMGs [59] - [61]. The reported attacks against

MMGs include hijacking attack [62], false-data injection at‐
tack [63], denial of service attack [64] and power bot attack

[62], resulting in various faults related to the controller, com‐
munication channel and sensor [65].
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sturcture

Central

controller

Central

controller

Central

controller

Distribution system operator
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Fig. 4. Typical communication networking structure of MMGs.
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Generally, the impacts of cyber-attacks on MMG include:① instability of MMGs; ② communication link fault; ③
voltage, frequency and power imbalance; ④ privacy leak‐
age [13].
The research works on detecting and defending against cy‐

ber-attacks in MMGs fall into three categories, i.e., commu‐
nication, physical, and system security. Communication secu‐
rity applies encryption, authentication, and security protocols
to prevent unauthorized access. The blockchain is a promis‐
ing technology to provide a powerful and trust-worthy path
for signal transmission in MMG [66], [67]. Physical security
refers to the optimal deployment of protection equipment for
improving the system observability [60]. The system security
problem adopts statistical and non-statistical methods to iden‐
tify abnormal states of MMGs. In [64], an adaptive protec‐
tion scheme is proposed using supercapacitors against com‐
munication failures. An attack detection strategy based on
sliding mode observer is presented in [68]. A cooperative
control strategy [69] is proposed to suppress the spread of
cyber-attacks to minimize the impact of the attacks on com‐
munication channels and controllers. A software-defined de‐
tection method [62] is developed to detect possible hijacking
attacks on controllers in MMGs.

IV. ENERGY MANAGEMENT STRATEGIES FOR MMGEMS

A. Decentralized Scheduling Strategies

The energy scheduling of MMGs is a challenging optimi‐
zation problem which cannot be readily solved by conven‐
tional methods because of high-dimensional variables, limit‐
ed communication bandwidth, and uncertainties of RESs
[70]. In the decentralized scheduling model, the complex
MMG scheduling problem can be decomposed into local and
reduced-complexity microgrid subproblems to reduce the di‐
mension and communication burden, and improve the solu‐
tion efficiency [15]. This model enables each microgrid to

manage RESs and loads locally and autonomously, and coor‐
dinates with other microgrids by sharing essential global in‐
formation [10]. There are two types of decentralized schedul‐
ing methods, decomposition methods and multi-agent game

methods. The former includes dual decomposition [70], alter‐
nation direction method of multipliers (ADMM) [71] - [76],

analytical target cascading (ATC) [77], and consensus algo‐
rithm [78]. The latter methods are various equilibrium game

models including cooperative game [79], [80] and non-coop‐
erative game [15], [81].

Most of the decomposition methods are developed based

on augmented Lagrangian decomposition, and their mathe‐
matical iterative rules result in the differences in the optimi‐
zation performance and theoretical convergence [29]. The du‐
al decomposition method is commonly used with Lagrangian

decomposition functions of the optimization problems with a

separable framework [70]. The ADMM algorithm inherits

and combines the decomposability of Lagrangian relaxation

and convergence properties of Lagrangian multipliers [72],

[73], [75]. ATC is proposed as a hierarchical, iterative de‐
composition approach for solving different distributed optimi‐
zation problems [77]. The consensus algorithm is an effec‐
tive mechanism to achieve the overall economic operation of

the MMG system by means of the consensus among the lo‐
cal controllers of adjacent microgrids [78]. These methods

can be applied in MMGEMS to decouple the multi-lateral

energy trading with limited minimal information interactions

[70]-[77]. Moreover, the main idea of multi-agent game mod‐
els is used to divide the complex large-scale optimization

problems into several intelligent agents with autonomy and

communication capabilities [82]. The multi-agent game mod‐
els, consisting of cooperative and non-cooperative models,

are generally applied to solve the energy transaction problem

in the networked MMGs [15]. The cooperative game model

allows the microgrid to obtain an extra remarkable benefit

than that without cooperation [79], [80], while the non-coop‐

TABLE Ⅱ
TECHNICAL COMPARISONS OF DIFFERENT COMMUNICATION TECHNOLOGIES APPLICABLE FOR MMGS

Type

Wireless
communication [55]-[58]

Wire communication
[56], [57]

Technology

GSM

GPRS

3G

4G

Wi-MAX

ZigBee

Wi-Fi

Bluetooth

PLC

Optical
fibers

DSL

Spectrum

900-1800 MHz

900-1800 MHz

1.92-1.98 GHz

2-8 GHz

2.5 GHz, 3.5
GHz, 5.8 GHz

2.4 GHz,
868-915 MHz

2.4 GHz

2.4 GHz

1-30 MHz

20 THz

0.24-1.5 MHz

Data rate

Up to 14.4 Kbps

Up to 170 Kbps

384 Kpbs-
2 Mbps

10-100 Mbps

Up to 75 Mbps

Up to 250 Kbps

Up to 54 Mbps

Up to 24 Mbps

2-3 Mpbs

100-2448 Mbps

1.3-200 Mbps

Range

1-10 km

1-10 km

1-10 km

3-12 km

10-50 km

100-1500 m

100-300 m

100 m

1-3 km

10-20 km

1-7 km

Routing

Direct

Direct

Direct

Direct

AODV, DSR,
OLSR, ZRP

AODV, HERA

More than 70
protocols

Master-slave
structure

RPL, DSR, and
flooding

SAN

Direct

Security

64 bit A5/1

64 bit A5/1

KASUMI cipher

SNOW-3G,
AES, ZUC

AES and TDEA

AES

WPA

Encryption key

TDEA

Optical wave‐
guide structure

Unique ID

Initial cost

Costly

Costly

Costly

Costly

Moderate

Low

Moderate

Low

Low

Costly

Low

Application

WAN, FAN

WAN, FAN

WAN, FAN

WAN, FAN

FAN

HAN

HAN

HAN

FAN

WAN

FAN
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erative model focuses on maximizing the individual benefit

of each microgrid in the MMG system [15]. These decentral‐
ized scheduling strategies have been widely used for RES

output forecasting, privacy protection, and reliability en‐

hancement [83]-[85]. In summary, the advantages and disad‐
vantages of different decentralized scheduling strategies are

tabulated in Table III.

B. Uncertainty Management Strategies

There are various types of uncertainties in MMGs caused

from RESs, loads, and power prices. These uncertainties are

usually strongly correlated [15], which uncertainties not only

bring in challenges to maintain the supply-demand balance,

but also cause negative impacts on energy transactions [86].

The existing methods for uncertainty management in MMGs

are robust dispatch strategy [86]-[89] and stochastic dispatch

strategy [90]-[101]. In the robust dispatch strategy, state esti‐
mation errors are formulated as uncertainty intervals or sets

for optimizing the worst-case operation scenario [87]. How‐
ever, robust dispatch strategy could give rise to the over-con‐
servative solutions in MMG operations [86]-[89].

Recently, various distributed robust dispatch strategies are

developed based on the distributionally robust optimization

(DRO) to minimize the expected operation cost of MMGs

with the worst-case probability distribution in the ambiguity

set of an estimated distribution [32], [46]. The DRO method

can offer two important advantages: ① the exact probability

distribution of operation scenarios is not required; ② this

method can provide robust solutions in the stochastic envi‐
ronment while avoiding over-conservative results [33].

The stochastic dispatch strategy requires a large number

of scenarios using Monte Carlo simulation to estimate the ac‐
curate probability distribution of uncertainties [86], [90],

thereby providing the probabilistic guarantee for constraint

satisfaction [91]. For instance, it is assumed in [92] that pre‐
diction uncertainties from wind energy should meet the nor‐
mal distribution or Weibull distribution. The scenario-based

stochastic optimization and two-stage stochastic program‐
ming approaches have been utilized to address the source-

load uncertainties [92]-[97]. The comparisons of robust dis‐
patch strategies and stochastic dispatch strategies are given

in Table IV.

C. Energy Trading Strategies

In general, energy trading strategies are designed to opti‐
mize energy transactions among multiple microgrids. The ex‐

isting energy trading strategies fall into two categories, i. e.,

the cooperative strategies and the competitive strategies. In

the cooperative strategies, all microgrids cooperate with each

other to maximize the overall benefit of MMGs [102]. The

microgrids with surplus power are called“the seller”, other‐
wise they fall into“the buyer”. It is generally assumed that
the energy transaction with the least power loss should be

traded in priority [103]. A price mechanism based on auction

models provides a more reasonable trading price among mi‐
crogrids through optimal biddings [104], [105]. A worst-case

analysis based on transaction mechanism is proposed in

[106] to improve the robustness of MMGs. Moreover, a co‐
alitional game model based on Shapley value is widely-used

techniques for the allocation of MMG profits [102], [105] -

[108]. A distributed convex cost-minimization model is de‐
veloped in [109] to safeguard the privacy of microgrids and

optimize the MMG operation cost.

For the competitive energy trading strategy, each mi‐
crogrid aims at maximizing its own profit without the con‐
cern of other microgrids [110]. Generally, the energy trading

mechanisms in MMGs are designed to satisfy the demand lo‐
cally. Each buyer (seller) microgrid hopes to purchase (sell)

power from (to) seller (buyer) microgrids as much as possi‐
ble. Thus, competitions usually exist among microgrids, and

TABLE Ⅲ
COMPARISONS OF DIFFERENT DECENTRALIZED SCHEDULING STRATEGIES

Approach

Dual decomposition

ADMM

ATC

Cooperative game

Non-cooperative
game

Advantage

Parallel processing of optimal energy management

Parallel processing of optimal energy management
Guaranteeing convergence for convex problems
ADMM can be designed as a full distributed manner

Parallel processing of optimal energy management
Easy to achieve global consensus among microgrids
Convergence without the assumption on convexity

Increasing the additional benefits of microgrids
Achieving the global optimization of MMGs

Maximizing the benefits of microgrids
Protecting customer privacy

Disadvantage

Convergence cannot be ensured, even for convex problems
Requiring a central coordinator

Difficult to achieve global consensus among microgrids
Requiring an auxiliary procedures to exchange intermedia
results with adjacent microgrids

Requiring a central coordinator
Requiring significant computation effort
Difficult to handle MMG with mesh communication network

Privacy of customers is easy to be disclosed due to the sharing
of large amount of information

Global optimality cannot be guaranteed

Reference

[70]

[72], [73]
[75]

[77]

[79], [80]

[15]

TABLE Ⅳ
ROBUST DISPATCH VERSUS STOCHASTIC DISPATCH STRATEGIES

Performance

Reliability

Major consideration

Sensitivity to
uncertainties

Computation burden

Design complexity

Economic operation

Robust dispatch
strategy

High

Worst-case scenario of
uncertain variables

Low

Low

Simple

Suboptimal

Stochastic dispatch
strategy

Moderate

Probability distributions
of uncertain variables

High

High

Complex

Optimal
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various non-cooperative game models are employed to for‐
mulate competitive strategies in [111]-[120]. The non-cooper‐
ative game models for competitive energy trading strategies
have been presented in Table Ⅴ . The priority-based trading
mechanisms are investigated in [113] to solve the optimal
trading decision based on the importance of microgrids in
the competitive electricity market. Besides, the Stackelberg
game can be used to solve the competition between DSO
and microgrids [115], [116]. Two-level game models are also
proposed for the trade-off of competitions between DSO and
microgrids, and among microgrids simultaneously [118] -
[120]. A comparison between these cooperative and competi‐
tive trading strategies is presented in Table Ⅴ .

D. Multi-energy Management Strategies

The multi-energy microgrid can be modelled as an energy
hub, in which the production, conversion, storage and con‐
sumption of diff erent types of energy carriers are formed to
satisfy multi-energy demands [121], [122]. The multi-energy
management strategies aim at solving the scheduling prob‐
lems of the multi-energy coordination and exchanges among
interconnected microgrids with the multi-energy couplings
and inherent nonconvexities [123]. Multi-energy interconnect‐
ed microgrids increase the overall degree of freedom for en‐
ergy management and supply with the complementary nature
of different types of energy forms [123]. Also, through ex‐
changing the energy with each other, microgrids can make
full use of the flexibility and synergies of multi-energy sup‐
plies to enhance mutual benefits. Generally, the optimal
scheduling of multi-energy microgrid for maximizing opera‐
tion efficiency can be formulated as an MILP problem with
a high degree of variables and complexity [122], [124] -
[126]. An MMG multi-energy coupling matrix is formulated
in [70] to exploit the inherent biogas-solar-wind energy cou‐
plings among microgrids, and the couplings among electrici‐

ty, gas, and heat flows are subsequently decomposed into the
internal multi-energy coordination within individual mi‐
crogrids and external multi-energy exchange among intercon‐
nected microgrids for the improvement on the scheduling op‐
timality and scalability. Various distributed optimizers have
been used in [123], [127], [128] to solve the problem of
multi-energy exchange among microgrids in MMGs. Further‐
more, a price-based trading mechanism for multi-energy
MMGs with demand response is proposed in [126], and the
concept of quality-of-service is introduced in [129] to im‐
prove the service quality of multi-energy supplies with a Ly‐
apunov optimization technique.

E. Voltage and Frequency Control Strategies

Supply-demand imbalance usually leads to voltage and fre‐
quency biases, and voltage and frequency control strategies
are important to ensure the power quality of MMGs. The ex‐
isting voltage/frequency control strategies focus on eliminat‐
ing these biases within one single microgrid [130] - [132].
The droop control is the most widely-used method to regu‐
late the voltage and frequency based on drop characteristics
of DGs, including active power-frequency properties [132] -
[136], reactive power-voltage properties [137], [138], DC
power-voltage characteristics [139], [140], and the interlink‐
ing converter droop characteristics between two mi‐
crogrids [141].
In recent years, various voltage and frequency coupling

control methods such as coordinated droop control [142],
model predictive control [143], adaptive control [144], [145],
and hierarchical control [146], have been developed to guar‐
antee the stability of MMGs. In [147], a probabilistic index
is proposed to quantify the controllability of bus voltages in
MMGs. The decentralized control in [148]-[150] can enable
the autonomous operation of microgrids and solve voltage is‐
sues locally by the regional autonomy or collaboration, thus
providing the voltage support with a quick response. For the
load frequency control, a robust sliding mode control based
on adaptive event-triggered mechanism is developed in
[151], [152] against the frequency deviation caused by pow‐
er unbalance or time delays. The feasibility and profitability
of MMGs for providing the primary frequency reserves in
ancillary-service market are investigated in [153] for addi‐
tional economic profits. An auction mechanism to enable the
competition among microgrid agents for the provision of the
local area frequency support is also proposed in [154]. In
[155], a coordinated control method considers multi-energy
conversion of MMGs with the combined effect of diversified
energy storages to improve the frequency stability of the
MMG system.

F. Emergency Management Strategies

Generally, the MMG reliability can be measured by the
frequency and duration of power outages experienced by
power consumers [13]. Emergency management strategies
are usually designed to enhance the reliability of MMGs
against potential low-impact/highly-probable contingencies
such as N - 1 event, N - 2 event, overloading, excessive gen‐
eration, and short-circuit fault [10]. A formal analysis is pro‐
posed in [156] and [157] to estimate the stability margin of
MMGs with large disturbance, offering the provably secure

TABLE Ⅴ
COMPARISONS OF ENERGY TRADING STRATEGY

Feature

Optimization
objective

Optimization
model

Solution
algorithm

Allocation of
benefits

Privacy
protection

Cooperative trading strategy

Maximizing overall benefit
of MMGs

Coalitional game model
[102], [105]-[108]

Distributed convex cost-
minimization model
[103], [104], [109]

Column and constraint gen‐
eration method [86],
heuristic
algorithms [102],[106]-
[108]

ADMM method [103],
subgradient algorithm
[104], [109]

Shapley value

Easy to leak privacy

Competitive trading strategy

Maximizing individual
benefit of each microgrid
or DSO

Nash bargaining game
model [110]

Differential game model
[112]

Stackelberg game model
[115], [116]

Two-level non-cooperative
game model [118]-[120]

ADMM method [110],
consensus algorithm [112]

Column-and-constraint
generation method [116],
heuristic
algorithms [118], [120]

Self-interest

Well protected
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operation for networked microgrids. An emergency market
mechanism is designed in [158] to motivate microgrids with
surplus energy and provide microgrids with energy shortage
so that their critical loads can be satisfied.
So far, emergency management strategies can be divided

into preventive measure, fault protection and outage manage‐
ment. The preventive measure deploys infrastructural and op‐
eration measures before the contingency happens. A supervi‐
sory control method is proposed to provide a timely warning
for MMGs contingencies [159]. Besides, an internal fault
protection method is proposed in [160] by analyzing current
and voltage characteristics of different feeders considering
the faults at different locations. Time-domain simulations are
used in [161] to identify critical reasons that degrade the sta‐
bility of microgrids. The outage management during contin‐
gencies is used to reduce the duration of power outage and
maintain the power supply of critical loads [162]. Various
emergency management strategies, including hierarchical out‐
age management, self-healing control and coordinated emer‐
gency dispatch, have been investigated in [162] - [164] to
form emergency power sharing mechanisms so as to avoid
the curtailment of critical loads.

G. Resilient Operation Strategies

The resiliency of MMGs is defined as the capability to
prepare for unknown conditions and recover from major dis‐
ruptions due to extreme events [13]. The resilient MMG sys‐
tem should be survived with severe natural disasters, destruc‐
tive man-made incidents, and a combination of these events
[165]. The resilient operation of MMGs includes situation
awareness, robustness and preparedness before an extreme
event, responsiveness and survivability during an event, and
the recoverability after an event [13].
In order to improve the resiliency of MMGs, it is impor‐

tant to proactively cope with emergencies caused by extreme
events [25]. A smart situation awareness framework is devel‐
oped in [9] to perceive the real-time system situations, and
even predict potential disruptions through internal factors
and external conditions. The robustness and preparation be‐
fore extreme events indicate that infrastructures and opera‐
tion measures shall be well-deployed before an extreme
event happens to limit the impact of potential disruptions
[21]. Recently, the networking of microgrids and sparse com‐
munication architecture have been recognized as effective so‐
lutions to further enhance the resiliency of MMGs [165] -
[168]. In addition, MMGs can also be used as backup devic‐

es to maintain the power supply of critical loads, thereby im‐
proving the resiliency of the main grid [169]-[171].
MMG operators should respond to disruptions in a timely

and effective way for strong responsiveness and survivability
during extreme events while preserving a minimum level of
system functionalities [172]. The three-stage resilience-con‐
strained scheduling model is presented in [173] and [174] to
mitigate the damaging impact of power interruptions by ex‐
ploiting MMG capabilities. The recoverability of MMGs re‐
veals that the system performance should be recovered quick‐
ly back to its normal operation level after an extreme event
[54]. The optimal load recovery problem can be formulated
as an MILP model to maximize the amount of served loads
after an event [175], [176]. The change of MMG topologies
posed by disasters prevents energy exchanges among mi‐
crogrids, and the transportable ESS (TESS) can timely trans‐
fer the energy among microgrids with power deficit to signif‐
icantly improve the resiliency of MMGs [13], [177]. A joint
post-disaster restoration scheme for optimal scheduling of
TESS and DGs in the MMG system is proposed in [178] to
minimize the total system cost.

H. Scenario Analysis for MMGEMS Scheduling Strategies

Research works in [70], [123] show that the multi-energy
interconnection of MMGs can improve the operation efficien‐
cy of the system. Three types of scenarios of multi-energy
scheduling have been proposed and analyzed in [123], and
the comparative performances are shown in Table VI. In sce‐
nario 1, a joint operation scheduling strategy of electricity,
heat and natural gas networks is performed. In scenario 2,
the electricity-gas network and heat network are independent‐
ly scheduled. Scenario 3 is the conventional electricity-natu‐
ral-gas operation plan without a heat network. Compared
with scenario 2, the system operation cost, wind curtailment,
energy loss and environmental cost of scenario 1 are re‐
duced by 5.54%, 1.90%, 8.81% and 18.92%, respectively.
Compared with scenario 3, the system operation cost, wind
curtailment, energy loss and environmental cost of scenario
1 are reduced by 1.43%, 0.90%, 2.23% and 5.70%, respec‐
tively. Scenario 1 has the largest natural gas consumption
and lowest pollutant emission among the three scenarios.
Therefore, the interconnected multi-energy system generally
has better scheduling performance in terms of operation cost,
wind curtailment, efficiency and environmental protection
compared with any individual scheduling method.

V. CHALLENGES

The operation of MMGEMS still has some challenges re‐
lated to the large-scale interconnection of MMGs, 5G com‐
munication, and multi-energy coupling and trading issues.
1) Solving large-scale MMG optimization problems: with

TABLE Ⅵ
COMPARISONS OF DIFFERENT MULTI-ENERGY SCHEDULING SCENARIOS

Scenario

1

2

3

System operation
cost ($)

13127.33

13897.78

13318.14

Natural gas
consumption (m3)

6447.60

4125.74

5799.06

Fired generation
(MWh)

98.18

123.55

104.81

Energy loss
(MWh)

238.12

261.15

243.55

CO2 emission
(104 lb)

19.03

23.47

20.18

Wind energy
curtailment (%)

0

1.9

0.9
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increasing number of networked and interconnected mi‐
crogrids, the optimal scheduling of MMGs is still a challeng‐
ing optimization problem due to the curse of dimensionality.

Although distributed methods such as Lagrangian relaxation

and ADMM can be used to decompose the problem complexi‐
ty, the convergence of boundary-exchanged variables will suf‐
fer sharp variations and oscillation issues in the distributed op‐
timization process, leading to local optimal solutions or even

the failures of convergence after a limited number of iterations.

2) Multi-energy couplings: the future MMG system

should be networked with multi-carrier energy forms. Hence,

multi-energy couplings among electricity, gas and heat net‐
works in MMGs further strengthen the complexity of the

modeling, control and coordinated operations of MMGEMS

due to diversified energy characteristics, severe networking

constraints and strong multi-energy couplings.

3) 5G communication for MMGs: in the near future, the

5G wireless communication technique would be extensively

used in MMGs and several issues relating to the 5G deploy‐
ment such as the privacy protection of consumers, high ener‐
gy consumption of anntenna arrays, and intercell interference

caused by network densification. The 5G communication net‐
work would be vulnerable to cyber-attacks which would

hamper the operation of the entire MMG system.

4) Multi-energy trading mechanism: the existing studies

focus on the modeling of electricity trading among MMGs,

while the potential of MMGs participating into the multi-en‐
ergy trading has not been explored. Each microgrid in an

MMG system is an independent entity, which aims to opti‐
mize their own performance and expect to gain benefits

from multi-energy trading. However, multi-energy pricing

and bidding mechanisms are still open issues to coordinate

the interests of individual microgrid and the public interest

of the entire MMG system within an optimal multi-energy

trading framework.

VI. CONCLUSION

MMG and its energy management system play a signifi‐
cant role in improving energy efficiency, power quality, and

reliability of distribution systems, especially for enhancing

the resiliency of the system during contingencies. In this pa‐
per, a comprehensive overview on the architecture, function‐
alities and communication techniques of MMGEMS is sur‐
veyed as well as the detailed investigations on energy trad‐
ing and scheduling strategies, multi-energy management,

voltage and frequency control, emergency and resilient opera‐
tion strategies. The research works indicate that the resilien‐
cy of MMGs can be improved significantly with a transport‐
able energy storage for flexible and efficient energy transfer

among microgrids in appropriate time and locations to facili‐
tate critical load restoration after disasters. Moreover, the sce‐
nario analysis demonstrates that multi-energy interconnec‐
tions among MMGs can mutually support the stable and reli‐
able multi-carrier energy supplies with lower operation cost

and renewable energy curtailment. Therefore, developing a

smart MMGEMS has become a common global priority to

support the trend towards a more sustainable and reliable

green energy supply for smart grid.
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