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Abstract 

Cell morphology reflects the progression of high-level cellular processes, such as neuronal 

diversification, cell migration, or immune cell activation, and is one of the most described cellular 

phenotypes in biology. Multimodal techniques like Patch-seq enable simultaneously profiling the 

morphological, transcriptomic, and physiological characteristics of individual cells. However, 

computational methods that can summarize the great diversity of complex cell shapes found in 

tissues and infer associations with other single-cell data remain scarce. Here we report a 

computational framework, named CAJAL, for the morphometric and multi-modal analysis of 

cells. CAJAL uses concepts from metric geometry to accurately build, visualize, and integrate 

cell morphology summary spaces and establish associations with molecular and physiological 

data of individual cells. We demonstrate the utility of CAJAL by applying it to published Patch-

seq, patch-clamp, serial electron, and two-photon microscopy data, and show that it represents 

a substantial improvement in functionality, scope, and accuracy with respect to current methods 

for cell morphometry. 
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Introduction 

Since the advent of staining techniques in the 19th century, cell morphology has become 

one of the most described phenotypes in biology. The idea that the morphology of a cell is 

related to its function has been central to major discoveries, including the neuron doctrine1, the 

molecular basis of sickle cell disease2, and the pathways for cell migration and chemotropic 

sensing3. In the digital era, the study of cell morphology continues to have a prominent role. Cell 

shape can be indicative of disease and is a key diagnostic tool for some pathologies4. Image-

based screens on cultured cells have uncovered the mechanism of action of multiple drugs5, 6. 

In the nervous system, thousands of neurons have been morphologically characterized using 

whole-cell patch-clamp7, and the recent incorporation of high-throughput single-cell RNA-seq 

onto this technique, known as Patch-seq8-12, has led to deeper characterizations including 

morphological, transcriptomic, and electrophysiological information of the same cells13. The 

combination of these techniques with Cre-dependent sparse labeling, high-resolution 

microscopy, and slice alternation methods is producing accurate morphological reconstructions 

of individual cells across macroscopic volumes14, 15. The potential of this new array of 

techniques is immense, not only for cell taxonomic purposes16-21, but also for uncovering the 

molecular pathways that are associated with, and may ultimately drive, morphological cellular 

processes. However, to ensure progress in these directions, the implementation of high-

resolution cell morphology profiling techniques needs to be accompanied by the development of 

computational methods that can take full advantage of them.  

Algorithms for cell morphometry seek to determine similarities among the morphology of 

individual cells in digitally reconstructed microscopy images. They extract a set of shape 

descriptors that summarize the morphology of each cell, and then quantify differences between 

descriptors. Simple geometric descriptors consist of general morphological readouts like the 

area, perimeter, and lengths of major and minor axes of the cell22, 23. Although they can be 
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applied to most cell types and are invariant under rigid transformations, they cannot accurately 

discriminate complex cell morphologies like those of neurons and glia. Thus, cell-type-specific 

descriptors include more complex morphological characteristics, such as neuronal branching 

patterns (e.g. Sholl analysis24, L-measure25, and SNT26), which can be used to summarize 

complex morphologies. However, these descriptors need to be tailored to the specific cell type 

of interest and cannot be broadly applied. In addition, they are arbitrary with respect to the 

features that are used, and the weight assigned to them. To overcome some of these 

limitations, other methods generate a similarity score based on tree alignment (e.g. NBLAST27 

and BlastNeuron28) or decomposition in Fourier, Zernike, or spherical harmonic moments29-32. 

These methods require building combinations of descriptors that are invariant under rigid 

transformations or carefully pre-aligning the cells using Procrustes analysis, and therefore fail to 

accurately quantify morphological differences between highly dissimilar cells. Additionally, the 

similarity scores produced by these and other methods, like those based on persistent 

homology33, 34, do not directly reflect the biophysical processes involved in cell morphological 

changes and do not lead to an actual mathematical distance function. These limitations have 

precluded the development of algebraic and statistical approaches for integrating and batch-

correcting cell morphology spaces, constructing consensus cell morphologies, or inferring cell 

state trajectories associated with morphological processes. 

Here, we build upon recent developments in applied geometry and shape registration35-37 

to establish a computational framework for summarizing complex and heterogeneous 2D and 

3D cell morphologies across the broad range of cells found in tissues. This framework enables 

the characterization of morphological cellular processes from a biophysical perspective and 

produces an actual mathematical distance upon which rigorous algebraic and statistical analytic 

approaches can be built. The resulting framework has the generality and stability of simple 

geometric shape descriptors, the discriminative power of cell-type specific descriptors, and the 

unbiasedness and hierarchical structure of moments-based descriptors. Using this approach, 
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we address several outstanding methodological gaps in relating cell morphology to mechanism 

and function, including the combined analysis of morphological, molecular, and physiological 

information of individual cells, the integration of morphological information across technologies, 

and the analyses of morphological covariates. We expect this framework, and the 

accompanying software CAJAL, to greatly enhance morphometric analyses by not only 

increasing their accuracy and versatility, but also by enabling currently unavailable analyses 

such as the integration of cell morphology data across experiments. 

 

 

Results 

A general framework for the quantitative analysis of cell morphology data 

In its simplest formulation, the study of cell morphology involves the quantitative 

comparison of cell shapes irrespective of distance-preserving transformations (isometries), such 

as rotations and translations. From a mathematical standpoint, this is a problem of metric 

geometry. The Gromov-Hausdorf (GH) distance38, 39 measures how far two compact metric 

spaces are from being isometric. In physical terms, it determines the minimum amount of 

deformation required to convert the shape of an object into that of another. The use of the GH 

distance to describe cell shapes is therefore broadly applicable to any cell type, as it does not 

rely on geometric features that are particular to the cell type or require pre-aligning the cells to a 

reference shape. Because of these reasons, we sought to develop a general framework for cell 

morphometry by building upon these concepts in metric geometry. 

 Since computing the GH distance is intractable even for relatively small datasets, we 

based our approach upon a computationally efficient approximation, referred to as the Gromov-

Wasserstein (GW) distance35-37. The GW distance preserves most of the mathematical 

properties of the GH distance and leads to an actual distance function36. Although its running 
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time grows cubically with the number of points, its efficiency can be further improved by means 

of nearly linear-time approximations that build upon optimal transport regularization40, 41 and 

nesting strategies42.  

The starting point to our analytic framework is the 2D or 3D segmentation masks of 

individual cells, which are discretized by evenly sampling points from their outline (Fig. 1a). For 

each cell, we compute the pairwise distance matrix (𝑑𝑖) between its sampled points. Then, for 

each pair of cells, 𝑖 and 𝑗, we compute the GW distance between the matrices 𝑑𝑖 and 𝑑𝑗 using 

optimal transport (Fig. 1b). The result is a pairwise GW distance that quantifies the 

morphological differences between each pair of cells.  

Different metrics for measuring distances between sampled points lead to different 

properties of the GW distance that may be advantageous in specific applications (Fig. 1a). For 

example, using Euclidean distance results in a GW matrix that accounts for the positioning of 

cell appendages, which can be particularly useful in the study of neuronal projections. On the 

other hand, using geodesic distance results in a GW matrix that is invariant under bending 

deformations of the cell, and it is therefore particularly sensitive to topological features such as 

the branching structure of cell appendages. 

In all cases, the resulting GW distance can be thought of as a distance in a latent space 

of cell morphologies (Fig. 1c). In this latent space, each cell is represented by a point, and 

distances between cells indicate the amount of physical deformation needed to change the 

morphology of one cell into that of another. By formulating the problem in this way, we can use 

statistical and machine learning approaches to define cell populations based on their 

morphology; dimensionally reduce and visualize cell morphology spaces; integrate cell 

morphology spaces across tissues, technologies, and with other single-cell data modalities (for 

example, single-cell RNA-seq or ATAC-seq data); or infer trajectories associated with 

continuous morphological processes. We have implemented these analyses in an open-source 
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Python library, called CAJAL, which can be used with arbitrarily complex and heterogeneous 

cell populations (Fig. 1d).   

GW cell morphology spaces accurately summarize complex cell shapes 

To assess the ability of GW cell morphology spaces to summarize complex cell shapes, 

we applied CAJAL to the 3D basal and apical dendrite reconstructions of 506 neurons from the 

mouse visual cortex profiled with patch-clamp20. The resulting space of cell morphologies 

recapitulated the neuronal morphological types of the visual cortex (Fig. 2a). Cells with a similar 

morphology appeared in proximity in the UMAP representation of this space. Molecularly 

defined neuronal types were also localized in the representation (Fig. 2b), consistent with the 

presence of morphological characteristics that are unique to each molecular subtype. Excitatory 

and inhibitory neurons clustered separately, and individual neurons were organized in the cell 

morphology space according to their cortical layer and Cre driver line (Fig. 2b). Clustering the 

morphology space using Louvain community detection43 partitioned it into 9 morphological 

populations. Using the metric structure of the cell morphology space, we then computed the 

medoid and average cell morphology for each cluster (Fig. 2c). These summaries accurately 

represented the main morphological characteristics of each cell population and were consistent 

with the diversity of neuronal morphologies found in the mouse visual cortex20.  

To quantitatively evaluate the ability of the GW distance to accurately summarize 

complex neuron morphologies in comparison to state-of-the-art methods for neuron 

morphometry, we considered two Patch-seq datasets of the visual19 and motor cortex21 in 

addition to the patch-clamp dataset of the visual cortex. For each dataset, we assessed the 

ability of CAJAL and 5 other methods (Sholl analysis24, L-measure25, SNT26, NBLAST27, and 

TMD33) to identify morphological differences between molecularly-defined neurons. In the case 

of the patch-clamp dataset, we considered neurons labeled with different Cre driver lines, for a 
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total of 31 lines, with the understanding that each line preferentially labels distinct neuronal 

types. In the case of the two Patch-seq datasets, we considered the known classification of 

motor and visual cortex neurons into 9 and 6 transcriptionally-defined subtypes (t-types), 

respectively, based on their gene expression profile19, 21. We used three different metrics of 

performance to evaluate the ability of each method to predict the molecular type of each 

individual neuron based on its morphology: the multi-class Matthews Correlation Coefficient of a 

𝑘 nearest neighbor classifier, the Calinski-Harabasz clustering score of neurons from the same 

molecular type in the cell morphology space, and the benchmarking score introduced in a 

previous study of cell shape analysis methods30. In this comparative study, we found that the 

GW distance outperformed existing methods for neuron morphometry (Fig. 2d). In addition, 

some of the best performing methods, such as TMD, produced errors and were not able to 

summarize the morphology of 26 neurons for which the model assumptions were violated. A 

similar evaluation of the ability of each algorithm to identify 47 t-types of inhibitory neurons and 

26 t-types of excitatory neurons in the motor cortex21 led to consistent results (Supplementary 

Fig. 1).  As expected, the accuracy and running time of CAJAL in these analyses increased with 

the number of points that are sampled from the outline of the cell (Supplementary Fig. 2). 

However, for these datasets the accuracy saturated at approximately 100 points, indicating no 

major advantage in sampling a larger number of points. Taken together, these results 

demonstrate the utility and versatility of the GW distance to perform unbiased studies of 

complex cell morphologies. 

GW cell morphology spaces summarize cell shapes across heterogeneous cell 

populations 

We next evaluated the ability of the GW distance to summarize cell morphologies across 

very heterogenous cell populations. For that purpose, we used CAJAL to study the 

morphologies of 70,510 cells from a cubic millimeter volume of the mouse visual cortex profiled 
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by the Machine Intelligence from Cortical Networks (MICrONS) program using two-photon 

microscopy, microtomography, and serial electron microscopy15. This dataset includes not only 

neurons, but also multiple types of glia and immune cells. The UMAP representation of the cell 

morphology space produced by CAJAL recapitulated in an unsupervised manner the broad 

spectrum of cell types that are present in the tissue, including several populations of neurons, 

astrocytes, microglia, and immune cells (Fig. 3a). These populations were consistent with the 

manual annotations of 185 individual cells provided by the MICrONS program (Fig. 3b). 

Neurons from different cortical layers were associated with distinct regions of the cell 

morphology space, indicating the presence of morphological differences between neurons from 

different layers (Fig. 3c). In addition, our analysis uncovered morphological differences between 

astrocytes located in different cortical layers (Figs. 3d, e). Specifically, layer 1 astrocytes were 

substantially smaller, and layer 2/3 astrocytes were elongated perpendicularly to the pial 

surface, in comparison to astrocytes residing in other cortical layers (Figs. 3d, e). These 

morphological differences were consistent with recent observations in Glast-EMTB-GFP 

transgenic mice44.  

To quantitatively evaluate the ability of GW distance to summarize cell morphologies 

across different cell types in comparison to existing general approaches for cell morphometry, 

we considered the 3D morphological reconstructions of 512 T cells from the mouse popliteal 

lymph node, submandibular salivary gland, and skin, profiled with intra-vital two-photon 

microscopy29, in addition to the neuronal patch-clamp dataset of the mouse visual cortex20. We 

evaluated the ability of CAJAL and 4 other general approaches for cell shape analysis 

(CellProfiler45, SPHARM29, 32, Zernike moments30, 31, and the PCA-based approach of Celltool30 

and VAMPIRE46) to predict the anatomical location of each T cell and the Cre driver line of each 

neuron based on their morphology. In this study, CAJAL was again the most capable algorithm 

at separating the morphologies of T cells from different tissues according to most metrics (Fig. 
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3f). In addition, all methods for general cell shape analysis except for CAJAL performed poorly 

in the analysis of complex neuronal morphologies, showing that no other method was able to 

perform well in both datasets (Fig. 3f). Altogether, these results demonstrate that the GW 

distance overcomes the limitations of current methods to summarize the broad range of 

complex cell shapes present in mammalian tissues.  

Multimodal analyses of GW cell morphology spaces enable uncovering genetic 

determinants of cell morphology 

The combined analysis of morphological and genomic data from individual cells has the 

potential to unravel the genetic and molecular pathways that are associated with the 

progression of high-level cellular processes such as cell differentiation and plasticity. Since 

changes in cell morphology are continuous, establishing associations between cell morphology 

and other data is best accomplished by methods of analysis that are purpose-built for 

continuous processes. We extended our previous work on clustering-independent analyses of 

omics data47 to implement a statistical approach for identifying molecular and physiological 

features that are associated with changes in cell morphology. We use the Laplacian score for 

feature selection48 to test the association between the values of each feature and the structure 

of the morphology space, while accounting for user-specified covariates such as the age of the 

individual (Fig. 4a). To illustrate this approach, we used it to identify genes that contribute to the 

morphological plasticity of neurons in the C. elegans. For that purpose, we considered the 3D 

morphological reconstructions of the male C. elegans GABAergic DVB interneuron in 12 gene 

mutants, 5 double mutants, and controls across days 1 to 5 of adulthood (Supplementary Table 

1), including 7 gene mutants and 1 double mutant from a previous study49. The DVB neuron 

develops post-embryonically in the dorsorectal ganglion and undergoes post-developmental 

neurite outgrowth in males, altering its morphology and synaptic connectivity, and contributing to 

changes in the spicule protraction step of male mating behavior50. We applied our approach to 
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identify loss of function mutations that are associated with changes in the dynamic morphology 

of the DVB neuron, taking the age of the worm as a covariate to reliably compare morphological 

changes across timepoints in adulthood. This analysis identified mutations in the genes unc-97, 

lat-2, nlg-1, unc-49, nrx-1, and unc-25 as significantly affecting the morphology of the DVB 

neuron (Fig. 4b-d; Laplacian score permutation test, FDR < 0.05). By repeating this analysis for 

worms of each age separately, we identified the age at which each of these mutations starts 

significantly affecting the morphology of the DVB neuron (Fig 4e). To interpret these 

morphological differences in terms of neuronal characteristics, we used the same approach to 

evaluate the association of 33 morphological features with the structure of the cell morphology 

space (Supplementary Table 2). Within these significantly associated features, we found that 

mutations in nlg-1 and unc-25 caused an increase in neurite length and number of branches 

compared to control worms (Supplementary Fig. 3), while inactivating mutations in unc-97 and 

nrx-1 stunted neurite growth (Supplementary Fig. 3). Altogether, these results are consistent 

previous findings49 and extend them by uncovering new genetic determinants of neuronal 

plasticity in C. elegans and quantitative differences in the age of onset of the morphological 

alterations induced by different genes. 

An integrative analysis of molecular, physiological, and morphological data from single 

cells identifies continuous morpho-transcriptomic trajectories 

The incorporation of single-cell RNA-seq onto whole-cell patch-clamp, known as Patch-

seq, has enabled concurrent high-throughput measurements of the transcriptome, physiology, 

and morphology of individual cells13. The integrative analysis of these multi-modal data has the 

potential to uncover the transcriptomic and physiological programs associated with 

morphological changes of cells.  

We used CAJAL to analyze the basal and apical dendrites of 370 inhibitory and 274 

excitatory motor cortex neurons profiled with Patch-seq21. Consistent with our previous results, 
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the GW cell morphology space captured morphological differences between the dendrites of 

neurons from different neuronal t-types and cortical layers (Fig. 5a, b). By representing the 

pairwise distance between each pair of cells in the transcriptomic, electrophysiological, and 

morphological latent spaces as a point in a 2D simplex, we found a large degree of variability in 

the morphology of the dendrites of extratelecephalic-projecting (ET) neurons that was not 

paralleled by their gene expression profile (Fig. 5c). In contrast, the dendrites of Lamp5+ and 

bipolar (Vip+) GABAergic neurons presented limited morphological variability in comparison to 

their gene expression profile (Fig. 5c).  

We characterized the gene expression and electrophysiological programs associated 

with morphological differences between neurons by using the Laplacian score approach 

described above. We performed this analysis separately for inhibitory and excitatory neurons to 

identify 173 and 556 genes, and 14 and 22 electrophysiological features, respectively, that were 

significantly associated with the morphological diversity of their dendrites (Fig. 5d and 

Supplementary Tables 3 and 4; Laplacian score permutation test, FDR < 0.1). Among the 7 

genes that were significant for both excitatory and inhibitory neurons, there were several that 

have been previously reported to be involved in dendrite morphogenesis, such as Dscam, which 

plays a central role in dendritic self-avoidance51, and Pcdh7, which regulates dendritic spine 

morphology and synaptic function52. Consistent with these results, a gene ontology enrichment 

analysis for biological processes identified neuron projection morphogenesis among the top 

ontologies associated with the morphological diversity of excitatory neurons (GO enrichment 

adjusted p-value = 0.009), and cellular response to chemical stimulus, neuron differentiation, 

and taxis among the top ontologies associated with the morphological diversity of inhibitory 

neurons (GO enrichment adjusted p-values = 0.006, 0.008, and 0.01, respectively).  

We next investigated if some of these gene expression programs form part of continuous 

morpho-transcriptomic cellular processes. We computed the RNA velocity field to predict the 

future gene expression state of each cell based on the observed ratio between un-spliced and 
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spliced transcripts53, 54. The time scale of these predictions is determined by the mRNA 

degradation rate and is of the order of hours. We reasoned that by projecting the RNA velocity 

field onto the GW cell morphology space and looking for transcriptomic trajectories that also 

appear as trajectories in this space, we could identify continuous cellular processes that involve 

consistent changes in gene expression and cell morphology. This approach revealed several 

morpho-transcriptomic trajectories involving chandelier, basket, and Lamp5+ neurons (Fig. 5e). 

Cells along these trajectories showed increased complexity in their apical and basal dendrites in 

parallel to changes in their gene expression profile, in agreement with the presence of molecular 

programs associated with the plasticity of these neuronal types. To characterize these 

molecular programs, we focused our analysis on 78 genes that were associated with the RNA 

velocity field of inhibitory neurons and computed the Laplacian score of each of these genes in 

the GW cell morphology space. This analysis revealed that 32 of the 78 genes were also 

significantly associated with the structure of the cell morphology space (Supplementary Table 5; 

Laplacian score permutation test, FDR < 0.05). The list of significant genes included multiple 

genes coding for secreted factors, such as Spon1, Fgf13, Rspo2, and Reln (Supplementary Fig. 

4), and was enriched for genes involved in memory and cognition (GO enrichment adjusted p-

value = 0.007).  

Taken together, these results demonstrate the utility of CAJAL to identify and 

characterize molecular and electrophysiological programs associated with cell morphological 

changes based on single-cell Patch-seq data. 

GW cell morphology spaces enable the integration of cell morphology data across 

technologies 

Advances in cell morphology profiling techniques have led to an explosion of high-

resolution cell morphology data over the past decade7. The ability to perform integrated 

analyses of such data regardless of the experimental approach and technology that was used to 
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generate them would be a powerful tool for imputing missing data and refining taxonomic 

classifications of cells. For example, by integrating patch-clamp and Patch-seq data the 

transcriptome of cells profiled with patch-clamp could be predicted based on their morphology.  

We used CAJAL to build a combined morphology space of the basal and apical 

dendrites of visual cortex neurons profiled with patch-clamp20 and visual and motor cortex 

neurons profiled with Patch-seq19, 21. The combined dataset consisted of 1,662 neurons, of 

which 1,156 had associated single-cell RNA-seq data. Inhibitory and excitatory neurons from 

different datasets clustered together in separated regions of the combined morphology space 

(Fig 6a), indicating that the structure of this space is mostly driven by biological differences 

rather than by technical differences. To evaluate the consistency of the combined cell 

morphology space, we considered the t-type18 of the cells profiled with Patch-seq, and 

quantitatively assessed the distance in the combined cell morphology space between cells of 

the same t-type (for the Patch-seq data) or cells labelled with the corresponding Cre driver line 

(for the patch-clamp data). Cells of same t-type but from different Patch-seq datasets, as well as 

cells from the matching Cre driver line in the patch-clamp dataset, were closer to each other in 

the combined morphology space than cells from different t-types or Cre driver lines (Fig. 6b and 

Supplementary Fig. 5; Wilcoxon rank-sum test p-value < 10-100), demonstrating the utility of the 

GW distance for integrating cell morphology data across experiments and technologies.  

We then used the same approach to refine the annotation of visual cortical neurons 

profiled with serial electron microscopy by the MICrONS program15. We considered 883 full 

neuron reconstructions from the two Patch-seq datasets and created a combined morphology 

space of these cells along with a subset of 1,000 evenly sampled and 139 manually annotated 

neurons from the MICrONS dataset. As with the integration of patch-clamp and Patch-seq data, 

the manually annotated neuronal types from the MICrONS dataset were closer to Patch-seq 

cells of the matching t-type in the consolidated cell morphology space than to non-matching t-

types (Fig 6c and Supplementary Fig. 6; Wilcoxon rank-sum test p-value < 10-100). For example, 
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the only chandelier cell annotated in our MICrONS dataset was closer to Pvalb Vipr2 t-type cells 

from the Patch-seq data than to cells from other t-types (Supplementary Fig. 6; Wilcoxon rank-

sum test p-value = 0.035).  

Using this combined cell morphology space, we refined some of the manual annotations 

of the MICrONS data with more precise transcriptomic definitions. For example, of the three 

Martinotti cells annotated in the MICrONS dataset, one cell presenting a distinct morphology 

with a densely arborized axon was closer in the morphology space to Patch-seq cells of the Sst 

Chrna2 t-type (Fig. 6d; Wilcoxon rank-sum test p-value = 0.045), while the other two Martinotti 

cells were closer to Sst Calb2 t-type cells (Fig. 6d; Wilcoxon rank-sum p-value = 10-3). This is 

consistent with previous results showing that expression of Chrna2 is characteristic of layer 5 

Martinotti cells that project into layer 155, and we confirmed that the soma of the predicted 

Chrna2 Martinotti cell was indeed located in layer 5 while its long axon ended in layer 1 (Fig. 

6d). Similarly, among the manually annotated basket cells in the MICrONS dataset, one had a 

more condensed morphology than the others (Fig. 6e). This smaller basket cell was close in the 

cell morphology space to Vip Chat Htr1f and Vip Col15a1 Pde1a t-type Patch-seq cells (Fig. 6e; 

Wilcoxon rank-sum p-value = 0.02), while larger basket cells were closer to Pvalb Sema3e 

Kank4 and Pvalb Gpr149 Islr t-type Patch-seq cells (Fig. 6e; Wilcoxon rank-sum p-value = 10-

14). These results were again in agreement with the molecular characterization of small and 

large basket cells in the somatosensory cortex56. 

Taken together, these results demonstrate the utility of GW cell morphology spaces to 

perform integrative analyses of cell morphological data across technologies and represent a 

conceptual basis for the development of algorithms for cell morphology data integration and 

batch-correction. 
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Discussion 

Shape registration has experienced several breakthroughs over the past 15 years with 

the formalization of new paradigms that allow for more flexibility in the quantification of 

morphology57. Here, we built upon one of these constructions, the GW distance, to develop a 

general computational framework and software for the combined morphometric, transcriptomic, 

and physiological analysis of individual cells. The proposed framework does not rely on 

predefined morphological features, is insensitive to rigid transformations, and can be efficiently 

used with arbitrarily complex and heterogeneous cell morphologies. Using this approach, we 

have been able to accurately build, analyze, and visualize cell morphology summary spaces, 

where each cell is represented by a point and distances between cells indicate the amount of 

physical deformation needed to change the morphology of one cell into that of another. We 

have integrated morphological data across experiments and technologies; identified 

morphological, molecular, and physiological features that define cell populations; and 

established associations between morphological, molecular, and electrophysiological cellular 

processes. Our quantitative comparative studies using published Patch-seq, patch-clamp, 

electron, and two-photon microscopy datasets demonstrate that the proposed approach 

represents a boost in accuracy, functionality, and scope with respect to current methods for the 

analysis of cell morphology data. 

There are several limitations of the proposed approach, the most important one perhaps 

being its running time. In our studies, the application of CAJAL to 644 digital neuron 

reconstructions on an 8-core desktop computer took 70 minutes. We expect that the 

implementation of recent strategies for reducing the computing time of the GW distance40, 42 

might improve the scalability of CAJAL to larger datasets without having to reduce the number 

of sampled points per cell. This will become particularly important as the throughput of 

technologies for high-resolution cell morphology profiling continues to grow. In addition, the 
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interpretability of cell morphology spaces in terms of specific morphological features is limited in 

some situations. To address this aspect, in our studies we evaluated interpretable 

morphological descriptors produced by methods like SNT26, L-measure25, or CellProfiler45 on the 

cell morphology space produced by CAJAL to combine the interpretability of these descriptors 

with the unbiasedness and accuracy of GW cell morphology spaces.  

Overall, the application of metric geometry to cell morphometry serves as a pillar for the 

development of currently missing computational methods for integrating and batch-correcting 

cell morphology data, as well as for modelling continuous morphological cellular processes. We 

expect that the development of these methods during the next few years will significantly impact 

our understanding of the relation between the morphological, molecular, and physiological 

diversification of cells.  
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Methods 

Computation of GW cell morphology spaces 

We build upon the application of metric geometry to the problem of finding a 

correspondence between two point-clouds such that the size of non-isometric local 

transformations is minimized35-37. CAJAL takes as input the digitally reconstructed cells. For 

each cell 𝑖, it samples 𝑛 points regularly from the outline and computes their pairwise distance 

matrix, 𝑑𝑖. It then computes the GW distance between every pair of distance matrices  

𝐺𝑊(𝑑𝑖 , 𝑑𝑗) =
1

2
 min
Tij∈C

∑ |(𝑑𝑖)𝛼𝛽 − (𝑑𝑗)
𝛾𝛿

|
2

(𝑇𝑖𝑗)
𝛼𝛾

(𝑇𝑖𝑗)
𝛽𝛿

𝛼,𝛽,𝛿,𝛾

 

where the matrix 𝑇𝑖𝑗 specifies a weighted pointwise matching between the points of cells 𝑖 and 𝑗, 

and 𝐶 represents the space of all possible weighted assignments36. By construction, CAJAL 

does not require pre-aligning cell outlines, since the input to 𝐺𝑊 is the pairwise distance matrix 

within each cell, 𝑑𝑖, which is invariant under rigid transformations. Depending on the application, 

we consider two choices for the distances 𝑑𝑖: Euclidean and geodesic distance. 

The output is a metric space for cell morphologies which can then be clustered and 

visualized using standard procedures, such as Louvain community detection43 and UMAP58. For 

each population of cells, 𝒳, we compute its average morphology as the distance matrix 

(�̂�𝒳)
𝛼𝛽

=
1

|𝒳|
∑(𝑇𝑖 med(𝒳))

𝛼𝛾
(𝑑𝑖)𝛾𝛽

𝑖,𝛾

 

where med(𝒳) denotes the medoid of 𝒳 with respect to the 𝐺𝑊 distance matrix. The 

morphology can then be visualized by computing the shortest-path tree or multidimensional 

scaling (MDS) of �̂�𝒳. In addition, to facilitate the interpretation of morphology spaces, we find it 

is useful to plot the values of standard morphological descriptors like cell height, width, 

diameter, neuronal depth, or fractal dimension25, 26, 45 in the UMAP representation of the cell 

morphology space. 
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Evaluation of features on the cell morphology space 

To evaluate features, such as gene expression or electrophysiological properties, on 

GW cell morphology spaces, we build upon a spectral approach for clustering-independent 

analyses of multimodal data47, 48. We first construct a radius neighbor graph of the 𝐺𝑊 distance 

with radius 𝜀. Each feature 𝑔 is represented by a vector 𝑓𝑔 of length the number of cells.  

The Laplacian score of 𝑔 on the cell morphology space is then given by48 

𝐶𝑔 =
∑ ((𝑓𝑔)

𝑖
− (𝑓𝑔)

𝑗
)

2
𝐴𝑖𝑗𝑖𝑗

Var(𝑓𝑔)
 

where 𝐴 is the adjacency matrix of the radius neighbor graph, and Var(𝑓𝑔) the estimated 

variance of 𝑓𝑔. Features with a low 𝐶𝑔 score are associated with morphologically similar cells. 

The significance of the score can be statistically assessed for each feature by means of a one-

tailed permutation test and adjusted for multiple hypothesis testing using Benjamini-Hochberg 

procedure. To assess the significance of a feature 𝑔 in the presence of a set of covariates ℎ𝑚, 

we perform a permutation test where the entries of 𝑓𝑔 and 𝑓ℎ𝑚
 are simultaneously permuted and 

the scores 𝐶𝑔 and 𝐶ℎ𝑚
 are computed at each permutation. We denote these values collectively 

as 𝐶𝑔
null and 𝐶ℎ𝑚

null. We then solve the regression problem 

𝐶𝑔
null ~ 𝛽0 + ∑ 𝛽𝑚𝐶ℎ𝑚

null

𝑚

 

and consider the distribution of residuals as the null distribution for the adjusted score  �̃�𝑔 =

𝐶𝑔 − 𝛽0 − ∑ 𝛽𝑚𝐶ℎ𝑚𝑚 . 

Processing of Patch-seq and patch-clamp morphological reconstructions 

We downloaded the morphological reconstructions of neurons from several repositories. 

For the Gouwens et al. 20 Patch-clamp dataset, we downloaded 509 reconstructions in SWC 

format from the Allen Cell Types database, using Cell Feature Search and selecting for “Full” or 
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“Dendrite Only” reconstruction types. Three of the SWC files were unsorted and were left out of 

further processing, for a total of 506 neurons. For the Gouwens et al.19 Patch-seq dataset, we 

downloaded 574 reconstructions from the Brain Image Library (BIL) repository. We removed 62 

neurons that did not have assigned transcriptomic types, for a total of 512 neurons. Lastly, for 

the Scala et al. 21 Patch-seq dataset, we downloaded 645 reconstructions from the inhibitory 

and excitatory sets from the BIL repository, skipping the one inhibitory neuron that had no 

dendrites, for a total of 644 neurons.  

The SWC format represents each neuron as a tree of vertices, such that an edge can be 

drawn between a vertex and its parent, forming the skeleton of the neuron. From this format, we 

sampled 100 points radially around the soma at a given step size. We used a binary search to 

identify the step size which returns the required amount of evenly spaced points. To calculate 

the pairwise geodesic distance between these points, we constructed a weighted graph with 

weights given by the distance to the latest sampled point. We then used the Floyd-Warshall 

algorithm implemented in Networkx59 to compute all pairwise shortest path distances in this 

graph. Alternatively, we computed the pairwise Euclidean distance between the 3D coordinates 

of these points. 

We the computed the GW distance between each pair of cells as described above 

(subheading “Computation of GW cell morphology spaces”) using the 

ot.gromov.gromov_wasserstein function of the “POT: Python Optimal Transport” Python 

library60. We then used this precomputed distance to build a 2D visualization of the morphology 

space using the https://github.com/tkonopka/umap package in R. We computed the Louvain 

clusters of a KNN graph of the GW distance using the multilevel.community function of the 

igraph R package61. 
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Average shape of neurons 

 To compute the average shape of a cluster of cells in the GW cell morphology space, we 

first found the medoid cell as the cell with the minimum sum of distances to all other cells in the 

cluster. To compute a morphological distance between cells, the GW algorithm identifies an 

optimal matching 𝑇𝑖𝑗 between the points we have sampled (subheading “Computation of GW 

cell morphology spaces”). We used this matching to align the other cells in the cluster to the 

medoid, by reordering the pairwise geodesic distance matrix of their sampled points to match 

the distance matrix of the medoid cell. We rescaled the geodesic distance matrix of each cell 

into an unweighted graph distance by dividing out the minimum distance between any two 

points, so that the rescaled distances were integers. We set a threshold on these distances at 2, 

such that the distance was 0 from the point to itself, 1 to an adjacent point in the tree of the 

neuron trace, and 2 to any farther point. We averaged all of these distance matrices together 

over the cells in the cluster and built a 𝑘 = 3 nearest neighbor graph, essentially connecting 

each sampled point to the three other points it was most often adjacent in the neurons of that 

cluster. We took the shortest path tree in this graph as the average shape for that cluster using 

Dijkstra’s algorithm. We color each point in this average shape by a confidence value based on 

its minimum original unweighted graph distance, summed over the cluster, to any other point. 

Comparison of CAJAL with current methods for neuronal morphometry 

We compared our approach to five other morphological methods for neuron analysis by 

applying them to the dendrite reconstructions of the neuronal datasets listed above (subheading 

“Processing of Patch-seq and patch-clamp morphological reconstructions”). These methods 

have stricter assumptions on the input, forcing us to remove disconnected dendrites from the 

reconstructions. We applied NBLAST27, as implemented in the nat.nblast R package 

(https://github.com/natverse/nat.nblast). We calculated a pairwise distance between all neurons 

using the nblast_allbyall function with the mean normalization method. We ran the Topological 
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Morphology Descriptor (TMD) method of Kanari et al.33 using the TMD Python package 

(https://github.com/BlueBrain/TMD). We followed their distances example 

(https://github.com/BlueBrain/TMD/blob/master/examples/distances_example.py) to compute 

the persistence image difference between every pair of neurons. We skipped 26 neurons across 

the two Patch-seq datasets for which get_ph_neuron or get_persistence_image_data errored 

due to a lack of bifurcating branches. We used the Measure Multiple Files batch script of the 

ImageJ SNT plugin26 to compute morphological features of neurons, including the Sholl 

features24. We also computed morphological features using L-Measure25, selecting all of their 

provided functions. 

 We used three different metrics to assess the ability of these algorithms to identify 

morphological differences between Cre lines or transcriptomic types. We computed the Calinski-

Harabasz clustering score using cluster.stats from the fpc R package (https://cran.r-

project.org/package=fpc). We also implemented the median-based group discrimination statistic 

used by Pincus et al.30 to compare methods for cell-shape analysis. Lastly, we used a 7-fold 𝑘 =

10 nearest neighbor classifier from the scikit-learn Python library to predict the Cre driver line or 

t-type of each cell based on morphological distance and used the Matthew’s correlation 

coefficient to evaluate the accuracy of the predictions. 

Morphological analysis of the MICrONS dataset 

We downloaded the 113,182 static cell segmentation meshes from MICrONS using the 

trimesh_io module from the package MeshParty (https://meshparty.readthedocs.io/) at the 

lowest resolution (resolution 3). We then downloaded higher resolution meshes for cells that 

had less than 10,000 vertices at this lowest resolution. Cells with less than 1,001 vertices at the 

lowest resolution were re-downloaded at the highest resolution (resolution 0). Cells with 1,001 to 

3,000 vertices at the lowest resolution were re-downloaded at resolution 1, and cells with 3,001 

to 10,000 vertices were re-downloaded at resolution 2.  
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Along with other metadata available through the CAVEclient (https://github.com/seung-

lab/CAVEclient), such as the 3D coordinates of neuron soma, we collected the cell IDs for each 

manually annotated cell type provided by the MICrONS program in their website. We used the 

layer 2/3, layer 4, and layer 5 manually annotated cells to estimate cortical layer boundaries in 

the y values of the 3D soma coordinates. We placed these cutoffs at layer 1 < 104,191 < layer 

2/3 < 133,616 < layer 4 < 179,168 < layer 5 < 213,824 < layer 6.  

We sampled 50 vertices from the triangular mesh of each cell, using the linspace 

function of the NumPy package62 to evenly select vertices, since vertices were roughly ordered 

by proximity, and this gives an approximation of even sampling over the 3D space. We skipped 

the very large blood vessel mesh and 240 meshes with less than 50 vertices, for a total of 

112,941 meshes. We used the heat method63, implemented in the 

MeshHeatMethodDistanceSolver function of the Python library potpourri3D 

(https://github.com/nmwsharp/potpourri3d), to compute geodesic distances between the 

sampled points on the mesh. We parallelized the computation of the pairwise GW distance 

between the 112,941 meshes on 128 cores, but otherwise used the same process as with the 

Patch-seq and patch-clamp datasets (subheading “Processing of Patch-seq and patch-clamp 

morphological reconstructions”). Due to the large size of the resulting GW pairwise distance 

matrix, we used the Python libraries leidenalg64 and umap-learn65 to cluster the cells and 

compute 2D UMAP visualizations, respectively. We labelled the clusters based on the manually 

annotated cells provided by the MICrONS program.  

We found that some morphological clusters mostly consisted of artifacts or neuron-glia 

doublets and removed those. In addition, another morphological cluster contained both neuron-

neuron doublets and individual neurons with complex morphologies, so we devised an approach 

to remove meshes containing multiple somas from that cluster. We determined the number of 

somas in each mesh from that cluster by using MeshParty to skeletonize the meshes and 

convert them into graph representations where nodes have a radius value, and nodes within 
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soma regions fall in a specific range of radii. For us, this range was 4,000 to 30,000. We used 

HDBSCAN66 to cluster these nodes in the 3D space and counted each cluster with at least three 

nodes as a soma. Meshes with more than one soma were removed from the cluster. Lastly, we 

noticed that many meshes with very high y coordinates appeared stretched, so we removed 

meshes with a y soma coordinate greater than 240,000. After removing all these artifacts, we 

recomputed a UMAP visualization of the remaining 70,510 cells in the cell morphology space 

using umap-learn. 

For each astrocyte, we measured the bounding box by placing lower and upper bounds 

on the 1% and 99% quantiles of the mesh vertices along each of the first three principal 

components. We took the arccosine of the first principal component along the y axis to be the 

orientation angle of the astrocyte and measured its deviation from perpendicular. 

Morphological analysis of T cells 

We retrieved 512 3D meshes of T cells from Medyukhina et al.29. We evenly sampled 

200 points from the list of vertices in each mesh, which approximates an even sampling in 3D 

space since the vertices are roughly ordered in a spiral down the cell. We computed the GW 

distance of the pairwise Euclidean distances between these points as described above 

(subheadings “Computation of GW cell morphology spaces” and “Processing of Patch-seq and 

patch-clamp morphological reconstructions”). 

Comparison of CAJAL with general methods for cell morphometry 

We applied the Celltool method of Pincus et al.30 using their Python package 

(https://github.com/zpincus/celltool). Since this method only works with 2D cell segmentations, 

we sampled the 2D boundary of the projection of each cell along the first two axes to the same 

number of sampled points used for CAJAL. We aligned these contours using a maximum of 20 

iterations, allowing for reflections, and saved the non-normalized PCA values from the shape 

model. We used CellProfiler 4.0.322 on binary 2D projection images to compute both general 
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shape features and Zernike moments using MeasureObjectSizeShape. We ran SPHARM29 

using their Python package (https://github.com/applied-systems-biology/Dynamic_SPHARM) on 

all of the mesh vertices for each cell. For neurons, we used the marching_cubes function of the 

scikit-learn Python library to define 3D mesh vertices. We used the 

spectrum.return_feature_vector function of SPHARM to extract the amplitude of harmonic 

components from the spectra produced by compute_spharm. We compared these methods to 

CAJAL using the same metrics described above (subheading “Comparison of CAJAL with 

current methods for neuronal morphometry”).  

Evaluation of the accuracy and runtime of CAJAL as a function of the number of sampled 

points 

We sampled 25, 50, 75, 100, and 200 points from each cell from the patch-clamp 

dataset of Gouwens et al.20 and applied CAJAL as described above to compute the GW 

distance between cells. We used the Calinski-Harabasz score, the median-based statistic of 

Pincus et al.30, and the Matthews coefficient of a 𝑘 = 10 nearest neighbor classifier (subheading 

“Comparison of CAJAL with current methods for neuronal morphometry”) to assess how the 

number of sampled points affects the ability of CAJAL to capture morphological differences 

between cells from different Cre driver lines. Runtimes were determined based on 12 threads of 

a desktop computer with an 8-core Intel Xeon E5-1660 3.20 GHz CPU. 

Morphological analysis of the DVB neuron 

We considered the neurite reconstructions of the DVB neuron from 799 adult male C. 

elegans aged 1 to 5 days from control strains or strains containing mutations in the genes nrx-1, 

mir-1, unc-49, nlg-1, unc-25, unc-97, lim-6, lat-2, ptp-3, sup-17, or pkd-2 (Supplementary Table 

2). Reconstructions were created from confocal images of the DVB neuron using SNT26 in Fiji67 

as previously described49. We computed the GW distance between these morphological 

reconstructions as described above (subheadings “Computation of GW cell morphology spaces” 
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and “Processing of Patch-seq and patch-clamp morphological reconstructions”), based on the 

geodesic pairwise distance of 100 points sampled from each neuron. We then introduced an 

indicator function for each mutated gene, which took values 0 or 1 on each cell depending on 

whether the worm had a wild-type or a mutated version of the gene, respectively. To determine 

which of the 11 mutated genes were associated with changes in morphology, we computed the 

Laplacian score of each indicator function on the GW cell morphology space as described 

above (subheading “Evaluation of features on the cell morphology space”). To compute the 

score we used the R package RayleighSelection47 with 1,000 permutations, 𝜀 equal to the 

median GW distance and the age of the worm in days as a covariate. In the same way, we used 

RayleighSelection to determine which of 33 morphological features computed with SNT were 

significantly localized in the cell morphology space. In addition, we performed the same analysis 

using only neurons from a single day, for each day, to determine the age at which the effect of 

significant mutations on the morphology of the DVB neuron starts to emerge. 

Identification of genes and electrophysiological features associated with the morphology 

of neuronal dendrites  

We used the same process described above (subheading “Processing of Patch-seq and 

patch-clamp morphological reconstructions”) to compute the GW distance between the 

morphological reconstructions of the dendrites of 644 neurons profiled by Scala et al.21. We 

sampled 100 points from each dendrite and used geodesic distance to measure the distance 

between points. To determine which genes are associated with morphological variability we 

computed the Laplacian score of each gene on the GW morphology space using 

RayleighSelection, as described above (subheading “Evaluation of features on the cell 

morphology space”). Gene expression values were normalized as log(1 + 5000 ∙size-normalized 

expression), we used 1,000 permutations, and 𝜀 was given by the median GW distance. We 

only tested genes expressed in at least 5% and less than 90% of cells. We identified gene 
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ontology enrichments using the R package gProfileR68, where we performed an ordered query 

of the significant genes based on their Laplacian score and restricted the search to biological 

process (BP) gene ontologies. We used the same procedure based on the Laplacian score to 

determine which electrophysiological features were associated with changes in the morphology 

of the dendrites. 

Computation of RNA velocity trajectories 

We clipped 3’ Illumina adapters and aligned FASTQ files to the GRCm38 mouse 

reference genome using the STAR aligner69. We used the command “run_smartseq” from the 

velocyto command line tool53 to create a Loom file of spliced and unspliced reads. We then 

used the scvelo Python package54 to compute RNA velocity trajectories. We tested scvelo in 

dynamical or stochastic mode with 0, 10, or 20 minimum counts; 500, 1000, or 2000 top variable 

genes; 10, 20, or 30 principal components; and 10 or 30 neighbors. We kept the velocity 

trajectories with the highest average confidence per arrow, defined by agreement with 

neighboring arrows. These trajectories were produced using stochastic mode with 0 minimum 

counts, 500 top variable genes, 10 principal components, and 30 neighbors. We computed the 

pseudotime using the velocity graph. We took all 78 genes which passed the basic default filters 

in rank_velocity_genes() to be velocity-related genes and used the Laplacian score to assess 

their morphological association. 

Consistency between transcriptomic, electrophysiological, and morphological spaces 

We defined the transcriptomic distance (𝑑𝑇) between two cells as the Spearman 

correlation distance between their log-normalized gene expression profile, and their 

electrophysiological distance (𝑑𝐸) as the Euclidean distance between their electrophysiological 

feature vectors. We compared these distances and the GW morphological distance (𝑑𝑀) 

between all pairs of cells in the Scala et al.21 dataset by representing them on a 2-simplex. For 

that purpose, we standardized the logarithm of pairwise distances independently for each data 
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modality. We then took the axes of the 2-simplex to be the given by the difference between 

each pair of distances (𝑑𝑀 −  𝑑𝑇, 𝑑𝑇 −  𝑑𝐸, 𝑑𝐸 − 𝑑𝑀), so that the sum of the coordinates equals 

0 for each pair of cells. We plotted cell pairs in the middle 98% of each axis. 

Integrative analysis of Patch-seq and patch-clamp data 

 We combined the patch-clamp and two Patch-seq datasets into one cell morphology 

space by computing the GW distance between the morphological reconstructions of the 

dendrites of all 1,662 neurons from the 3 datasets. We sampled 100 points from each dendrite 

and used geodesic distance to measure distances between points. 

 To evaluate the integration of the Patch-seq datasets, we utilized the classification of 

neurons into the t-types of Tasic et al.18. This classification is provided by Gouwens et al.19 as 

their transcriptomic alias, and we computed the classification for the dataset of Scala et al.21 

using their ttype-assignment Jupyter notebook. We tested the overlap between neurons of the 

same t-type but from different datasets in the cell morphology space by performing a Wilcoxon 

rank-sum test, comparing the distribution of GW distances within the same t-type with the 

distribution of GW distances between t-types. 

 To evaluate the integration between the two Patch-seq datasets and the patch-clamp 

dataset, we matched the neuronal t-types in the Patch-seq datasets with the Cre driver lines in 

the patch-clamp dataset. We used only the first marker in the t-types and considered markers 

that existed in at least five cells of two of the three datasets. This left Sst, Pvalb, and Vip as 

major markers between the t-types and Cre lines, and Lamp5 and Sncg as markers between t-

types only. We again used the Wilcoxon rank-sum test to compare the distributions of GW 

distances within and between these five major transcriptomic types. 

Integrative analysis of Patch-seq and MICrONS neuronal data 

We calculated a combined GW morphological space for the two Patch-seq datasets and 

1,000 neurons evenly sampled from the MICrONS dataset, in addition to 140 manually 
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annotated neurons by the MICrONS program. We sampled 50 points from the full neuronal 

reconstructions from the Patch-seq datasets. In the case of the Scala et al.21 dataset, this 

restricted our analysis to 370 neurons with full reconstructions. Since the SWC format used in 

the Patch-seq datasets contains a trace reconstruction, and the triangular cell segmentation 

meshes used in the MICrONS dataset contain cell surface reconstructions, we computed the 

GW distance based on the pairwise Euclidean distances between 50 points sampled from each 

neuron, instead of geodesic distance.  

To evaluate the integration, we matched some of the manually annotated cells from the 

MICrONS dataset with t-types from the Patch-seq datasets. Following the results of Tasic et 

al.18, we assigned the Sst Calb2/Chrna2 t-types (Sst Calb2 Pdlim5, Sst Calb2 Necab1, Sst 

Chrna2 Ptgdr, Sst Chrna2 Glra3) to Martinotti cells, and the Pvalb Vipr2 t-type to chandelier 

cells. Some other Pvalb t-types were assigned to basket cells, such as Pvalb Sema3e Kank4 

and Pvalb Gpr149 Islr, whereas CCK or small basket cells were associated with Vip t-types 

such as Vip Chat Htr1f and Vip Col15a1 56. Since cells of the Vip subclass have bipolar 

morphologies18, we assigned all other Vip subtypes to bipolar cells. We then evaluated the 

consistency of the cell morphology space with these assignments by using a Wilcoxon rank-sum 

test to compare the distribution of GW distances between matching types across datasets with 

the distribution GW distances between non-matching types across datasets. 

Code availability 

The source code of CAJAL is available at https://github.com/CamaraLab/CAJAL. 

Data availability 

All the datasets used in this study are publicly available. The morphological reconstructions of 

the DVB neuron have been deposited in the neuromorpho.org database (Hart archive). The 

patch-clamp data of Gouwens et al.20 can be accessed at the Allen Brain Atlas data portal 

(http://celltypes.brain-map.org/data). The Patch-seq datasets of Gouwens et al.19 and Scala et 
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al.21 can be accessed at the Brain Image Library (BIL) using the URLs 

https://download.brainimagelibrary.org/biccn/zeng/pseq/morph/200526/ and 

https://download.brainimagelibrary.org/biccn/zeng/tolias/pseq/morph/, respectively. The two-

photon microscopy data of Medyukhina et al.29 can be accessed at https://asbdata.hki-

jena.de/publidata/MedyukhinaEtAL_SPHARM/. The MICrONS program dataset can be 

accessed using the MICrONS Explorer (https://www.microns-explorer.org/cortical-

mm3#segmentation-meshes). 
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Figures 

 

Figure 1. A general framework for the quantitative analysis and integration of cell 

morphology data based on metric geometry. a) CAJAL takes as input the 2D or 3D cell 

segmentation masks or traces of a set of cells. For each cell, a set of points is evenly sampled 

from the outline and their pairwise distance matrix 𝑑𝑖 is computed. The Euclidean and geodesic 

distances between 2 sampled points is indicated with a blue and red dashed line, respectively. 

Different metrics for computing 𝑑𝑖 capture different aspects of cell morphology. b) An optimal 

matching between the discretized morphologies of each pair of cells is established by 

computing the GW distance between their corresponding 𝑑𝑖 matrices. Computationally efficient 

approximations to the GW distance use optimal transport theory to establish a map between the 

distributions of sampled points pairwise distances in each cell. The value of the cost function at 

the minimum measures the amount of deformation that is needed to convert the shape of one 

cell in that of another. c) The GW distance matrix can be thought of as a distance in a latent 
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space of cell morphologies. This enables the application of statistical and machine learning 

methods for the analysis and integration of point clouds. d) Overview of the open-source 

software CAJAL. The software takes single-cell morphological data in the form of segmentation 

masks or neuronal traces as input and enables its integration with other single-cell data 

modalities, the visualization and clustering of cell morphology spaces, the identification of 

molecular and electrophysiological features associated with changes in cell morphology, the 

computation of average or representative cell shapes, and the visualization of trajectories in the 

cell morphology space.  
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Figure 2. Cell morphology spaces accurately summarize the complexity of cell shapes. a) 

UMAP representation of the cell morphology space of 506 neurons from the murine visual 

cortex profiled with whole-cell patch-clamp. The representation is colored by the morphological 

cell populations that resulted from clustering the cell morphology space using Louvain 

community detection. The morphologies of individual neurons sampled from 4 of the populations 

are shown for reference. Apical and basal dendrites are indicated in purple and red, 

respectively. b) The UMAP representation is colored by the neuronal type (top), cortical layer 

(middle), and Cre driver line (bottom). The GW cell morphology space captures morphological 

differences between neurons of different molecular type and anatomic location. c) The metric 

structure of the GW morphology space enables performing algebraic operations such as 

averaging shapes. The figure shows the medoid (indicated with a circle) and average 

morphologies (in boxes) computed for each of the morphological populations in (a). d) The 

ability of CAJAL to identify morphological differences between molecularly defined neurons is 
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assessed in 3 datasets in comparison to 5 currently available methods. In this study, CAJAL 

offered substantially better or similar results compared to the best performing method in each 

dataset according to the three metrics that were used for the evaluation. 
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Figure 3. GW cell morphology spaces summarize cell shapes across heterogeneous cell 

types. a) UMAP representation of the cell morphology space of 70,510 cells from a cubic 

millimeter volume of the mouse visual cortex profiled by the MICrONS program using a 

combination of two-photon microscopy, microtomography, and serial electron microscopy 15. 

The representation is colored by the cell populations identified by clustering of the cell 

morphology space. The morphology of randomly sampled cells from several populations is also 

show for reference. The magnification is indicated in cases where the morphology of the cells 

has been zoomed in to facilitate visualization. The cell morphology space correctly recapitulates 

the diversity of cell types present in the visual cortex and morphological diversity within each cell 

type. b) The position of 185 cells that were manually annotated by the MICRoNS program is 

indicated in the UMAP representation, showing consistency with the structure of the cell 

morphology space. c) The UMAP representation of the cell morphology space is colored by the 

cortical layer of each cell. The morphology space recapitulates morphological differences 
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between neurons and astrocytes from different cortical layers. d) The part of the UMAP 

representation corresponding to astrocytes is colored by the volume of the minimum-size box 

containing the astrocyte. Astrocytes in the lowe part of the UMAP have smaller dimensions than 

at the top. For reference, the morphology of 4 astrocytes from different parts of the UMAP is 

also shown. e) Boxplot summarizing the distribution of the angle of the major axis of astrocytes 

from different layers with respect to the pial surface. Astrocytes from layer 2/3 are elongated 

perpendicularly with respect to the pial surface. For reference, the part of the UMAP 

representation corresponding to astrocytes colored by the cortical layer each also shown. f) The 

ability of CAJAL to identify morphological differences between neurons of different molecular 

type and T cells from different anatomical locations is evaluated in comparison to four general 

algorithms for cell morphometry and according to three different metrics of performance. 

Contrary to state-of-the-art methods for cell morphometry, the geometric approach implemented 

in CAJAL offered accurate results for both T cells and neurons.  
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Figure 4. Identification of mutations that have an impact in the morphology of an 

individual neuron. a) Schematic of approach for identifying features (gene expression, 

mutations, protein expression, etc.) associated with cell morphological changes based on multi-

modal data. Features and covariates can take binary (e.g. mutations) or continuous (e.g. gene 

expression) values. For each feature, the degree of consistency between the feature values and 

the structure of the cell morphology space is quantified using the Laplacian score (C) of the 

feature in this space. Features with a low score are associated with local regions of the cell 

morphology space. The statistical significance of each feature in relation to the covariates is 

evaluated by means of a permutation test, where cell labels are reshuffled. In the figure, 

examples of features that are significantly localized in the cell morphology space (feature 1, a 
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small number of random configurations have a smaller value of Cfeature, independently of the 

value of Ccovariate), not significantly localized in the cell morphology space (feature 2, a large 

number of random configurations have a smaller value of Cfeature), and substantially localized in 

the morphology space but in association with the covariate (feature 3, a small number of 

random configurations have smaller value of Cfeature, but they are not independent on the value 

of Ccovariate), are presented. b) Mutations that have an impact on the morphology of the DVB 

interneuron in C. elegans. Null alleles are ranked according to their Laplacian score (C) in the 

cell morphology space of the DVB interneuron. Samples were imaged across 4 time points and 

the age of the worm used as a covariate. Genes that significantly impact the morphology of the 

DVB interneuron according to this approach are indicated in red (FDR < 0.05). c, d) UMAP 

visualization of the cell morphology space of the DVB interneuron colored by the the age of 

each worm (c) and the mutation status of unc-97, nlg-1, nrx-1, and unc-25 (red: mutated; gray: 

wild-type). e) Restricting the analysis to worms of the same age allows us to identify the age of 

onset of the morphological effects induced by each significant mutation (FDR < 0.05). This 

analysis shows that unc-97 and unc-25 mutations have an earlier onset in morphology than nlg-

1 and nrx-1 mutations. Dashed lines indicate time points with limited data availability. 
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Figure 5. Integrative analysis of molecular, physiological, and morphological data of 

mouse motor cortex neurons. a) UMAP representation of the GW cell morphology space of 

the dendrites of 370 inhibitory neurons and 274 excitatory neurons from the mouse motor cortex 

profiled with Patch-seq by Scala et al. 21. The representation is colored by the neurotransmitter 

type (excitatory/inhibitory), the transcriptomic type, and the cortical layer of the cells, showing a 

large degree of localization of molecular and physiological features on the morphological space. 
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b) UMAP representation colored by the morphological cell populations defined by Louvain 

clustering. The medoid and average cell morphology (in boxes) are shown for each cell 

population. c) Ternary plots showing the discrepancy between pairwise distances between cells 

in the morphology (M), transcriptomic (T), and electrophysiology (E) latent spaces for each 

transcriptomically-defined population. The dendrites of ET excitatory neurons present a large 

degree of variability in their morphology which is not paralleled by consistent changes in their 

gene expression profile, whereas the dendrites of Lamp5+ GABAergic neurons present limited 

morphological variability in comparison to their gene expression profile.  CT: corticothalamic 

neurons, ET: extratelecephalic neurons, IT: intratelenchephalic neurons. d) Top genes and 

electrophysiological features that are significantly associated with the morphological diversity of 

excitatory and inhibitory neurons according to their Laplacian score in the cell morphology 

space (FDR < 0.1). The part of the UMAP corresponding to excitatory or inhibitory neurons is 

colored by the expression level and values of some of the significant genes and 

electrophysiological features, respectively. CPT: counts per thousand. e) Morpho-transcriptomic 

trajectories computed by projecting the RNA velocity field in the cell morphology space. The 

morphology of several chandelier, basket, and Lamp5+ neurons along the trajectories is shown 

for reference.  
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Figure 6. Integration of cell morphology data across experiments and technologies. a) 

UMAP representation of the combined cell morphology space of the basal and apical dendrites 

of visual cortex neurons profiled with patch-clamp20, and visual cortex and motor cortex neurons 

profiled with Patch-seq19, 21. The combined dataset consists of 1,662 neurons. The 

representation is colored by the neuronal type. Inhibitory and excitatory neurons from different 

datasets cluster together in separated regions of the combined morphology space. b) The same 
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UMAP representation is colored by the Cre driver line (for cells from the patch-clamp dataset) or 

the t-type (for cells from the Patch-seq datasets). Cells of same t-type but from different Patch-

seq dataset, and cells from the corresponding Cre driver line in the patch-clamp dataset, 

localize in the same regions of the combined morphology space. c) UMAP representation of the 

combined cell morphology space of 883 full neuron reconstructions from the motor and visual 

cortices profiled with Patch-seq19, 21 and 1,139 neurons from the mouse visual cortex with a 

combination of two-photon microscopy, microtomography, and serial electron microscopy 15, 

139 of which have been manually annotated by the MICrONS program. The manually annotated 

neuronal types from the MICrONS dataset localize in the same regions of the morphology space 

than Patch-seq cells from the corresponding t-type. d) Refined annotation of 3 Martinotti cells 

that were manually annotated by the MICrONS program. One of the Martinotti cells presents a 

distinct morphology with a densely arborized axon and is close in the cell morphology space to 

Patch-seq cells of the Sst Chrna2 t-type, while the other two Martinotti cells are closer to Sst 

Calb2 t-type cells. e) Refined annotation of 3 basket cells that were manually annotated by the 

MICrONS program. One basket cell has a more condensed morphology than the others is close 

in the morphology space to Path-seq cells of the Vip Chat Htr1f and Vip Col15a1 Pde1a t-types, 

while the other two larger basket cells are close to Pvalb Sema3e Kank4 and Pvalb Gpr149 Islr 

t-type cells.   
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