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Abstract—The 2009–2010 Data Fusion Contest organized by

the Data Fusion Technical Committee of the IEEE Geoscience and
Remote Sensing Society was focused on the detection of flooded

areas using multi-temporal and multi-modal images. Both high

spatial resolution optical and synthetic aperture radar data were
provided. The goal was not only to identify the best algorithms (in

terms of accuracy), but also to investigate the further improve-

ment derived from decision fusion.
This paper presents the four awarded algorithms and the con-

clusions of the contest, investigating both supervised and unsuper-

vised methods and the use of multi-modal data for flood detection.
Interestingly, a simple unsupervised change detection method pro-

vided similar accuracy as supervised approaches, and a digital el-

evation model-based predictive method yielded a comparable pro-
jected change detection map without using post-event data.

Index Terms—Change detection, data fusion, decision fusion,

flood detection, high spatial resolution, optical, synthetic aperture

radar.
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I. INTRODUCTION

T HE Data Fusion Technical Committee (DFTC) of the
IEEE Geoscience and Remote Sensing Society serves

as a global, multi-disciplinary network for geospatial data
fusion, connecting people and resources. It aims at educating
students and professionals, and promoting the best practices
in data fusion applications [1]. The Data Fusion Contest has
been annually organized by the DFTC since 2006 [2]–[4]. It
is open not only to IEEE members, but to everyone, with the
aim of evaluating existing methodologies at the research or
operational level to solve remote sensing problems using data
from different sources.
In 2009–2010, the aim of the Contest was to perform change

detection using multi-temporal and multi-modal data. Two pairs
of data sets were available over Gloucester, UK, before and after
a flood event occurred in November 2000. The class “change”
was the river and class “no change” was the areas that stayed
dry. The optical and synthetic aperture radar (SAR) images were
provided by the Centre National d’Études Spatiales (CNES).
The participants were allowed to use a supervised or an unsu-
pervised method with all the data, the optical data only, or the
SAR data only. Accordingly, six categories were considered to
account for different submissions:

Supervised—All data
Supervised—Optical data
Supervised—SAR data
Unsupervised—All data
Unsupervised—Optical data
Unsupervised—SAR data

As for the previous editions of the Contest, the ground truth
used to assess the results was not provided to the participants.
However, about 60,000 samples were made available for
training the supervised methods.
The single results among all categories were validated and

ranked using the estimated Cohen’s Kappa statistic (or K coef-
ficient). Then, the best 5 individual algorithms among all sub-
missions were used to perform decision fusion with majority
voting.
The four winning algorithms are briefly described as follows:
1) Supervised method with all data: a supervised neural net-
work approach was proposed to exploit both the optical
and SAR images to create a change detection map; the
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flooded and non-flooded map regions were successively
homogenized using a minimum mapping unit morpholog-
ical operator.

2) Supervised method with optical data only: it used spatial
contextual features extracted from the near-infrared (NIR)
band of the post-event image (where the flooded areas
weremore distinguishable); the morphological features ex-
tracted were stacked to form a ten-dimensional multi-tem-
poral data set and fed as inputs to a support vector machine
(SVM) classifier.

3) Unsupervised method with optical data only: this tech-
nique also exploited the relatively high absorption of
water in the NIR band to guide an unsupervised clustering
algorithm.

4) A predictive model: a predictive model was used to project
post-flood change by exploiting a digital elevation model
(DEM). This model may be helpful to rescue planning
during the very first hours after a flood occurs when the
post-event data may still be unavailable.

This paper is organized as follows. First, a short literature re-
view is illustrated in Section II, whereas the data set used for the
Contest is described in Section III. The four winning algorithms
are presented in Sections IVto VII. Finally, decision fusion is
discussed in Section VIII, as well as conclusions and perspec-
tives drawn by this Contest.

II. RELATED WORK

In the past few years, there has been a growing interest in the
development of change detection techniques for the analysis of
multi-temporal imagery. This interest stems from thewide range
of applications in which change detection methods can be used,
such as urban and environmental monitoring, agricultural and
forest surveys, and, as with this year’s Contest, disaster man-
agement. Supervised and unsupervised approaches proposed in
the literature are here briefly reviewed.

A. Supervised Change Detection

Supervised change detection aims at defining classification
rules by modeling labeled examples provided by the user,
accounting for the different classes of land-cover transitions.
When dealing with high to very high spatial resolution (VHR)
imagery (either optical or SAR data sets), the comprehensive
labeled set can be extracted by photo-interpretation of the
multi-temporal images.
Two main supervised approaches are found in the literature:

post classification comparisons [5], where classification is per-
formed independently at each time instant, and a successive
comparison defines a change map; and multi-date classification
[6], where multi-temporal information is considered simultane-
ously for classification.
In the first case, a logical comparison is most often performed

on the classification outcomes at each time instant [7]. This ap-
proach may not be optimal for VHR imagery, because it may
accumulate single image classification errors. As a result, post-
classification comparison generally provides noisy maps, and
changes in viewing acquisition can make the final map difficult
to be interpreted. To avoid these errors, an approach based on
post-classification masking has been proposed in [8], where a

binary neural network is used to remove spurious detections, or
in [9], where change vector analysis [10], [11] is used for the
same purpose.
On the contrary, multi-date classification converts change

detection into a multi-temporal classification problem. The
two images are combined into a multi-temporal representation
(through vector stacking or multi-variate difference) before
analysis and a model is defined using this multi-temporal
feature space. For example, supervised multi-temporal clas-
sification was implemented using SVM in [12], while in [13]
Camps-Valls et al. defined a set of specific kernel functions
for the problem of multi-temporal classification. Finally, re-
cent works studied the relationship between the efficiency of
change detectors and scarceness of labeled information using
semi-supervised methods [14], [15].

B. Unsupervised Change Detection

Much of the recent work on unsupervised multi- and hyper-
spectral image analysis has attempted to integrate spatial in-
formation to improve algorithm performance [16]. In [17], a
fuzzy clustering approach that incorporates spatial information
for segmentation of remote sensing data sets was investigated.
A hierarchical clustering algorithm that exploits spatial infor-
mation for segmentation was described in [18]. In [19], spa-
tial-spectral clustering using Gaussian Markov random fields
for scene segmentation and anomaly detection was presented.
Similarly, integration of spatial information into spectral un-
mixing of multi- and hyper-spectral data was investigated in
[20]–[22].
The integration of domain specific knowledge has been used

in a number of systems for detection of various materials or
objects. This knowledge may be based on the sensing plat-
form, subjects being sensed, or physical phenomena affecting
the system. Such techniques are discussed in [23] where the
expected spectral shape of vegetation in the long wave infrared
was used to guide an unsupervised algorithm for the detection
of vegetation in remotely sensed data. In [24], bridges are
detected using rules which leveraged the known spatial ar-
rangements of bridge pixels with respect to water and concrete
in conjunction with classification algorithms.
In the context of SAR image analysis, the problem of un-

supervised change detection has been addressed with less em-
phasis with respect to optical imagery. Recent studies have in-
vestigated different aspects, including image de-speckling and
optimal threshold selection [25], [26], whereas statistical and
fuzzy approaches have been discussed in [27].

III. DATA SETS

The data used in the Contest included two observations, one
before and one after the flood event, from two separate satellite
instruments: the optical Système Probatoire d’Observation de
la Terre (SPOT) and the SAR instrument aboard the European
Remote Sensing 1 (ERS-1).
The SPOT satellite, operated by the Spot Image company, is

a four band optical platform. Three of the channels cover the
spectral range 0.50 to 0.89 and the fourth is a panchro-
matic band with a spectral range from 0.50 to 0.73 . The
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TABLE I
SPECTRAL BANDS OF THE OPTICAL SPOT SATELLITE.
ONLY THE MULTI-SPECTRAL BANDS WERE USED AS

INPUT FOR THE CHANGE DETECTION PROBLEM

TABLE II
ERS SAR SATELLITE SPECIFICATIONS

spatial resolution is nominally 20 m at nadir for the multi-spec-
tral bands and 10 m at nadir for the panchromatic. The satellite
is in a sun-synchronous polar orbit and has a steerable strip-se-
lection mirror that can collect imagery up to 27 off-nadir. This
pointing capability gives the satellite a revisit rate of 4–5 days.
A summary of the SPOT specifications is provided in Table I.
The ERS SAR satellite, launched by the European Space

Agency, is a C-band platform. The satellite is in a sun-syn-
chronous polar orbit with a revisit time of 35 days. The SAR
instrument can operate in two modes: image and wave. The
wave mode provides a spatial resolution of 10 m with a swath
width of 5 km. The image mode provides a larger area obser-
vation with a swath width of 100 km but reduces the spatial
resolution to 30 m. The imagery used in this Contest was
collected in wave mode. Its specifications are summarized in
Table II.
The SPOT images distributed during the Contest contained

only the multi-spectral bands (i.e., no panchromatic information
was available to the participants). These images were acquired
on September 1999 and November 2000, while the ERS-1 im-
ages were acquired on October 1999 and November 2000. The
before- and after-flood images from both platforms are shown
in Fig. 1, whereas the ground survey used to validate the change
detection results uploaded by the participants is shown in Fig. 2.

IV. SUPERVISED CHANGE DETECTION—ALL DATA

The methodology discussed in this section was very sim-
ilar to the winning approaches in previous years’ Contests. The
methods from 2007 [3] and 2008 [4] share the same neural net-
work topology as the one discussed here. However, the input and
output of the network were different as required by the data and
change detection problem, but the internal architecture was sim-
ilar. Also, both the learning and pruning methods were identical.

Fig. 1. Three band optical and single amplitude SAR data, collected before
(left) and after (right) the flood event, provided as input to the change detection
problem from the SPOT (a) and (b), and ERS (c) and (d) satellites.

Fig. .2. Ground survey used for the Contest.

Neural networks are nonlinear statistical models capable of
modeling complex systems [28]. They are composed of a set of
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interconnected nodes, called neurons, each connected by a net-
work of weighted inputs. Each neuron receives input from either
external sources or neighboring nodes. It then uses an internal
mechanism (network and activation functions) to compute an
output value from the weighted inputs that is then propagated on
to the nodes it is connected to [29]. The nodes, in turn, calculate
an output value from their weighted inputs and internal mech-
anisms. After this process is complete throughout the network,
the weightings at each neuron are optimized by minimizing an
error function measuring the learned accuracy of the network
against known input/output values.
This arrangement provides neural networks the capability to

model highly nonlinear systems in situations where the statis-
tical distribution of the data is poorly understood [30]. This is
often the case in change detection where a large range of data
from multiple sensing platforms, as well as data derived from
these sources, can be available.
Neural networks have been used for land-cover change de-

tection for decades. Early attempts focused on the capability of
basic neural networks to accurately predict change in multiple
remote sensing applications [31]–[33].More recent studies have
focused on alternative network types [34], [35] and on neural
networks as part of change detection systems [36].
Since neural networks operate on the principle of weighted

inputs, it is advantageous to normalize the input data space. This
should result in a faster training process as well as increases ac-
curacy for the resulting network [37]. In the presented method,
the data was normalized in the range .
As discussed above, the input data consisted of a before and

after image from both a three-band optical and single-band SAR
satellite. From this information, and the desired change cases,
the input and output nodes of the network were fixed: eight input
nodes corresponding to the eight bands of before and after ob-
servation data, and two output nodes corresponding to the two
classification cases of interests (flooded and non-flooded).
The design of the hidden layer is the subject of a large discus-

sion in current literature; however, it is generally acknowledged
that no more than two layers are needed and that layer depth
can be pruned to optimize the network complexity [38]. For this
Contest, computational power was not a constraint. Therefore,
the network was designed at the more complex end of literature
recommendations and pruned to an optimized topology. The in-
ternal structure, before pruning, consisted of two internal layers
of 40 nodes each. The network was trained with the scaled con-
jugate gradient method and used magnitude-based pruning to
optimize the topology [38].
The pixel-level classification produces maps that directly re-

flect the spectral-spatial variability of the image, producing a
sort of “salt and pepper” noise driven by valid spectral infor-
mation. This can be a limitation to classification accuracy when
compared against ground survey regions that are often consid-
ered uniform by human experts. In the current study, this can be
seen in small patches of earth exposed in the middle of a flooded
field or regions of standing water in an otherwise non-flooded
area.
This effect was addressed through the use of morphological

post processing [39] to implement a minimum mapping unit
and homogenize stranded pixels in the flooded and non-flooded

TABLE III
CONFUSION MATRIX AND K COEFFICIENT FOR THE

SUPERVISED CHANGE DETECTION—ALL DATA

regions. The implementation used a sieve and clump process
to filter out groups of pixels below a specified size. Clusters
of pixels below a given filter size were removed using a blob
process. The removed pixels were then refilled using morpho-
logical dilation from the surrounding classes [40].
In the case of change detection, removing regions of a given

class below a certain pixel number threshold and filling the area
with the other class was a relatively simple process. For the
Contest, the filter size chosen was 51 pixels. This provided well
segmented change regions without over simplifying the spatial
structure of the flooded region. This step generated the final clas-
sification map submitted for the competition, which produced a
coefficient of 0.703. The confusion matrix in Table III further

details the distribution of accurately predicted change detection
pixels.

V. SUPERVISED CHANGE DETECTION—OPTICAL DATA

The methodology discussed in this section considers the
use of cascade contextual features in conjunction with support
vector machines. Contrarily to the model presented in the
previous section, spatial regularization is intrinsic to the model,
since it is introduced by the use of contextual information in
the input information. The use of contextual information is not
fully exploited in the supervised change detection literature,
although the benefits of including such as variables are clearly
demonstrated for classification tasks [41]–[43]. In [44], the ad-
vantages of deploying reconstruction morphological operators
in the change vector analysis framework have been demon-
strated. In [45] a contextual parcel-based multi-scale approach
to unsupervised change detection is presented. Finally, in
[46] textural and morphological filters are studied extensively
and their importance for successful VHR supervised change
detection is analyzed.
Mathematical morphology [40] is a collection of contextual

filters based on set theory. They extract local characteristics
of gray-level images, and, at different scales, provide informa-
tion about shape and structure of the objects in the scene [47],
[48]. Morphological reconstruction filters are considered in this
study to maintain the spatial information necessary to detect the
flooding limits precisely. These filters—opening and closing by
reconstruction—preserve objects’ shapes, while returning re-
spectively local minima or maxima, and smoothing the high
local variances that affect VHR images.
Four features have been used. The first two have been ex-

tracted using opening by reconstruction on the NIR band at
time instant , where the flooded area was the most visible.
Two sizes of the structuring elements (the moving windows de-
tecting local valleys/peaks) have been considered to account for
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Fig. 3. Contextual features extracted from the near infrared band at time .
(a) Opening by reconstruction with circular structuring element of radius 40
pixels. (b) Opening by reconstruction with circular structuring element of radius
100 pixels. (c) Closing by reconstruction with circular structuring element of
radius 60 pixels using erosion of panel (a) as starting marker. (d) Closing by
reconstructionwith circular structuring element of radius 90 pixels using erosion
of panel (a) as starting marker.

different scales of smoothing: circular elements of 40 and 100
pixels in radius. The choice of wide elements resulted from the
large extent of the flooded area. Results of this filtering, , are
reported in Figs. 3(a) and 3(b), respectively. In both cases, light
areas saturate, clearly defining the shape of the flooded area.
However, the opening by reconstruction operators do not

filter out small and medium sized crops areas showing low
NIR values (resulting in dark objects). In order to eliminate
these undesired low-valued patches, we applied closing by
reconstruction (i.e. the inverse process) to the opening by
reconstruction feature of Fig. 3(a): by doing so, the opening
image is dilated and the small patches are absorbed by the
high-valued neighboring patches. Thanks to the shape-pre-
serving character of the reconstruction filter, the central flooded
area remains geometrically unchanged, although the average
value of its segments increases (to the maximal value en-
countered in the flooded area reconstructed in Fig. 3(a)). The

TABLE IV
CONFUSION MATRIX AND K COEFFICIENT FOR THE

SUPERVISED CHANGE DETECTION—OPTICAL DATA

results of this morphological cascade filter are reported in
Figs. 3(d) and 3(e) for circular structuring elements of radius
60 and 90 pixels respectively.
Successively, the original multi-temporal bands and the ex-

tracted contextual features were stacked in a 10-dimensional
vector

Each feature has been converted to standard scores prior to
stacking.
From the ground truth provided, 4000 pixels (2000 for

changes related to water and 2000 corresponding to unflooded
areas) have been extracted for the training phase. The associated
multi-temporal pixel was then used to train a one-against-all
SVM implemented using the Torch 3 library [49]. A radial
basis function kernel has been used. Model selection has been
performed by grid search to find SVM optimal parameters
and .
The final submission produced a coefficient of 0.650. The

confusion matrix in Table IV further details the distribution of
accurately predicted change detection pixels.

VI. UNSUPERVISED CHANGE DETECTION—OPTICAL DATA

Clustering techniques have been widely used in the multi-
spectral and hyper-spectral literature [50]. For example, in [51],
a fuzzy clustering approach was used to identify land-cover
types in Landsat, QuickBird, and MODIS data. The approach
described in this section used clustering techniques to fuse the
information from the three spectral bands and produce labels for
each pixel by content grouping. Successively, contextual infor-
mation was used to produce consistent labels over larger areas.
Finally, physics-based rules were used to select labeled groups
containing flood water.
The first step was to pre-process the data to remove some

anomalies. Pixel values for each channel were integers in the
range [0, 127]. A few anomalous pixels were found with a 128
value across bands, and such pixels were simply clipped into
standard bounds by setting their value to 0.
The optical data was then clustered into ten groups using the

fuzzy C-mean clustering algorithm with a Euclidean distance
measure. Clustering was performed using only the three op-
tical band values for each pixel (i.e., no spatial information was
used). Pixels were then assigned the label of the cluster to which
they had highest membership. The clustering was performed
using all of the approximately 9.8 million pixels in the image,
and generated robust results to a qualitative visual inspection.
Upon close inspection of the clustering result in Fig. 4, it is

possible to note that the large central flooded/river section was
assigned to cluster 5 (cyan). Many areas of land corresponding
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Fig. 4. Pixels assigned to color/class by highest Fuzzy C-Means cluster
membership.

Fig. 5. (a) Non-smoothed cluster labels (detail view of Fig. 4). (b) Cluster la-
bels after smoothing by voting in 5 5 window.

to agricultural fields were assigned to clusters 6 and 7 (yellow
and light orange), whereas areas in shadow from cloud cover
were assigned to cluster 1 (dark blue).
The next step integrated spatial information to the cluster

labels by applying a neighborhood-voting procedure. This step
was performed to remove any small, discontinuous, or noisy
clusters. Cluster labels for each pixel were smoothed using
voting. The voting method reassigned each pixel the value
of the most frequently occurring label within a 5 5 pixel
neighborhood centered on the pixel of interest. Fig. 5 shows a
comparison of the original clustering result with the smoothed
labels on a subsection of the full image. It is possible to note
that many of the small (but irrelevant for the task at hand)
details have been removed.
The final step of the algorithm aimed at converting the

unsupervised clustering results into a usable “flood detection

Fig. 6. Result of applying distance transform to the “water” pixels.

TABLE V
CONFUSION MATRIX AND K COEFFICIENT OR THE UNSUPERVISED

CHANGE DETECTION—OPTICAL DATA

map” through the use of domain-knowledge of the sensor and
problem. Specifically, the first step towards flood detection
was to apply clustering to find pixels which were likely to be
water. This cluster was identified using the fact that water is
more absorptive in the NIR wavelengths. Therefore, the cluster
having the lowest average NIR intensity was then considered
as the one in which pixels were most likely to be water.
The low NIR spectral rule identified the majority of the water

flooded regions, but it yielded many false positives that were far
away from the central flooded region. To remove these false pos-
itives, only pixels close to the largest central water regions were
retained. These regions were mostly connected, but required
some further processing to fill-in the holes. To this end, a dis-
tance transform was applied to the image. The transform labeled
each non-water pixel by its distance to the closest water sample.
Then, clusters within a distance of less than 15 pixels were re-
tained along with the original water samples. Fig. 6 shows the
results of the distance transform. To remove the false positives,
only the two largest connected components were retained. This
rule maintained the flooded areas and disregarded the water and
false positive areas far from the river.
The final submission produced a coefficient of 0.688. The

confusion matrix in Table V further details the distribution of
accurately predicted change detection pixels.
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VII. A PREDICTIVE METHOD FOR PROJECTED
POST-FLOOD CHANGE DETECTION

When a disaster strikes, the first few hours are critical to co-
ordinate the response. Important decisions have to be made re-
garding where to send the first available rescue teams, how the
transport and communication networks have been impacted, and
whether some population are threaten by disaster developments,
such as new flooding, tsunami, or earthquake replicas. Unfor-
tunately, in the first few hours of the disaster mitigation period,
rescue resources are scarce. Given that lives are at stake, the im-
portance of allocating these resources efficiently is paramount.
These decisions require the clearest view of the situation, with
the most up-to-date information available. Yet, local monitoring
of the place where the disaster struck is often affected and, de-
pending on the topography of the area, it may be difficult to bear
new monitoring teams and devices from neighboring places.
In this situation, satellites are invaluable tools: their operation

is not affected by the local crisis, they provide global coverage
and are able to acquire several large areas at a time. However,
satellites are not able to provide real time imagery. As an ex-
ample, weather is a factor that may delay the acquisition of op-
tical imagery. This is particularly true in the case of flooding,
where cloud cover is indicative of the event. Further, many areas
in the world have an average cloud coverage higher than 80%,
which increases the average delay before high-quality space-
borne optical images are available. In the case of the Interna-
tional Charter, the delay between the disaster and the first im-
ages is at least 1 or 2 days, and sometimes even longer [52],
whereas the COSMO-SkyMed constellations has 12 hour revisit
time under emergency conditions. Therefore, it may be impor-
tant to start evaluating the area of the event even before the first
post-event image comes. At this stage, any information is useful.
Many sources are available concerning pre-disaster imagery,

for most places; Google Earth or Bing Maps enable to examine
places for a better idea about where the risks may be concen-
trated (usually in the settlements), Landsat imagery is avail-
able globally, and archived images of the area are commonly
available in data provider’s catalogs. For flood events, these im-
ages and map sources can be complemented with another source
of information: the elevation map. Initiatives like the Shuttle
Radar Topography Mission (SRTM) or the Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER)
provide a reliable elevation map for any place between latitude
60 North and latitude 60 South for SRTM and between latitude
83 North and latitude 83 South for ASTER. This provides cov-
erage for most of the world population.
On the other hand, the data available also varies significantly

in nature and quality. So it is critical to have flexible tools to deal
with unexpected situations. For this study, the Orfeo Toolbox
(OTB) [53] was used. OTB is an open-source image processing
library which handles image geometry and map projection, ac-
cess a variety of data, such as digital elevation models, and stan-
dard image processing techniques in a flexible and integrated
way. This tool provides advanced algorithms as well as low
level access to data.
In the case of the Contest, several facts made it easier to use

the information derived from the DEM. In fact, the terrain was
relatively flat, without sharp mountains, and the objective was
to measure the flood extension a few hours after it happened.

Fig. 7. SRTM DEM of the flooded area.

TABLE VI
CONFUSION MATRIX AND K COEFFICIENT FOR THE PREDICTIVEMETHOD

The metadata included in the images is critical to understand
the context. However, the before-flood SPOT image had the
wrong metadata providing a wrong geolocation. Unfortunately,
this kind of situation is common in real-case scenarios and
should be accounted for. It is important to be cautious of this
information at any time and it is another reason why flexible
tools are critical.
Fig. 7 shows the SRTM DEM extracted from the metadata of

the post-event SPOT image. Using a flood level of 13 m above
sea level, the flood detection accuracy was 0.627, which was
a reasonable value compared to other results in these difficult
conditions. The confusion matrix in Table VI further details the
distribution of accurately predicted change detection pixels.

VIII. DISCUSSION AND CONCLUSION

At the end of the Contest, more than 200 users downloaded
the data set and more than 350 different change detection maps
have been uploaded to the system to be ranked. In general, the
Contest turned out to be very tough for the methods in all the
categories, as evidenced by a maximum accuracy of 0.703. The
relatively low accuracymay be due to the presence of pixel level
region mixing issue, in which an isolated patch of dry area sur-
rounded by water may be considered as flood by a human oper-
ator that defines the extension of the flooded area. Further, the
flooded area changed significantly between the two sensor ob-
servations (about 4 days apart). This may have created funda-
mentally different information, increasing the difficulty to deal
with the temporal shift between the optical and SAR data sets.
The top-ranked change detection maps submitted for each

category are shown in Fig. 8, whereas the relative best accu-
racies are reported in Table VII. As shown, the methods that
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Fig. 8. Top-ranked maps that were submitted for each category: (a) Super-
vised—All data, (b) Supervised—Optical data, (c) Supervised—SAR data,
(d) Unsupervised—All data, (e) Unsupervised—Optical data, (f) Unsuper-
vised—SAR data.

exploited SAR imagery alone did not provide accurate change
detection maps. For the “Supervised—SAR data” category, the

TABLE VII
COEFFICIENT OF THE BEST RESULT FOR EACH CATEGORY

Fig. 9. Decision fusion result produced using majority voting between the best
5 individual results among all submissions.

TABLE VIII
CONFUSIONMATRIX AND K COEFFICIENT FOR THE DECISION FUSION RESULT

method in [54] was exploited. For the “Unsupervised—SAR
data” category a patch-based similarity between the two SAR
images was computed at each pixel for different patch sizes.
The decision fusion of the best 5 individual results among

all submissions was achieved using majority voting (shown in
Fig. 9). Table VIII presents the corresponding final confusion
matrix. The coefficient was 0.706. Even though the final
score is less than 1% higher than the best algorithm, majority
voting still outperformed all the other results submitted on this
data set. Further, the statistical significance of the change detec-
tion maps was evaluated with the McNemar test and all the re-
sults were statistically significant (to the 95% confidence level).
Failure or success of a change detection algorithm cannot be

analyzed only with a confusion matrix, as it is important to un-
derstand the context of the application. For example, missed
alarms may be more important than a false alarm in catastrophic
scenarios as it is better to check a non-destroyed building than
not to visit a destroyed one. For the flood detection application
discussed in this paper, the number of true positives and true
negatives of the confusion matrices reported in Tables III–VI
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were approximately the same for all the winning methods. The
main differences can be found in the off-diagonal terms. The
“Supervised—Optical data” and “Unsupervised—Optical data”
entries showed the opposite behavior, the first having about
twice false negatives than false positives, and the second having
about twice false positives compared to the false negatives. The
submissions “Supervised—All data” and “Unsupervised—All
data” showed more balance values along the off-diagonal terms.
This was also the case of the decision fusion confusion matrix.
All the proposed methods relied on different modeling solu-

tions and showed different ways to approach the change detec-
tion problem. However, it is important to emphasize that phys-
ical properties (such as the admissible distance from water and
the elevation information extracted from the DEM) have been
successfully used in addition to traditional approaches based on
pattern recognition, image processing techniques, and contex-
tual information. These approaches open new research possi-
bilities for data fusion, where integration of the physics of the
problem may play an important role for the success of the mod-
eling task involving complex phenomena.
Further, it is important to highlight the small difference in ac-

curacy achieved between supervised and unsupervisedmethods.
This is remarkable considering the quick response that may be
necessary in disaster scenarios without training samples avail-
able. For the case of a flood event, this study also showed that
even without up-to-date data, reasonable results can be obtained
within minutes of the flood crisis (and even before the flood
event itself) with a DEM-based predictive model. Of course,
combining this early information with post-event images may
further improve the results. Additionally, the elevation map can
be, for instance, used as a further input for the classification
phase.
To conclude, in a relatively recent paper [55], Wilkinson

showed satellite image classification results have not been
improving over the past 20 years. This is corroborated by the
results of this Contest, where the various machine learning tech-
niques have shown little difference to the general classification
problem. Specifically, older methods, such as the supervised
neural network and the unsupervised C-mean, provided the
same level of accuracy as did newer methods. As a matter of
fact, the exact same neural network approach provided the best
individual performance among all submissions in the previous
2007 and 2008 Contests [3], [4]. These conclusions suggest
that research should be directed to investigating new and more
powerful input features (as an example, multi-temporal as well
as multi-angular information can be exploited) to be fed into the
various machine learning schemes, or to a better understanding
of the physical behavior of the Earth surface being investigated.

REFERENCES

[1] 2011, IEEE GRSS Data Fusion Technical Committee. [Online]. Avail-
able: http://www.grss-ieee.org/community/technical-committees/data-
fusion/

[2] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L.
M. Bruce, “Comparison of pansharpening algorithms: Outcome of the
2006 GRS-S data fusion contest,” IEEE Trans. Geosci. Remote Sens.,
vol. 45, no. 10, pp. 3012–3021, Oct. 2007.

[3] F. Pacifici, F. Del Frate, W. Emery, P. Gamba, and J. Chanussot,
“Urban mapping using coarse SAR and optical data: Outcome of the
2007 GRSS data fusion contest,” IEEE Geosci. Remote Sens. Lett.,
vol. 5, no. 3, pp. 331–335, Jul. 2008.

[4] G. Licciardi, F. Pacifici, D. Tuia, S. Prasad, T. West, F. Giacco, C.
Thiel, J. Inglada, E. Christophe, J. Chanussot, and P. Gamba, “Decision
fusion for the classification of hyperspectral data: Outcome of the 2008
GRS-S data fusion contest,” IEEE Trans. Geosci. Remote Sens., vol.
47, no. 11, pp. 3857–3865, Nov. 2009.

[5] P. Coppin, I. Jonckheere, K. Nackaerts, and M. B., “Digital change
detection methods in ecosystem monitoring: A review,” Int. J. Remote
Sens., vol. 25, no. 9, pp. 1565–1596, 2004.

[6] A. Singh, “Digital change detection techniques using remotely-sensed
data,” Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003, 1989.

[7] F. D. Frate, F. Pacifici, and D. Solimini, “Monitoring urban land cover
in Rome, Italy and its changes by single-polarization multi-temporal
SAR images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 1, no. 2, pp. 87–97, Jun. 2008.

[8] F. Pacifici, F. D. Frate, C. Solimini, and W. Emery, “An innovative
neural-net method to detect temporal changes in high-resolution optical
satellite imagery,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 9, pp.
2940–2952, 2007.

[9] J. Chen, X. Chen, X. Cui, and J. Chen, “Change vector analysis in pos-
terior probability space: A new method for land cover change detec-
tion,” IEEE Geosci. Remote Sens. Lett., vol. PP, no. 99, pp. 317–321,
2010.

[10] W. A. Malila, “Change vector analysis: An approach for detecting
forest change with Landsat,” in IEEE Proc. Annual Symp. Machine
Processing of Remotely Sensing Data, 1980, pp. 326–336.

[11] F. Bovolo and L. Bruzzone, “A split-based approach to unsupervised
change detection in large size multitemporal images: Application to
Tsunami-damage assessment,” IEEE Trans. Geosci. Remote Sens., vol.
45, no. 6, pp. 1658–1671, 2007.

[12] H. Nemmour and Y. Chibani, “Multiple support vector machines for
land cover change detection: An application for mapping urban exten-
sions,” J. Photogr. Remote Sens., vol. 61, pp. 125–133, 2006.

[13] G. Camps-Valls, L. Gómez-Chova, J. Muñoz-Marí, J. L. Rojo-Álvarez,
andM.Martínez-Ramón, “Kernel-based framework formulti-temporal
and multi-source remote sensing data classification and change detec-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1822–1835,
2008.

[14] F. Bovolo, L. Bruzzone, and M. Marconcini, “A novel approach to
unsupervised change detection based on a semisupervised SVM and
a similarity measure,” IEEE Trans. Geosci. Remote Sens., vol. 46, no.
7, pp. 2070–2082, Jul. 2008.

[15] J. Muñoz-Marí, F. Bovolo, L. Gómez-Chova, L. Bruzzone, and G.
Camps-Valls, “Semisupervised one-class support vector machines for
classification of remote sensing data,” IEEE Trans. Geosci. Remote
Sens., vol. 48, no. 8, pp. 3188–3197, 2010.

[16] T. N. Tran, R. Wehrens, and L. M. C. Buydens, “Sparef: A clustering
algorithm for multispectral images,” Analytica Chimica Acta vol. 490,
no. 1–2, pp. 303–312, 2003 [Online]. Available: http://www.sciencedi-
rect.com/science/article/pii/S0003267003007207, papers presented
at the 8th International Conference on Chemometrics and Analytical
Chemistry

[17] M. Hasanzadeh and S. Kasaei, “A multispectral image segmentation
method using size-weighted fuzzy clustering andmembership connect-
edness,” IEEE Geosci. Remote Sens. Lett., vol. 7, no. 3, pp. 520–524,
Jul. 2010.

[18] A. Marcal and L. Castro, “Hierarchical clustering of multispectral im-
ages using combined spectral and spatial criteria,” IEEE Geosci. Re-
mote Sens. Lett., vol. 2, no. 1, pp. 59–63, Jan. 2005.

[19] G. Hazel, “Multivariate Gaussian MRF for multispectral scene seg-
mentation and anomaly detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 38, no. 3, pp. 1199–1211, May 2000.

[20] G. Martin and A. Plaza, “Region-based spatial preprocessing for end-
member extraction and spectral unmixing,” IEEEGeosci. Remote Sens.
Lett., vol. 8, no. 4, pp. 745–749, Jul. 2011.

[21] A. Zare, O. Bchir, H. Frigui, and P. Gader, “Spatially-smooth piece-
wise convex endmember detection,” in 2010 2nd Workshop on Hyper-
spectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS), Jun. 2010, pp. 1–4.

[22] M. Zortea and A. Plaza, “Spatial preprocessing for endmember extrac-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679–2693,
Aug. 2009.

[23] A. Zare, J. Bolton, P. Gader, and M. Schatten, “Vegetation map-
ping for landmine detection using long-wave hyperspectral imagery,”
IEEE Trans. Geosci. Remote Sens., vol. 46, no. 1, pp. 172–178, Jan.
2008.



340 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 5, NO. 1, FEBRUARY 2012

[24] D. Chaudhuri and A. Samal, “An automatic bridge detection technique
for multispectral images,” IEEE Trans. Geosci. Remote Sens., vol. 46,
no. 9, pp. 2720–2727, Sep. 2008.

[25] Y. Bazi, L. Bruzzone, and F. M. Melgani, “An unsupervised approach
based on the generalizedGaussianmodel to automatic change detection
in multitemporal SAR images,” IEEE Trans. Geosci. Remote Sens.,
vol. 43, no. 4, pp. 874–887, April 2005.

[26] G. Moser and S. B. Serpico, “Generalized minimum-error thresholding
for unsupervised change detection from SAR amplitude imagery,”
IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2972–2982,
Oct. 2006.

[27] C. Carincotte, S. Derrode, and S. Bourennane, “Unsupervised change
detection on SAR images using fuzzy hidden Markov chains,” IEEE
Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 432–441, Feb. 2006.

[28] T. Hastie, R. Tibshirani, and J. Friedman, The Elements Of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. New
York: Springer, 2009.

[29] J. F. Mas and J. J. Flores, “The application of artificial neural networks
to the analysis of remotely sensed data,” Int. J. Remote Sens., vol. 29,
no. 3, pp. 617–663, Feb. 2008.

[30] J. Benediktsson, P. Swain, and O. Ersoy, “Neural network approaches
versus statistical methods in classification of multisource remote
sensing data,” IEEE Trans. Geosci. Remote Sens., vol. 28, no. 4, pp.
540–552, Jul. 1990.

[31] S. Gopal and C. Woodcock, “Remote sensing of forest change using
artificial neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 34,
no. 2, pp. 398–404, Mar. 1996.

[32] G. Carpenter, S. Gopal, B. Shock, and C. Woodcock, A neural network
method for land use change classification, with application to the Nile
river delta Boston Univ., Ctr. Adaptive Systems, Dept. Cognitive and
Neural Systems, Boston, MA, Tech. Rep., 2001 [Online]. Available:
http://techlab.bu.edu/files/resources/articles_cns/CarpenterGopal-
ShockWoodcock2003.pdf

[33] I. Olthof, “Mapping deciduous forest ice storm damage using Landsat
and environmental data,” Remote Sens. Environ., vol. 89, no. 4, pp.
484–496, Feb. 2004.

[34] S. Ghosh, L. Bruzzone, S. Patra, F. Bovolo, and A. Ghosh, “A con-
text-sensitive technique for unsupervised change detection based on
hopfield-type neural networks,” IEEE Trans. Geosci. Remote Sens.,
vol. 45, no. 3, pp. 778–789, Mar. 2007.

[35] F. Pacifici and W. J. Emery, Pulse Coupled Neural Networks for Au-
tomatic Urban Change Detection at Very High Spatial Resolution, ser.
Lecture Notes in Computer Science. Berlin, Heidelberg, Germany:
Springer, 2009, vol. 5856, pp. 929–942.

[36] M. Chini, F. Pacifici, W. Emery, N. Pierdicca, and F. Del Frate, “Com-
paring statistical and neural network methods applied to very high res-
olution satellite images showing changes in man-made structures at
rocky flats,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp.
1812–1821, Jun. 2008.

[37] J. Sola and J. Sevilla, “Importance of input data normalization for the
application of neural networks to complex industrial problems,” IEEE
Trans. Nucl. Sci., vol. 44, no. 3, pp. 1464–1468, Jun. 1997.

[38] F. Pacifici, M. Chini, and W. J. Emery, “A neural network approach
using multi-scale textural metrics from very high resolution panchro-
matic imagery for urban land-use classification,” Remote Sens. Env-
iron., vol. 113, no. 6, pp. 1276–1292, Jun. 2009.

[39] J. Serra, Image Analysis and Mathematical Morphology. New York:
Academic Press, 1982.

[40] P. Soille, Morphological Image Analysis, 2nd ed. Berlin, Germany:
Springer, 2004.

[41] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson,
“Spectral and spatial classification of hyperspectral data using SVMs
and morphological profiles,” IEEE Trans. Geosci. Remote Sens., vol.
46, no. 11, pp. 3804–3814, 2008.

[42] D. Tuia, F. Pacifici, M. Kanevski, and W. Emery, “Classification of
very high spatial resolution imagery using mathematical morphology
and support vector machines,” IEEE Trans. Geosci. Remote Sens., vol.
47, no. 11, pp. 3866–3879, 2009.

[43] D. Tuia, G. Camps-Valls, G. Matasci, and M. Kanevski, “Learning rel-
evant image features with multiple kernel classification,” IEEE Trans.
Geosci. Remote Sens., vol. 48, no. 10, pp. 3780–3791, 2010.

[44] M. Dalla Mura, J. A. Benediktsson, F. Bovolo, and L. Bruzzone, “An
unsupervised technique based on morphological filters for change de-
tection in very high resolution images,” IEEE Trans. Geosci. Remote
Sens., vol. 5, no. 3, pp. 433–437, 2008.

[45] F. Bovolo, “A multilevel parcel-based approach to change detection
in very high resolution multitemporal images,” IEEE Geosci. Remote
Sens. Lett., vol. 6, no. 1, pp. 33–38, 2009.

[46] M. Volpi, D. Tuia, F. Bovolo, M. Kanevski, and L. Bruzzone, “Super-
vised change detection in VHR images using contextual information
and support vector machines,” Int. J. Appl. Earth Observ. Geoinform.,
2011, in press.

[47] M. Pesaresi and J. Benediktsson, “A new approach for the morpho-
logical segmentation of high-resolution satellite images,” IEEE Trans.
Geosci. Remote Sens., vol. 39, no. 2, pp. 309–320, 2001.

[48] J. A. Benediktsson, M. Pesaresi, and K. Arnason, “Classification and
feature extraction for remote sensing images from urban areas based on
morphological transformations,” IEEE Trans. Geosci. Remote Sens.,
vol. 41, no. 9, pp. 1940–1949, 2003.

[49] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: AModular Machine
Learning Software Library,” IDIAP, Tech. Rep. RR 02-46, 2002.

[50] T. N. Tran, R. Wehrens, and L. M. Buydens, “Clustering multispectral
images: A tutorial,”Chemometrics and Intelligent Laboratory Systems,
vol. 77, no. 1–2, pp. 3–17, 2005.

[51] C. Yang, L. Bruzzone, F. Sun, L. Lu, R. Guan, and Y. Liang, “A fuzzy-
statistics-based affinity propagation technique for clustering in multi-
spectral images,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp.
2647–2659, Jun. 2010.

[52] Disaster charter. [Online]. Available: http://www.disasterscharter.org/
home

[53] The Orfeo Team. [Online]. Available: http://www.orfeo-toolbox.org
[54] G. Mercier, G. Moser, and S. Serpico, “Conditional copula for change

detection on heterogeneous SAR data,” IEEE Trans. Geosci. Remote
Sens., vol. 45, no. 5, pp. 1428–1441, May 2008.

[55] G. Wilkinson, “Results and implications of a study of fifteen years of
satellite image classification experiments,” IEEE Trans. Geosci. Re-
mote Sens., vol. 43, no. 3, pp. 433–440, Mar. 2005.

Nathan Longbotham (S’11) is currently a Ph.D. stu-
dent studying remote sensing in the Department of
Aerospace Engineering Sciences at the University of
Colorado at Boulder. He received an M.S. degree in
optical science and engineering from the University
of New Mexico and a B.S. degree in physics (magna
cum laude; university scholar; presidential scholar)
from Abilene Christian University.
While pursuing the M.S. degree, he held a grad-

uate internship position at Sandia National Laborato-
ries, where he conducted research into the properties

of Q-switched microlasers and their applicability to LIDAR systems. Prior to
his current studies, he held an Optical Engineer position with the holographic
data storage startup, InPhase Technologies, developing a specialized, tunable
ultraviolet laser system. He is currently a Research Assistant at the University
of Colorado at Boulder collaborating with the R&D department at DigitalGlobe
in Longmont, CO, developing urban remote sensing techniques that leverage
multi-angle optical imagery. His research interests include image analysis, data
fusion, multi-temporal data analysis, and feature extraction.
Mr. Longbotham earned first place in the 2009 IEEE Geoscience and Remote

Sensing Data Fusion Contest. He serves as a reviewer for the IEEE JOURNAL
OF SELECTED TOPICS IN APPLIED EARTH OBSERVATION AND REMOTE SENSING.

Fabio Pacifici (S’03–M’10) received the Ph.D.
degree in GeoInformation from Tor Vergata Uni-
versity, Rome, Italy, in 2010. He also received the
Laurea Specialistica (M.S.; cum laude) and Laurea
(B.S.; cum laude) degrees in telecommunication
engineering from the same University, in 2003 and
2006, respectively.
Since 2009, he is working at DigitalGlobe as R&D

Scientist. Between 2005 and 2009, he collaborated as
Visitor Scientist with the Department of Aerospace
Engineering Sciences, University of Colorado,

Boulder. He has been involved in various remote sensing projects supported
by the European Space Agency. His research activities include processing of
remote sensing images, data fusion, feature extraction, active learning, and
analysis of multitemporal data. In particular, his research interests are related
to the development of classification and change detection techniques for urban
remote sensing applications using very high spatial resolution optical and/or
synthetic aperture radar imagery, with special emphasis on machine learning.
He is author (or co-author) of 13 scientific publications in referred international
Journals, 2 book chapters, and more than 40 contributions in international
conferences.



LONGBOTHAM et al.: MULTI-MODAL CHANGE DETECTION, APPLICATION TO THE DETECTION OF FLOODED AREAS 341

Dr. Pacifici is the current Chair of the IEEE Geoscience and Remote
Sensing Data Fusion Technical Committee and serves as Associate Editor for
the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS
AND REMOTE SENSING (JSTARS). He was the recipient of the 2009 Joint
Urban Remote Sensing Event student paper competition. He received the first
prize in the 2007, 2008 and the 2009 IEEE Geoscience and Remote Sensing
Data Fusion Contest. He served as a member of the 2011 Joint Urban Event
Technical Committee and Session Chair at the International Geoscience and
Remote Sensing Symposium. He has been the Guest Editor of a special issue
of the JSTARS on multiangular remote sensing.

Taylor Glenn (S’10) received the B.S. and M.E.
degrees in computer engineering from the University
of Florida, Gainesville, in 2003 and 2004. He is
currently a Ph.D. candidate and Graduate Fellow
in the Department of Computer and Information
Science and Engineering at the University of Florida.
From 2004 to 2009 he was a partner and lead en-

gineer at 2G Engineering, LLC. His current research
interests are in the fields of machine learning, com-
puter vision, and remote sensing.

Alina Zare (M’08) received the Ph.D. degree in com-
puter engineering from the University of Florida in
December 2008.
She is an Assistant Professor in the Department

of Electrical and Computer Engineering at the Uni-
versity of Missouri, Columbia. Her research interests
include remote sensing, sparsity promotion, machine
learning, image analysis, and pattern recognition. She
has been involved in landmine, explosive object and
trace explosives detection research using hyperspec-
tral imagers in a variety of modalities such airborne

or ground-based forward-looking sensors. She has also conducted research on
target detection using wideband electromagnetic induction sensors and investi-
gated agent-based modeling techniques for human geography applications.

Michele Volpi (S’08) was born in Lugano, Switzer-
land, in 1985. He received the B.S. degree in phys-
ical geography and the M.S. degree in environmental
sciences from the University of Lausanne, Lausanne,
Switzerland, in 2007 and in 2009, respectively. He
is currently pursuing the Ph.D. degree at the Insti-
tute of Geomatics and Analysis of Risk, University
of Lausanne, under a Swiss National Science Foun-
dation grant.
His research activities are in the area of remote

sensing image processing and multitemporal image
analysis. In particular, his interests include the development and application of
machine learning algorithms (specifically kernel-based methods) for change de-
tection, multitemporal image classification, feature extraction, and classification
for multispectral very high resolution data.
Mr. Volpi was one of the winners of the IEEE Geosciences and Remote

Sensing Data Fusion Contest, in 2009. He is a referee of IEEE TRANSACTIONS
ON GEOSCIENCE AND REMOTE SENSING and IEEE Geoscience and Remote
Sensing Letters.

Devis Tuia (S’07–M’09) was born in Mendrisio,
Switzerland, in 1980. He received the diploma in
Geography at the University of Lausanne in 2004,
the Master of Advanced Studies in Environmental
Engineering at the Federal Institute of Technology
of Lausanne (EPFL) in 2005, and the Ph.D. in envi-
ronmental sciences at the University of Lausanne in
2009.
He was a postdoc researcher at both the University

of Valéncia, Spain and the Univeristy of Colorado at
Boulder under a Swiss National Foundation program.

He is now a Senior Research Associate at the Laboratoire des Systèmes d’Infor-
mation Géographiques, EPFL. His research interests include the development
of algorithms for information extraction and classification of very high resolu-
tion remote sensing images and socio-economic data using machine learning
algorithms. His website is http://devis.tuia.googlepages.com/.

Emmanuel Christophe (M’07) received the Engi-
neering degree in Telecommunications from École
Nationale Supérieure des Télécommunications de
Bretagne, Brest, France, and the DEA in Telecom-
munications and image processing from University
of Rennes 1 in 2003. In October 2006, he received
the Ph.D. degree from Supaero and University of
Toulouse in hyperspectral image compression and
image quality.
He has been a visiting scholar in 2006 at Rensse-

laer Polytechnic Institute, Troy, NY,USA. From 2006
to 2008, he was a research engineer at CNES, the French Space Agency, fo-
cusing on information extraction for high resolution optical images. Between
2008 and 2010, he moved to Singapore at CRISP, National University of Singa-
pore, where he was tackling new challenges for remote sensing in tropical areas.
He is now with Google Inc. in California.

Julien Michel (A’10) received the Telecommuni-
cations Engineer degree from the École Nationale
Supérieure des Télécommunications de Bretagne,
Brest, France, in 2006.
From 2006 to 2010, he has been with Commu-

nications et Systèmes, Toulouse, France, where he
has been working on studies and developments in
the field of remote sensing image processing. He
is now with the Centre National d’Études Spatiales
(French Space Agency), Toulouse, France, where he
is in charge of the development of image processing

algorithms for the exploitation of Earth observation images, mainly in the field
of very high resolution image analysis.

Jordi Inglada (M’09) received the Telecommuni-
cations Engineer degree from both the Universitat
Politècnica de Catalunya, Barcelona, Spain, and the
École Nationale Supérieure des Télécommunications
de Bretagne, Brest, France, in 1997 and the Ph.D.
degree in signal processing and telecommunications
in 2000 from Université de Rennes 1, Rennes,
France.
He is currently with the Centre National d’Études

Spatiales (French Space Agency), Toulouse, France,
working in the field of remote sensing image pro-

cessing at the CESBIO laboratory. He is in charge of the development of image
processing algorithms for the operational exploitation of Earth observation im-
ages, mainly in the field of multitemporal image analysis for land use and cover
change.
Dr. Inglada is an Associate Editor of the IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING.



342 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 5, NO. 1, FEBRUARY 2012

Jocelyn Chanussot (M’04–SM’04–F’12) received
the M.Sc. degree in electrical engineering from the
Grenoble Institute of Technology (Grenoble INP),
Grenoble, France, in 1995, and the Ph.D. degree
from Savoie University, Annecy, France, in 1998.
In 1999, he was with the Geography Imagery Per-

ception Laboratory for the Delegation Generale de
l’Armement (DGA—French National Defense De-
partment). Since 1999, he has been with Grenoble
INP, where he was an Assistant Professor from 1999
to 2005, an Associate Professor from 2005 to 2007,

and is currently a Professor of signal and image processing. He is currently
conducting his research at the Grenoble Images Speech Signals and Automatics
Laboratory (GIPSA-Lab). His research interests include image analysis, mul-
ticomponent image processing, nonlinear filtering, and data fusion in remote
sensing.
Dr. Chanussot is the founding President of IEEE Geoscience and Remote

Sensing French chapter (2007–2010) which received the 2010 IEEE GRS-S
Chapter Excellence Award “for excellence as a Geoscience and Remote
Sensing Society chapter demonstrated by exemplary activities during 2009.”
He was the recipient of the 2011 IEEE GRSS Symposium Best Paper Award.
He was a member of the IEEE Geoscience and Remote Sensing Society
AdCom (2009–2010), in charge of membership development. He was the
General Chair of the first IEEE GRSS Workshop on Hyperspectral Image and
Signal Processing, Evolution in Remote sensing (WHISPERS). He was the
Chair (2009–2011) and the Co-Chair (2005–2008) of the GRS Data Fusion
Technical Committee. He was a member of the Machine Learning for Signal
Processing Technical Committee of the IEEE Signal Processing Society
(2006–2008) and the Program Chair of the IEEE International Workshop on
Machine Learning for Signal Processing, (2009). He was an Associate Editor
for the IEEE Geoscience And Remote Sensing Letters (2005–2007) and for
Pattern Recognition (2006–2008). Since 2007, he has been an Associate Editor
for the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. Since
2011, he has been the Editor-in-Chief of the IEEE JOURNAL OF SELECTED
TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING.

Qian Du (S’98–M’00–SM’05) received the Ph.D.
degree in electrical engineering from the University
of Maryland Baltimore County in 2000.
She was with the Department of Electrical Engi-

neering and Computer Science, Texas A&M Univer-
sity, Kingsville, from 2000 to 2004. She joined the
Department of Electrical and Computer Engineering
at Mississippi State University in Fall 2004, where
she is currently an Associate Professor. Her research
interests include hyperspectral remote sensing image
analysis, pattern classification, data compression, and

neural networks.
Dr. Du currently serves as Co-Chair for the Data Fusion Technical Com-

mittee of IEEE Geoscience and Remote Sensing Society. She also serves as
Associate Editor for IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH
OBSERVATIONS AND REMOTE SENSING (J-STARS). She received the 2010 Best
Reviewer award from IEEE Geoscience and Remote Sensing Society. She is
the General Chair for the fourth IEEE GRSSWorkshop on Hyperspectral Image
and Signal Processing, Evolution in Remote Sensing (WHISPERS). Dr. Du is
a member of SPIE, ASPRS, and ASEE.


