
BIROn - Birkbeck Institutional Research Online

Gong, C. and Tao, D. and Maybank, Stephen J. and Liu, W. and Kang, G. and
Yang, J. (2016) Multi-modal curriculum learning for semi-supervised image
classification. IEEE Transactions on Image Processing 25 (7), pp. 3249-
3260. ISSN 1057-7149.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/15093/

Usage Guidelines:

Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.htmlor alternatively

contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/15093/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Multi-modal Curriculum Learning for

Semi-supervised Image Classification
Chen Gong, Dacheng Tao, Fellow, IEEE, Stephen J. Maybank, Fellow, IEEE, Wei Liu, Member, IEEE,

Guoliang Kang, and Jie Yang

Abstract—Semi-supervised image classification aims to classify
a large quantity of unlabeled images by harnessing typically
scarce labeled images. Existing semi-supervised methods often
suffer from inadequate classification accuracy when encountering
difficult yet critical images such as outliers, because they treat
all unlabeled images equally and conduct classifications in an
imperfectly ordered sequence. In this paper, we employ the
curriculum learning methodology by investigating the difficulty
of classifying every unlabeled image. The reliability and discrim-
inability of these unlabeled images are particularly investigated
for evaluating their difficulty. As a result, an optimized image
sequence is generated during the iterative propagations, and
the unlabeled images are logically classified from simple to
difficult. Furthermore, since images are usually characterized
by multiple visual feature descriptors, we associate each kind of
features with a “teacher”, and design a Multi-Modal Curriculum
Learning (MMCL) strategy to integrate the information from
different feature modalities. In each propagation, each teacher
analyzes the difficulties of the currently unlabeled images from
its own modality viewpoint. A consensus is subsequently reached
among all the teachers, determining the currently simplest images
(i.e. a curriculum) which are to be reliably classified by the
multi-modal “learner”. This well-organized propagation process
leveraging multiple teachers and one learner enables our MMCL
to outperform five state-of-the-art methods on eight popular
image datasets.

Index Terms—Curriculum learning, Semi-supervised learning,
Multi-modal, Image classification.

I. INTRODUCTION

C
LASSIFYING natural images into meaningful categories

has always been a dominant topic in computer vision

research. With the emergence of large image collections and
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vigorous development of the Internet, the available labeled

images are usually inadequate for training a supervised clas-

sifier that has to deal with a dramatic growth in new images.

Furthermore, labeling more images will incur high time and

monetary costs. To address this problem, semi-supervised

image classification has been developed to explicitly exploit

the information revealed by both limited labeled images and

sufficient unlabeled images [1], [2], [3], [4], [5], [6], [7].

Given labeled image set L of size l and unlabeled image

set U of size u, conventional semi-supervised image classi-

fication is usually conducted on a weighted similarity graph

G = 〈V, E〉 [1], [8], [9], where V is the node set representing

the n = l + u images, and E is the edge set encoding the

pairwise similarities between these images. The target is to

iteratively propagate the labels from L to U so that all the

elements in U can be precisely classified. However, existing

methods [1], [8], [9] often yield unsatisfactory results, as they

are very likely to make incorrect classifications on “outliers”

or “bridge examples” (e.g. images that share similar properties

with multiple classes). This is because existing methods treat

all the unlabeled images equally without considering the

difficulty or reliability of their classification. As a result, the

images are classified in imperfect order, which leads to the

error-prone classification of difficult but critical images such

as the aforementioned “outliers” and “bridge examples”. Such

errors have an adverse impact on the accurate prediction of

the labels of the remaining unlabeled images.

Based on the above consideration, we assume that dif-

ferent images have different levels of difficulty, and utilize

curriculum learning [10] to re-organize the learning sequence

(i.e. the classification order for the unlabeled images), so that

the unlabeled images are logically classified from simple to

difficult. As a result, the unlabeled images can be reliably

labeled because this well-organized learning sequence enables

the previously attained simple knowledge to facilitate the sub-

sequent classification of complex images. Taking account of

the fact that an image can usually be characterized by different

feature descriptors, we regard each type of features as one

modality and develop “Multi-Modal Curriculum Learning”

(MMCL) to guide the learning process. As a result, the

consistency and complementarity of various features can be

fully exploited. Our MMCL strategy is very similar to the

human’s acquisition of knowledge during the various stages

from childhood to adulthood, during which time an individual

gains knowledge from many teachers of different subjects.

These different subjects are naturally analogous to the different

feature modalities in our algorithm.
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Fig. 1. The framework of our algorithm. All the labeled and unlabeled images are described by V different modalities (i.e. features). The labeled images and
unlabeled images are represented by red and grey balls, respectively. Among the unlabeled images, the curriculum of each modality and the agreed curriculum
S∗ are further surrounded by green and blue rings accordingly. The multi-modal curriculum generation step and multi-modal learning step are marked with
magenta and green dashed boxes.

In detail, we build V graphs G1, · · · ,GV corresponding to

V modalities over the images in L∪U (see Fig. 1). The state-

of-the-art label propagation approach [11] is applied to these

V modalities to form a multi-modal semi-supervised learner,

which can iteratively classify the unlabeled images. Besides,

multiple “teachers” are incorporated to allocate the simplest

unlabeled images to this stepwise semi-supervised learner.

Here the simplest unlabeled images constitute a curriculum

as they should be “learned” by the learner as required by

the teachers. In each propagation, the difficulties of unlabeled

images (grey balls) are evaluated by all V teachers according

to their reliability and discriminability w.r.t. the labeled images

(red balls), and the curriculum images decided by every

individual teacher are denoted by the set S(v) (v = 1, · · · , V )

(gray balls with green rings). An optimal curriculum S∗ (gray

balls with blue rings) agreed by all the teachers is then

established based on every individual teacher’s decision. After

that, the learner classifies the images in S∗ by respectively

propagating the labels from L to S∗ in V different modalities,

and the obtained results are recorded in the label matrix

F(v) ∈ R
n×c (v = 1, · · · , V , and c is the number of classes).

This is also known as multi-modal learning. The integrated

label matrix F∈R
n×c is the sum of F(1), · · · ,F(V ) weighted

by ω(1), · · · , ω(V ), respectively. Finally, the learning feedback

is delivered to teachers to assist them to correctly determine

the subsequent simplest curriculum. This process iterates until

all the images in U have been selected, and the label matrix

thus produced is denoted by F̄. The (i, j)-th element in F̄ (or

F(v) and F mentioned above) encodes the probability of the

i-th image xi belonging to the j-th class Cj .

Due to the wisdom of multiple teachers, the difficulties of

unlabeled images are comprehensively evaluated, and these

images are logically propagated from simple to difficult with

the updated curriculums. Our algorithm consequently achieves

higher classification accuracy than other typical methods, as

revealed by empirical validation. The advantage of multi-

modal curriculum over single-modal curriculum is also demon-

strated in the experiments.

II. RELATED WORK

In this section, we review some representative existing lit-

eratures of semi-supervised image classification, multi-modal

learning and curriculum learning, as they are related to this

work.

A. Semi-supervised Image Classification

Semi-supervised learning (SSL) [12] has been studied for

a long history, which aims to classify a massive number of

unlabeled examples given the existence of only a few labeled

examples. Although the massive unlabeled examples do not

have explicit labels, they convey the distribution information

of the entire dataset, which can be exploited for accurate clas-

sification. Existing SSL algorithms can be roughly attributed

to three categories: self-training [13], low density separation

[14], [15], [16], and graph-based methods [17], [18], [19].

With respect to its application to image classification, Dai et

al. [2] proposed to learn better image representation with the

aid of the available image data. To be specific, they sample an

ensemble of image prototypes from both labeled and unlabeled

images, and then learn a discriminative feature representation

of an unlabeled image by computing its projected values

on the previously sampled prototypes. Shrivastava et al. [20]

deployed semi-supervised bootstrapping to gradually classify

the unlabeled images in a self-learning way. In this work, the

semi-supervised learning is constrained by the common at-

tributes shared across different classes as well as the attributes
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which make one class different from another. Fergus et al.

[3] developed a scalable graph-based algorithm that has linear

complexity with regard to the number of images. The spectral

property of the graph is properly utilized to handle the large-

scale image data. Other representative works include [5], [21],

[22], [23].

B. Multi-modal Learning

In practical applications, data is often obtained from mul-

tiple sources rather than a single source. One common way

to process such multi-modal data is to concatenate the feature

vectors associated with different sources into a long vector.

However, this concatenation is highly intuitive and ignores

the particular statistical property of an individual view, there-

fore it can hardly obtain satisfactory performance. Multi-

modal learning (MML) is therefore proposed to explicitly

fuse the complementary information from different modalities

to achieve improved performance. MML is essentially multi-

view learning, and the relevant algorithms can be classified

into three groups [24]: co-training [25], [26], multiple kernel

learning [27], and subspace learning [28]. Co-training ap-

proaches train alternately to maximize the mutual agreement

on different modalities of the unlabeled data. Multiple kernel

learning straightforwardly corresponds to multiple modalities

and elegantly combines kernels of different modalities to

achieve improved performance. Subspace learning assumes

that there is a latent subspace shared by multiple modali-

ties and the input modalities are generated from this low-

dimensional latent subspace.

MML has been widely adopted in semi-supervised image

classification such as multi-modal SSL [4], adaptive multi-

modal SSL [1], and multi-view vector-valued manifold reg-

ularization [29]. Of these, [4] is based on a multiple kernel

classifier fusing both image content and its descriptive key-

words. The work of [1] integrates various heterogeneous visual

features via graph fusion, and then deploys label propagation

[18] to infer the class labels of unlabeled images. By utiliz-

ing the vector-valued functions, [29] proposes a multi-modal

algorithm for multi-label image classification.

C. Curriculum Learning

Curriculum learning aims to improve the learning per-

formance by designing suitable curriculums from simple to

difficult for the stepwise learner. This learning approach was

proposed by [10], which hypothesizes that curriculum learning

is able to boost the convergence speed of the training process

as well as find a better local minima than the existing solvers

for non-convex problems. The self-paced learning proposed

by Kumar et al. [30] can be regarded as an implementation

of curriculum learning, which was extended by [31], [32]

afterwards. Besides, the teaching-to-learn and learning-to-

teach framework developed by Gong et al. [33], [34] also

follows the idea of curriculum learning, and this paper is the

extension of [33] to the multi-modal situation.

Up to now, curriculum learning has been applied to visual

category discovery [35], object tracking [36], and multimedia

retrieval [37]. However, none of the existing curriculum learn-

ing algorithms can handle multi-modal data, or touch semi-

supervised image classification.

III. OUR APPROACH

For each feature modality (indexed by v = 1,· · ·, V ), we

construct a similarity graph G(v) by the recently proposed

adaptive edge weighting [38], and the associated adjacency

matrix is W(v) with the (i, j)-th element W
(v)
ij representing

the similarity between images xi and xj in terms of modality

v. The graph Laplacian is L(v) = D(v)−W(v) where D(v)

is the degree matrix with diagonal elements computed by

D
(v)
ii =

∑n

j=1 W
(v)
ij .

A. Single-modal Curriculum Generation

We start by elaborating the curriculum generation on single

feature modality, so the superscript (v) in previous notations is

temporarily dropped in this section. The purpose of curriculum

generation is to pick up the simplest curriculum S⊂U in each

propagation. To this end, the reliability and discriminability

of every unlabeled image are investigated by the “teacher” to

make a selection.

Specifically, we assign a random variable yi to each image

xi, and view the propagations on G as a Gaussian pro-

cess [39]. Therefore, this Gaussian process is modeled as a

multivariate Gaussian distribution over the random variables

y = (y1,· · ·, yn)
⊤, which has a concise form y ∼ N (0,Σ)

with its covariance matrix being Σ= (L+I/κ2)
−1

(I is the

identity matrix). The parameter κ2 controls the “sharpness” of

the distribution and is fixed at 100 throughout this paper.

A curriculum S is reliable w.r.t. the labeled set L if

the conditional entropy H(yS |yL) is small, where yS and

yL denote the subvectors of y corresponding to S and L,

respectively. This is because small H(yS |yL) suggests that

the curriculum set S comes as no “surprise” to the labeled

set L. Besides, a curriculum is discriminable if the included

images are significantly inclined to certain classes.

Reliability. By using the property of multivariate Gaussian

[40], the most reliable curriculum can be found by optimizing:

min
S⊂U

H(yS |yL)

⇔min
S⊂U

H(yS∪L)−H(yL)

⇔min
S⊂U

(
s+ l

2

(
1 + ln 2π

)
+

1

2
ln
∣
∣ΣS∪L,S∪L

∣
∣

)

−

(
l

2

(
1 + ln 2π

)
+

1

2
ln

∣
∣ΣL,L

∣
∣

)

⇔min
S⊂U

s

2

(
1 + ln 2π

)
+

1

2
ln

∣
∣ΣS∪L,S∪L

∣
∣

∣
∣ΣL,L

∣
∣

,

(1)

where ΣL,L and ΣS∪L,S∪L are submatrices of Σ associated

with the corresponding subscripts. By further partitioning

ΣS∪L,S∪L =
(

ΣS,S ΣS,L

ΣL,S ΣL,L

)

where ΣS,S is the submatrix of

Σ corresponding to S , we have

|ΣS∪L,S∪L|

|ΣL,L|
=

|ΣL,L|
∣
∣
∣ΣS,S−ΣS,LΣ

−1
L,LΣL,S

∣
∣
∣

|ΣL,L|
=
∣
∣ΣS|L

∣
∣ ,
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where ΣS|L is the covariance matrix of the conditional

distribution p(yS |yL) and is naturally positive semidefinite.

Therefore, the problem (1) is equivalent to

min
S⊆U

tr
(
ΣS,S −ΣS,LΣ

−1
L,LΣL,S

)
. (2)

Discriminability. The tendency of an image xi belonging to

a class Cj is modeled by the average commute time between

xi and all the images in Cj , which is formally represented by

T̄ (xi, Cj) =
1

nCj

∑

xi′∈Cj

T (xi,xi′). (3)

In Eq. (3), nCj
denotes the number of images in the class Cj ;

T (xi,xi′) is the commute time [41] between images xi and

xi′ , which is defined by

T (xi,xi′) =

n∑

k=1

h(λk)
(
uki − uki′

)2
,

where 0 = λ1 ≤ · · · ≤ λn are the eigenvalues of L, and

u1,· · ·,un are the associated eigenvectors; uki denotes the i-
th element of uk; h(λk) = 1/λk if λk 6= 0 and h(λk) = 0
otherwise.

Therefore, suppose C1 and C2 are the two closest classes to

xi ∈ U measured by average commute time, then xi is dis-

criminable if the gap M(xi) = T̄ (xi, C2)− T̄ (xi, C1) is large.

That is, the simplest curriculum in view of discriminability is

found by solving

min
S={xik

∈ U}s
k=1

s∑

k=1

1/M(xik), (4)

where s is the amount of images in the set S .

By combining Eqs. (2) and (4), we arrive at the following

optimization problem:

min
S={xik

∈ U}s
k=1

tr
(
ΣS,S −ΣS,LΣ

−1
L,LΣL,S

)
+

s∑

k=1

1/M(xik).

(5)

In each propagation, the seed labels will be propagated to

the unlabeled images that are direct neighbors (denoted by

the neighbouring set B) of L on graph G, so we only need

to choose s distinct images from B. Therefore, we introduce

a binary selection matrix S ∈ {1, 0}b×s (b is the size of the

set B) such that S⊤S = Is×s. The element Sij = 1 means

that the i-th image in B is selected as the j-th element in

the curriculum S . The orthogonality constraint S⊤S = Is×s

imposed on S ensures that every image is selected only once

in S . The problem (5) is subsequently reformulated to the

following matrix form:

min
S

tr
(
S⊤ΣB,BS− S⊤ΣB,LΣ

−1
L,LΣL,BS

)

+ tr
(
S⊤MS

)
,

s.t. S ∈ {1, 0}b×s, S⊤S = Is×s,

(6)

where M ∈ R
b×b is a diagonal matrix with the diagonal

elements Mii = 1/M(xi) for any xi ∈ B. By denoting

R = ΣB,B−ΣB,LΣ
−1
L,LΣL,B+M, the curriculum selection

model for single-modal case is simplified as

min
S

tr
(
S⊤RS

)
,

s.t. S ∈ {1, 0}b×s, S⊤S = Is×s. (7)

B. Multi-modal Curriculum Generation

Single-modal curriculums cannot always render satisfactory

performance (demonstrated in Section IV-A), we therefore

extend the single-modal model (7) to multi-modal cases. The

high level idea is to force the V teachers to reach a consensus

on selecting the optimal curriculum S∗. This is formulated as

an optimization problem, which can be solved by relaxing the

binary selection matrices to continues ones, and then conduct-

ing the standard alternating minimization. Each subproblem in

the alternating minimization is constrained by an orthogonal

constraint, and can be optimized by the existing solver on

matrix manifold.

In order to regulate the selection matrices S(v) (v =
1,· · ·, V ) generated by V teachers to compromise to a common

S∗, we define the following optimization:

min
S(1),··· ,S(V ),S∗

V∑

v=1

tr
(
S(v)⊤R(v)S(v)

)
+β

V∑

v=1

∥
∥
∥S

(v)−S∗
∥
∥
∥

2

F

s.t. S∗ ∈ {1, 0}b×s, S∗⊤S∗ = Is×s,

S(v)∈{1, 0}b×s, S(v)⊤S(v)=Is×s, for v=1,· · ·, V.

,

(8)

where the first term in the objective function shares the

similar purpose with the objective in Eq. (7), which requires

all teachers to select the simplest images according to their

modality viewpoints. The second term makes the teachers

maximally agree with each other and produce the consistent

curriculum, where “‖·‖F” computes the Frobenius norm. β>0
is the trade-off parameter. However, The binary constraints

turn the optimization (8) into an integer programming which

is generally NP-hard. To make problem (8) tractable, we relax

the discrete constraints to continuous nonnegative constraints

and achieve the following expression:

min
S(1),··· ,S(V ),S∗

V∑

v=1

tr
(
S(v)⊤R(v)S(v)

)
+β

V∑

v=1

∥
∥
∥S

(v)−S∗
∥
∥
∥

2

F

s.t. S∗ ≥ Ob×s, S∗⊤S∗ = Is×s,

S(v) ≥ Ob×s, S(v)⊤S(v)=Is×s, for v=1,· · ·, V

,

(9)

where O denotes the zero matrix. A local minimizer of

problem (9) can be obtained by alternatively optimizing

S(1),· · ·,S(V ), and S∗ with other variables remaining fixed.

Updating S(v). To obtain the optimal selection matrix S(v)

where v takes a value from 1,· · ·, V , we treat S∗ and S(v′)

(v′ 6= v) as constant variables, and then the S(v)-subproblem

is derived as

min
S(v)

tr
(
S(v)⊤R(v)S(v)

)
+ β

∥
∥
∥S

(v) − S∗
∥
∥
∥

2

F

s.t. S(v) ≥ Ob×s, S(v)⊤S(v) = Is×s.

(10)
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The nonnegative constraint in the above optimization can

be easily tackled by the method of augmented Lagrangian

multiplier (ALM). The main idea of ALM is to transform

a constrained optimization problem into a non-constrained

problem by incorporating penalty terms. Compared with

the traditional Lagrangian method, ALM adds an additional

quadratic penalty function to the objective, which leads to

faster convergence rate and lower computational cost [42].

However, in our case the orthogonal constraint cannot be

directly degenerated into the augmented Lagrangian function

because it defines a nonconvex feasible region on the Stiefel

manifold (the Stiefel manifold is the set of all m1×m2 ma-

trices satisfying the orthogonal constraint, i.e. St(m1,m2) ={
X ∈ R

m1×m2 : X⊤X=Im2×m2

}
). As a result, we only in-

corporate the nonnegative constraint into the augmented La-

grangian function and project the result produced by gradient

descent back onto the Stiefel manifold in each iteration. The

augmented Lagrangian function is

L(S(v),Λ(v),T(v), σ(v))

=tr
(
S(v)⊤R(v)S(v)

)
+ β

∥
∥
∥S

(v) − S∗
∥
∥
∥

2

F

+ tr
(
Λ(v)⊤(S(v)−T(v))

)
+

σ(v)

2

∥
∥S(v) −T(v)

∥
∥
2

F
,

where Λ(v) ∈ R
b×s is the Lagrangian multiplier, T(v) ∈ R

b×s

is a nonnegative auxiliary matrix, and σ(v)>0 is the penalty

coefficient. Therefore, S(v) is updated by

S(v) :=ProjSt

[

S(v)−τ∇S(v)L
(

S(v),Λ(v),T(v), σ(v)
)]

,

(11)

where ∇S(v)L
(
S(v),Λ(v),T(v), σ(v)

)
computes the gradient

of the augmented Lagrangian function L on S(v), and τ is the

step size chosen by the backtracking line search method. The

projection ProjSt [X] has a closed form based on the unitary

factor of a polar decomposition on X (See Proposition 7 in

[43]).

The auxiliary matrix T(v) is updated by the conventional

rule in the augmented Lagrangian method, which is T
(v)
ij :=

max(0, S
(v)
ij +Λ

(v)
ij /σ(v)). The above iterative process for

solving the subproblem (10) is summarized in Algorithm 1,

and is guaranteed to be convergent [44].

Updating S∗. The S∗-subproblem is formulated as

min
S∗

V∑

v=1

∥
∥
∥S

(v) − S∗
∥
∥
∥

2

F

s.t. S∗ ≥ Ob×s, S∗⊤S∗ = Is×s

, (12)

which can be solved via the same way as the S(v)-subproblem.

Therefore, we omit the explanation for optimizing Eq. (12).

The adopted alternating minimization between S(v) and S∗

ensures that the objective function value of Eq. (9) always

decreases. Besides, this objective function is lower bounded

by 0 since the matrices R(v) (v = 1,· · ·, V ) are positive

definite. Therefore, the entire alternating optimization process

is guaranteed to converge, and the obtained S∗ is agreed on

by all the teachers. However, the solution S∗ for Eq. (9)

is continuous, which does not satisfy the original binary

Algorithm 1 The algorithm for solving S(v)-subproblem (10)

1: Input: R
(v), S∗, S(v) ∈ St, Λ(v) = O, σ(v) = 1, ρ = 1.2, β,

iter=0
2: repeat

3: // Compute T
(v)

4: T
(v)
ij = max(0, S

(v)
ij +Λ

(v)
ij /σ(v));

5: // Update S
(v) by using Eq. (11)

6: S
(v) :=ProjSt

[

S
(v)−τ∇

S(v)L
(

S
(v),Λ(v),T(v), σ(v)

)]

;

7: // Update variables

8: Λ
(v)
ij := max

(

0,Λ
(v)
ij − σ(v)

S
(v)
ij

)

;

9: σ(v) := min(ρσ(v), 1010); iter := iter + 1;
10: until Convergence

11: Output: S(v) that minimizes Eq. (10)

constraint in problem (8). Consequently, we then discretize S∗

to binary values via a simple greedy procedure. In detail, we

find the largest element in S∗, and record its row and column;

then from the unrecorded columns and rows we search the

largest element and mark it again. This procedure is repeated

until s elements have been found. The rows of these s elements

indicate the simplest images selected for propagation.

C. Multi-modal Classification with Feedback

When the overall optimal curriculum S∗={x∗
1,x

∗
2,· · ·,x

∗
s}

is specified by the teachers, the learner will propagate the

labels from L to these s images from each of the V modalities.

The output label matrices F(1),· · ·,F(V ) are then fused into a

consistent F. We employ the label propagation algorithm [11]

as the learner because it is naturally incremental and does not

require retraining with the arrival of a new curriculum. Under

the t-th propagation, the iterative model for a specific modality

v is:

F
(v)[t]
i =

{

P
(v)
i F

[t−1], xi ∈ (S∗[1] ∪ · · · ∪ S∗[t−1]) ∪ S∗[t]

F
[0]
i , xi ∈ L[0] ∪ (U [0] − S∗[1] ∪ · · · ∪ S∗[t])

(13)

where F
(v)[t]
i denotes the i-th row of the matrix F(v)[t], F[t−1]

is the consistent label matrix produced by the previous prop-

agation, P
(v)
i represents the i-th row of the transition matrix

P(v) calculated by P(v)=D(v)−1W(v), and U [0]−S∗[1]∪· · ·∪
S∗[t] is the complementary set of S∗[1] ∪ · · · ∪ S∗[t] in U [0].

The superscript [t] represents the t-th propagation. Eq. (13)

suggests that the labels of the t-th curriculum and previously

“learned” images will change during the t-th propagation,

whereas the labels of the initially labeled images in L[0] and

the unclassified unlabeled images in U [0]−S∗[1] ∪· · ·∪ S∗[t]

are kept unchanged, as also suggested by Zhu et al. [11]. The

initial state for xi’s label vector F
[0]
i is

F
[0]
i :=







(1/c, · · · , 1/c)
︸ ︷︷ ︸

c

, xi ∈ U [0]



0, · · · , 1
↓

j−th element

, · · · , 0



, xi∈Cj ∈L(0)

, (14)

where c is the total number of classes. The formulations

of Eqs. (13) and (14) maintain the probability interpretation
∑c

j=1 F
[t]
ij = 1 for any image xi and all t-th (t = 0, 1, 2, · · · )
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propagations. Consequently, the integrated label matrix F[t] is

computed by:

F[t] =
V∑

v=1

ω(v)[t]F(v)[t], (15)

where the weights are

ω(v)[t]=
exp

(

−
∥
∥S(v)[t] − S∗[t]

∥
∥
2

F

)

∑V

v=1 exp
(

−
∥
∥S(v)[t] − S∗[t]

∥
∥
2

F

) . (16)

Eq. (16) imposes a large weight on the v-th label matrix

F(v)[t] in Eq. (15) if the corresponding teacher generates a

similar curriculum to the overall optimal curriculum S∗[t]. This

is because small
∥
∥S(v)[t]−S∗[t]

∥
∥
2

F
suggests that, compared

to other modality viewpoints, the S∗[t] agrees more on the

simplest curriculum generated from the v-th modality, thus its

propagation result should be emphasized.

When the t-th learning has been completed, the learner will

deliver an overall feedback to the teachers to assist them in

designing the suitable (t+1)-th curriculum. Intuitively, if the

classification result is confident, the teachers may assign a

“heavier” curriculum to the learner in the (t+1)-th curriculum;

that is, the size of S∗[t+1] (i.e. s[t+1]) can be increased. For

example, suppose we have c = 3 classes in total, then for a

single image xi, its classification result is confident if it has

a label vector Fi = [1, 0, 0], [0, 1, 0], or [0, 0, 1], which means

that xi definitely belongs to the class 1, 2 or 3, respectively.

In contrast, if xi’s label vector is Fi = [ 13 ,
1
3 ,

1
3 ], its learning

result is not satisfactory because [ 13 ,
1
3 ,

1
3 ] cannot provide any

cue for determining its class. Such learning confidence is

evaluated by the entropy of S∗[t]’s label matrix FS∗[t] (i.e.

H (FS∗[t])) [18], which is formally defined by

Conf(FS∗[t]) = exp

[

−γ[t] 1

s[t]
H (FS∗[t])

]

= exp




γ[t]

s[t]

s[t]∑

i=1

c∑

j=1

(
FS∗[t]

)

ij
logc

(
FS∗[t]

)

ij



,

(17)

where γ[t] controls the learning rate and is gradually decreased

by γ[t] = γ[t−1]/η (η > 1) so that more images will be

incorporated by the curriculums in later propagations. This

manipulation is reasonable because the rich knowledge ac-

cumulated in previous propagations later helps to boost the

learning speed. It is easy to verify that Conf(FS∗[t])∈ (0, 1],
and Conf(FS∗[t]) touches its maximum value 1 if every row

in FS∗[t] is a {0, 1}-binary vector with only one 1. This

suggests that the class labels of all propagated images are

clearly indicated. In contrast, if all the elements in FS∗[t] are

close to the ambiguous value 1/c, Conf(FS∗[t]) will obtain a

very small value. Based on Eq. (17), the number of simplest

images in the (t+1)-th curriculum is

s[t+1] =
⌈

b[t+1] · Conf(FS∗[t])
⌉

, (18)

where b[t+1] is the size of neighbouring set B[t+1] in the (t+1)-
th propagation, and ⌈·⌉ rounds up the element to the nearest

integer.

The above teaching-then-learning process iterates until all

Algorithm 2 MMCL for semi-supervised image classification

1: Input: l labeled images L = {x1,· · ·,xl} with known labels
y1,· · ·, yl expressed in V modalities; u unlabeled images U =
{xl+1,· · ·,xl+u} with unknown labels yl+1,· · ·, yl+u; Parameters
β, γ, η, θ, κ;

2: // Pre-processing

3: ∀ v=1,· · ·, V , compute W
(v), Σ(v) and L

(v) corresponding to

V graphs G(1), · · · ,G(V );
4: // Multi-modal curriculum generation and learning
5: repeat
6: // Compute optimal curriculum S∗ by solving Eq. (9);
7: repeat

8: Update S
(1), · · · ,S(V ) sequentially by solving Eq. (10);

9: Update S
∗ by solving Eq. (12);

10: until Convergence
11: // Conduct label propagation on each modality viewpoint

12: Compute the label matrix F
(v) via Eq. (13);

13: Fuse V label matrices to F via Eq. (15);
14: // Establish learning feedback
15: Compute Conf(FS∗[t]) via Eq. (17);
16: Compute the size of (t+1)-th curriculum via Eq. (18);
17: // Update sets
18: L :=L ∪ S∗; U :=U−S∗; γ :=γ/η;
19: until U = ∅ ;
20: Compute the steady state F̄

∗(v) on each graph via Eq. (20);

21: Compute the final learned label matrix by F̄
∗= 1

V

∑V

v=1 F̄
∗(v);

22: Assign labels to images via j=argmaxj′∈{1,··· ,c} F̄
∗
ij′ ;

23: Output: Class labels yl+1, · · · , yl+u;

the unlabeled images have been used, and the integrated label

matrix thus obtained is denoted as F̄. We then start from

F̄[0] := F̄ and use the iterative formula [45] to drive the

propagations on each graph G(v) to the steady state:

F̄(v)[t] = θP(v)F̄(v)[t−1] + (1− θ)F̄[0], (19)

where the parameter θ>0 balances the labels propagated from

other images, and F̄[0] that is produced by the teaching-then-

learning process. We set θ = 0.05 to ensure the final result will

be maximally consistent with the labels produced by multi-

modal curriculum learning. Eq. (19) is proved [11] to converge

to

F̄∗(v) = lim
t→∞

F̄(v)[t] = (1− θ)(I− θP(v))
−1

F̄[0], (20)

and the final learned label matrix is F̄∗ = 1
V

∑V

v=1 F̄
∗(v).

Eventually, the image xi is assigned to the j-th class, which

satisfies j = argmaxj′∈{1,··· ,c} F̄
∗
ij′ . The complete MMCL

algorithm for semi-supervised image classification is outlined

in Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, we first validate the motivation of our

MMCL algorithm on a small database (Section IV-A) and

then compare MMCL with several state-of-the-art methods

on eight practical image datasets (Section IV-B). The MMCL

parameters in all the experiments are set to β = 10, γ = 3
and η = 1.1, and the parametric sensitivity will be studied in

Section IV-C.

In this section, all the images in the adopted datasets

are represented by the 72-dimensional Pyramid Histogram

Of Gradients (PHOG) [46], 512-dimensional GIST [47], and
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Fig. 2. Validations of our MMCL motivation. (a) compares the performance
of multi-modal curriculum learning with single-modal curriculum learning and
plain learning; (b) shows the effects of some key steps in our MMCL model.

256-dimensional Local Binary Patterns (LBP) [48] features.

Therefore, three different modalities are formed to serve as

the input of all the compared methods. Note that these feature

descriptors are histogram-based and every element in a feature

vector falls into [0, 1], so none of them will dominate the

learning performance.

A. Algorithm Validation

Firstly, we use a subset of the Caltech256 dataset [49] to

demonstrate two arguments: 1) curriculum learning is critical

to improving classification performance, and 2) MMCL is

superior to single-modal curriculum learning (SMCL). The

images of dog, goose, swan and zebra in Caltech256 are

employed, and each type of animals contains 80 examples.

For MMCL, each feature constitutes a modality, and Algo-

rithm 2 is utilized to accomplish the classification. We also

report the results of SMCL, of which the model explained in

Section III-A is adopted to handle each of the three feature

descriptors (denoted “SMCL(LBP)”, “SMCL(PHOG)”, and

“SMCL(GIST)”, respectively). Furthermore, we concatenate

these three different feature vectors to a long vector, and

apply SMCL again to simultaneously utilize the three fea-

ture modalities (denoted “SMCL(ALL)”). At last, the plain

learning model [11] in our algorithm is implemented based on

the concatenated long feature vectors, to test the performance

without curriculum learning (denoted “NoCL”).

We evaluate the classification accuracies of tested methods

under different sizes of labeled set, and the experiment un-

der each size is conducted ten times with different initially

labeled images. The reported accuracies are then obtained

by averaging over the outputs of these ten independent runs.

Fig. 2(a) presents the result, in which the record under each

number of labeled images includes mean accuracy as well

as the standard deviation. It can be observed that MMCL

and SMCL(ALL) always outperform NoCL under different

numbers of labeled images, therefore the argument 1) above

is verified. Specifically, SMCL(ALL) and MMCL outperform

NoCL with the margins about 1%∼5% and 3%∼8%, respec-

tively, therefore the effectiveness of curriculum learning has

been demonstrated. Moreover, we see that MMCL achieves

the highest record compared to all the other single-modal

counterparts, which explicitly justifies the argument 2). It

is also clearly shown that the concatenation of all different

features (SMCL(ALL)) generally yields better performance

than simply working on a single feature (e.g. SMCL(PHOG),

SMCL(LBP) and SMCL(GIST)). Therefore, properly exploit-

ing different modalities for curriculum learning is superior to

simply working on single modality. The reason lies in that

multiple feature modalities convey richer image information

than the single modality, and this is also consistent with our

general understanding.

Next, we demonstrate the effectiveness of a number of

key steps in our MMCL model, such as the establishment of

learning feedback Eq. (17) and the convergence of propaga-

tions Eq. (20). To demonstrate the contribution of learning

feedback, we remove the feedback and fix the number of

selected simplest images in each propagation t to min(20, b[t])
to generate the accuracy (see “MMCL(NoFB)” in Fig. 2(b)).

To show the importance of converge, we plot the accuracy

generated by the non-convergent F̄ (see “MMCL(NoCVG)”).

By comparing the three curves in Fig. 2(b), we clearly see

that performance decreases in the absence of each of the

two manipulations. Therefore, incorporating these steps in our

model contributes to improved accuracy.

Lastly, we visualize the curriculum images selected by our

MMCL during the entire teaching and learning process. When

the number of labeled images is 60, our MMCL takes totally

14 propagations to classify all the unlabeled images, and

the selected simplest images under different iterations t are

provided in Fig. 3. We can see that during the initial stage of

the propagation, i.e. t = 1 ∼ 2, the teachers in MMCL tend

to select the images containing complete objects with regular

appearances. Besides, the backgrounds in these images are

also generally clean and are very different from the foreground

objects. When t = 8 ∼ 9, we see that some of the selected

images only contain part of the objects (e.g. dog, goose and

zebra), or reflect the objects with abnormal behavior compared

to their normal conditions (e.g. swan). During the final stage

of propagations, i.e. t = 11 ∼ 14, the curriculum examples

are quite difficult because of the multiple crowded objects

(e.g. dog, goose and zebra) or the uncommon observation

angle (e.g. swan). Therefore, the introduced teachers in MMCL

can accurately evaluate the difficulty level of every unlabeled

image, and effectively organize the entire propagation process

so that all the images are classified from simple to difficult.

B. Comparison with Other Methods

To further demonstrate the strength of the proposed method,

we compare MMCL with other state-of-the-art algorithms on

some typical image datasets.

Datasets. Eight image datasets with different contents

are adopted for our experiments: CaltechAnimal [49] for

animal classification, Architecture [50] for architecture style

recognition, MSRC1 for natural image classification, UIUC

[51] for sports event recognition, Scene15 [52] for scene

categorization, ORLFace 2 for face recognition, and CIFAR100

[53] and NUS-WIDE [54] for general image classification.

Of these, CaltechAnimal is a subset of Caltech256 consisted

of nine different animals, and NUS-WIDE is formed by only

1http://research.microsoft.com/en-us/projects/objectclassrecognition/
2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Fig. 3. The selected simplest images during the entire propagation process. It can be observed that the difficulty level of curriculum images gradually increases
with the propagation proceeds.

preserving the classes that have more than 100 images in the

original dataset. The details of these datasets are summarized

in Table I. Besides, some example images of these datasets

are provide in Fig. 5, which reflects that accurately classifying

the images in these datasets is a very challenging task.

Baselines. Five semi-supervised image classifiers are adopted

for comparison. The Gaussian Field and Harmonic Functions

(GFHF) [11] is a classical SSL algorithm, which also serves

as the learner in our proposed methodology. Dynamic Label

Propagation (DLP) [8] is a recently proposed single-modal

semi-supervised image classifier. For multi-modal baselines,

Adaptive Multi-Modal Semi-Supervised classifier (AMMSS)

[1] and Sparse Multiple Graph Integration (SMGI) [55] are

employed for comparison as they also operate on multiple

graphs. The results of SMCL introduced in Section III-A are

also reported. Among the compared existing methods, the

codes of AMMSS and SMGI are directly provided by the

authors. We implement GFHF and DLP by ourselves because

both methods can be easily reproduced in lines of MATLAB

code.

As explained at the beginning of Section IV, GIST, LBP

and PHOG features constitute three modalities for the multi-

modal algorithms such as AMMSS, SMGI and our MMCL.

These three descriptors are concatenated into a long feature

vector for single-modal methodologies including GFHF, DLP

and SMCL.

Experimental settings. Similar to Section IV-A, the accu-

racies of all the algorithms are evaluated under different

selections of initially labeled images, and at least one labeled

image is selected in each class. The reported accuracies and

standard deviations are calculated as the mean value of the

outputs of ten independent runs.

To achieve fair comparison, the identical 10-NN graphs are

built via adaptive edge weighting [38] for all the methods

except DLP. In DLP, the 10-NN graph is built by leveraging

the Gaussian kernel as required. The key parameters in SMGI

are optimally tuned to λ1=0.01 and λ2=0.1 via searching the

grid {0.01, 0.1, 1, 10}, and r and λ in AMMSS are respectively

set to 0.5 and 10. As recommended by the authors, we adjust

α and λ in DLP to 0.05 and 0.1 throughout the experiments.

Results & Analyses. The experimental results on the eight

datasets are shown in Fig. 4. Figs. 4 (a)∼(h) indicate that

(a) (b)

(c) (d)

(f)(e)

(h)(g)

Fig. 5. Some example images in the adopted datasets. (a) is CaltechAnimal

dataset, (b) is Architecture dataset, (c) is MSRC dataset, (d) is UIUC dataset,
(e) is Scene15 dataset, (f) is ORLFace dataset, (g) is CIFAR100 dataset, and
(h) is NUS-WIDE dataset.
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TABLE I
AN OVERVIEW OF ADOPTED DATASETS.

CaltechAnimal Architecture MSRC UIUC Scene15 ORLFace CIFAR100 NUS-WIDE

# classes 9 25 20 8 15 40 100 112

# images 720 1000 589 1579 4485 400 60000 47254
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Fig. 4. Comparison of MMCL with other baselines on eight image datasets. (a) is CaltechAnimal dataset, (b) is Architecture dataset, (c) is MSRC dataset,
(d) is UIUC dataset, (e) is Scene15 dataset, (f) is ORLFace dataset, (g) is CIFAR100 dataset, and (h) is NUS-WIDE dataset.

the proposed MMCL achieves the highest accuracy on the

datasets CaltechAnimal, Architecture, MSRC, UIUC, Scene15,

CIFAR100 and NUS-WIDE. Numerically, MMCL leads SMCL

with the margins approximately 2%, 3%, 3%, 3%, 4%, 4%,

and 4% on the above seven datasets, respectively, and also

significantly outperforms the best existing method SMGI or

GFHF with the margins 3%, 3%, 4%, 4%, 4%, 5% and

5%, accordingly. On the ORLFace dataset revealed by Fig. 4

(f), MMCL performs better than SMGI when the number of

labeled images ranges from 40 to 160. MMCL is slightly

surpassed by SMGI when the size of labeled set is 200.

Furthermore, we observe that on all the datasets the standard

deviations of MMCL are very small, suggesting that MMCL

is insensitive to the selection of initially labeled examples.

A number of other interesting facts can be observed from the

experimental results. Firstly, SMCL (magenta curve) performs
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Bicycle Chair       Croquet Individual 28

Fig. 6. Classification results of the compared methods on several visually
challenging images. The red crosses represent “incorrect classifications” while
the green ticks denote “correct classifications”.

favorably compared to the other single-modal methods such

as DLP (blue curve) and GFHF (cyan curve). MMCL (red

curve) generally achieves better performance than other multi-

modal approaches like SMGI (black curve) and AMMSS

(green curve). Therefore, the established curriculums does help

to optimize the learning process and generate encouraging

classification performance. Secondly, sometimes the accuracy

improvement brought by SMCL over GFHF is very marginal,

such as on Architecture, UIUC, Scene15, ORLFace, and CI-

FAR100 datasets. Comparatively, MMCL is significantly better

than GFHF, and also enhances the performance of SMCL

on all the datasets. Therefore, generating curriculums from

multiple modalities is superior to only employing a single

modality consisted of a long concatenated feature vector. This

reflects that directly putting different types of features into

a long vector is not an ideal way to handle multi-modal

cases. The information from different sources should instead

be integrated in an informed way, such that the strength of

every modality can be fully exploited. These observations

also comply with our findings in Section IV-A and again

demonstrate the validity of the two arguments therein.

Further insight. As mentioned in the Introduction, MMCL

can achieve higher classification due to its strong ability for

handling difficult images. To illustrate this point, we investi-

gate the classification correctness of the compared methods on

some difficult images in the adopted datasets (see Fig. 6). In

the “Bicycle” image, the occlusion and overlapping of bicycles

make classification very difficult. The image belonging to

“Chair” category contains one table and multiple chairs. The

two men in the “Croquet” image are very small, and identi-

fying their activities is nontrivial. The person in “Individual

28” wears a pair of glasses, which poses a great difficulty for

accurate face recognition. Though these example images are

visually challenging, MMCL is able to assign them the correct

labels, whereas other methods fail to accurately classifying

all these images with the identical initially labeled images.

Therefore we conclude that multi-modal curriculum learning is

beneficial to ease the learning on complicated visual concepts.

C. Parametric Sensitivity

The weighting factor β and initial learning rate γ are two

tuning parameters in our MMCL algorithm. This section stud-
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Fig. 7. Parametric sensitivity of MMCL w.r.t. β and γ. (a) is CaltechAnimal

dataset, (b) is Architecture dataset, (c) is MSRC dataset, (d) is UIUC dataset,
(e) is Scene15 dataset, (f) is ORLFace dataset, (g) is CIFAR100 dataset, and
(h) is NUS-WIDE dataset.

ies how their variations influence the output accuracy. To this

end, we fix the numbers of labeled images in the above eight

datasets CaltechAnimal, Architecture, MSRC, UIUC, Scene15,

ORLFace, CIFAR100, NUS-WIDE to 135, 375, 240, 400, 450,

120, 30000, 6720, respectively, and change β and γ to see

the produced classification accuracy. The experimental results

are illustrated in Fig. 7. It can be observed that even though

β and γ cover wide ranges (β∈ [0.1, 100] and γ∈ [0.03, 30]),
the accuracies remain substantially unchanged, suggesting that

the model output is very robust to the variations of these

tuning parameters. As a result, the parameters incorporated by

MMCL can be easily adjusted. Besides, MMCL is shown to

achieve satisfactory performance overall on all datasets when

β =10 and γ =3, which explains the reason that we choose

this parameter setting for our experiments.

V. CONCLUSION

This paper proposed a novel curriculum learning approach,

dubbed multi-modal curriculum learning, to optimize the

quality of semi-supervised image classification. Benefiting

from the wisdom of multiple teachers, the information from
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different feature modalities is properly exploited and integrat-

ed, based on which a curriculum learning sequence (i.e., a

sequence for classifying unlabeled images) is generated in

a simple-to-difficult order. Through extensive experiments,

we demonstrated the superiority of the proposed multi-modal

curriculum learning over the state-of-the-arts in terms of semi-

supervised image classification accuracy. We also found that

our approach is general in nature and hence readily applicable

to other semi-supervised classification problems. In the future,

we plan to extend MMCL to dealing with the noisy label

cases [56], in which the labeled images with potentially

incorrect labels are difficult and should be re-classified in later

propagations.
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