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Abstract (300 words) 

Gait abnormalities are typically derived from neurological conditions or orthopaedic problems and can 

cause severe consequences such as limited mobility and falls. Gait analysis plays a crucial role in 

monitoring gait abnormalities and discovering underlying deficits can help develop rehabilitation 

programs. Contemporary gait analysis requires a multi-modal gait analysis approach where spatio-

temporal, kinematic and muscle activation gait characteristics are investigated. Additionally, protocols 

for gait analysis are going beyond labs/clinics to provide more habitual insights, uncovering underlying 

reasons for limited mobility and falls during daily activities. Wearables are the most prominent 

technology that are reliable and allow multi-modal gait analysis beyond the labs/clinics for extended 

periods. There are established wearable-based algorithms for extracting informative gait characteristics 

and interpretation. This paper proposes a multi-layer fusion framework with sensor, data and gait 

characteristics. The wearable sensors consist of four units (inertial and electromyography, EMG) 

attached to both legs (shanks and thighs) and surface electrodes placed on four muscle groups. Inertial 

and EMG data are interpreted by numerous validated algorithms to extract gait characteristics in 

different environments. This paper also includes a pilot study to test the proposed fusion approach in a 

small cohort of stroke survivors. Experimental results in various terrains show healthy participants 

experienced the highest pace and variability along with slightly increased knee flexion angles (≈1°) and 

decreased overall muscle activation level during outdoor walking compared to indoor, incline walking 

activities. Stroke survivors experienced slightly increased pace, asymmetry, and knee flexion angles 

(≈4°) during outdoor walking compared to indoor. A multi-modal approach through a sensor, data and 

gait characteristic fusion presents a more holistic gait assessment process to identify changes in different 

testing environments. The utilisation of the fusion approach presented here warrants further 

investigation in those with neurological conditions, which could significantly contribute to the current 

understanding of impaired gait. 

 

Keywords; Wearable sensors, sensor fusion, gait analysis, multi-modal fusion, free-living
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1. Introduction 
Gait is a cyclic pattern of body movement, which advances an individual’s position to perform daily life routines 

to maintain wellbeing [1]. Neurodegenerative diseases (e.g., stroke) can cause severe disruption to gait. Post-

stroke, 50% of stroke survivors (SS) are unable to walk [2], and for those who can, asymmetrical gait is highly 

likely to occur with a large variance in different gait characteristics [3]. World health organisation (WHO) and 

Global Burden of Disease studies report falls are one of the leading causes of accidental deaths and injuries globally 

[4]. This can be due but not limited to lack of foot clearance in SS or freezing of gait (FoG) in Parkinson’s disease 

when in the wild i.e., habitual ambulation/mobility during free-living in the home or community [5-7]. Therefore, 

regaining habitual ambulation has been identified as a major rehabilitation goal from early to late-stage in clinics 

and rehabilitation centres where the process of gait/walking assessment is usually performed to increase mobility 

and minimise fall risk [8].  

Wearable technologies such as inertial measurement units (IMUs, which sense angular velocity and 

acceleration) can provide pragmatic gait data in the lab/clinic or beyond in the home and community (i.e. free-

living) for more habitual assessments [9, 10]. As each anatomical segment of the human body has a characteristic 

movement pattern, wearable sensor location, calibration and methodologies must be carefully chosen considering 

the type of activity. The most preferred IMU-based wearable locations for gait analysis are waist, thighs, shanks, 

and feet [11] and have been used for a variety of different purposes such as activity detection [12], objective 

assessment of mobility, dynamic balance and concussion assessment [10, 13, 14], Parkinsonism and FoG [15] and 

phase detection of different neurological conditions [16, 17]. Typically, the current state of the art focuses on 

wearable IMU’s for gait quality assessment. To date, studies have extracted different characteristics such as initial 

contact (IC) and final contact (FC) moments within the gait cycle to derive temporal parameters (e.g., step time) 

in various environments [18-21]. Additionally, spatial parameters (e.g. step length) are derived through additional 

modelling of inertial data [22, 23]. Those technical developments have enabled novel clinical studies to examine 

neurological gait in greater detail within a laboratory and free-living environments [24-28]. However, studies 

remain limited to a uni-modal (single IMU) approach and over reliance on temporal and spatial data only [29, 30].  

Few studies have investigated multi-modal gait assessment and those that have are confined to indoor use 

[31-34]. Studies implementing multi-modal gait have utilised multiple IMU wearable and data fusion only for gait 

or physical activity detection [35-37]. The rationale for multiple (i.e. two or more) sensors attachment to e.g., 

shank and thigh includes: (1) provision of more reliable ground contact characteristics (IC and FC of the foot/feet) 

within the gait cycle as they are closer to the walking surface compared to waist and (2) enables additional gait 

capture, e.g. joint kinematics [38] such as knee flexion angles [39-42]. Yet, modern wearables go beyond IMU 

technologies by offering additional sensing modalities such as electromyography (EMG) within a single device. 

That is important as muscle activity (of the lower extremities) during gait needs to be well-coordinated to provide 

support, dynamic balance, propulsion, and foot clearance as examined during walking and stair ambulation [43, 

44]. Thus, a more comprehensive gait assessment tool that utilises spatio-temporal characteristics (e.g., step time 

and step length), kinematic (e.g., joint angles) and muscle activation (e.g., muscle bursts) can and needs to be 

developed. The provision of a multi-modal (wearable/sensor, data, and gait characteristic) fusion approach could 

contribute to a more rounded understanding of impaired gait by providing quantitative spatio-temporal, kinetic 

and muscle characteristics of individuals. The developed multi-modal tool can enable clinicians to better measure 

the effectiveness of applied rehabilitation programs and track disease progression and its effects on gait especially 

for those with a neurological condition.  

 

1.1 Fusion fit for the wild 
Fusion of multiple measurement resources presents a promising development for human movement studies such 

as increased activity recognition and more informed gait assessment [45, 46]. Previously, IMU sensor fusion with 

accelerometers and gyroscopes was adopted to produce more consistent and reliable outputs [47]. Typically, 

accelerometers produce useful but limited data such as static and dynamic characteristics but when fused with 

gyroscopes could deliver relative heading/direction. Sensor fusion often equated to bulky devices, but micro-

electromechanical systems (MEMS) facilitated new synchronized/unsynchronized data collection possibilities 

with discrete wearable technologies. This has enabled more pragmatic multi-modal sensor fusion to provide real-

world and clinically relevant information to increase utility and accuracy of rehabilitation systems. For example, 

fusion approaches have seen acceleration signals fused with electrocardiography (ECG) signals to calculate energy 

expenditure [48] and electromyography (EMG) signals to monitor functional activities in stroke survivors [49]. 

However, studies generally rely on gait data gathered indoors within a controlled environment only.  

Development of any multi-modal fusion approach needs to examine the methodology in laboratory and 

free-living based environments. This is important as previous research reported that gait adaptation techniques for 

maintaining stability are affected by walking terrain [50]. The impact of environment has been investigated in uni-

modal gait studies for neurological conditions, and significant spatio-temporal differences were revealed between 
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indoor and outdoor/free-living environments [51, 52]. However, understanding potential reasons for poor mobility 

and falls is limited since additional gait characteristics (i.e., kinematic joint angles and muscle activation) were not 

previously included. Additionally, outdoor studies focused on activity recognition or activity level tracking rather 

than specific gait characteristics. For example, a study proposed an ECG, skin conductance, respiration and gait 

acceleration signals-based gait monitor system for habitual environments, but failed to include clinically relevant 

lower limb gait characteristics such as spatio-temporal, kinematic and muscle activation [53].  

Therefore, the proposed novelty of this study is to investigate multi-modal gait characteristics in both 

clinical/lab and habitual environments by proposing a novel multi-layer fusion approach along with synchronized 

IMU and EMG. Although existing chosen wearable algorithms are individually validated for a single gait outcome, 

these algorithms have not been fused for the purposes outlined here. Multi-modal investigation of neurological 

gait with clinically relevant characteristics in natural habitats remains lacking, perhaps due to the shortage of 

developments in the field. Here, we utilise a multi-modal wearable to implement a novel fusion approach 

consisting of validated algorithms and synchronized sensor data for use in the lab/clinic and beyond such as 

outdoor level walking, incline walking, stair ascent/descent. Preferred algorithms and locations were chosen based 

on their performances that were investigated in the literature [11, 38, 54-56] and as part of investigative 

developments conducted within this study. We hypothesis that the proposed work can better inform gait assessment 

through adoption of a multi-layer fusion approach (wearables/sensors, algorithms and gait characteristics). 

Therefore, main contributions of this study are to:  

i. develop a framework that fuses validated wearable-based gait algorithms for multi-modal gait assessment 

use in laboratory and free-living environments, 

ii. examine implementation by investigating use on a cohort of healthy adults and, 

iii. investigate use within a pilot study of SS to evidence clinical effectiveness for use beyond the clinic/lab, 

revealing impact of different terrains and activities on spatio-temporal, kinematic and muscle activation, 

iv. provide insight to limitations with existing algorithms 

 

The fusion methodology provided here will showcase how multi-modal gait assessment can be created which 

could enable clinicians to prepare more informed rehabilitation programs and measure their effectiveness. Section 

2 summarises the experimental protocol including participant demographics, data collection protocol and 

performed gait tasks. Section 3 contains various algorithms adopted here and provide details about pre-processing, 

used signal, sensor orientation and multi-layer data fusion framework. Section 4 presents the results extracted from 

the framework, including indoor, outdoor level walking multi-modal gait characteristics and impacts of changing 

environments for both healthy population and stroke survivors. Experimental results of walking on the rocky 

surface, incline walking and stair ambulation are provided in supplementary materials. Section 5 present 

discussions about the multi-modal approach, implementation, and limitations. Finally, conclusions are given in 

section 6.   

 

2. Experimental protocol 

 

2.1. Participants  
Ten healthy participants (HP’s) were recruited for the main study (28.4 ± 7.0yrs, 79.2 ± 14.4kg, 176.8 ± 8.4cm, 

8M:2F) and three SS (72.3 ± 3.1yrs, 78.5 ± 12.1kg, 176 ± 8.2cm, 3M, right side most affected for all) for the 

clinical pilot. Assessment and instrumentation were carried out by a physiotherapist and trained researchers, 

respectively. Ethical consent was granted by the Northumbria University Research Ethics Committee (REF: 

21603). All participants gave informed written consent before participating in this study. Testing took place at the 

Clinical Gait Laboratory, Coach Lane Campus, Northumbria University, Newcastle upon Tyne. 

 

2.2. Data collection and gait tasks  
Each participant wore four Shimmer3 EMG wearables (24.9cm3, 31g) with straps on the lateral side of the thighs 

and shanks, approximately 7-8 cm above the ankle and knee joints, respectively, (Figure 1, S). Before data 

collection, wearables attached to the shank and thigh level were positioned in the same vertical line while 

participant stood still to achieve a better knee flexion angle estimation. The wearable enables multi-modal capture 

of IMU and EMG data simultaneously. Signals were recorded at a sampling frequency of 512Hz, and IMU 

configured (16-bit resolution, ±8g, ±500°/s) prior to data collection. Skin preparation for EMG electrode 

attachment was performed with alcohol swabs to achieve better skin-electrode contact. Disposable surface 

electrodes (circular - Ag/AgCI, silver/silver chloride) were placed bilaterally (inter-electrode spacing ≈30mm) on 

clean skin according to SENIAM recommendations and locations: rectus femoris (RF), biceps femoris (BF), 

tibialis anterior (TA) and gastrocnemius (GS), with a reference electrode on the ankle and knee. In each wearable 

(worn on the left and right legs), channel 1 (ch1) was assigned to TA and RF muscle groups for shank and thigh 
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level sensors, respectively. Similarly, channel 2 (ch2) was assigned to GS and BF muscle groups for shank and 

thigh level sensors, respectively. 

Each participant was instructed to walk over ground for 2-minutes around a 20m circuit at their preferred 

self-selected walking speed inside the laboratory. Subsequently, participants walked outdoors with the same 

wearables. Outdoor walking consisted of a pre-defined route, including ground level walking on different surfaces 

(e.g., asphalt, uneven rock, pavement) (Figure 1, F1-F2-F3), inclined walking (wheelchair ramp) (Figure 1, F4), 

ascending/descending stairs (Figure 1, F5-F6), with a physiotherapist and trained researcher (approx. 20 min). For 

safety, walking on an uneven rock surface and inclined walking on a wheelchair ramp were excluded for SS. Two-

minute data recorded inside and outside (on asphalt and pavement) during level walking are presented here 

(additional walking surface data available online). 

 

 
Figure 1. Sensor placement and physical tasks. (S) sensor placement illustration, (F1, F2 and F3) free living walking on 

asphalt, uneven rock surface and pavement, (F4, F5 and F6) free living incline walking, stair ascent and stair descent, 

respectively. 

 

 

3. Methodology  
Here we present the proposed multi-layered fusion approach by combining validated algorithms, multi-modal 

sensors, inertial and EMG data culminating in many gait characteristics. IMU and EMG data were transferred to 

a workstation (Windows 10) from the wearable via proprietary software (Consensys). Custom programs in 

MATLAB® (2019, Statistics and Machine Learning Toolbox, MathWorks, Inc., Natick, US) analysed raw (sample 

level) IMU and EMG data for spatio-temporal, kinematic and EMG analysis. Stride time was calculated as the 

average of left and right strides. All spatio-temporal gait characteristic results are presented similar to clinical 

domains of gait (pace, rhythm, variability and asymmetry) [29, 57].  

 Various validated algorithms (A) were selected to extract informative multi-model gait characteristics. Of 

critical importance within the suggested approach are initial contact (IC i.e., heel strike) and final contact (FC i.e., 

toe-off) times for right and left foot derived from the shank mounted wearables. IC and FC events help segment 

the gait cycle and denote specific regions of interest. Walking periods on different terrains and stair ambulation 

were manually segmented based on the pre-defined route and time stamps. Participants were asked to stand still 

for five seconds before and after each activity for more accurate manual segmentation. A general logical flow is 

presented in Figure 2 and broadly described as follows: 

• IC and FC were extracted with two different algorithms. Ground level IC-FC times were detected with 

(algorithm) 1 (A1) [18], whereas incline walking, stair ascent & descent IC-FC times were detected with 

A2 [20, 21]. Only step time is calculated using the synchronised left and right shank IMU sensor 

timestamps. The remaining spatio-temporal parameters are calculated from the right shank sensor for the 

right side and the left shank sensor for the left side. 

• Spatial characteristics (stride velocity and stride length) were estimated using A3 [23] and IC-FC times 

of A1 and A2, depending on activity (e.g. level walking or incline walking)  

• Knee flexion angle and muscle activation for each stride were segmented considering the type of activity. 
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For example, knee flexion angles during ground level and incline walking were estimated using A4 [39] 

and A1, while knee flexion angles for stair ascent & descent were estimated with A5 [40] and A2.  

• Muscle activation (bursts) patterns were extracted using k-means approach A6 [44] together with A1 (for 

ground level walking and incline walking) and A2 (for stair ascent & descent), Figure 2. 
 

 
Figure 2. General flow chart (left to right) of the sensor and data fusion framework, A for algorithm used. This details the 

fusion approach for the right leg only, the same is repeated for the left mounted multi-modal wearables. 

 

3.1. Data pre-processing 
Appropriate filtering must be performed to ensure all sensor signals are physiological related and not corrupted by 

noise [58]. For example, previous studies reported that during barefoot walking, 99% of the acceleration signal is 

contained frequency below 16 Hz [59, 60]. Thus higher frequencies are filtered out in the majority of the gait 

studies[61]. Here, various pre-processing algorithms (Table 1) were applied to raw sensor data depending on the 

parameter to be extracted as detailed in validation studies:  

• IC-FC during level walking: a multi-resolution wavelet decomposition was applied on raw angular 

velocity signal (perpendicular to the sagittal plane), drift and high-frequency artefacts were cancelled by 

obtaining an approximation, A1. A digital filter (second-order Butterworth low pass filter with a cut off 

frequency of 35Hz) was applied to the collected angular velocity signal to smooth the signal prior to 

detection of IC and FC during incline walking and stair ascending & descending, A2.  

• Spatial parameters: Accelerometer and gyroscope signals were filtered (first-order Butterworth low pass 

filter with a cut off frequency of 5Hz) to cancel high frequency components before the estimation of step 

velocity from shank mounted sensor. Additionally, the angular velocity signal was filtered (first-order 

Butterworth low pass filter with a cut off frequency of 0.001Hz) to reduce integration drift, A3.  

• Knee joint flexion: A third-order Savitzky–Golay filter was applied to smooth the accelerometers and 

gyroscopes signals before the extraction of knee joint angles, A4. Both physical sensors' signals attached 

to shanks and thighs were filtered (fourth-order Butterworth low pass filter with a cut off frequency of 4 

Hz) prior to the estimation of sensor orientation, consequently calculation of the joint angle in A5.  

• EMG: A zero-lag fourth-order bandpass Butterworth filter with cut-off frequencies of 20Hz and 250Hz 

was applied to EMG data, followed by rectification, and a second zero-lag fourth-order Butterworth low-

pass filtering at 6Hz, A6. 

 

Table 1: Data pre-processing 
Input: 

Saccx,y,z(i);    Sgyrox,y,z(i);  

Taccx,y,z(i);   Tgyrox,y,z(i);  
S,T EMG-ch1, ch2; 

Fs=512;  

Filtering: 

Sgyroy=wavedec(Sgyroy) & appcoef; 

Sgyroy=lpf (Sgyroy); 

Saccx,z,Sgyroy= lpf,hpf (Saccx,z,Sgyroy); 
S,Taccx,z,S,Tgyroy= sgf (S,Taccx,z,S,Tgyroy); 

S,Tgyroy=lpf (S,Tgyroy); 

S,T-EMGch1, ch2=bpf,lpf(S,T-EMGch1,ch2); 

// upload Shank (S) and thigh (T) sensors, 

   accelerometer (acc) and gyroscope(gyro) signals   

// upload EMG channels (EMGch1, ch2) of upper(thigh) and lower (shank) 
leg sensors 

// sampling frequency (Fs) 

 
// wavelet decomposition and approximation (coif5)-A1 

// low pass filtering (lpf)-A2 

// low pass filtering (lpf)- high pass filtering (hpf)- A3 
// Savitzky–Golay filtering (sgf)-A4 

// low pass filtering (lpf)-A5 

// band pass filtering (bpf)-A6 
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3.2. Multi-modal wearable and data fusion methodology 
Here, validated algorithms are fused i.e., implemented in a co-dependent arrangement to inform the identification 

and segmentation of the gait cycle during 2-minute indoor and outdoor walking. The fusion approach also utilises 

inertial data from different sensor locations (shank and thigh) to quantify kinematic data. Lastly, a range of inertial 

and EMG gait derived gait characteristics are presented in two different cohorts. 

 

3.2.1. A1: IC and FC events during level walking  
A previously validated algorithm was used to identify IC-FC times using shank mounted sagittal plane IMU 

angular velocity [18]. In brief, wavelet decomposition (5th order coiflet, ten scales) was used to split the signal into 

low (approximation) and high frequency (details) components. Subsequently, drift and high-frequency movement 

artefacts were removed with an initial approximation. Then, two new approximations were obtained to enhance 

the detection of IC-FC events, respectively. For each approximation, the time corresponding to the global 

maximum (tms = time of mid-swing) of the signals were detected. Finally, IC-FC events (negative peaks) were 

searched (local minima) in predetermined intervals [IC (tms+0.25s, tms+2s), FC (tms-2s, tms-0.05s)].  

 
A1: IC-FC detection and temporal gait characteristic estimation during level walking 

Input: 

Sgyroy-r,l(i);  
Fs=512;  

Procedure: 

1. a2,3=get two new approx. 
2. for i=1: N  

3. msICr,l=find global max points (a2); 

4. msFCr,l=find global max points (a3); 
5. end for 

6. for i=1: numel(a2) 

7. ICs-r,l=find local minima [msIC+0.25s, msIC+2s] 
8. end for 

9. for i=1: numel(a3) 

10. FCs-r,l =find local minima [msFC-2s, msFC-0.05s] 
11. end for 

12. for i=1: numel(ICs+1) 

13. stance(i)-r,l=FCs(i+1)-ICs(i); 
14. swing(i)-r,l=ICs(i+1)-FCs(i+1); 

15. stride(i)-r,l=ICs(i+1)-ICs(i); 

16. rstep(i)= rIC(i)-lIC(i) 
17. lstep(i)= lIC(i+1)-rIC(i) 

18. end for 

19. StepTimeVar=sqrt((var(rstep)+ var(lstep))/2); 
20. StepTimeAsym = abs(mean(lstep)–mean(rstep));  

Output: rIC, rFC, lIC, lFC; 

stance times-r,l;swing times-r,l;stride times-r,l;step times-r,l; 

 

// upload right and left shank angular velocities 
// sampling frequency (Fs) 

 

 
// (1: N=sample number at the end of walking period), mid-swing (ms) 

// reference points for detecting ICs 

// reference points for detecting FCs 
 

 

// saving initial contact times 
 

// saving final contact times 

 
// temporal parameter estimations 

 

 
 

 

// right/left step time are estimated using timestamp information of 
right/left IC-FC times 

 

 
// variance calculation 

// asymmetry calculation 

 

 

3.2.2. A2: IC and FC events during inclined walking and stair ascent or descent 
Formento et al. validated an algorithm for IC-FC detection during inclined walking [20] and stair ascent or descent 

[21]. Similar to A1, IC-FC events were estimated based on the detection of two negative peaks considering the 

swing period as a reference point in the shank angular velocity signal. In the A1, IC-FC events were searched in 

predetermined intervals, whereas, in A2, these events were detected based on a set of predetermined rules. Briefly, 

the algorithm begins with searching the swing phase of a gait cycle. When the gyroscope signal exceeds a 

predetermined threshold for at least 40 milliseconds, the algorithm considers the swing phase is detected. Then, 

the first negative minimum after swing phase is defined as IC. Around the time of IC, the gyroscope signal may 

present further negative peaks related to events during the loading response. In order to avoid false FC detection 

during that time, a “waiting time” was set during which there was no search for FC events. The waiting time was 

set to be 50% of the duration of the positive wave for the first step analysed and 50% of the last stance phase for 

the remaining steps. Once waiting time is over, FC is defined as the sample that represents a minimum negative 

peak in a window of 200ms, that is preceded by a decreasing (more negative angular velocity) trend in the signal 

and followed by an increasing (more positive voltage) trend.  

 
A2: IC-FC detection and temporal gait characteristic estimation during incline walking and stair ascent or descent 

Input: 

Sgyroy-r,l (i);  
Fs=512;  

Procedure: 

1. for i=1: N  
2. ms=find global max points (Sgyroy- r,l); 

3. end for 

 

// upload right and left shank angular velocities 
// sampling frequency (Fs) 

 

 
// (1: N= sample number at the end of walking period), mid-swing (ms) 

// reference points for detecting ICs and FCs 
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4. for i=1: numel(ms) 

5. ICs r,l =find local minima after [ms] 

6. set waiting time 
7. FCs r,l = find following local minima after waiting time 

8. end for 

9. for i=1: numel(ICs+1) 
10. stance(i) r,l =FCs(i+1)-ICs(i); 

11. swing(i) r,l =ICs(i+1)-FCs(i+1); 

12. stride(i)-r,l=ICs(i+1)-ICs(i); 
13. rstep(i)= rIC(i)-lIC(i) 

14. lstep(i)= lIC(i+1)-rIC(i) 

15. end for 

Output: rIC, rFC, lIC, lFC; 

stance times-r,l;swing times-r,l;stride times-r,l;step times-r,l; 

 

 

// saving initial contact times 
 

// saving final contact times 

 
// temporal parameter estimations 

 

 
// right/left step time are estimated using timestamp information of 

right/left IC-FC times 

 

 

3.3. A3: Spatial parameter extraction during ground level walking 
A validated algorithm (A3) [23] was used to estimate spatial parameters (stride velocity) from shank mounted 

IMU. The algorithm is an improved and simplified version of [22], where both horizontal and vertical accelerations 

were considered. As only horizontal velocity and displacement are needed, acceleration and angular velocities in 

the sagittal plane (the plane of progression) were considered, vertical components were excluded.  

 First, gait cycles were segmented from mid-stance to mid-stance (unlike A1 and A2) based on the 

assumption that the velocity of the shank is zero in the moment of mid-stance, the moment when the shank is 

parallel to the direction of gravity. Then, the angular velocity signal was integrated to calculate Θ for each gait 

cycle, Eq. 1. Afterwards, horizontal acceleration components of the sensor's coordinate system were calculated for 

the global coordinate system using calculated Θ (Eq.2). Finally, horizontal velocity was computed with the 

integration of horizontal acceleration and corrected with the horizontal velocity component Eq. 3. Horizontal 

correction velocity (Vhor-correction) component was calculated considering the initial horizontal speed at the start of 

the stride and the distance (Figure 1, h3) between the ankle joint and shank wearables. Finally, the stride length is 

calculated by multiplication of corrected horizontal stride velocity and stride time (estimated temporal parameter) 

for each gait cycle, Eq. 4. Results of the developed algorithm suggest that the distance between the shank mounted 

wearable and the ankle (h3) has a negligible impact (± 2cm) on the accuracy of the measure [23]. Study findings 

also reported that the effects of numerical drifts are insignificant as integrations are performed for a short period 

of time - only gait cycle (max 1.4s). 

 

0

( ) ( )
endt

st t dt =              (1) 

( ) cos ( ) ( ) sin ( ) ( )hora t t ax t t az t = −         (2) 

0

( ) ( )
endt

hor hor hor correctionv t a t dt v −= +          (3) 

_ _horStride length v x stride time=         (4) 

where,  and
s are orientation angle and shank angular velocity, respectively. The ahor, vhor and t are horizontal 

acceleration, velocity, and the duration represents stance to stance period, respectively. 

 

 
A3: Stride length and velocity estimation 

Input: 

Saccx, z-r,l (i); Sgyroy-r,l (i);  

Fs=512;  

Procedure: 

1. for i=1: numel(rIC-lIC) 

2. find mid-stance= max (Sgyroy-r,l (ICs r,l(i): FCs r,l(i+1))) 

3. segmented_ Saccx, z-r,l (i)= Saccx,z-r,l (mid-stance(i): mid-

stance (i+1)); 

4. segmened_ Sgyroy-r,l (i)= Sgyroy-r,l (mid-stance(i): mid-

stance (i+1)); 

5. end for 

6. segmened_ Sgyroy-r,l =deg2rad(segmened_ Sgyroy-r,l) 

7. theta (i)= integration of segmented_Sgyro y-r,l (i); 

8. costheta=cos(theta); sintheta=sin(theta); 

9. for i=1: numel(theta) 

10. ahorr,l (i)= costheta(i)* Saccx(i)- sintheta(i)* Saccz(i); 

11. end for 

12. vhor r,l= integration of ahorr,l +vhorcorrection 

 
// upload right and left shank accelerations and angular velocities 

// sampling frequency (Fs) 

 
 

// segmenting relevant signals from mid stance to mid stance for a stride 

using timestamp information of ICs and FCs  
 

 

 
 

 

// convert angle from degrees to radians 
// calculation of the orientation of the sensor across a stride 

 
 

// estimation of horizontal acceleration in world coordinate system 

 
//calculation of the velocity and displacement across a stride 
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13. Stride_length=mean(vhor)*stride_time 

14. Output: vhorr.l; Stride_length r,l; 

 

 

3.4. Kinematic angles 

3.4.1. A4: Knee angle estimation during level walking 
Kinematic joint angles are typically calculated from the orientations of IMU wearables that are estimated either 

using gravitational acceleration or integrated angular velocity [40]. In the latter, error (drift) may occur due to 

integration. One method to avoid integration drift is to use neural networks, which require training from sufficient 

data involving a large number of participants [62]. Kalman filtering is another approach, but three dimensional 

orientation errors reported [63]. However, in the former approach, it is possible to estimate the orientation of 

sensors by the gravitational acceleration in static states, but in dynamic states like gait, translational acceleration 

will be included.  

 Takeda et al. [39] developed an algorithm (a simplified version of [41]) considering measurements at the 

centre of a proposed link model. The developed algorithm estimates knee flexion angles for a dynamic state (level 

walking) after elimination of translational acceleration. Here, [39] was replicated to estimate knee flexion angles. 

First, each stride was segmented from continuous walking using IC-FC estimations (A1). Then, segmented 

acceleration and angular velocity signals from each left and right thigh and shank were used to estimate knee 

flexion. For the purposes of this study, angular velocity and the sensor distance from knee was used to calculate 

the translational acceleration during gait, Eq5. The estimated translational acceleration was then subtracted from 

the measured acceleration data to obtain the gravitational acceleration. The gravitational acceleration provided the 

orientation angle of the segments and, consequently, the three-dimensional posture of lower limb segments, Eq. 6. 

Once the orientation of each segment was calculated, knee flexion was estimated by the difference between the 

angle of inclination of shank and thigh, Eq. 7.  

( )KS S KS S S KSr r r  =  +   , ( )KT T KT T T KTr r r  =  +         (5) 

where 
KSr   and  

KTr are calculated translational accelerations for shank and thigh sensors, respectively. 
S and 

T are angular velocity signals of shank and thigh sensors,  
KSr  and  

KTr  are the distance of the attached sensors 

from knee (Figure 1, h1-h2). 

1 arctan( )T KT T KTx z
O r O r = − −  

2 arctan( )S KS S KSx z
O r O r = − −        (6) 

2 1Flexion  = −             (7) 

 where 
SO and 

TO are raw acceleration outputs of sensors.  

 
 
A4: Knee joint flexion-extension angle estimation 

Input: 

Saccx, z-r,l (i); Sgyroy-r,l (i); Tgyroy-r,l (i); Taccx, z-r,l (i); 
Fs=512;  

Procedure: 

1. for i=1: numel(rIC-lIC) 

2. segmented_ Saccx, z-r,l (i)= Saccx, z-r,l (ICs r,l(i): ICs r,l(i+1)); 

3. segmened_ Sgyroy-r,l (i)= Sgyroy-r,l (ICs r,l(i): ICs r,l(i+1)); 

4. segmented_ Taccx, z-r,l (i)= Taccx, z-r,l (ICs r,l(i): ICs r,l(i+1)); 

5. segmened_ Tgyroy-r,l (i)= Tgyroy-r,l (ICs r,l(i): ICs r,l(i+1)); 

6. end for 

7. segmened_ S,Tgyroy-r,l =deg2rad(segmened_ S,Tgyroy-r,l) 

8. 
KSr  (i)= diff (segmened_ Sgyroy-r,l).rKS + segmened_ Sgyroy-r,l . 

(segmened_ Sgyroy-r,l . rKS); 

9. 
KTr  (i)= diff (segmened_ Tgyroy-r,l).rTS + segmened_ Tgyroy-r,l . 

(segmened_ Tgyroy-r,l . rKT); 

10. theta1= atan((abs(Tacc-r,l - KTr ))x / (abs(Tacc-r,l - KTr ))z); 

11. theta2= atan((abs(Sacc-r,l - KSr ))x / (abs(Sacc-r,l - KSr ))z); 

12. thetaF-E=theta2-theta1 

13. thetaF-E = rad2deg(thetaF-E) 

Output: thetaF-E 

 

// upload right and left shank accelerations and angular 
velocities 

// sampling frequency (Fs) 

 
 

 

// segmenting relevant signals for a stride using timestamp 
information of right and left ICs and FCs  

 

 
// convert angle from degrees to radians 

 

// calculation of translational accelerations 
 

 

 
// estimation of orientation angle of shank and thigh 

sensors 

 
// calculation flexion extension angle 

// convert angle from radians to degree 

 

3.4.2. A5: Knee angle estimation during inclined walking, stair ascent and descent 
Nestares and Callupe developed an algorithm based on orientations of shank and thigh level sensors to evaluate 
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knee joint angle during level walking and stair ascent on HP and SS [42]. The study reported that shank and 

thigh level sensors' orientation could compute knee flexion angles with high accuracy during level walking and 

stair ambulation. The developed algorithm used a complementary filter to estimate sensor orientations. 

However, it was reported that the fusion coefficient of a complementary filter is too sensitive to be 

pragmatically used and thus requires additional operations [64]. An alternative and more practical way of 

estimating sensor orientation is integrating angular velocity as suggested by Tong et al. [40] (during level 

walking).  

Here, a novel application of both algorithms was utilised for the purpose of this study to achieve a 

practical knee flexion angle estimation algorithm during incline walking and stair ambulation. First, each stride 

was segmented from continuous walking using ICs and FCs (A2). Then shank and thigh sensor angular 

velocities were integrated to estimate sensor orientation (inclination) across a stride, Eq. 8. Finally, the knee 

angle was calculated by subtracting the inclination (orientation angle) of the thigh from the inclination of the 

shank, Eq. 9 (similar to A4 Eq.7). 

0

( ) ( )
endt

S St t dt =  , 
0

( ) ( )
endt

T Tt t dt =            (8) 

F E S T  − = −               (9) 

where 
S , 

T and t are angular velocities measured from shank and thigh sensors and gait cycle period (stride 

time), respectively. 

 
A5: Knee joint flexion-extension angle estimation 

Input: 

Sgyroy-r,l (i); Tgyroy-r,l (i);  

Fs=512;  

Procedure: 

1. for i=1: numel(rIC-lIC) 

2. segmened_ Sgyroy-r,l (i)= Sgyroy-r,l (ICs r,l(i): ICs r,l(i+1)); 

3. segmened_ Tgyroy-r,l (i)= Tgyroy-r,l (ICs r,l(i): ICs r,l(i+1)); 

4. end for 

5. segmened_ S,Tgyroy-r,l =deg2rad(segmened_ S,Tgyroy-r,l) 

6. theta1 (i)= integration of segmented_Tgyro y-r,l (i); 

7. theta2 (i)= integration of segmented_Sgyro y-r,l (i); 

8. theta F-E=theta2-theta1 

9. theta F-E = rad2deg(thetaF-E) 

Output: thetaF-E 

 
// upload right and left shank angular velocities 

// sampling frequency (Fs) 

 
 

// segmenting relevant signals for a stride using timestamp 

information of ICs and FCs  
 

 

// convert angle from degrees to radians 
// estimation of orientation angle of shank and thigh sensors 

 

// calculation flexion extension angle 
// convert angle from radians to degree 

 

3.5. A6: EMG muscle activity (burst) detection 
Detection of muscle activity/inactivity and overall level of activity in a muscle at any time is relatively identifiable 

from the linear envelope of raw EMG signals. There are various methods to extract the linear envelope of EMG 

signal such as root mean square (RMS), mean of moving window, and use of a set of filters along with rectification 

[65, 66]. Once the linear envelope is extracted, muscle activity/inactivity can be detected via a predetermined 

threshold, manual observation, or clustering algorithms[67]. The latter finds resemblances between data points and 

groups these according to their similarities.  

 Here, the filters described in Section 3.1 (A6) and full-wave rectification were used to extract the linear 

envelope of the EMG signal, while k-means clustering was used to search muscle bursts (activity). The rationale 

for k-means is that it does not require a priori setting of thresholds for each individual and has shown the ability 

to differentiate burst, even when bursts are short or have spike-like characters [68]. Similar to [44], each data point 

in the EMG linear envelopes are clustered into subsets of data using k-means. Then, EMG signals are dichotomised 

into periods of activity and inactivity according to the amplitude of each data point. Here, the numbers of centroids 

(clusters), which influence sensitivity, were set to five after visual inspection for all EMG signals analysed. Muscle 

inactivity is identified for the lowest two clusters, whereas the remaining three clusters are accepted as muscle 

activity. All EMG values for each participant underwent time normalisation within the gait cycle and amplitude 

normalisation to the highest EMG value in the gait cycles. 

 
A6 Muscle burst detection via k-means clustering 

Input: 

S,T-EMG-ch1, ch2; 

Fs=512;  

Procedure: 

1. for i=1: numel(rIC-lIC) 

2. segmened_ SEMG-ch1, ch2-r,l (i)= SEMG-ch1, ch2-r,l (ICs r,l(i): ICs r,l(i+1)); 

3. segmened_ TEMG-ch1, ch2-r,l (i)= TEMG-ch1, ch2;-r,l (ICs r,l(i): ICs r,l(i+1)); 

4. end for 

//upload EMG channels (EMGch1, ch2) of upper(thigh) and 
lower leg (shank) sensors 

// sampling frequency (Fs) 

 
// segmenting relevant signals for a stride using timestamp 

information of ICs and FCs  
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5. [idx_segmened_SEMG-ch1,ch2-r,l,mean_val] 

6. =kmeans (segmened_S,TEMG-ch1, ch2-r,l,5); 

7. mean_val= sort(mean_val,'descend'); 

8. for i=1: numel (segmened_ S,TEMG-ch1, ch2-r,l) 

9. if segmened_S,TEMG-ch1, ch2-r,l (i)<mean_val1(4) 

10. kmeans_S,TEMG-ch1, ch2-r,l (i)=muscle_off; 

11. else 

12. kmeans_S,TEMG-ch1, ch2-r,l (i)=muscle_on; 

13. end if 

14. end for 

Output: kmeans_S,TEMG-ch1, ch2-r,l 

// k-means clustering (# of cluster is five) 

// sort calculated mean value (descend) 

 
 

// find muscle activation if EMG envelope value is greater 

than lowest two mean values 
 

 

4. Results 
This novel fusion approach quantifies and contrasts temporal, spatial, knee joint kinematics, and muscle activation 

characteristics in (i) HP’s during 2min walks in a lab (indoor) vs 2min outdoor walking on level ground, and (ii) 

in a pilot study of SS walking for 2mins, indoor vs outdoor. Here, results are deemed suitable for exploratory 

investigation as they are derived from well validated algorithms for use on level ground terrain. Similar modes of 

investigation  have been conducted previously, examining uni-modal, spatio-temporal gait between clinic/lab and 

habitual environments [52].  

Outputs of the fusion approach can be classified as; spatio-temporal, knee joint flexion and muscle 

activation patterns. Muscle bursts timing and durations are presented throughout the gait cycles. Multi-model gait 

characteristics of the left side for one HP participant (#9) during outdoor level walking were not extracted due to 

wearable malfunction; therefore, only mean values for the right side were calculated. IC-FC events were not 

detected for the paretic side of one SS participant (#3) as algorithms (A1-A2) failed to detect peaks due to poor 

gait (section 5.3); therefore, only mean values for the non-paretic side were calculated. 
 

4.1 Healthy participants 

4.1.1 Two-minute walks: Spatio-temporal, kinematics and EMG  
There were differences in gait domains for spatio-temporal characteristics between indoor and outdoor walks, 

Table 2. Generally, participants walked with greater pace and variability but with decreased rhythm in outdoor 

compared to indoor level walking (stride length variability characteristic did not experience any changes between 

outdoor level walking and indoor). Among asymmetry characteristics, only stride length asymmetry found higher 

during indoor level walking compared to outdoor. There were slightly increased mean knee flexion angles (~1°) 

and decreased variance and asymmetry in outdoor level walking compared to indoor, Table 2. Although there are 

large inter-individual differences among participants, common muscle burst timing and durations patterns can be 

extracted via EMG signals [44], where common muscle activity patterns were observed within a gait cycle, Figure 

3. Regardless of indoor/outdoor, the prevalence of TA muscle activation had similar patterns with RF and BF, all 

active around the start and end of a gait cycle during level walking. TA was also found active at stance to swing 

transition period (around FC) and throughout the swing phase in some participants. BF muscle activation was 

observed at the end of a gait cycle around the time of the next IC. GS prevalence was observed mostly during the 

later stance phase before the FC moments for push-off of the foot. (Individual data available via online 

supplementary material- Table S2-S3-S5). 

 

 
Table 2: Multi-modal gait characteristics of healthy participants during 2-minute walks 

  Indoor Outdoor 

 # Mean of strides 99.6 108.1 

  Mean ± SD Mean ± SD 

SPATIO-TEMPORAL 

PACE     

Mean Stride V. (m/s) 1.174 0.127 1.319 0.101 
Mean Stride L. (m) 1.332 0.147 1.415 0.142 

RHYTHM     

Mean Stride Time (s) 1.136 0.082 1.074 0.060 

Mean Step Time (s) 0.566 0.037 0.534 0.032 

Mean Stance Time (s) 0.647 0.057 0.597 0.038 
Mean Swing Time (s) 0.489 0.039 0.476 0.034 

VARIABILITY     

Stride V. Var (m/s) 0.105 0.024 0.125 0.023 

Stride L Var (m) 0.130 0.041 0.129 0.029 

Step Time Var (s) 0.034 0.020 0.039 0.013 

Stance Time Var (s) 0.014 0.010 0.050 0.012 
Swing Time Var (s) 0.018 0.011 0.043 0.004 

ASYMMETRY     

Stride L. Asy (m) 0.086 0.062 0.104 0.068 
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Step Time Asy (s) 0.033 0.006 0.025 0.022 

Stance Time Asy (s) 0.041 0.010 0.012 0.008 
Swing Time Asy (s) 0.044 0.007 0.011 0.007 

      

KNEE JOINT KINEMATICS 

Mean K.F.E angle 62.621° 4.229° 63.580° 5.220° 

Variability 5.1875° 1.217° 4.490° 1.239° 
Asymmetry 1.8117° 1.040° 1.593° 1.069° 

Stride V = stride velocity, Stride L = stride length. Var = variability, Asy = asymmetry 

(K.F.E) knee flexion 

Bold indicate greater mean values comparing indoor to outdoor. 

 
Figure 3. Muscle activity pattern healthy participants for indoor/outdoor ground level walking 

 

4.2 Pilot study: Multi-modal gait analysis in stroke survivors 
The process of extracting multi-modal gait during level walking is generally illustrated in Figure 4, highlighted 

here for those with stroke gait. The proposed sensor and data fusion tool provides multi-model gait characteristics 

during indoor and outdoor activities, but IC-FC times must be detectable initially.  
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Figure 4. Level walking extracted parameters from the proposed tool. (A) Raw wearable IMU data for EMG (a1-a2) and angular velocity (a3-a4) – black represents shank mounted sensors – 

grey represents thigh mounted sensors, (B) Shank angular velocity of paretic and non-paretic sides: initial (dots) and final (stars) contact moments, (C) outcome of sensor fusion work for non-

paretic and paretic sides: (c1) temporal characteristics where long dot dush, square dot, solid line and round dot represents (top-to-bottom) stride, stance, step and swing times respectively: (c2) 

estimated kinematic knee angles: (c3-c4-c5-c6) EMG activity for TA, GS, RF, and BF, respectively. a.u, Arbitrary unit-peak normalised EMG. 
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4.2.1 Two-minute walks: Spatio-temporal, kinematics, and EMG  

 
Although SS presented similar shank angular velocity patterns with disturbances (e.g., oscillations) between 

paretic and non-paretic sides during ground-level walking, extracted indoor and outdoor temporal and spatial 

characteristics varied, Table 3. (Individual data available via online supplementary material- Table S4-S6-S7). 

SS walked with increased pace and decreased rhythm during outdoor level walking compared to indoor. Swing 

time asymmetry is the only asymmetry characteristic that was found to be higher during indoor compared to 

outdoor. Among variability, there was no difference for stride velocity, but stance time was lower during indoor 

level walking compared to outdoor. (Individual and left/right data available via online supplementary material). 

Noticeable differences were observed for mean, variance and asymmetry of knee joining angles. 

Increased mean knee flexion angles (~4°) and decreased variability and asymmetry were found during outdoor 

walking, compared to indoor, Table 3. Muscle activity (bursts) during indoor and outdoor walking presented in 

Figure 5. TA, RF and BF muscle burst were detected around the starting and ending moments of gait cycles (around 

IC moments). GS muscle bursts most frequently observed in the stance phase in most SS. 

 
Table 3: Multi-modal gait characteristics of stroke survivors during 2-minute walks 

  Indoor Outdoor 

 # Mean of strides 93.6 109.33 

  Mean ±SD Mean ±SD 

SPATIO-TEMPORAL 

PACE     
Mean Stride V. (m/s) 1.021 0.049 1.067 0.119 

Mean Stride L. (m) 1.303 0.134 1.384 0.338 

RHYTHM     

Mean Stride Time (s) 1.254 0.077 1.235 0.130 
Mean Step Time (s) 0.614 0.041 0.535 0.011 

Mean Stance Time (s) 0.770 0.085 0.748 0.142 

Mean Swing Time (s) 0.483 0.045 0.452 0.016 

VARIABILITY     

Stride V. Var (m/s) 0.189 0.013 0.182 0.033 

Stride L Var (m) 0.275 0.046 0.224 0.052 

Step Time Var (s) 0.100 0.096 0.033 0.006 

Stance Time Var (s) 0.070 0.058 0.074 0.002 

Swing Time Var (s) 0.071 0.052 0.037 0.002 

ASYMMETRY     

Stride L. Asy (m) 0.197 0.179 0.290 0.182 

Step Time Asy (s) 0.060 0.003 0.102 0.061 

Stance Time Asy (s) 0.063 0.001 0.088 0.046 
Swing Time Asy (s) 0.062 0.001 0.067 0.036 

      

KNEE JOINT KINEMATICS 
Mean K.F.E angle 48.120° 1.196° 52.096° 1.014° 
Variability 6.064° 0.188° 5.297° 0.660° 
Asymmetry 22.251° 4.506° 19.920° 6.821° 

Stride V = stride velocity, Stride L = stride length. Var = variability, Asy = asymmetry 
(K.F.E) knee flexion  

Bold indicate greater mean values comparing indoor to outdoor 

 

 
Figure 5. Muscle activity pattern stroke survivors for indoor vs. outdoor ground level walking. IC-FC moments were not 

able to detect for the paretic side of SS survivor (#3). Thus, only the left side muscle activity patterns are segmented only. 
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4.3. Impact of changing terrain  
The fusion approach can quantify multi-model gait characteristics on different terrains, but we present level ground 

data only. Multi-model gait characteristics and descriptions of HP’s and SS during different indoor (e.g., stairs) 

and outdoor (e.g., cobbles) terrains are presented in online supplementary material (Appendices A to D) but 

mentioned briefly here. 

• Spatio-temporal characteristics: Comparing spatio-temporal gait characteristics of HP and SS in four domains 

during indoor/outdoor walking activities revealed notable differences. Among all indoor/outdoor walking 

activities of HP, the highest pace along with the lowest rhythm and asymmetry were found during outdoor 

level walking. Also, spatial parameters experienced the highest values for the variability domain, whereas 

temporal parameters were found second-highest in outdoor level walking after incline walking. 

SS groups experienced slightly increased pace and increased asymmetry during outdoor walking compared to 

indoor. 

• Knee joint kinematics: HP revealed that mean knee flexion angles did not experience significant change while 

indoor/outdoor ground-level walking and walking on a rock surface.  

SS group revealed a slightly increased knee flexion angle (~4°) during outdoor level walking compared 

to indoor level walking. When comparing the paretic side and non-paretic side knee flexion angles of each 

SS, higher differences observed, Figure 4-c2. 

• EMG, burst timing and durations during level walking: Prevalence of muscle burst and duration showed 

similar patterns between the right and left sides of lower limb muscles in most HP. Additionally, durations of 

muscle burst slightly decreased during outdoor level walking compared to indoor in most HP. 

 The durations of muscle burst found slightly decreased during outdoor level walking compared to indoor 

in most SS. 

 

5. Discussion 
To the authors' knowledge, this is the first study to present and explores multi-modal sensor, algorithm and data 

fusion in clinic/lab and habitual/free-living gait. The methodologies provide a comprehensive range of lower limb 

gait characteristics (spatio-temporal, kinematics, and EMG) for use in different environments. The work presented 

here shows how algorithms developed in isolation can be successfully adapted and fused to create a more 

rounded/holistic gait assessment tool for use in the clinic/lab and beyond. The multi-modal fusion approach 

proposed here may better contribute to gait studies for clinical as well as habitual gait assessments, better informing 

rehabilitation programs that aim to regain community-based ambulatory mobility for those with neurological 

conditions such as stroke. Improved understanding of gait through our proposed multi-modal approach could lead 

to better understanding the effect of walking environment and how that contributes to the underlying mechanisms 

to reduce mobility and induce falls. 

The proposed fusion methodology defined here consists of detection IC-FC contact moments along with 

timestamp information (using A1-A2 algorithms and shank sensors data) by considering the type of activity (e.g., 

level walking or incline walking). That enables segmentation of gait cycles and sub-phases (stance and swing 

periods) as well as extraction of temporal parameters (e.g., step time). Then, gait cycles are segmented from mid-

stance to mid-stance using the IC-FC information obtained from A1-A2, and spatial characteristics (A3 and shank 

sensors data). Afterwards, knee joint flexion angles are estimated (A4-A5 and shank-thigh sensors data) by 

considering the type of activity (e.g., level walking or stair ambulation) for each gait cycle segmented. Finally, 

segmented gait cycles and corresponding timestamp information were used to segment EMG data belonging to 

four different lower limb muscles and muscle onset/offset timings (using A6). 

Previous studies have investigated gait during free-living to better understand the impacts of real-life 

settings such as environmental factors on gait [69, 70].  Most of these studies aim to extract clinically useful gait 

characteristics (spatio-temporal, kinematics) and are based on camera and IMUs. However, camera-based systems 

are not pragmatically feasible due to several factors such as privacy, security and, limited data capture due to field 

of vision [3, 71]. Although existing inertial sensor-based studies use a more feasible data collection approach, most 

fail to include clinically useful gait characteristics such as lower limb kinematics [72]. Additionally, the number 

of those focusing on free-living gait analysis in neurological conditions (e.g. stroke) is very limited and provides 

uni-modal characteristics only [3]. Those who investigated a multi-sensor fusion approach, utilised wearable 

sensors attached to the right lower limb for use during indoor level walking only [34]. Although that study 

quantified kinetic characteristics with a pressure sensor, spatial characteristics were not included.  

 

5.1. The multi-modal approach 
Multi-modal wearable sensor deployment is of growing interest during free-living activities. For instance, an 

approach to develop a vital sign monitoring system involving physiological components (e.g., respiratory band, 

electrocardiography) has been presented previously [53]. Another study used a similar approach where multiple 
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sensors were fused to develop a body sensor network that can measure motor functions in children with spastic 

diplegia [33]. Multi-modal wearable sensor use is possible due to the miniaturisation of wearable technologies and 

the increasing paradigm shift to monitoring people in their habitual environments. As gait is now classed as the 

sixth vital sign [73], it is important that multi-modal approaches are developed to capture gait in its entirety across 

more natural environments. 

Most gait analysis studies have been conducted that do not immediately aim to make clinical decisions but 

to learn about a condition affecting a group of patients or the effect of an intervention [74]. Also, studies are based 

on a single sensor and provide either activity detection or informative gait outcomes. However, the next generation 

of wearables could be fused in a way that human activity assessment (i.e. activity detection and gait characteristics 

extraction) can be done using multiple sensor configurations [32]. Contemporary gait analysis requires evaluation 

of various aspects (e.g. kinematic, muscle) of the lower limb with a large number of outcomes [3]. Variances in 

gait are very subtle [45], and so the multi-modal gait approach enables granular capture of characteristics 

considering key digital biomarkers, i.e., clinically relevant gait characteristics. A study already reported that these 

variances/fluctuations in gait can be used to differentiate a particular neurological condition from healthy 

participants using gait data along with complexity measures [75]. Here, subtle differences were observed between 

indoor and outdoor level walking (as the differences between walking on various outdoor surfaces and stair 

ambulation) for HP and SS. This corroborates the benefit of using wearables for outdoor/habitual gait assessment 

as observed in another neurological cohort, albeit with a uni-modal device in Parkinson’s disease [24]. Use of a 

multi-modal sensor and data fusion approach may provide more insights into the underlying neurological 

mechanisms due to, e.g., changing terrain. 

Spatio-temporal outcomes have been widely used to reveal distinctive gait deficits and interpret impaired 

gait during indoor and outdoor assessments. Particularly for outdoor assessments, a previous study reported gait 

adaptations strategies to maintain stability are sensitive to different walking surfaces [50]. Thus, investigating the 

adaptation of pace on various surfaces may help better understand control on the sensory, motor and cortical 

functions that are critical to minimise trips, slips and falls [3]. Additionally, the proposed multi-modal sensor 

fusion approach efficiently computed spatio-temporal characteristics during indoor and outdoor gait for a more 

holistic gait assessment. Here, extracted spatio-temporal characteristics (e.g., indoor step, stance, swing times: 

0.566s, 0.647s, 0.489s, respectively, outdoor step, stance, swing times: 0.534s, 0.597s, 0.476s, respectively) show 

good agreement with previous indoor level walking (0.534s, 0.668s, 0.401s) [76] and outdoor level walking 

(0.593s, 0.741s, 0.449s) studies [24] for HP. The small difference between the extracted temporal results perhaps 

is due to the difference between preferred experimental protocols, preferred sensor location, sensors, and 

algorithms. This is equally true for SS; indoor level walking (step, stance, swing times: 0.614s, 0.770s, 0.483s, 

respectively ) and outdoor level walking (step, stance, swing times: 0.535s, 0.748s, 0.452s,  respectively) findings 

of this study show good agreement with a previous study [51], where indoor level walking (step, stance, swing 

times: 0.6 s 0.743s 0.485, respectively) and outdoor level walking (step, stance, swing times: 0.613s, 0.764s, 

0.474s) are reported. However, small differences (e.g., in stance-swing times <0.09s) were also observed in the 

stroke population due to referenced studies using a single IMU attached to the lower back compared to our 

approach of two IMU’s attached to both shanks. Performance comparison of sensor locations and used 

methodology was further investigated[55, 56]. It was found that the shank-based methods provide more accurate 

temporal results compared to lower back based methods because the sensor is closer to IC-FC points of the foot.  

Moreover, reference studies used an algorithm based on acceleration signals whereas the proposed fusion approach 

used algorithms based on angular velocity for extracting spatiotemporal outcomes. The proposed multi-modal 

approach also attests to the existing knowledge that stroke survivors are high likely to experience decreased stance 

time and increased swing time in the paretic side, compared to non-paretic[77], Table S7. 

Many physical therapy techniques focus on the restoration of joint kinematics and hence promote 

rehabilitation of functional activities [78]. Thus, kinematic joint characteristics are crucial as these characteristics 

provide additional insight into indoor/outdoor gait analysis. The prevalence of joint kinematic analysis in gait 

studies is low as kinematic characteristics require lab-based motion analysis systems that are complex and costly 

or goniometers, which brings synchronisation issue with other technologies [3]. Alternatively, a few gait studies 

estimate joint angles (e.g. knee flexion) during indoor and outdoor activities using wearable sensors [39, 41]. 

Findings of the proposed multi-modal sensor fusion tool (62.621°, 48.120°  for indoor level walking of HP and 

SS, respectively) show good agreement with previous study findings based on indoor level walking (~60°, ~40° 

for indoor level walking of HP and SS) [79, 80] and outdoor [81, 82] activities in terms of estimated knee joint 

angles. Additionally, stroke participants experience decreased knee flexion angles during indoor/outdoor level 

walking in the paretic side, compared to non-paretic as previously reported [80]. 

Muscle activation pattern analysis of one or more muscles, particularly when the examination is conducted 

together with additional gait characteristics such as kinematics (joint angles), provides better insight into the 

performance of muscles and their role in accomplishing a motor task [43]. Although other crucial parameters, such 

as walking velocity and age that affect muscle burst timing and durations exist [83], comprehensive knowledge of 



17 

 

muscle activation and co-activation may contribute to the individualised bespoke rehabilitation programs[67]. The 

findings of the proposed multi-modal fusion tool attest to the common muscle activation patterns in terms of 

muscle burst timings and durations during indoor [83, 84] and outdoor activities [43, 85].  

 

5.2. Implementation 
Importantly, extraction of multi-model gait characteristics starts with the detection of gait cycles, IC and FC events. 

A1 and A2 were sufficient to estimate IC-FC moments during level walking (as well as incline walking and stair 

ambulation) for HP’s and non-paretic sides of SS. However, failing to detect IC-FC events in the paretic side of 

SS, where significant foot clearance is lacking, negatively impacts the multi-model gait characteristics (primarily 

temporal) to be extracted. Alternatively, spatial characteristics successfully computed with A3 for HP and non-

paretic sides of SS, but similar problems occurred for the paretic sides of SS (section 5.3).  

Sensor misplacement is also a consideration that needs to be considered during the implementation of this 

framework. It was previously reported that algorithms that use angular velocity for IC-FC detection (such as A1 

and A2) are less sensitive to positioning compared to acceleration due to their measurement principle. A3 and A5 

also stated that the sensor placement anywhere along the same plane on the anatomical segment (e.g., shank) gives 

almost identical signal output [11, 23, 40]. The proposed tool has potential use in free-living as it enables an 

extended period of data recording opportunities. Gyroscopes tend to consume up to several hundred milliamperes 

whereas accelerometers consume in the range of a few microamperes [11]. The use of additional hardware or 

sensing capabilities such as EMG can increase energy consumption significantly. Therefore, the energy 

consumption of the hardware (sensor) to be used should be taken into consideration. Here we use the Shimmer3 

EMG sensor, which can be used in clinical studies as it provides reliable output for around 70 hours, depending 

on the activated sensing capabilities (e.g., sampling frequencies). Sensors that can collect data for a week or more 

are also available but there is a trade-off between e.g., data resolution, battery life and memory [3]. 

A review for sensor fusion use in orientation tracking found that advanced algorithms such as extended 

Kalman filter and complementary filter approaches should meet the need to perform offline calibration, vector 

selection technique for imperfect measurement rejection [86]. Although high accuracy and robust estimations were 

reported, these approaches are complex and require prior technical information regarding the IMUs to be used. 

Here, we proposed a less complex and more practical novel approach (A5) to estimate knee flexion angles during 

stair ambulation and incline walking by novel combination of two different validated algorithms [40, 42]. That 

approach allowed us to achieve a knee joint flexion angle approach that works during stair ambulation and without 

a need for prior configuration coefficients during orientation estimation.  

EMG signals were segmented for each gait cycle using IC-FC timed events. Segmented raw EMG signals 

are difficult to interpret with a visual inspection alone [67]. Thus, processing raw EMG signals allow the extraction 

of clinically useful outcomes (e.g., muscle burst timing). Additionally, normalisation of EMG signals is crucial to 

make comparisons between muscles on different days or in different individuals during different walking tasks. 

Most studies time normalise EMG signal into gait cycles (%) or sub phases (stance %). However, the same 

standardisation is not common for amplitude normalisation. Peak activation level mean activation level, maximum 

voluntary contraction and peak to peak maximum amplitude (M wave) normalisation approaches have been widely 

used [67]. Although there are standards for EMG data collection (SENIAM), EMG signal processing standards 

are needed to achieve a more consistent EMG-based gait assessment [3]. 

 

5.3. Limitations and future work 
Wearables offer high resolution data recording opportunities for extended periods. Continuous recording during 

free-living may result in a vast amount of unlabelled data that includes different daily dynamic gait activities (e.g. 

level walking, stair ambulation) and static activities (e.g. sitting, lying). Here, the proposed framework was used 

with manually segmented gait data (e.g., indoor level walking). However, manual segmentation of different 

activities before feeding into the proposed framework is a limitation to achieve a more automatic gait assessment 

tool. Therefore, automatic recognition of all activities (also known as human activity recognition, HAR) would 

provide a more pragmatic gait analysis tool, negating the time-consuming manual segmentation adopted here. 

Previous studies report that wearables can be deployed to recognise gait events with high accuracies using artificial 

intelligence approaches (e.g. machine learning, deep learning) [87, 88].  

The time spent on sensor configuration and placement before data collection can be accepted as a 

limitation since it was approx. 50% of the total testing time for each participant. Here, the configuration of 

wearables and placement took 15-20 min for each participant. Much of the time (≈10 min) was spent on the 

placement of surface EMG electrodes and their connections with sensor units using wires. Technology is becoming 

more user friendly with wireless EMG sensors which could significantly decrease the setup time of wearables. 

Successful implementation of the proposed multi-modal approach is significantly dependent on the 

correct detection of IC-FC times that is used to split gait into sub-phases and extract joint angles and muscle 
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activities. As presented in (Figure 4, b), more oscillations were observed in paretic side angular velocity compared 

to the non-paretic side of a stroke survivor. These oscillations affect the accuracy of proposed algorithms (e.g. A1) 

as these algorithms estimate IC-FC times by taking reference to a single positive peak (mid-swing) [89]. In the 

paretic side of SS (#3), more oscillations were observed in peaks during mid-swing, and negative peaks were not 

present for the detection of IC-FC moments. Therefore, the proposed algorithms (A1 and A2) failed to detect IC-

FC moments, and consequently kinematic and muscle characteristics could not be extracted for the gait cycles.  

Some algorithms presented here use a set of rules and thresholds. The use of threshold-based algorithms 

could be a limitation since time and frequency domain features of the wearable signals can be significantly affected 

by several factors such as weight, age, severity of impaired gait and walking speed. Alternatively, previous studies 

suggested that although amplitudes of these peaks vary depending on different factors, IC-FC moments can always 

be localised once approximate locations are known in time and frequency domains [3, 18]. Therefore, appropriate 

signal processing approaches (e.g. advanced wavelet) and artificial intelligent (machine learning, deep learning) 

approaches should be used in future studies to overcome this limitation [90]. Equally, developing new algorithms 

by considering signal power and statistical features rather than wave shape could be a solution for the algorithms 

that rely on peak detection. 

 

5.3.1. Factors influencing accuracy of gait characteristics 

Small errors and systematic delays (e.g. <0.009s) are present even in two different gold/reference standard system 

[55]. Therefore, it is crucial to investigate and interpret the agreement levels between reference systems and 

wearable sensors with caution. Although most inertial signal-based validation studies reported very good 

agreements when compared to a gold standard system[18, 39],  the developed algorithms were  validated on healthy 

participants only during controlled environments. When these algorithms were adopted to use in a neurological 

population, it was observed that their accuracies decrease [23, 54]. The primary reason for the poor performances 

of the algorithms is because movement patterns of hip and lower-limb segments experience different acceleration 

and angular velocity compared to healthy participants[54]. The secondary reason is the effects of the walking 

environments. This was further investigated by Storm et al. and reported that shank sensor-based algorithms such 

as A1-A2 perform better in outdoor walking in terms of detecting some temporal parameters (e.g., stance time) 

compared to indoor walking [55]. The other reasons that affect the accuracy of inertial signal-based gait outcomes 

are preferred sensor locations (e.g., shank, lower back) and used target signal (e.g., acceleration, angular velocity) 

in the experimental protocol. A previous study investigated the impact of both factors on the extracted parameters, 

and findings showed that shank level sensor- angular velocity signals pair provide more accurate and repeatable 

results than lower back sensor- acceleration signal algorithms for healthy participants[38].  

 

Our future work will aim to: 

(i) investigate validity in a larger stroke cohort with the latest technology wearable sensors (e.g., 

wireless EMG),  

(ii) integrate automated gait detection into a multi-modal fusion approach to achieve an automatic 

approach and,  

(iii) investigate potential solutions for better detecting IC-FC moments in neurological conditions, 

particularly in severely disrupted gait. 

 

6. Conclusion  
This paper proposes a multi-modal gait assessment, enabling a comprehensive indoor and outdoor gait analysis 

using wearables. A multi-layered sensor, data and gait characteristic fusion approach was developed by utilising 

previously validated algorithms and adopting a robust methodological approach. The proposed fusion approach 

has a potential for utility in a more holistic gait analysis approach for use on various indoor and outdoor terrains. 

Detection of IC and FC events is key to ensure the utility of the fusion approach is fully realised, failure to 

detect those gait events may lead to missed gait characteristic. However, that may only be evident in the most 

impaired gait. Study findings show initial effectiveness of the approach by displaying the difference between 

indoor and outdoor experiments in spatio-temporal, knee joint kinematics and muscle activities, which could 

be informative for devising individualised rehabilitation strategies. Future work will investigate deployment on 

larger, more clinically well-defined SS and towards automated gait detection and segmentation. 
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ONLINE SUPPLEMENTARY MATERIAL: APPENDICES 

A. Impact of changing terrain  
Walking on uneven rock surface and inclined walking were excluded for stroke survivors due to safety reasons. 
The environments’ and cohorts information for extracted parameters for the purpose of this study are presented in 

Table S1. 

 
Table A1 Extracted parameters in environments/activities for healthy participants (HP) and stroke survivors (SS) for the purpose of the study 

Environment/activity Cohort Spatio-temporal Knee joint angle Muscle activity 

Indoor level walking HP-SS ✓ ✓ ✓ 
Outdoor level walking HP-SS ✓ ✓ ✓ 
Incline walking  HP only ✓ ✓ X 

Walking on rock surface HP only ✓ ✓ X 

Stair ascent/descent HP-SS X ✓ ✓ 

 

B. Spatio-temporal outcomes 
HP: Small but substantial impacts of changing terrain observed in four gait domains, Table S1. Comparing 

spatio-temporal characteristics of outdoor activities revealed that variability is highest in temporal characteristics 

during incline walking (ascent slope) compared to other activities. Additionally, higher variability observed in 

level walking compared to walking on a rock surface and the differences in variability found higher in spatial 

parameters compared to temporal. HP walks with decreased rhythm and increased pace, variability and 

asymmetry during incline walking compared to walking on a rock surface. 

 
Table B1 Spatio-temporal gait characteristics of HP ground level walking in indoor and outdoor, 2min 

 Indoor 

 1 2 3 4 5 6 7 8 9 10 

# of strides 104 105 103 76 95 104 124 103 100 82 

PACE           

Mean Stride V. (m/s) 1.361 1.11 1.291 0.943 1.204 1.27 1.273 1.205 1.077 1.015 

Mean Stride L. (m) 1.569 1.242 1.493 1.073 1.406 1.438 1.161 1.349 1.371 1.223 

RHYTHM           

Mean Stride Time (s) 1.150 1.118 1.158 1.134 1.165 1.131 0.912 1.117 1.270 1.206 

Mean Step Time (s) 0.576 0.560 0.579 - 0.594 0.566 0.468 0.559 0.590 0.604 
Mean Stance Time (s) 0.699 0.616 0.65 0.638 0.639 0.635 0.510 0.653 0.719 0.715 

Mean Swing Time (s) 0.45 0.502 0.508 0.496 0.526 0.497 0.402 0.465 0.554 0.491 

VARIABILITY           
Stride V. Var (m/s) 0.143 0.085 0.133 0.099 0.111 0.074 0.077 0.085 0.106 0.142 

Stride L Var (m) 0.171 0.103 0.161 0.122 0.149 0.085 0.063 0.088 0.175 0.186 

Step Time Var (s) 0.005 0.007 0.059 - 0.038 0.031 0.033 0.019 0.071 0.043 
Stance Time Var (s) 0.005 0.002 0.022 0.027 0.007 0.005 0.008 0.022 0.033 0.011 

Swing Time Var (s) 0.008 0.005 0.02 0.013 0.039 0.006 0.036 0.022 0.025 0.007 

ASYMMETRY           

Stride L. Asy (m) 0.050 0.015 0.139 0.065 0.088 0.181 0.125 0.004 0.177 0.019 
Step Time Asy (s) 0.029 0.039 0.044 - 0.037 0.026 0.027 0.027 0.043 0.032 

Stance Time Asy (s) 0.037 0.034 0.043 0.062 0.057 0.03 0.042 0.03 0.036 0.039 

Swing Time Asy (s) 0.041 0.048 0.048 0.043 0.059 0.039 0.036 0.034 0.053 0.045 

 Outdoor 

 1 2 3 4 5 6 7 8 9 10 

# of strides 98 114 108 118 103 108 120 96 100 116 

PACE           
Mean Stride V. (m/s) 1.477 1.241 1.343 1.123 1.257 1.352 1.371 1.39 1.419 1.218 

Mean Stride L. (m) 1.606 1.339 1.488 1.131 1.414 1.461 1.259 1.449 1.627 1.377 

RHYTHM           

Mean Stride Time (s) 1.092 1.078 1.112 1.015 1.133 1.086 0.924 1.042 1.142 1.125 

Mean Step Time (s) 0.547 0.546 0.556 0.499 0.567 0.545 0.464 0.521 - 0.566 

Mean Stance Time (s) 0.648 0.589 0.622 0.557 0.6 0.604 0.51 0.588 0.622 0.636 
Mean Swing Time (s) 0.444 0.489 0.490 0.452 0.533 0.481 0.413 0.455 0.519 0.488 

VARIABILITY           

Stride V. Var (m/s) 0.160 0.124 0.109 0.124 0.116 0.08 0.141 0.112 - 0.159 

Stride L Var (m) 0.173 0.13 0.119 0.125 0.134 0.11 0.086 0.106 - 0.185 
Step Time Var (s) 0.035 0.033 0.035 0.049 0.035 0.041 0.036 0.02 - 0.071 

Stance Time Var (s) 0.044 0.046 0.048 0.043 0.069 0.047 0.049 0.034 - 0.075 

Swing Time Var (s) 0.043 0.043 0.044 0.042 0.051 0.046 0.042 0.034 - 0.044 

ASYMMETRY           

Stride L. Asy (m) 0.126 0.143 0.125 0.019 0.057 0.248 0.024 0.056 - 0.138 

Step Time Asy (s) 0.029 0.005 0.077 0.019 0.005 0.031 0.01 0.006 - 0.047 
Stance Time Asy (s) 0.013 0.019 0.033 0.005 0.011 0.008 0.006 0.012 - 0.006 

Swing Time Asy (s) 0.010 0.006 0.031 0.009 0.009 0.009 0.011 0.012 - 0.003 
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Table B2 Spatio-temporal gait characteristics of HPs during incline walking and walking on rock surface 
 Incline walking  

 1 2 3 4 5 6 7 8 9 10  

# of strides 8 9 11 10 7 7 7 8 7 7  

PACE           Average 

Mean Stride V. (m/s) 1.178 1.076 1.233 1.178 1.185 1.136 1.357 1.222 1.231 1.390 1.218 

Mean Stride L. (m) 1.215 1.290 1.480 1.215 1.424 1.375 1.275 1.427 1.555 1.715 1.397 

RHYTHM            

Mean Stride Time (s) 1.248 1.184 1.200 1.046 1.205 1.197 0.953 1.134 1.25 1.205 1.162 

Mean Step Time (s) 0.619 0.608 0.606 0.555 0.617 0.597 0.477 0.565 - 0.625 0.585 
Mean Stance Time (s) 0.693 0.652 0.64 0.578 0.683 0.684 0.529 0.614 0.706 0.709 0.648 

Mean Swing Time (s) 0.555 0.531 0.556 0.469 0.523 0.513 0.424 0.521 0.547 0.496 0.513 

VARIABILITY             
Stride V. Var (m/s) 0.085 0.068 0.059 0.085 0.180 0.124 0.183 0.136 - 0.124 0.113 

Stride L Var (m) 0.091 0.094 0.046 0.091 0.208 0.158 0.116 0.141 - 0.149 0.120 

Step Time Var (s) 0.048 0.037 0.057 0.057 0.398 0.037 0.036 0.062 - 0.024 0.084 
Stance Time Var (s) 0.050 0.047 0.073 0.045 0.058 0.046 0.029 0.106 - 0.074 0.058 

Swing Time Var (s) 0.060 0.065 0.076 0.050 0.056 0.050 0.048 0.066 - 0.035 0.057 

ASYMMETRY            

Stride L. Asy (m) 0.030 0.21 0.259 0.030 0.046 0.437 0.030 0.366 - 0.020 0.158 
Step Time Asy (s) 0.000 0.025 0.051 0.029 0.269 0.047 0.004 0.002 - 0.029 0.050 

Stance Time Asy (s) 0.009 0.055 0.024 0.035 0.049 0.036 0.002 0.007 - 0.049 0.029 

Swing Time Asy (s) 0.010 0.007 0.010 0.017 0.022 0.048 0.015 0.015 - 0.068 0.023 

 Rock surface  

 1 2 3 4 5 6 7 8 9 10  

# of strides 6 6 8 3 6 6 5 4 8 7  
PACE           Average 

Mean Stride V. (m/s) 1.126 1.137 1.066 1.126 1.129 1.196 1.289 1.372 1.356 1.241 1.203 

Mean Stride L. (m) 1.21 1.364 1.315 1.21 1.466 1.507 1.319 1.589 1.582 1.515 1.407 

RHYTHM            
Mean Stride Time (s) 1.096 1.172 1.239 1.096 1.346 1.283 1.063 1.149 1.161 1.229 1.183 

Mean Step Time (s) 0.554 0.592 0.623 0.554 0.673 0.635 0.531 0.569 - 0.623 0.594 

Mean Stance Time (s) 0.607 0.64 0.717 0.607 0.775 0.734 0.585 0.641 0.652 0.705 0.666 

Mean Swing Time (s) 0.489 0.532 0.522 0.489 0.571 0.549 0.478 0.508 0.509 0.524 0.517 

VARIABILITY             

Stride V. Var (m/s) 0.107 0.099 0.096 0.107 0.082 0.050 0.100 0.064 - 0.101 0.084 

Stride L Var (m) 0.112 0.15 0.123 0.112 0.094 0.067 0.109 0.123 - 0.136 0.108 
Step Time Var (s) 0.022 0.027 0.062 0.022 0.045 0.045 0.034 0.020 - 0.054 0.036 

Stance Time Var (s) 0.057 0.066 0.061 0.057 0.049 0.042 0.037 0.039 - 0.075 0.052 

Swing Time Var (s) 0.033 0.033 0.033 0.033 0.059 0.037 0.063 0.046 - 0.038 0.040 

ASYMMETRY            

Stride L. Asy (m) 0.211 0.190 0.032 0.211 0.167 0.307 0.100 0.006 - 0.124 0.149 

Step Time Asy (s) 0.007 0.040 0.068 0.007 0.016 0.022 0.005 0.013 - 0.031 0.023 
Stance Time Asy (s) 0.006 0.033 0.004 0.006 0.027 0.022 0.001 0.008 - 0.011 0.013 

Swing Time Asy (s) 0.019 0.028 0.038 0.019 0.000 0.009 0.003 0.013 - 0.02 0.016 

(-) parameter not available due to data collection or synchronisation error,  

Stride V = stride velocity, Stride L = stride length. Var = variability, Asy = asymmetry 

 
Table B3 Spatio-temporal gait characteristics of SS ground level walking in indoor and outdoor 

 Indoor Outdoor 

 1 2 3 np 1 2 3 np 

# of strides 80 110 91 95 125 108 

PACE       
Mean Stride V. (m/s) 0.997 0.977 1.09 1.014 0.955 1.233 

Mean Stride L. (m) 1.35 1.121 1.44 1.248 1.055 1.850 

RHYTHM       

Mean Stride Time (s) 1.308 1.145 1.310 1.248 1.070 1.388 
Mean Step Time (s) 0.656 0.573 - 0.547 0.524 - 

Mean Stance Time (s) 0.766 0.668 0.878 0.669 0.627 0.948 

Mean Swing Time (s) 0.542 0.477 0.432 0.476 0.443 0.439 

VARIABILITY       

Stride V. Var (m/s) 0.203 0.176 - 0.216 0.149 - 

Stride L Var (m) 0.322 0.229 - 0.277 0.172 - 
Step Time Var (s) 0.196 0.004 - 0.027 0.040 - 

Stance Time Var (s) 0.129 0.012 - 0.072 0.077 - 

Swing Time Var (s) 0.123 0.019 - 0.035 0.040 - 

ASYMMETRY       

Stride L. Asy (m) 0.018 0.376 - 0.108 0.473 - 

Step Time Asy (s) 0.063 0.057 - 0.164 0.041 - 

Stance Time Asy (s) 0.064 0.063 - 0.134 0.042 - 
Swing Time Asy (s) 0.062 0.062 - 0.103 0.031 - 

(-) parameter not available due to data collection or synchronisation error, Stride V = stride velocity, Stride L = stride length. Var = 

variability, Asy = asymmetry,(np) non paretic side only due to failing to detect IC-FC times 
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C. Knee joint kinematics 
Knee joint kinematics (HP): Increased asymmetry in knee flexion angles while walking on a rock surface was 

notable compared to indoor/outdoor ground-level walking. During incline walking (ascent slope), HP 

experienced lower mean knee flexion angles compared to indoor/outdoor ground-level walking. Increased 

variance and asymmetry in knee flexion angles during incline walking were other findings compared to 

indoor/outdoor ground-level walking. Additionally, increased mean knee flexion angles and asymmetry were 

found to be common during walking on rock surfaces compared to incline walking 

In the stair ambulation experiment, knee flexion angles found higher during stair descent compared to stair 

ascent.  No significant differences observed in the asymmetry of knee flexion angles.  
 

Knee joint kinematics (SS):  Increased variability and asymmetry in knee flexion angles were observed during 

indoor level walking compared to outdoor level walking. Similarly, SS experienced higher knee flexion angles 

during stair ascent compared to stair descent.  Additionally, increased variance and decreased asymmetry were 

present during stair descent compared to the ascent. 
 

Table C1 Kinematic knee joint angles (degree) of HPs 
Indoor level walking 

 1 2 3 4 5 6 7 8 9 10  

# of strides 104 105 103 76 95 104 124 103 100 82  
           Average 

Mean 62.976 51.839 63.419 62.701 59.281 64.467 62.791 66.774 64.056 67.906 62.621 

Var 5.328 4.818 4.025 7.706 4.028 4.321 4.693 4.438 7.202 5.316 5.1875 
Asy 3.485 3.467 1.950 0.880 0.760 2.869 1.635 0.687 0.954 1.430 1.8117 

Outdoor level walking 

# of strides 98 114 108 118 103 108 120 96 100 116  

           Average 

Mean 63.819 51.529 63.577 64.202 56.731 65.022 65.256 67.821 69.000 68.839 63.5796 
Var 4.746 5.103 3.043 6.327 4.704 4.120 3.286 3.095 - 6.582 4.4901 

Asy 0.042 2.046 2.231 3.498 0.847 1.364 1.530 2.602 - 0.175 1.592778 

Incline walking 

# of strides 8 9 11 10 7 7 7 8 7 7  
           Average 

Mean 59.836 49.133 57.166 59.836 48.602 64.125 62.099 70.640 59.731 62.900 59.406 

Var 10.415 7.021 5.374 10.415 4.888 4.113 4.930 4.594 - 8.282 6.350 

Asy 1.171 4.475 1.827 1.171 6.915 11.023 7.492 7.587 - 13.710 6.152 

Rock surface 

# of strides 6 6 8 3 6 6 5 4 8 7  

           Average 

Mean 65.381 56.778 54.643 65.381 52.102 69.335 62.986 70.574 70.731 67.267 63.517 

Var 2.134 6.673 3.368 2.134 4.897 4.121 4.620 1.863 - 4.436 3.860 
Asy 9.657 16.532 0.359 9.657 5.990 3.727 17.224 0.696 - 19.321 9.240 

Stair ascent 

           Average 

Mean 34.650 44.121 41.995 34.650 24.666 49.320 43.474 51.407 54.717 48.013 42.701 
Var 3.264 2.369 3.942 3.264 - 4.754 3.781 2.653 - 2.491 2.989 

Asy 2.901 5.516 0.337 2.901 - 0.463 7.679 4.591 - 4.758 3.643 

Stair descent 

           Average 

Mean 75.746 73.257 67.150 75.746 58.536 77.045 71.726 82.048 71.591 80.478 73.332 

Var 8.708 7.392 3.906 8.708 - 5.847 6.227 5.500 - 7.141 6.928 

Asy 0.841 1.540 4.590 0.841 - 5.807 4.293 5.964 - 1.896 3.221 

(-) parameter not available due to data collection or synchronisation error 

 

Table C2 Kinematic knee joint angles (degree) of SS 

 Stroke Survivors  

Indoor level walking Outdoor level walking 

 1 2 3 np  1 2 3 np  

# of strides 80 110 91  95 125 108  

    Average    Average 

Mean 46.786 49.687 47.888 48.12033 50.782 53.251 52.255 52.096 
Var 5.511 5.887 - 6.063667 4.682 6.002 - 5.297 

Asy 17.746 26.757 - 22.2515 13.099 26.740 - 19.9195 

Stair ascent Stair descent 

 1 2 3 np  1 2 3 np  

    Average    Average 

Mean 32.485 40.762 36.096 36.44767 56.780 74.891 60.844 64.171 

Var 5.108 5.868 - 4.712 8.003 6.999 - 7.262 

Asy 14.952 2.103 - 8.5275 8.452 2.886 - 5.669 

(-) parameter not available due to data collection or synchronisation error, 

(np) non paretic side only due to failing to detect IC-FC times 
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D. EMG, burst timing and durations during stair ambulation 
EMG, burst timing and durations (HP): The muscle activation patterns during stair ascent and descent for both 

groups were shown in Figure S2. Although muscle burst timing and durations slightly varied from person to 

person, common muscle activation patterns were revealed during stair ambulation. Findings of EMG muscle 

activation patterns in our participants are consistent with previous stair ambulation based EMG studies [43, 85].  

 

In stair ascent experiments, TA found active mostly from late stance through swing phase to provide adequate 

foot clearance. TA muscle activation also found early stance phase in most HP. The activation at the stance 

phase was related to control of foot inversion-eversion, related to balance control during single limb support 

[43]. GS muscle bursts were detected in the stance phase (mostly mid-stance) for a short period similar to ground 

level walking. This finding shows good agreement with [85]. However, contradicts with [43], where GS reported 

being active during most stance phase. Prevalence of RF bursts was also observed in the stance phase, from early 

stance to midstance. BF muscle activation observed in both stance and swing phase, mostly around FC point and 

related to flexion of the knee for the next step over. 

 

In stair descent experiments, TA muscle bursts were detected mostly at the initial stance phase, unlike stair 

ascent. This activation is potentially related to controlling foot inversion-eversion [43]. In some, TA also found 

active around at initial swing (FCs moments), help sustaining the foot while landing on a surface. GS muscle 

onset pattern observed around IC moment and lasts until stance to swing transition time. RF muscle activation 

were observed at the initial stance, IC moments. BF muscle burst found mostly in the opposite phase of RF. 

Muscle onset of BF at late stance is related to the preparation of limb loading [43]. 

 

EMG, burst timing and durations (SS): The common EMG pattern of burst timing and durations observed in HP 

also observed in SS group, as shown in Figure S1- (d3-d6). Although there are differences in terms of burst 

timing and durations, it may not be possible to relate these differences with SS group as a result of this pilot 

study. Because earlier EMG based studies reported that there are other crucial parameters, such as walking 

velocity and age that affects muscle burst timing and durations [83]. Additionally, the number of studies for 

muscle activation of SS during stair ambulation is very limited, unlike level walking. Thus, future works will 

investigate the muscle pattern of SS during stair ambulation with a larger cohort. 

 

 
Figure D1.  Stroke Gait. (D) stair ascent & descent extracted parameters from the proposed tool. (d1) left panel represents non 

paretic side knee flexion during stair ascent and right panel represent paretic side knee flexion during stair descent. (d2) left 

panel represents paretic side knee flexion during stair ascent and right panel represent non paretic side knee flexion during stair 

descent. Left panel of (d3-d6) presents typical lower limb muscle activations during stair ascent. Right panel of (d3-d6) presents 

typical lower limb muscle activations during stair descent. a.u, Arbitrary unit-peak normalised EMG 
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Table D1 Spatio-temporal gait characteristics of SS ground level walking in indoor and outdoor for the right and left sides. SS 

(#3) paretic, non-paretic data is not presented due to failing to detect paretic side IC-FC moments. 

 
 Indoor Outdoor 

 Np P Np P 

 1 2  1 2  1 2  1 2  

RHYTHM   Average   Average   Average   Average 

Mean Step T.ime (s) 0.558 0.57 0.564 0.754 0.575 0.6645 0.465 0.648 0.5565 0.63 0.606 0.618 

Mean Stance Time (s) 0.83 0.673 0.7515 0.701 0.66 0.6805 0.736 0.427 0.5815 0.602 0.459 0.5305 

Mean Swing Time (s) 0.48 0.467 0.4735 0.603 0.486 0.5445 0.425 0.503 0.464 0.528 0.545 0.5365 

VARIABILITY             

Step Time Var (s) 0.004 0.004 0.004 0.003 0.002 0.0025 0.007 0.007 0.007 0.002 0.005 0.0035 

Stance Time Var (s) 0.003 0.001 0.002 0.004 0.004 0.004 0.001 0.001 0.001 0.001 0.001 0.001 

Swing Time Var (s) 0.004 0.004 0.004 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001 

Mean K.F.E  angle(°) 55.659 63.065 59.362 37.913 36.308 37.1105 57.164 63.237 60.2005 42.576 38.311 40.4435 

 (K.F.E) knee flexion angle (degree), Np=non paretic side, P=paretic side 

Bold indicate greater mean values comparing non paretic side to paretic side 

 

 
Figure D2. Muscle activity pattern for stair ambulation, healthy participants and stroke survivors 
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