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Abstract

A major challenge for the realization of intelligent
robots is to supply them with cognitive abilities in
order to allow ordinary users to program them eas-
ily and intuitively. One way of such programming is
teaching work tasks by interactive demonstration. To
make this effective and convenient for the user, the
machine must be capable to establish a common fo-
cus of attention and be able to use and integrate spo-
ken instructions, visual perceptions, and non-verbal
clues like gestural commands. We report progress
in building a hybrid architecture that combines sta-
tistical methods, neural networks, and finite state
machines into an integrated system for instructing
grasping tasks by man-machine interaction. The sys-
tem combines the GRAVIS-robot for visual attention
and gestural instruction with an intelligent interface
for speech recognition and linguistic interpretation,
and an modality fusion module to allow multi-modal
task-oriented man-machine communication with re-
spect to dextrous robot manipulation of objects.

1 Introduction

In recent years a new generation of intelligent robots
has found applications in natural environments like
museums, hospitals, or private households. While
conventional programming can be efficient for factory
floor applications, more cognitively oriented robots
must be instructable by ordinary human users in a
robust and intuitive way. In this respect, one way to
program a work task is by interactive human demon-
stration, which requires the endowment of a robot
with sufficient perceptual, cognitive, and motor skills
to communicate with the user in a natural fashion.
As humans inevitably use different modalities in in-
terpersonal and man-machine communication, an in-
telligent robot system should take advantage of this
information by using and integrating different per-
ceptual channels. In this paper, we present a combi-
nation and integration of active vision, gestural in-

struction, and speech input to instruct a robot sys-
tem for grasping tasks (Fig. 1). Though parts of the
functional modules have been described and evalu-
ated as standalone applications in more detail earlier
[3, 4, 15, 20], their integration into a full scale archi-
tecture is described here for the first time and has
proven to be a major challenge due to the enormous
complexity of the overall system. Therefore we focus
on the architecture and module interconnections and
highlight some lessons learnt from building such an
interactive system. As a whole, the described project
is part of a larger research effort (Bielefeld Special
Collaborative Research Unit SFB 360 [19]) aiming
towards the development of “situated artificial com-
municators” that can be interacted with in a natural,
“human-like” fashion with the combined use of ver-
bal and non-verbal instructions. It is in line with ear-
lier work devoted to robot teaching by showing [16]
and imitation learning [2, 6]. While there has been
much work on various aspects of learning in cogni-
tive architectures (speech and image integration [17],
trajectory acquisition [8, 14, 23], object recognition
and grasp pose determination [18] or sensor fusion for

Figure 1: The interactive scenario.



grasping [1]), the design of an integrated architecture
is widely believed to be very hard to achieve. Thus
there have been developed only a few advanced ar-
chitectures which are capable of integrating percep-
tual attention mechanism with higher level functions
[5, 7, 13].

The next sections provide an overview of the over-
all system and its highest level building blocks, with
special emphasis on their mutual interactions. We
then demonstrate some of the system’s capabilities
and discuss and illustrate the idea that there exists
a “critical level of skills” from which development of
the system towards more complex capabilities pro-
gresses much faster.

2 System Architecture

The architecture design is one of the key issues in
realizing a complex intelligent robot system. From
an ideal perspective, a common uniform software
framework should be specified beforehand to sup-
port a subsequent distributed development of mod-
ules according to certain specifications. Different
approaches like behavior based architectures, agent-
based concepts or blackboard systems have been pro-
posed in this context.

However, in a truly complex system very different
types of signals are generated at different time scales
and require many sub-skills to be developed under
diverse programming paradigms. In Section 8 we
discuss further reasons why from our experience it
is unreasonable to impose strong constraints on the
submodules for easier software engineering. As a
consequence, we find that it is rather the level of the
architecture which has to support the integration of
heterogeneous components.

Our entire system is implemented as a larger num-
ber of separate processes running in parallel on sev-
eral workstations and communicating with the dis-
tributed architecture communication system (DACS
[11]) developed earlier for the purpose of this project.
Hereby the submodules use different programming
languages (C,C++,Tcl/Tk,Neo/NST), various visu-
alization tools, and a variety of processing paradigms
ranging from a neurally inspired attention system to
statistical and declarative methods for inference and
knowledge representation. Thus the architecture as
a whole cannot be easily subsumed under any single
one of the programming paradigms mentioned above.

Figure 2 shows a coarse overview of the main in-
formation processing paths. The speech processing
(left) and the attention mechanism (right) provide
linguistic and visual/gestural inputs converging in an
integration module which then passes control to the
manipulator. Additionally, there are control com-
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Figure 2: Modules of the integrated architecture.

mands for parts of the system (e.g. on, off, calibrate
skin, park robot arm,...). The modules and some of
their interactions are further described in the follow-
ing sections.

2.1 Hardware Basis

The vision hardware currently consists of a binocu-
lar active vision head with two 3-chip-CCD color-
cameras, controllable pan, tilt, left/right vergence
and motorized lenses determining focus, zoom and
aperture, which combine to a total of 10 DOFs. The
grasping and manipulation is carried out by a stan-
dard 6DOF PUMA manipulator operated with the
real-time RCCL-command library. It is additionally
equipped with a wrist camera to obtain local visual
feedback during the grasping phase.

Grasping is carried out by a 9DOF dextrous robot
hand developed at the Technical University of Mu-
nich. It has three approximately human-sized fin-
gers driven by an oil hydraulics system. The fin-
gertips have custom built fingertip sensors to pro-
vide force feedback for control and evaluation of the
grasp. The hardware setting and its control design
has been described in more detail in [20]. Recently
we have changed the original hand design by adding
a palm and rearranging the fingers in a more human-
like configuration (Fig. 1,8) to allow a larger variety
of two- and three-finger grasps.

3 Visual Attention and Memory

A necessary prerequisite for successful human-
machine interaction is to establish and maintain a
common focus of attention between the user and the
vision system of the robot. Furthermore, a short
term visual memory has to be realized in order to
understand linguistic reference to objects in spoken
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Figure 3: User speech input (“take the red ... ”)
can bias the attention system towards special features
(red) and 3D-pointing gestures impose constraints for
spatial interest regions.

instructions. Our attention system places a high em-
phasis on the spatial organization of visual clues and
enhances a design proposed in [15]. It consists of a
layered system of topographically organized neural
maps for integrating different low-level feature maps
into a continually updated focus of attention for the
active camera head. Similar mechanisms have also
been employed in [5, 9, 21], however, only results
for highly idealized synthetic images or using a lower
number and less complex maps are reported.

In particular, from the stereo images a number of fea-
ture maps indicating the presence of oriented edges,
HSI-color saturation & intensity, motion (difference
map), and skin color are computed. As one of the
main goals of the system is to recognize pointing
hands, we multiply the difference map (indicating
movement) by the skin segmentation map (indicating
a hand). The result is a “moving skin” map, which
is considered as a separate feature map. A weighted
sum of these feature maps is multiplied by a fadeout-
map to form a final attention map and the highest
peak determines the next fixation, see Fig. 3. Af-
ter stereo matching, the resulting loop continuously
generates saccades for fixations and this active ex-
ploration behavior persists during the whole system
operation.

Interaction with the human user can modify the at-
tention map by two different mechanisms. If a spo-
ken instruction references a colored object (“ ... the
red cube ...”) the corresponding weight is increased
to bias the attention system towards red spots in the
image. This increases the probability for fixations on
red things, but after some time a decay mechanism
drives the weighting back to a default level.

If the hand and gesture recognition modules detect

a pointing gesture in the image, the 3D-direction of
the pointing finger is computed and a corresponding
region of interest is virtually projected on the ta-
ble. A respective “manipulation map” is multiplied
coordinate-wise with the attention map to restrict
the explorative attention to that region in the next
step, see Fig. 3.

The exploration behavior tends to fixate repetitively
upon the most interesting points, which are in most
cases objects. This “emerging regularity” is used to
establish a short term visual memory in the integra-
tion module to which all 3D-fixation coordinates are
sent. It uses temporal integration to stabilize only
the most salient points and if additionally a homo-
geneous color blob is detected, it is assumed that
there is an object, which then can be referenced by
spoken instructions. Future extensions will add a
more sophisticated object recognition (already avail-
able for the grasping feedback) at this point. Also
we plan to add more specific object maps in the at-
tention system, which then can be favored by spoken
instructions exactly like the color maps.

4 Speech and Language

To allow a fluent communication between the in-
structor and the artificial communicator our sys-
tem is capable of understanding speaker independent
speech input. The instructor neither needs to know
a special command syntax nor the exact terms or
identifiers of the objects. Consequently, the complete
speech understanding system has to face a high de-
gree of referential uncertainty from vague meanings,
speech recognition errors, and un-modeled language
structures.

Our approach to robust spoken language understand-
ing uses a vertical organization of knowledge rep-
resentation and an integrated processing scheme to
overcome the drawbacks of the traditional horizon-
tal architecture [4]. As baseline module [10] it em-
ploys an enhanced statistical speech recognizer. The
recognition process is directly influenced by a partial
parser which provides linguistic and domain-specific
restrictions on word sequences. Therefore, partial
syntactic structures instead of simple word sequences
are generated, like e.g. object descriptions (”the red
cube”) or spatial relations (”...in front of...”). These
are combined by the subsequent speech understand-
ing module to form linguistic interpretations.

To cope with out-of-vocabulary words we employ a
recognition lexicon which exceeds the one used by
the understanding component but covers all lexi-
cal items frequently found in our corpus of human-
human and human-machine dialogs. The syntactic
modeling then allows one to use these additional



words to be filled-in for such open lexical categories
as nouns, for example. In a robust system the
speech processing modules have to be able to cope
with spontaneous speech input which largely devi-
ates from speech read from text prompts or used in
a dictation task. Particularly, clear pronunciation,
vocabulary limitations, and restrictions in language-
use can never be enforced. To meet these challenges
the recognition lexicon contains acoustic models for
spontaneous speech phenomena, namely for so-called
human noises (breathing or lip smacks) and hesita-
tions (like ’uhm’).

5 Integration

5.1 Interrelating Speech and Vision

If a naive user describes an object in the scene by
using attributes he or she will typically use a vo-
cabulary which is different from the fixed one ap-
propriate for processing of visual data. Therefore,
several kinds of uncertainties have to be considered
when correlating a verbal object description and ob-
ject recognition results, such as vague attributes (e.g.
“the long, thin stick”), vague spatial and structural
descriptions (e.g. “the object to the left of the cube”,
“the cube with the bolt”), or speech and object recog-
nition errors.
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Figure 4: Bayesian network connecting speech and
vision data for one related reference object.

In order to cope with this uncertainty, we have de-
veloped a Bayesian network approach that robustly
combines verbal and visual information through dif-
ferent abstraction levels [22]. On the first level, ba-
sic features from vision (Cvis :color, T vis :elemental
type) and speech (T :type, C :color, S :shape, Z :size)
are modeled as evidential nodes of the Bayesian net-
work for each of the n visual objects and N verbally-
referenced objects. On the second level, these are
fused to the visual object class Ovis

k∈{1,...,n} and verbal
object class Oio/roj ,j∈{1,...,N−1} which are connected
by the intended object and reference object variables
IO,ROj ∈ {1 . . . n}. The verbally-mentioned spatial
or structural relations between the objects are es-
tablished by introducing additional evidential nodes
Rj (Fig. 4). The different kinds of uncertainties are
modeled by conditional probability tables that have
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Figure 5: Model of the man-machine communica-
tion.

been estimated from experimental data [22]. The
objects which are denoted in the utterance are those
explaining the observed visual and verbal evidences
evis, everb in the Bayesian network with the maxi-
mum a posteriori probability. Additional causal sup-
port for an intended object IO is defined by an op-
tional target region of interest that is provided from
the 3D-pointing evaluation. The intended object IO
is then used by the dialog component for system re-
sponse and manipulator instruction.

5.2 Dialog system

Many dialog systems developed recently lack inte-
gration with other modalities. In contrast to such
uni-modal approaches our dialog module integrates
utterances of the instructor, information of the vis-
ible scene, and feedback from the robot to realize a
natural, flexible and robust dialog strategy.

The dialog module is realized within the seman-
tic network language Ernest using the dialog model
shown in Fig. 5. The model is based on an in-
vestigation of a corpus of human-human and simu-
lated human-machine dialogs. Every path through
the model reflects a course of a possible human-
machine dialog. The admissible sequence of interme-
diate states is nearly unrestricted leading to a very
natural and robust dialog behavior [4].

State transitions are initiated if new information
from the instructor or the robot is available. The
state transition function analyzes the new informa-
tion and combines it with the current dialog con-
text and information gathered from the interrelation
module to select the next state.

Using the dialog context, references between objects
can be resolved, “Take the red bolt. Put it into the
cube.”, and information accumulated in the dialog
can be combined. The dialog module can react upon
new information from different modalities to inform
the instructor about errors during the execution of an
action and can actively control the dialog to query
for missing or unprecise information. The overall
goal of this module is to continue the dialog in ev-



Figure 6: The attention map: hot spots, camera
image, stereo matched points to be transferred to the
integration module (upper row). Hand and finger
recognition uses a multi-layer perceptron based clas-
sification of the intensity histograms (middle row).
Projection of the 3D-pointing direction on the table
(lower row).

ery situation. Actions which cannot be executed are
immediately rejected. For verbal instructions which
could not be analyzed a repetition is requested up
to two times. If the dialog has gathered completely
contradictory information the system expresses its
confusion and asks for a new instruction.

6 Manipulation

Once the integration module has resolved ambigui-
ties, control is passed to the robot arm/hand. Start-
ing from the 3D-coordinates determined by the vision
and integration modules the approaching movement
and grasping is executed in a semi-autonomous fash-
ion relying on local feedback only. The arm and hand
control is implemented as a finite state automaton,
switching between different arm modes (approach,
refine, closer, re-align,...) and hand states (open, pre-
shape, grasp, hold, release,...) whose transitions are
triggered by visual and tactile feedback. In partic-
ular, the wrist camera provides visual feedback and
object recognition to approach the grasp offset posi-
tion and, in the grasping phase, the fingertip sensors
provide the necessary force feedback.

The grasping sequence starts with an approach
movement, recenters the manipulator above the ob-
ject, chooses a grasp prototype according to the rec-
ognized object, aligns the hand along the main axis
of the object and executes the grasp prototype, for
more details see [20]. After successful gripping, a
similar chain of events allows the robot to put the

object down in another gesturally selected location.

7 An action sequence

To illustrate the capabilities of our system we present
a (simplified) typical action sequence for picking up
and deploying an object in sequential order. Some
videos can be found at [12]. The sequence consists
of 8 major stages:
1) Initially, a number of objects are spread on a ta-
ble in the workspace of robot arm and camera. The
system can be started and partially calibrated by
speech commands shown in Fig. 7 (right display).
The attention systems explores the scene as shown
in Fig. 6 (top row) and transmits the fixation points
to the integration module, where the visual memory
is stabilized and the spatial object relations are an-
alyzed, see Fig. 7 (lower left display).
2) A user gives a spoken instruction referencing one

of the objects. The instruction is semantically ana-
lyzed and the dialog is initiated, see Fig. 7 (upper left
display). The system may ask for additional pointing
information, e.g. for resolving ambiguities. It also
determines, whether the attention system should be
biased towards particular colors.
3) When a pointing hand is found, the gesture is eval-
uated as visualized in Fig. 6 (middle row) and the 3D
interest region is fed to the integration module.
4) The Bayesian network integrates the spoken in-
struction, the visual memory, and the gesture-based
region bias to determine the object to be grasped. In

Figure 7: The speech input is analyzed and
segmented into semantic categories like action
(S AKTION nimm) or object (S OBJEKT den
Block) (upper left display). Spatial relations between
objects in the short time memory (lower display) can
be referenced by instructions. In the right window a
number of direct commands are available, which can
also be given by spoken instructions.
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Figure 8: Visual and tactile feedback for grasping:
a) view through the hand camera for the approach
movements; b) two finger grasp of a cube; c) hand
camera view before three finger grasp;d) three finger
grasp; e) force feedback from the fingertips to evaluate
the grasp.

case this fails, the dialog asks for a repetition of the
instruction and a new gesture.
5) Control is passed to the hand/arm system,
which performs a visually guided approach move-
ment (Fig. 8(a)), determines a grasp primitive and
pre-shapes the hand (c), aligns it with respect to the
object and finally grasps the object (b,d)) with force
feedback control (e). Upon a failure, it retries and
on success the integration module is informed.
6) The dialog system asks the user to indicate where
to deploy the object.
7) The pointing evaluation part of 4) is repeated with
the slight difference that now the 3D-fingertip posi-
tion directly determines the position of object de-
ployment.
8) Control is redirected to the hand/arm system,
which deploys the object and the system returns into
the starting mode of exploration.

8 The Critical Level of Skills

As described above, our system integrates a larger
number of skills, local feedback mechanisms, and
state machines. Many of the modules have been
developed and tested independently of each other,
can be trained offline, and have adaptive calibration
facilities [3, 20, 22]. Most of them are much more
powerful when operated standalone; however, in the
integrated system, the full capabilities of each mod-
ule are not always employed. This is due to mu-
tual interdependencies and less specialized hardware
delivering a lower quality of sensory inputs. Con-

sequently, a potential of “hidden capabilities” and
resources exists in the overall system.

One approach to avoid this apparent waste of capa-
bilities is to restrict the solution space for the individ-
ual modules to ensure a high degree of homogeneity
towards a beforehand specified scenario. However,
we find that this is not reasonable because once a ro-
bust functioning of the overall system is achieved, we
can benefit from the “hidden capabilities” in certain
modules quite easily. We experience that small co-
ordinated modifications in several modules or slight
changes in the control flow can quickly open new
and unforeseen perspectives for the system. We give
two examples to illustrate this: Recognition of bars
together with a corresponding grasp prototype al-
lows us to progress from cube-based pyramid build-
ing to cube and bar based building of bridges, houses,
closed boxes, etc.. Secondly, a slight change in the
speech-initiated control allows to reuse the fingertip
detection algorithm initially employed to find objects
for deploying them at fingertip positions. The same
capabilities can be used to teach multi-point trajec-
tories just by pointing to consecutive positions or to
indicate small relative movements by pointing to two
nearby positions subsequently.

We believe that this experience can be summarized
as approaching a critical level of skills. This level
is characterized by a situation where small improve-
ments or (adaptive) reconfiguration of single mod-
ules or slight changes in the control flow immediately
open up a whole new variety of action opportunities.
Hereby we benefit from a certain amount of robust-
ness, the possibility to readapt or recalibrate, and a
rather loose coupling between the modules, which in
our architecture is realized by the message-passing
communication paradigm and which allows quick re-
organization of the control flows. The interactive
teaching of tasks then can take full advantage of the
user’s creativity to recombine the system’s skills to-
wards previously unexpected results.

9 Discussion

The presented architecture integrates a set of capa-
bilities to enable an intuitive programming of grasp-
ing tasks by a human user. It ranges from a percep-
tual grounding in an active exploration of the scene
up to an interpretation of complex user commands
by a sophisticated speech analysis and modality fu-
sion system. As there are no widely accepted bench-
marks for cognitive robotic systems interacting with
humans, it is difficult to assess the performance of
such systems systematically and beyond demonstrat-
ing that they are indeed running by examples. Thus,
currently we are adding a visualization and monitor-
ing module, which will also be able to record action



sequences and will enable a more quantitative per-
formance analysis.

We think one of the major challenges is to lift learn-
ing in our system from the offline training widely
used in the lower level modules to the level of be-
havior. The current system, enhanced by a system
monitor, will offer a tool to study how such learn-
ing needs to be organized to progress from imitation
of human-instructed action sequences to extracting
knowledge on the task level. Some of the many issues
will be how to propagate errors top down and how to
flexibly reorganize the control flow without losing ro-
bustness and functionality of the system. Only then
will we come closer to easily-instructable intelligent
systems that can robustly carry out non-trivial tasks
in natural environments.
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