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ABSTRACT Recently, medical image fusion has emerged as an impressive technique in merging the medical

images of different modalities. Certainly, the fused image assists the physician in disease diagnosis for

effective treatment planning. The fusion process combines multi-modal images to incur a single image

with excellent quality, retaining the information of original images. This paper proposes a multi-modal

medical image fusion through a weighted blending of high-frequency subbands of nonsubsampled shearlet

transform (NSST) domain via chaotic grey wolf optimization algorithm. As an initial step, the NSST is

applied on source images to decompose into the multi-scale and multi-directional components. The low-

frequency bands are fused based on a simple max rule to sustain the energy of an individual. The texture

details of input images are preserved by an adaptively weighted combination of high-frequency images using

a recent chaotic grey wolf optimization algorithm to minimize the distance between the fused image and

source images. The entire process emphasizes on retaining the energy of the low-frequency band and the

transferring of texture features from source images to the fused image. Finally, the fused image is formed

using inverse NSST of merged low and high-frequency bands. The experiments are carried out on eight

different disease datasets obtained from Brain Atlas, which consists of MR-T1 andMR-T2, MR and SPECT,

MR and PET, and MR and CT. The effectiveness of the proposed method is validated using more than

100 pairs of images based on the subjective and objective quality assessment. The experimental results

confirm that the proposed method performs better in contrast with the current state-of-the-art image fusion

techniques in terms of entropy, VIFF, and FMI. Hence, the proposed method will be helpful for disease

diagnosis, medical treatment planning, and surgical procedure.

INDEX TERMS NSST, grey wolf optimization, chaotic function, image fusion, MRI, PET, SPECT.

I. INTRODUCTION

A variety of medical imaging technologies available today

capture images with distinct modalities which focus on organ

or tissue information. Generally, multi-modal medical images

provide complementary details of various human organs

of the body. High-resolution images are acquired through

computed tomography (CT) imaging technique that cap-

tures skeletal structures, and third-party implants, while the

magnetic resonance (MR) imaging detects the internal body
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structures such as abdomen, liver, pancreas and other soft

tissues, however less capable in capturing dense struc-

tures like CT. Besides, the functional imaging techniques

such as Positron Emission Tomography (PET) and Single-

Photon Emission CT (SPECT) are employed to capture the

metabolism information of an organism, which assists in

treating the tumor detection and vascular disease diagnosis.

The functional images are often described using pseudocolor,

and its low spatial resolution often inhibits the useful anal-

ysis. Hence, for accurate diagnosis, physicians observe the

multi-modal medical images separately, which causes incon-

venience of investigating the images in terms of accuracy and
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time. The solution to this problem can be accomplished using

image fusion which procures the relevant information from

individual images and combines them such that the informa-

tion perceived by human or machine is better compared to the

source images and is helpful for disease diagnosis, treatment

planning, and surgical procedure as well.

Several fusion methods are reviewed in recent survey

papers [1], [2]. Fusion techniques have been practiced in

diverse fields such as fusing multi-modal medical images,

multi-focus images, panchromatic satellite images, infrared-

visible images. Among these, medical image fusion remains

special, as it aids the physician to analyze the images cap-

tured in different imaging modes in a single image, sav-

ing time and increasing the overall quality of an image.

Typically, medical image fusion is performed in the spa-

tial and frequency domain. Most of the medical image

fusion techniques are performed in a multi-scale domain

in which source images are first converted to multi-scale

components. Further, the multi-scale coefficients are merged

based on a variety of fusion rules. Finally, inverse trans-

form techniques are applied to the merged coefficients

to get the fused image. Laplacian pyramid based fusion

approaches fuse the pyramid components [3], Li et al. [4]

fuse the wavelet coefficients, merging of dual-tree com-

plex wavelet components in [5], nonsubsampled contourlet

transform (NSCT) coefficients in [9], nonsubsampled shear-

let transform (NSST) in [10]. Among various multi-scale

component based methods, NSCT and NSST methods out-

perform the other approaches. Furthermore, the selection of

fusion strategies plays a crucial role in merging the low

and high-frequency coefficients. Several fusion strategies are

employed in literature such as averaging, maximum selection

rule, etc. Numerous methods have revealed that multi-scale

fusion approach can be enhanced by incorporating different

fusion rules. Du et al. in [11] suggested a technique based

on local Laplacian filtering to obtain multi-scale components

and fusion rule based on information of interest. Recently,

convolution neural network [12] based fusion approach is

intended to fuse Laplacian pyramids.

A biological neural network model has been inspired

by cat’s visual cortex popularly known as a pulse-coupled

neural network (PCNN) [14], which is extensively used

in image processing applications including segmentation,

feature extraction, region growing, noise reduction, image

enhancement and applied as a tool in image fusion. PCNN

has been utilized in fusion literature to extract the informa-

tion of the source images based on activity level. Further,

PCNN is expanded to multi-scale coefficients to retrieve the

details of an image. Several PCNN based fusion methods

have been addressed in the area for multiscale components

such as NSCT, NSST [15]. An effective fusion strategy based

on fuzzy adaptive PCNN has been employed for NSCT coef-

ficients in RPCNN [13]. Typically, PCNN models strongly

depend on the parameter values, which are set manually as

well as automatically. The quality of a fused image relies

on the optimized parameters selected for PCNN settings,

which are manually fixed as constants based on the empirical

result. Thus, several techniques attempted to obtain automatic

setting of parameters [14] using metaheuristic optimization

approaches. Ming et al. in [15] proposed a method based

on selecting automatic adaptive parameters for PCNN and

achieved better results compared to other fusion techniques

qualitatively.

Recently, nature-inspired algorithms have been adopted in

fusionmethods to combine the source images [16], [17], [19],

which finds weight coefficients to merge the multiscale com-

ponents. In most of the cases, frequency domain approaches

such as Discrete Fourier Transform or wavelet transform have

been utilized with mutual information as the fitness function.

In the fusion process, change of color, appearance, and

noise artifacts are considered as annoying factors. Simple

maneuvering often creates undesirable effects at the bound-

aries of regions extracted from source images that may lead

to an inaccurate diagnosis. This paper proposes a simple

and effective method for multi-modal medical image fusion

in NSST domain that attains superior quality compared to

recent fusion approaches. We employ an adaptively weighted

combination of shearlet components based on an effective

transfer of textural details from source images to the fused

image. The optimizedweights are obtained using chaotic grey

wolf optimization (CGWO) algorithm by minimizing the L1

distance between source images and combined image as the

fitness function. Thus, the weights are considered as adap-

tive and computed for each high subbands independently.

The CGWO algorithm computes weights with fast conver-

gence speed with a lesser number of iterations. We also fuse

low-frequency coefficients to preserve the energy of source

images in the fused image using simplemaximum fusion rule.

The proposed approach experiments on different modalities

such as MR-T1 and MR-T2, MR and SPECT, MR and PET,

MR and CT containing more than 100 image pairs. The set

of images comprise of various modalities and diseases as

mentioned in Brain Atlas [26]. Besides, the proposed fusion

method is compared with nine recent medical image fusion

approaches using metrics such as entropy (EN), standard

deviation (SD), feature mutual information (FMI), visual

information fidelity for fusion (VIFF) and Edge Intensity

(EI). None of the recent algorithms rank 1 in all the param-

eters. The prominent contributions of the proposed fusion

method in NSST domain are stated as follows,

• The paper utilizes a fusion method by combining NSST

and Chaotic Grey Wolf Optimizer for effective combi-

nation of features from source images.

• Various chaotic maps are tested for fusing multi-modal

medical images.

• A simple max fusion rule is employed for merging low

frequency components and adaptively weighted fusion

technique to fuse the high frequency components based

on minimization of L1 distance between fused image

and source images as the fitness function.

• More than 100 pairs of medical image data are tested

unlike the works proposed in the past where only few
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image data are tested and compared with the recent

existing medical fusion methods.

The work is explained in 5 sections as follows. Section II pro-

vides background work on NSST for multi-scale and multi-

direction decomposition and optimization technique using

CGWO algorithms. Section III explains the materials and

methods of the proposed multi-modal medical image fusion

process followed by experimental discussions in section IV.

Finally, conclusion is presented in the section V.

II. BACKGROUND

A. NONSUBSAMPLED SHEARLET TRANSFORM (NSST)

To overcome the drawbacks of wavelet transforms in express-

ing signals with edges, shearlet transform [21] has been pro-

posed. Contrary to existing multi-scale approaches such as

the pyramid, wavelet, edgelet, and curvelet, shearlet captures

the texture portions of an image at multi-scale and multi-

directions efficiently. In this approach, directional filters exer-

cised in contourlet of NSCT are replaced by the shearing

filters, in which it contributes no constraints on the number

of directional filters. The success of sheering filters is that

the inverse shearlet transform needs the computation of sum-

mation. Despite the success of shearlet domain, merging of

bands remain as open problem. Several approaches employ

fusion rules to attain the optimum fusion outcome. Major-

ity of techniques employ averaging to merge low frequency

band, leading to decrease in overall energy of the image. Our

method exploits simple addition property of shearlet bands

as inverse transform, and hence the weighted combination of

high-frequency bands is directly performed based on mini-

mizing L1 distance between source and fused images in the

shearlet domain itself. In addition, nonsubsampling method

is utilized to overcome shift-invariance property of standard

shearlet transform. Thus, for dimension n=2, affine systems

with composite dilationsMXY (ψ) are of the form given by,

{ψl,k,m(y) = |detX |
l
2ψ(Y kX ly− m : l, k ∈ Z ,m ∈ Z2}

(1)

where, ψ ∈ L2(R2), both X and Y are invertible matrices of

size 2 × 2 with |detY | = 1. X and Y respectively denotes

anisotropic dilation matrix and shear matrix with scale (l),

direction (k) and shift (m). The components of system is

composite wavelets if Parseval frame is satisfied forMXY (ψ),

i.e.,
∑

j,k,l

∣

∣

〈

f , ψj,l,k
〉∣

∣

2 = ‖f ‖2, ∀f ∈L2(R2) (2)

The dilation matrices X l corresponds to scale transforma-

tions, whereas Y k corresponds to geometric transformations

such as shear and rotations. This allows to construct Par-

seval frames at various scales, locations and orientations.

Shearlet forms a special example of composite wavelets with

anisotropic dilation matrix X0 and shear matrix Y0 given by,

X0 =
[

a 0

0
√
a

]

(3)

FIGURE 1. Shearlet decomposition of two level.

with a ≥ 0, and

Y0 =
[

1 s

0 1

]

(4)

s ∈ R, MXY (ψ) is called shearlet which is a collection

of wavelets at different scales. The matrix X0 contains scale

transform and matrix Y0 contains geometric transformation.

The discrete shearlet transform consists of two steps. i.e,

multi scale division and direction localization. In the Fig. 1,

initially Laplacian pyramid is applied to an image to decom-

pose into low and high frequency components. The direction

localization is achieved via shear filter. Generally, in Lapla-

cian pyramid filters, L + 1 subbands are taken with the same

size as the input image for L level decomposition. In total,

L high-frequency bands and one low-frequency band are

achieved using shearlet transform. For each decomposition

level, a shearlet filters are applied to obtain the directional

representations of the corresponding group. Thus, two steps

are involved in this process. The first step generates the

nonsubsampled pyramid, in which each scale is obtained by

accumulating the filtered results of the decompositions at

all directions using shearing filters. The second step is to

reconstruct the image captured by nonsubsampled pyramid

from coarse to fine using the reconstruction filters. The NSST

decomposition using pyramid filters and shearlet filters is

depicted in Fig. 1.More details about NSST are found in [21].

Several state-of-the-art methods have adopted NSST for pro-

ducingmulti-scale components [10], and it is employed in the

present work due to its benefits such as multi-scale, multi-

direction, and shift invariance property, moreover its addition

property as inverse transform.

B. CHAOTIC GREY WOLF OPTIMIZATION (CGWO)

Grey Wolf Optimizer (GWO) is the state-of-the-art meta

heuristic optimization algorithm motivated by the social

hunting behavior of grey wolves [22]. GWO has been

tested using 29 benchmark functions, and produced com-

petitive results over the state-of-the-art meta-heuristics.

In addition, optimized parameters for image fusion

applications [16], [17], [19] were computed using GWO.

However, GWO often fails to find global optimum at less
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number of iterations, hence increasing the convergence

rate. Recently, Chaotic GWO [24] has been investigated

for optimization problems endeavoring acceleration of

convergence speed. Chaos is a deterministic random like

signal with non periodic, no converging and bounded.

Variety of chaos has been tested in the optimization field.

The chaotic maps improves the convergent rate to land

at the global optimum location more quickly. Due to

excellent performance and faster convergence of CGWO,

we employ in the proposed method to find the opti-

mum weights to merge the source images. GWO simulates

the hunting and prey searching behavior of grey wolves.

It assumes that grey wolves have the four level of social

hierarchy such as alpha (α) at first level, beta (β) at second

level, delta (δ) at third level, omega (ω) at the last level.

α wolves have managing capacity of whole pack of grey

wolves and hence, act as leader wolves. In addition to this,

it also regulates the hunting process taking judgments such as

hunting, sleeping place, maintaining discipline, waking etc.

β wolf reinforces commands set by α and takes the feedback

from other wolves to transfer it to the leader wolves. They

become leader if α wolf passes away. ω wolves are the last

one to eat the prey. They manage the safety and integrity of

the entire wolf union. delta wolves watch in the boundaries

of territory and safeguard the pack. Mainly GWO has three

phases that include; tracking/chasing/approaching the prey,

pursuiting/encircling/harassing and attacking the prey. The

mathematical representation of encircling is given by,

−→
D =

∣

∣

∣

−→
C · −−→

Yp(t) − −→
Y (t)

∣

∣

∣
(5)

−→
Y (t + 1) = −−→

Yp(t) − −→
A · −→

D (6)

where t represents the current iteration,
−→
A ,

−→
C are the coef-

ficient vectors,
−→
Yp is the position vector of prey,

−→
Y is the

position of wolf. While hunting, prey is encircled by the

wolves guided by alpha. In addition, beta and delta wolves

participate in hunting. In simulation, alpha, beta and delta

know the location of prey. Hence, first 3 best solutions are

saved and other search agents are suggested to update their

positions. i.e, Dα , Dβ , Dδ denotes the distances of α, β, δ

from wolf Y . It is computed as,

−→
D α =

∣

∣

∣

−→
C 1 · −→

Y α − −→
Y

∣

∣

∣

−→
D β =

∣

∣

∣

−→
C 2 · −→

Y β − −→
Y

∣

∣

∣

−→
D δ =

∣

∣

∣

−→
C 3 · −→

Y δ − −→
Y

∣

∣

∣ (7)

−→
Y 1 = −→

Y α − −→
A 1 · −→

D α
−→
Y 2 = −→

Y β − −→
A 2 · −→

D β

−→
Y 3 = −→

Y δ − −→
A 3 · −→

D δ (8)

For GWO

−→a = 2 − t ∗
(

2

maxiter

)

(9)

Algorithm 1 Pseudocode of Chaotic GreyWolf Optimization

Technique

1: initialize the population
−→
Y i of grey wolves randomly

and start the generation counter t

2: initialize the sinusoidal chaotic maps y0 randomly.

3: initialize the parameters
−→
A ,

−→
C ,−→a

4: compute the fitness function as in Equation (12) of each

wolf,
−→
Y α denotes the best wolf,

−→
Y β represents the sec-

ond best,
−→
Y δ third best wolf.

5: while t ≤ maxiter do

6: sort the population as per fitness value

7: update chaotic value according to chaotic map as in

Equation (16)

8: for each search agent do

9: update the position of current wolf as
−→
Y (t + 1) =

−→
Y 1+

−→
Y 2+

−→
Y 3

3
.

10: end for

11: update the parameters −→a ,
−→
A ,

−→
C as in Equation (9)

and (10).

12: compute the fitness of all wolves and update
−→
Y α ,

−→
Y β ,−→

Y δ .

13: replace the worst wolf with the best wolf

14: increment the iteration number t = t + 1

15: end while

16: return
−→
Y α

where t denotes the iteration number andmaxiter denotes the

maximum number of iterations.

−→
A = 2−→a · −→r 1 − −→a
−→
C = 2 · −→r 2 (10)

−→
Y (t + 1) =

−→
Y 1 + −→

Y 2 + −→
Y 3

3
(11)

The parameter values −→a ,
−→
A and

−→
C are computed. The

value of −→a is linearly decreased from 2 to 0 at the end of

iterations (it depends on maximum number of iterations) [22]

for GWO. −→r 1 and
−→r 2 represents the random vectors in the

range (0,1). The grey wolves finish attacking when it stops

moving towards it. The vectors represent the process that

wolves able to reach the point between wolf and prey. The

parameter−→a controls the GWOactivity.
−→
C puts more weight

on prey and makes it challenging for wolves to reach the prey.

Position of all the wolves get updated in every iteration.

GWO is practiced in several applications, to solve the

optimization problem with suitable alterations. In order

to improve the efficiency and convergence speed, CGWO

algorithm [24] has been realized by exploiting the chaos.

In short, chaos is a deterministic random like method in a

nonlinear dynamic system. It is nonperiodic, nonconverging

and bounded. Several chaotic maps do exist such as tent, sinu-

soidal, logistic, circle, piecewise, cubic, chebychev, etc., with

different mathematical equations. They improve the search
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FIGURE 2. Block diagram of the proposed method (NSST-CGWO) for grayscale image fusion.

space globally, Chaotic maps affect the convergence rate of

optimization algorithms. Accordingly, the chaotic maps take

any value in the range (0, 1) initially for −→a ,
−→
A ,

−→
C . The

objective function of all the grey wolves is evaluated and

arranged according to their fitness. The topmost wolf is con-

sidered to be α wolf, second top as β and third as δ wolf. Best

wolf is represented as α wolf, keeps updating the position.

The parameter values change in every iteration, fitness of

α is considered as the best solution obtained. The objective

function is the function whose optimal solution needs to be

computed in the search space. Entire work in the proposed

method focuses on retaining the structural details and energy

of source images. Accordingly, the fitness function is chosen

as the minimization problem of L1 norm between fused

image and source images. It is hence given by,

fobj = min
∑

∣

∣

∣H
l,k
F − H

l,k
A − H

l,k
B

∣

∣

∣ (12)

where, H
l,k
F represents the fused high frequency bands in l th

scale and k th direction. H
l,k
A and H

l,k
B denote high frequency

bands of source images A and B respectively in l th scale

and k th direction. This is achieved by CGWO. The details of

chaotic grey wolf optimization is provided in algorithm 1.

III. PROPOSED METHODOLOGY

The proposed multi-modal medical image fusion is named

as NSST-GWO, and pseudo code of the fusion method is

provided in Algorithm 2. Fig. 2 and Fig. 3 respectively depict

the block diagram of the proposed medical image fusion for

grayscale and color images. Let A and B represent source

images of the same size. The registration of two input images

is performed for source images with different size to make

equal size. The goal of registration process is to align

Algorithm 2 Pseudocode of Proposed Medical Fusion

Approach

1: input: source images A and B

2: for each source image A and B do

3: obtain the NSST decomposition to get L and H l,k

according to Equation (13).

4: end for

5: fuse low frequency band using maximum fusion rule

according to Equation (14).

6: for each image A and B do

7: for each level l = 1 : L do

8: for each direction k = 1 : K do

9: compute weights w1 and w2 using

CGWO using objective function fobj =
min

∑

∣

∣

∣H
l,k
F − H

l,k
A − H

l,k
B

∣

∣

∣

10: merge each high frequency band as H
l,k
F =

w1H
l,k
A + w2H

l,k
B

11: end for

12: end for

13: end for

14: compute inverse NSST of LF ,H
l,k
F to obtain the fused

image F using Equation (15).

15: output the fused image F

the images. It is important while merging the images

that focuses to combine corresponding features. This is

achieved by employing warping techniques to align the

scale of one image with respect to the reference image.

In the proposed method, we consider two images, however,

can be easily extended to more number of images. The

following subsections explain the detailed fusion process
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FIGURE 3. Block diagram of the proposed fusion method for color image fusion.

involved in the proposed work. Hence, main stages consist of

NSST decomposition, fusion of low-frequency components

and high-frequency components using chaotic grey wolf opti-

mization technique, and image reconstruction using inverse

NSST.

A. NSST DECOMPOSITION

NSST captures multi directional features such as curves

at various scales by employing Laplacian pyramid filters.

Sizes of sub-band images obtained via NSST decomposition

remain same as original image, which makes easier to fuse

at various levels. If A and B are unregistered images, they

are registered to have same size. At first, fusion algorithm

involves the application of nonsubsampled shearlet transform

followed by fusion at each level. Similar to other multi

scale approaches, low frequency band of shearlet domain

reflects the overall intensities of source images, while high

frequency bands represent curves at various scales and direc-

tions. A L-level NSST decomposition is performed on two

source images A and B to obtain {LA,H l,k
A } and {LB,H l,k

B }
respectively [21]. In this, L represents the low frequency band

andH l,k denotes high frequency bands at level l and direction

k .

NSSTA = {LA,H l,k
A } and NSSTB = {LB,H l,k

B } (13)

B. FUSION OF SUBBANDS

Low-Frequency Fusion: The fusion rule for low-frequency

bands play a significant role in the quality of the final fusion

result. The overall energy of the signal is contained in the low-

frequency component, and it is hence essential to retain the

energy of the individual in the final fused result. The energy

levels of source images alter significantly, as different imag-

ing techniques have been employed. As a result, the intensi-

ties of final image decrease due to the conventional averaging

procedure. To overcome this issue, we employ the max rule

fusion strategy to preserve the energy of an individual in the

final fused image, which significantly impacts on the visual

perception. The fused low-frequency band is obtained using

the following fusion strategy.

L
l,k
F =

{

LA if LA > LB

LB if LA ≤ LB
(14)

High-Frequency Fusion: H
l,k
A represents the high frequency

bands obtained after applying NSST for source image A. In a

similar manner, after the NSST application on source image

B,H
l,k
B is obtained. Each band is adaptively merged asH

l,k
F =

w1H
l,k
A + w2H

l,k
B . The weights are obtained using CGWO

algorithm by choosing minimization of L1 distance between

fused image and source images as provided in Equation 12.

C. NSST RECONSTRUCTION

The fused low frequency and high frequency components

{LF ,H l,k
F } are finally used to reconstruct the fused image F ,

which is achieved by simple addition of subbands.

F = NSST−1(LF ,H
l,k
F ) (15)

IV. EXPERIMENTAL ANALYSIS

A. EXPERIMENTAL SETUP

The proposed fusion method and other existing methods are

executed usingMATLAB 15a installed on windows 10, 64 bit

operating system in a machine with intel(R) core i5-5200U,

CPU at 2.20GHz processor with 8GB RAM.

B. DATASETS

The proposed method is verified experimentally, for which

more than 100 pairs of multi-modal medical images have

been selected. It includes 21 image pairs MR-T1 and

MR-T2 from Alzheimers Visual Agnosia, 21 image pairs

of MR-T2 and SPECT of Glioma disease, 11 image

pairs of MR-T2 and SPECT from metastatic bronchogenic,

11 pairs of MR-T2 and PET from mild Alzheimers, 11 pairs

of MR-T2 and SPECT from Motor neuron, 11 image sets

of MR-T2 and PET from Normal aging, 11 pairs of CT and
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MR-T2 from Sarcoma, 7 image pairs of MR-T2 and SPECT

from Subacute stroke. All of these image pairs are down-

loaded from the Whole Brain Atlas [26] dataset available

publicly which is created by Harvard Medical School. They

have been extensively used inmedical image fusion literature.

All the image pairs with same size are fused directly, while

image pairs with different sizes are carefully registered before

fusion process. Consequently, the size of all images is made

equal to 256 × 256.

C. COMPARISON WITH THE STATE-OF-THE-ART

The proposed fusion method NSST-CGWO is compared with

nine recent state-of-the-art fusion techniques. These include

NSST-PAPCNN [15], CNN [12], LLF-IOI [11], GFF [7],

LPSR [8], NSCT-RPCNN [13], HMW-GWO [16], MMIF-

NSCT [20], NSST-SF-PCNN [29]. The methods have been

proposed in the last few years and shown significant improve-

ment over the same database. The implementations of major-

ity of mentioned state-of-the-art methods have been made

available publicly. The parameters are set to the default values

as provided by the respective papers.

D. PARAMETER SETTINGS

In the proposed method the following parameters are selected

for NSST. L decomposition levels has been used for NSST.

The performance of algorithm remain saturated for higher

decomposition levels [15]. Hence, we have set the number of

decomposition levels as L = 4, with number of directions at

each level is chosen as 16, 16, 8, 8. The number of directions

is normally chosen from finer scale to coarse scale. Param-

eters used for CGWO are as follows: the population size of

grey wolves is taken as 30, and 20 iterations were carried out

totally. For CGWO, the parameters−→r 1 and
−→r 2 are randomly

chosen. The value of −→a changes over the iterations linearly.

Numerous chaotic maps exist, and are applied in the proposed

study. They include tent, sinusoidal, singer, logistic, piece-

wise, iterative, Gaussian, circle, chebychev. From the set of

experiments conducted using various chaotic maps, we con-

clude that these maps produce similar results in terms of

qualitative and quantitative metrics. However, based on time

criteria, sinusoidal has been found to perform best among

several chaos, it is hence adopted in the present work. The

map equation of sinusoidal chaotic map is given by,

yt+1 = ay2t sin(πyt ) (16)

The chaotic function variable a = 0.5 is used. Table 1

lists the different chaotic maps used to test the proposed

method. Several parameters such as edge, entropy, standard

deviation, Peilla metric, VIFF, FMI and time are used as

criteria. It has been observed that, all chaotic maps produce

near values. Hence, the fusion process produces similar sub-

jective and objective outcomes irrespective of maps used.

However, we have chosen sinusoidal map for the whole set

of experiments as it leads to minimum time consumption.

From the set of experiments, we have selected 20 iterations

for optimizations technique, as convergence is attained in less

TABLE 1. Various chaotic maps applied to the fusion problem and
compared in terms of quantitative metrics, sinusoidal is chosen as it
produces same results in less time.

number of iterations. Thus, the weights for fusion is achieved

automatically via CGWO approach for every high frequency

subbands.

E. EVALUATION METRICS

To perform a quantitative analysis of the proposed method,

six well-known metrics have been selected, that include

the edge intensity (EI), standard deviation (SD), entropy

(EN), feature mutual information (FMI) [23], Piellas struc-

ture similarity [27] based metric, and the visual information

fidelity fusion (VIFF) [28] based on human visual perception

based metric. Edge intensity measures the strength of edges

in a fused image. Typically, SDmeasures the degree of spread

of gray value of all pixels from the mean gray value.

SD =

√

√

√

√

√

M
∑

x=1

N
∑

y=1

(Fxy − Fxy)
2

(17)

Fxy denotes the mean of fused image. Hence, it refers to the

overall contrast of a fused image also measures the quality of

an image, while entropy EN reflects the information content

present in the fused image. Entropy has been used in medical

information system [18], and is defined as

EN =
255
∑

i=0

pi ln

(

1

pi

)

(18)

where p denotes the probability mass function. Feature

Mutual Information (FMI) computes the amount of fea-

ture (information) transfer from source images to the fused

image. The feature includes gradient map of an image pro-

vides information about texture, edge strength, and contrast.

More information on FMI is detailed in [23]. The Peilla

metric [25] mainlymeasures the structural similarity between

the combined image and source images by simultaneously

addressing coefficient correlation, illumination, and contrast.

In this, local saliences of source images A and B are respec-

tively computed as s(A |w ) and s(B |w ). Local weights with

respect to window w is calculated as λ(w) = s(A|w )
s(A|w )+s(B|w )

.

Thus, Peilla metric is given by,

1

|W |
∑

w∈W
λ(w)Qo(A,F |w) + (1−λ(w))Qo(B,F |w) (19)

40788 VOLUME 7, 2019



C. S. Asha et al.: Multi-Modal Medical Image Fusion With Adaptive Weighted Combination of NSST Bands Using CGWO

FIGURE 4. One set of Alzheimers Visual Agnosia MR-T1 and MR-T2 fusion
results. Two small sections are cropped and are displayed for better
comparison. LLF-IOI suffers from noise like artifacts. CNN is unable to
transfer the details of MR-T1 as highlighted in the cropped section
(shown in red). GFF fails to retain the energy of the MR-T1. HWM-GWO
has poor contrast. NSCT-RPCNN, NSCT-SF-PCNN over enhancing the
image. The proposed technique and NSST-PAPCNN retain energy and
details of original images. (a) MR-T1. (b) MR-T2. (c) NSST-CGWO.
(d) NSST-PAPCNN. (e) CNN. (f) LLF-IOI. (g) GFF. (h) LP-SR. (i) NSCT-RPCNN.
(j) NSCT-SF-PCNN. (k) HMW-GWO. (l) MMIF-NSCT.

FIGURE 5. One set of MR and SPECT image fusion results of Glioma
MR-T2 and SPECT. Two small parts are cropped and depicted individually
for better comparison. LLF-IOI introduces noise in the fused image.
Frequently, GFF fails to preserve the color. LP-SR and MMIF-NSCT appear
to have more contrast, however, disappoints to maintain the structural
details of MR image. HMW-GWO has poor contrast and fails to extract
features from the original MR image. The proposed method preserves
energy and details without over-enhancing the images. (a) MR-T2.
(b) SPECT. (c) NSST-CGWO. (d) NSST-PAPCNN. (e) CNN. (f) LLF-IOI. (g) GFF.
(h) LP-SR. (i) NSCT-RPCNN. (j) NSCT-SF-PCNN. (k) HMW-GWO.
(l) MMIF-NSCT.
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TABLE 2. Mean quality metrics on dataset 1 containing 21 images of
Alzheimers Visual Agnosia MR-T1 and MR-T2.

TABLE 3. Mean quality metrics on dataset 2 containing 21 images of
Glioma MR-T2 and SPECT.

TABLE 4. Mean quality metrics on dataset 3 containing 7 image pairs of
Subaccute Stroke MR-T2 and SPECT.

where Qo is an image quality index defined in [25]. VIFF

is a recently proposed metric that measures the visual infor-

mation fidelity between the fused image and each of the

source images based on the Gaussian Scale Mixture model,

the distortion model, and the HVS model [28]. VIFF com-

putes the visual information of every blocks in each subband

of the fused image. More details of VIFF measure is provided

in [28]. For all themetrics discussed above, larger value refers

to the best value quantitatively. However, a large amount

can also result due to the presence of abnormality such as

the introduction of artifacts, noise, etc. In such cases, both

objective and subjective measures are taken into account to

grade the fusion methods.

F. RESULT ANALYSIS

In this section, the proposed fusion method (NSST-CGWO)

is compared with the other approaches in terms of visual

quality (subjective analysis), fusion quantitative metrics and

computational complexity. The quantitative metrics of most

recent fusion approaches and the proposed method are listed

in the Table 2–Table 4. The average score of all the methods

has been tabulated for each disease dataset. The highest value

is highlighted in red, second highest in green, while third

highest in blue color. For each category mentioned before,

we have provided one set of fusion results. Furthermore,

FIGURE 6. One set of Subacute Stroke MR-T2 and SPECT fusion results
are depicted. Two cropped areas are shown separately for better
visualization. LLF-IOI suffers from heavy, noisy artifacts. GFF fails to
transfer the color. HMW-GWO blurs the image. The proposed method is
very effective in transferring the energy, texture, and color. (a) MR-T2.
(b) SPECT. (c) NSST-CGWO. (d) NSST-PAPCNN. (e) CNN. (f) LLF-IOI. (g) GFF.
(h) LP-SR. (i) NSCT-RPCNN. (j) NSCT-SF-PCNN. (k) HMW-GWO.
(l) MMIF-NSCT.

40790 VOLUME 7, 2019



C. S. Asha et al.: Multi-Modal Medical Image Fusion With Adaptive Weighted Combination of NSST Bands Using CGWO

FIGURE 7. One set of Motor Neuron MR-T2 and SPECT fusion results. Two
cropped section are shown for better comparison. LLF-IOI introduces
noise artifacts to a large extent. GFF cannot preserve the color of the
SPECT image. HMW-GWO and MMIF-NSCT introduce serious artifacts in
the fused image. The proposed method preserves energy and color.
(a) MR-T2. (b) SPECT. (c) NSST-CGWO. (d) NSST-PAPCNN. (e) CNN.
(f) LLF-IOI. (g) GFF. (h) LP-SR. (i) NSCT-RPCNN. (j) NSCT-SF-PCNN.
(k) HMW-GWO. (l) MMIF-NSCT.

two sub regions are cropped and shown separately to better

visualize the images in terms of contrast, color fidelity, energy

preservation, etc.

1) MR-T1 AND MR-T2

Fig. 4 depicts the fusion of MR-T1 and MR-T2 using the

proposed method and recent fusion methods. Some of the

fusion techniques produce unacceptable visual quality due

to loss of energy. In addition to that, these methods often

fail to transfer the intensity and texture details from source

images to the fused image accurately. LLF-IOI introduces the

noise artifacts in the fused image, resulting in poor quality.

Subsequently, the presence of extraneous noise in LLF-IOI

fusion method provides high values for metrics such as SD,

edge intensity. Although these methods show better perfor-

mance considering SD or EI, it severely fails to prove in

terms of visual aspect. LP-SR and CNN methods visually

outperform other methods, but cannot preserve the similar

intensity variation of source images. CNN and GFF meth-

ods fail to transfer the information of MR-T2 to the fused

image. However, the proposed method retains the energy and

details of individual without introducing noisy structure or

any artifacts. Table 2 provides the comparison in terms of

quantitative metrics for MR-T1 and MR-T2 datasets. NSST-

CGWO stands one among the top three positions for the listed

metrics. EN metrics is high for the proposed fusion method,

which indicates the superior quality of the fused image.

2) MR-T2 AND SPECT

Fig. 5, Fig. 6, and Fig. 7 correspond to the fusion results of

MR and SPECT datasets. The color preservation of fewmeth-

ods remains relatively low. As mentioned before, LLF-IOI

fails to preserve energy and introduces noise in the final

result. Consequently, few functional details are lost. CNN,

NSCT-SF-PCNN, NSCT-RPCNN work excellent in terms of

preserving functional information of SPECT image. LP-SR

and NSCT-MMIF have good contrast, in which color details

are preserved highlighting texture information of MR data.

HWM-GWO has less contrast, however preserves color and

texture information. The proposed method retains the energy

and highlights the structural information of source images,

while maintaining color features too. The qualitty metrics of

the proposed and state-of-the-art fusion method are presented

in Table 3, Table 6, Table 5 and Table 4. From the above

tables, it is clear that the proposed NSST-CGWO produces

the higher values for entropy and VIFF in majority of the

datasets.

3) MR-T2 AND PET

Fig. 8, Fig. 9, and Fig. 10 depict the combination of MR

and PET image datasets. In MR and PET image fusion,

MR contains most of the structural details. All the methods

perform well concerning structure preservation. However,
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FIGURE 8. One set of MR and SPECT-TC image fusion results of Metastatic
Bronchogenic MR-T2 and SPECT-TC. Cropped areas are shown separately
for the better view. LLF-IOI severely suffers from noise artifacts. GFF fails
to retain the original color. HMW-GWO has poor contrast. MMIF-NSCT
appears to have good contrast but fails to maintain originality regarding
structural details of the MR-T2 image. The proposed method preserves
energy, structural details and color of the source images. (a) MR-T2.
(b) SPECT-TC. (c) NSST-CGWO. (d) NSST-PAPCNN. (e) CNN. (f) LLF-IOI.
(g) GFF. (h) LP-SR. (i) NSCT-RPCNN. (j) NSCT-SF-PCNN. (k) HMW-GWO.
(l) MMIF-NSCT.

FIGURE 9. One set of images contain Mild Alzheimers MR-T2 and
PET-FDG fusion results. Two cropped sections are shown for better
visibility. CNN and LP-SR method extracts the details effectively but fails
to retain original color. LLF-IOI suffers from the noisy structure. GFF fails
to transfer the color to the fused image. NSCT-RPCNN over enhances the
image, while NSCT-SF-PCNN changes the original color. HMW-GWO has
poor contrast. MMIF-NSCT cannot preserve the details and colors
effectively. The proposed method is very efficient in retaining originality
in terms of structures and color information. (a) MR-T2. (b) PET-FDG.
(c) NSST-CGWO. (d) NSST-PAPCNN. (e) CNN. (f) LLF-IOI. (g) GFF. (h) LP-SR.
(i) NSCT-RPCNN. (j) NSCT-SF-PCNN. (k) HMW-GWO. (l) MMIF-NSCT.
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TABLE 5. Mean quality metrics on dataset 4 containing 11 image pairs of
Motor Neuron MR-T2 SPECT.

TABLE 6. Mean quality metrics on dataset 5 containing 11 image pairs of
Metastatic Bronchogenic MR-T2 SPECT-TC.

TABLE 7. Mean quality metrics on dataset 6 containing 11 image pairs of
Mild Alzheimers MR-T2 PET-FDG.

TABLE 8. Mean quality metrics on dataset 7 containing 11 image pairs of
Normal Aging MR-T2 PET.

preserving original colors in the fused image is challenging.

Some techniques do the effective color transfer but suffers

from color distortion. In this set of images, LLF-IOI retains

the color information but over enhances the structure details

by introducing the noise in the final image. NSCT-RPCNN

also performs better considering color and structure preser-

vation. MMIF-NSCT produces image with good contrast, but

fails to transfer color information effectively to the fused

image. CNN is not efficient while transferring the informa-

tion of the original source image. GFF fails to retain the orig-

inal color after the fusion process. Fused image obtained from

HMW-GWO method has good contrast, however missing

clarity. The proposed method and NSST-PAPCNN provides

better values than existing fusion methods.

In Table 7 and Table 8, NSST-CGWO has high value for

two metrics EN and VIFF. In addition, standard deviation SD

lies in either second or third position.

FIGURE 10. One set of Normal Aging MR-T2 and PET fusion results are
shown. LLF-IOI introduces heavy noise. GFF cannot retain structural
details but fails to retain the original color. NSCT-RPCNN lightly blurs the
image, whereas HMW-GWO blurs heavily. CNN has increased contrast, but
the fused image has dark color than the original PET image. The proposed
method has preserved energy, structural details as well as the color of
original images. (a) MR-T2. (b) PET. (c) NSST-CGWO. (d) NSST-PAPCNN.
(e) CNN. (f) LLF-IOI. (g) GFF. (h) LP-SR. (i) NSCT-RPCNN. (j) NSCT-SF-PCNN.
(k) HMW-GWO. (l) MMIF-NSCT.
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TABLE 9. Mean quality metrics on dataset 8 containing 11 images of
Sarcoma CT and MR-T2.

4) CT AND MR

Fig. 11 refers to CT andMRdatasets, which contain grayscale

images. The poor quality image is observed for somemethods

due to loss of considerable amount of energy, the decrease

of contrast, fluctuation of color component as compared to

the original image, failing to retain the structural details.

LLF-IOI forever suffer from noise like structure leading to

artifacts. However, contrast and edge intensity are significant

in this method due to the presence of gradient structures. The

proposed method extracts edges, textures from the source

images adequately and preserves energy too. Although the

present method retrieves the accurate location of bones and

soft tissues of MR image, it fails to have good contrast.

Another problemwith the proposed method is that bone areas

of CT are not transferred efficiently to the fused images when

compared with the other techniques. This is because, bony

structures in CT image is just a constant intensity region,

which looks white. Since the proposed method optimizes the

complete transfer of textural parts from source images to

the final image, however there is no prior knowledge about

the region that it wishes to transfer. As a result, the texture

area of MR is transferred to the fusion image, which is

undesirable. This problem can be overcome, with region-

based fusion, by adaptively weighing different regions of the

source images instead of the whole image. The fused image

gives clear details of the presence of tumor in the Medical

diagnostic point view. The images provide complimen-

tary information, hence it helps physician to view every

details in the single image. Thus, fused image of MR-

T1 and MR-T2 segment the white matter lesions which

helps for medical treatment planning. the combination of

MR and CT images provide the details of soft tissue and

bone which represent the anatomical and physiological

structures. In oncology, CT and PET image fusion helps

to analyze the tumor in terms of anatomical, physiological

features

Table 9 provides the metric based comparison, and the pro-

posed method is found top in two metrics EN and Peilla. It is

positioned at second place in VIFF, where NSST-PAPCNN is

placed first.

G. OBJECTIVE EVALUATION

Among the recent methods compared, our method tops

at least in two parameters for the eight datasets selected.

FIGURE 11. One set of Sarcoma CT and MR-T2 fusion results are shown.
LLF-IOI suffers from heavy noise. GFF fails to transfer the details of the
MR-T2 image effectively. CNN fails to transfer the CT image details into
the fused image. NSCT-SF-PCNN blurs the image. HMW-GWO fails to
capture MR-T2 image details. MMIF-NSCT cannot preserve energy and
structural details. The proposed method has less contrast, however,
preserves the structural details in the fused image. (a) CT. (b) MR-T2.
(c) NSST-CGWO. (d) NSST-PAPCNN. (e) CNN. (f) LLF-IOI. (g) GFF. (h) LP-SR.
(i) NSCT-RPCNN. (j) NSCT-SF-PCNN. (k) HMW-GWO. (l) MMIF-NSCT.
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Specifically, Entropy of the proposed method is quite large in

almost all the datasets compared to other fusion techniques.

More importantly, VIFF metric of the suggested method tops

in six datasets. From the tables, it is observed that LLF-IOI

tops in edge intensity, and it is clear that edge intensity

reflects gradient information of the fused image. Due to noise

artifacts introduced in LLF-IOI, overall gradient value boosts

up. However, visual content is still inferior. Similar to edge

intensity, standard deviation is also one of the measure used

to estimate the total contrast of an image. Similar to edge

intensity, the SD metric is high due to the presence of noise

component. Consequently, LLF-IOI has huge value for SD.

FMI of the proposed method tops in few datasets, however,

GFF tops in many of the datasets. GFF often fails to retain

the color information although FMI value is high.

H. ADVANTAGES AND LIMITATIONS

The proposed fusion method excels in fusing the variety

of datasets visually and in terms of objective analysis.

A number of methods have been proposed to fuse the

low and high sub-bands by employing techniques such as

spatial filters or PCNN. In these methods, the algorithm

cannot adapt to produce the better fused image.Whereas,

the proposed method tries to extract the required tex-

ture from each sub-band automatically byminimizing the

objective function. The entire process is carried out to

attain the best fusion result and hence outcome oriented.

From the set of experiments, the proposed method is found to

be not effective for fusing CT and MR data as compared to

other fusion methods. Moreover, computational complexity

of the proposed method is quite large compared to most of

the methods, which needs further improvement. However,

NSCT-SF-PCNN and LLF-IOI takes huge computational

power than NSST-CGWO for fusion process producing rel-

atively poor quality images. In future, we address the region

based fusion, where prior information about the regions are

utilized and combined adaptively.

V. CONCLUSION

In this paper, we have presented an efective approach for

multi-modal medical image fusion by employing chaotic grey

wolf optimization in the NSST domain. In this, minimiza-

tion of L1 distance between fused image and source images

was achieved using meta-heuristic optimization algorithm.

The weight parameters were computed in a less number

of iterations by employing chaos function, which improved

the convergence speed. Simultaneously, we also addressed

the low-frequency fusion via max rule. Thus, the opti-

mum parameters were used while combining images, that

focused on preserving the originality in terms of energy,

textural details, and color. In order to test the proposed

method, we conducted experiments on more than 100 pairs

of images containing multi-modal brain data. A variety of

diseases and modalities have been included for experimen-

tal evaluation. In addition, the effectiveness of the pro-

posed method with the recent nine fusion methods have

been considered. The qualitative results demonstrated that the

NSST-CGWOmethod produced the image with high quality,

without any artifacts. Moreover, quantitative results of the

proposed method has ranked first or second in terms of two

or more parameters for every dataset. Similarly, the visual

quality was comparatively better than the existing state-of-

the-art techniques. The future work will consider improving

the method performance by incorporating better optimiza-

tion techniques with a suitable fitness function. Besides,

an adaptive region based fusion using machine learning

approach needs further study. Another objective is to extend

the work on real images collected from hospital by not

limiting to single part of the body. In order to increase the

information content of an image, which is restricted in a

single type of medical imaging mode, more than 2 images

could be combined. Further, the proposed method has ample

room to employ in other areas such as infrared-visible

image fusion, satellite image fusion, and multi-focus image

fusion.
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