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Abstract

The ability to represent knowledge about space and its position

therein is crucial for a mobile robot. To this end, topological and

semantic descriptions are gaining popularity for augmenting purely

metric space representations. In this paper we present a multi-modal

place classification system that allows a mobile robot to identify

places and recognize semantic categories in an indoor environment.

The system effectively utilizes information from different robotic sen-

sors by fusing multiple visual cues and laser range data. This is

achieved using a high-level cue integration scheme based on a Sup-

port Vector Machine (SVM) that learns how to optimally combine and

weight each cue. Our multi-modal place classification approach can

be used to obtain a real-time semantic space labeling system which

integrates information over time and space. We perform an extensive

experimental evaluation of the method for two different platforms and

environments, on a realistic off-line database and in a live experiment

on an autonomous robot. The results clearly demonstrate the effec-
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tiveness of our cue integration scheme and its value for robust place

classification under varying conditions.
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1. Introduction

The most fundamental competence for an autonomous mobile

agent is to know its position in the world. This can be rep-

resented in terms of raw metric coordinates, topological loca-

tion, or even semantic description. Recently, there has been a

growing interest in augmenting (or even replacing) purely met-

ric space representations with topological and semantic place

information. Several attempts have been made to build au-

tonomous cognitive agents able to perform human-like tasks1.

Enhancing the space representation to be more meaningful

from the point of view of spatial reasoning and human–robot

interaction have been at the forefront of the issues being ad-

dressed (Kuipers 2006� Topp and Christensen 2006� Zender et

1. See, e.g., CoSy (Cognitive Systems for Cognitive Assistants) http://www.

cognitivesystems.org/ or COGNIRON (the cognitive robot companion) http://

www.cogniron.org.
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al. 2008). Indeed, in the concrete case of indoor environments,

the ability to understand the existing topological relations and

associate semantic terms such as “corridor” or “office” with

places, gives a much more intuitive idea of the position of the

robot than global metric coordinates. In addition, the semantic

information about places can extend the capabilities of a robot

in other tasks such as localization (Rottmann et al. 2005), ex-

ploration (Stachniss et al. 2006), or navigation (Galindo et al.

2005).

Nowadays, robots are usually equipped with several sen-

sors providing both geometrical and visual information about

the environment. Previous work on place classification relied

on sonar and/or laser range data as robust sensory modalities

(Mozos et al. 2005). However, the advantages of geometric so-

lutions, such as invariance to visual variations and low dimen-

sionality of the processed information, quickly became their

weaknesses. The inability to capture many aspects of com-

plex environments leads to the problem of perceptual alias-

ing (Kuipers and Beeson 2002) and can limit the usefulness

of such methods for topological and semantic mapping. Re-

cent advances in vision have made this modality emerge as

a natural and viable alternative. Vision provides richer sen-

sory input allowing for better discrimination. Moreover, a large

share of the semantic description of a place is encoded in its vi-

sual appearance. However, visual information tends to be noisy

and difficult to interpret as the appearance of places varies

over time due to changing illumination and human activity.

At the same time, the visual variability within place classes is

huge, making the semantic place classification a challenging

problem. Clearly, each modality has its own characteristics.

Interestingly, the weaknesses of one often correspond to the

strengths of the other.

In this paper, we propose an approach to semantic place

classification which combines the stability of geometrical so-

lutions with the versatility of vision. First, we present a recog-

nition system implemented on a mobile robot platform inte-

grating multiple cues and modalities. The system is able to per-

form robust place classification under different types of vari-

ations that occur in indoor environments over a span of time

of several months. This comprises variations in illumination

conditions and in configuration of furniture and small objects.

The system relies on different types of visual information pro-

vided by global and local descriptors and on geometric cues

derived from laser range scans. For the vision channel we ap-

ply the Scale-Invariant Feature Transform (SIFT) (Lowe 2004)

and Composed Receptive Field Histograms (CRFH) (Linde

and Lindeberg 2004). For the laser channel we use the features

proposed in Mozos et al. (2005, 2007).

We combine the cues using a new high-level accumulation

scheme, which builds on our previous work (Nilsback and Ca-

puto 2004� Pronobis and Caputo 2007). We train for each cue

a large margin classifier which outputs a set of scores encod-

ing confidence of the decision. Integration is then achieved by

feeding the scores to a Support Vector Machine (SVM) (Cris-

tianini and Shawe-Taylor 2000). Such an approach allows to

optimally combine cues, even obtained using different types

of models, with a complex, possibly non-linear function. We

call this algorithm the SVM-based Discriminative Accumula-

tion Scheme (SVM-DAS).

Finally, we show how to build a self-contained semantic

space labeling system, which relies on multi-modal place clas-

sification as one of its components. The system is implemented

as a part of an integrated cognitive robotic architecture2 and

runs on-line on a mobile robot platform. While the robot ex-

plores the environment, the system acquires evidence about the

semantic category of the current area produced by the place

classification component and accumulates them both over time

and space. As soon as the system is confident about its deci-

sion, the area is assigned a semantic label. We integrate the sys-

tem with a Simultaneous Localization and Mapping (SLAM)

algorithm and show how a metric and topological space repre-

sentation can be augmented with a semantic description.

We evaluated the robustness of the presented methods in

several sets of extensive experiments. We conducted experi-

ments on two different robot platforms, in two different en-

vironments and for two different scenarios. First, we run a

series of off-line experiments of increasing difficulty on the

IDOL2 database (Luo et al. 2006) to precisely measure the

performance of the place classification algorithm in presence

of different types of variations. These ranged from short-term

visual variations caused by changing illumination to long-term

changes which occurred in the office environment over sev-

eral months. Second, we run a live experiment where a robot

performs SLAM and semantic labeling in a new environment

using prebuilt models of place categories. Results show that

integrating different visual cues, as well as different modali-

ties, allows to greatly increase the robustness of the recognition

system, achieving high accuracy under severe dynamic varia-

tions. Moreover, the place classification system, when used in

the framework of semantic space labeling, can yield a fully

correct semantic representation even for a new, unknown envi-

ronment.

The rest of the paper is organized as follows. After a re-

view of the related literature (Section 2), Section 3 presents

the main principle behind our multi-modal place classification

algorithm and describes the methods used to extract each cue.

Then, Section 4 gives details about the new cue integration

scheme and Section 5 describes the architecture of the seman-

tic labeling system. Finally, Section 6 presents detailed exper-

imental evaluation of the place classification system and Sec-

tion 7 reports results of the live experiment with semantic la-

beling of space. The paper concludes with a summary and pos-

sible avenues for future research.

2. See CoSy (Cognitive Systems for Cognitive Assistants) http://www.

cognitivesystems.org/ and CAST (The CoSy Architecture Schema Toolkit)

http://www.cs.bham.ac.uk/research/projects/cosy/cast/.
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2. Related Work

Place classification is a vastly researched topic in the robotic

community. Purely geometric solutions based on laser range

data have proven to be successful for certain tasks and sev-

eral approaches were proposed using laser scanners as the only

sensors. Koenig and Simmons (1998) used a pre-programmed

routine to detect doorways from range data. In addition, Al-

thaus and Christensen (2003) used line features to detect corri-

dors and doorways. In their work, Buschka and Saffiotti (2002)

partitioned grid maps of indoor environments into two dif-

ferent classes of open spaces, i.e. rooms and corridors. The

division of the open spaces was done incrementally on local

submaps. Finally, Mozos et al. (2005) applied boosting to cre-

ate a classifier based on a set of geometrical features extracted

from range data to classify different places in indoor envi-

ronments. A similar idea was used by Topp and Christensen

(2006) to describe regions from laser readings.

The limitations of geometric solutions inspired many re-

searchers to turn towards vision which nowadays becomes

tractable in real-time applications. The proposed methods em-

ployed either perspective (Torralba et al. 2003� Tamimi and

Zell 2004� Filliat 2007) or omnidirectional cameras (Gaspar

et al. 2000� Ulrich and Nourbakhsh 2000� Blaer and Allen

2002� Menegatti et al. 2004� Andreasson et al. 2005� Murillo

et al. 2007� Valgren and Lilienthal 2008). The main differ-

ences between the approaches relate to the way the scene is

perceived, and thus the method used to extract characteristic

features from the scene. Landmark-based techniques make use

of either artificial or natural landmarks in order to extract in-

formation about a place. Siagian and Itti (2007) relied on vi-

sually distinctive image regions as landmarks. Many other so-

lutions employed local image features, with SIFT being the

most frequently applied (Se et al. 2001� Lowe 2004� Andreas-

son et al. 2005� Pronobis and Caputo 2007). Zivkovic et al.

(2005) used the SIFT descriptor to build a topological repre-

sentation by clustering a graph representing relations between

images. Other approaches used the bag-of-words technique

(Filliat 2007� Fraundorfer et al. 2007), the SURF features (Bay

et al. 2006� Murillo et al. 2007� Valgren and Lilienthal 2008),

or representation based on information extracted from local

patches using Kernel PCA (Tamimi and Zell 2004). Global

features are also commonly used for place recognition. Tor-

ralba et al. (Torralba and Sinha 2001� Torralba et al. 2003�

Torralba 2003) suggested to use a representation called the

“gist” of a scene, which is a vector of principal components

of outputs of a bank of spatially organized filters applied to

the image. Other approaches use color histograms (Ulrich and

Nourbakhsh 2000� Blaer and Allen 2002), gradient orientation

histograms (Bradley et al. 2005), eigenspace representation of

images (Gaspar et al. 2000), or Fourier coefficients of low-

frequency image components (Menegatti et al. 2004).

In all of the previous approaches only one modality is used

for the recognition of places. Recently, several authors ob-

served that robustness and efficiency of the recognition sys-

tem can be improved by combining information provided by

different visual cues. Siagian and Itti (2007) and Weiss et al.

(2007) used a global representation of the images together with

local visual landmarks to localize a robot in outdoor environ-

ments. Pronobis and Caputo (2007) used two cues composed

of global and local image features to recognize places in in-

door environments. The cues were combined using discrimi-

native accumulation. Here, we extend this approach by inte-

grating information provided by a laser range sensor using a

more sophisticated algorithm.

Other approaches also employed a combination of different

sensors, mainly laser and vision. Tapus and Siegwart (2005)

used an omnidirectional camera and two lasers covering 360�

field of view to extract fingerprints of places for topological

mapping. This approach was not used for extracting seman-

tic information about the environment. Posner et al. (2007)

and Douillard et al. (2007) relied on range data and vision

for recognition of objects in outdoor environments (e.g. grass,

walls, or cars). Finally, Rottmann et al. (2005) used a combina-

tion of both modalities to categorize places in indoor environ-

ments. Each observation was composed of a set of geometrical

features and a set of objects found in the scene. The geomet-

rical features were calculated from laser scans and the objects

were detected using Haar-like features from images. The ex-

tracted information was integrated at the feature level. In con-

trast, the method presented in this work learns how to combine

and weigh outputs of several classifiers, keeping features and

therefore the information from different modalities separate.

Various cue integration methods have been proposed in the

robotics and machine learning community (Poggio et al. 1985�

Matas et al. 1995� Triesch and Eckes 1998� Nilsback and Ca-

puto 2004� Tapus and Siegwart 2005� Pronobis and Caputo

2007). These approaches can be described according to vari-

ous criteria. For instance, Clark and Yuille (1990) suggest to

classify them into two main groups, weak coupling and strong

coupling. Assuming that each cue is used as input of a dif-

ferent classifier, weak coupling is when the output of two or

more independent classifiers are combined. Strong coupling

is when the output of one classifier is affected by the output

of another classifier, so that their outputs are no longer inde-

pendent. Another possible classification is into low-level and

high-level integration methods, where the emphasis is on the

level at which integration happens. We call low-level integra-

tion methods those algorithms where cues are combined to-

gether at the feature level, and then used as input to a single

classifier. This approach has been used successfully for object

recognition using multiple visual cues (Matas et al. 1995), and

for topological mapping using multiple sensor modalities (Ta-

pus and Siegwart 2005). In spite of remarkable performances

for specific tasks, there are several drawbacks of the low-level

methods. First, if one of the cues gives misleading information,

it is quite probable that the new feature vector will be adversely

affected influencing the whole performance. Second, we can
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Fig. 1. Architecture of the multi-modal place classification system.

expect the dimension of such a feature vector to increase as

the number of cues grow, and each of the cues needs to be

used even if one would allow for correct classification. This

implies longer learning and recognition times, greater mem-

ory requirements, and possible curse of dimensionality effects.

Another strategy is to keep the cues separated and to integrate

the outputs of individual classifiers, each trained on a different

cue (Poggio et al. 1985� Nilsback and Caputo 2004� Pronobis

and Caputo 2007). We call such algorithms high-level integra-

tion methods, of which voting is the most popular (Duda et al.

2001). These techniques are more robust with respect to noisy

cues or sensory channels, allow the use of different classifiers

adapted to the characteristics of each single cue and decide on

the number of cues that should be extracted and used for each

particular classification task (Pronobis and Caputo 2007). In

this paper, we focus on a weak coupling, high-level integration

method called accumulation. The underlying idea is that infor-

mation from different cues can be summed together, thus ac-

cumulated. The idea was first proposed in probabilistic frame-

work by Poggio et al. (1985) and further explored by Aloi-

monos and Shulman (1989). The method was then extended

to discriminative methods in Nilsback and Caputo (2004) and

Pronobis and Caputo (2007).

3. Multi-modal Place Classification

The ability to integrate multiple cues, possibly extracted from

different sensors, is an important skill for a mobile robot. Dif-

ferent sensors usually capture different aspects of the environ-

ment. Therefore using multiple cues leads to obtaining a more

descriptive representation. The visual sensor is an irreplace-

able source of distinctive information about a place. How-

ever, this information tends to be noisy and difficult to analyze

due to the susceptibility to variations introduced by chang-

ing illumination and everyday activities in the environment.

At the same time, most recent robotic platforms are equipped

with a laser range scanner which provides much more stable

and robust geometric cues. These cues however, are unable

to uniquely represent the properties of different places (per-

ceptual aliasing) (Kuipers and Beeson 2002). Clearly perfor-

mance could increase if different cues were combined effec-

tively. Note that even alternative interpretations of the infor-

mation obtained by the same sensor can be valuable, as we

will show experimentally in Section 6.

This section describes our approach to multi-modal place

classification. Our method is fully supervised and assumes that

during training, each place (room) is represented by a collec-

tion of labeled data which captures its intrinsic visual and geo-

metric properties under various viewpoints, at a fixed time and

illumination setting. During testing, the algorithm is presented

with data samples acquired in the same places, under roughly

similar viewpoints but possibly under different conditions (e.g.

illumination), and after some time (where the time range goes

from some minutes to several months). The goal is to recog-

nize correctly each single data sample provided to the system.

The architecture of the system is illustrated in Figure 1. We

see that there is a separate path for each cue. We use two dif-

ferent visual cues corresponding to two types of image fea-

tures (local and global) as well as simple geometrical fea-

tures extracted from laser range scans. Each path consists of

two main building blocks: a feature extractor and a classifier.

Thus, separate decisions can be obtained for each of the cues

in case only one cue is available. Alternatively, our method

could decide when to acquire additional information (e.g. only

in difficult cases) (Pronobis and Caputo 2007). In cases when

several cues are available, the outputs encoding the confidence

of the single-cue classifiers are combined using an efficient

discriminative accumulation scheme.
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The rest of this section gives details about the algorithms

used to extract and classify each of the cues for the vision-

based paths (Section 3.1) and laser-based path (Section 3.2).

A comprehensive description of the algorithms used for cue

integration is given in Section 4.

3.1. Vision-based Place Classification

As a basis for the vision-based channel, we used the place

recognition system presented in Pronobis et al. (2006) and

Pronobis and Caputo (2007), which is built around a SVM

classifier (Cristianini and Shawe-Taylor 2000) and two types

of visual features, global and local, extracted from the same

image frame. We used CRFH (Linde and Lindeberg 2004) as

global features, and SIFT (Lowe 2004) as local features. Both

have already been proved successful in the domain of vision-

based place recognition (Pronobis et al. 2006� Pronobis and

Caputo 2007) and localization and mapping (Se et al. 2001�

Andreasson et al. 2005).

CRFHs are a sparse multi-dimensional statistical represen-

tation of responses of several image filters applied to the input

image. Following Pronobis et al. (2006), we used histograms

of six dimensions, with 28 bins per dimension, computed from

second-order normalized Gaussian derivative filters applied to

the illumination channel at two scales. The SIFT descriptor

instead represents local image patches around interest points

characterized by coordinates in the scalespace in the form of

histograms of gradient directions. To find the coordinates of

the interest points, we used a scale and affine invariant region

detector based on the difference-of-Gaussians (DoG) operator

(Rothganger et al. 2006).

We used SVMs for creating models from both visual cues.

A review of the theory behind SVMs can be found in Sec-

tion 4.1. In case of SVMs, special care must be taken in choos-

ing an appropriate kernel function. Here we used the �2 kernel

(Chapelle et al. 1999) for CRFH, and the match kernel pro-

posed by Wallraven et al. (2003) for SIFT. Both have been

used in our previous work on SVM-based place recognition,

obtaining good performances.

3.2. Laser-based Place Classification

In addition to the visual channel, we used a laser range sensor.

A single two-dimensional (2D) laser scan covered a field of

view of 180� in front of the robot. A laser observation z �

�b0� � � � � bM�1� contains a set of beams bi , in which each beam

bi consists of a tuple ��i � di �, where �i is the angle of the beam

relative to the robot and di is the length of the beam.

For each laser observation, we calculated a set of simple

geometric features represented by single real values. The fea-

tures were introduced for place classification by Mozos et al.

(2005) where laser observations covering a 360� field of view

were used. The complete set of features consists of two sub-

sets. The first subset contains geometrical features calculated

directly from the laser beams. The second subset comprises

geometrical features extracted from a polygon approximation

of the laser observation. This polygon is created by connecting

the end points of the beams. The selection of features is based

on the results presented in Mozos et al. (2005, 2007).

As classifiers for the laser-based channel, we tried both

AdaBoost (Freund and Schapire 1995), following the work in

Mozos et al. (2007), and SVMs. In the rest of the paper, we will

refer to the two laser-based models as L-AB and L-SVM, re-

spectively. For the geometric features, we used a Radial Basis

Function (RBF) kernel (Cristianini and Shawe-Taylor 2000)

with SVMs, chosen through a set of reference experiments3.

Both classifiers were benchmarked on the laser-based place

classification task. Results presented in Section 6.2 show an

advantage of the more complex SVM classifier.

4. Discriminative Cue Integration

This section describes our approach to cue integration from

one or multiple modalities. We propose an SVM-DAS, a tech-

nique performing non-linear cue integration by discriminative

accumulation. For each cue, we train a separate large mar-

gin classifier which outputs a set of scores (outputs), encod-

ing the confidence of the decision. We achieve integration

by feeding the scores to an SVM. Compared to previous ac-

cumulation methods (Poggio et al. 1985� Caputo and Dorko

2002� Nilsback and Caputo 2004� Pronobis and Caputo 2007),

SVM-DAS gives several advantages: (a) discriminative ac-

cumulation schemes achieve consistently better performances

than probabilistic ones (Poggio et al. 1985� Caputo and Dorko

2002), as shown in Nilsback and Caputo (2004)� (b) compared

with previous discriminative accumulation schemes (Nilsback

and Caputo 2004� Pronobis and Caputo 2007), our approach

accumulates cues with a more complex, possibly non-linear

function, by using the SVM framework and kernels (Cristian-

ini and Shawe-Taylor 2000). Such an approach makes it pos-

sible to integrate outputs of different classifiers such as SVM

and AdaBoost. At the same time, it learns the weight for each

cue very efficiently, therefore making it possible to accumulate

large numbers of cues without computational problems.

In the rest of the section we first sketch the theory behind

SVMs (Section 4.1), a crucial component in our approach. We

then describe the Generalized Discriminative Accumulation

Scheme (G-DAS� see Pronobis and Caputo (2007) and Sec-

tion 4.2) on which to a large extent we build. Finally, we in-

troduce the new algorithm and discuss its advantages in Sec-

tion 4.3.

3. In the case of AdaBoost, we constructed a multi-class classifier by arrang-

ing several binary classifiers into a decision list in which each element corre-

sponded to one specific class.
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4.1. Support Vector Machines

Consider the problem of separating the set of labeled train-

ing data ��1� y1�� � � � � ��n� yn�� � � � � ��N � yN � into two classes,

where �n � 	
L is a feature vector and yn � ��1�
1� its class

label. Assuming that the two classes can be separated by a hy-

perplane in some Hilbert space�, then the optimal separating

hyperplane is the one which has maximum distance to the clos-

est points in the training set resulting in a discriminant function

f ��� �

N�

n�1

�n yn���n���
 ��

The classification result is then given by the sign of f ���. The

values of �n and � are found by solving a constrained min-

imization problem, which can be done efficiently using the

SMO algorithm (Platt 1999). Most of the �n’s take the value

of zero� those �n with non-zero �n are the “support vectors”.

In case where the two classes are non-separable, the optimiza-

tion is formulated in such a way that the classification error is

minimized and the final solution remains identical. The map-

ping between the input space and the usually high-dimensional

feature space� is done using kernels ���n���.

The extension of SVM to multi-class problems can be

done in several ways. Here we mention three approaches used

throughout the paper:

1. Standard one-against-all (OaA) strategy. If M is the

number of classes, M SVMs are trained, each separat-

ing a single class from all other classes. The decision

is then based on the distance of the classified sample to

each hyperplane, and the sample is assigned to the class

corresponding to the hyperplane for which the distance

is largest.

2. Modified OoA strategy. In Pronobis and Caputo (2007),

a modified version of the OaA principle was proposed.

The authors suggested to use distances to precomputed

average distances of training samples to the hyperplanes

(separately for each of the classes), instead of the dis-

tances to the hyperplanes directly. In this case, the sam-

ple is assigned to the class corresponding to the hyper-

plane for which the distance is smallest. Experiments

presented in this paper and in Pronobis and Caputo

(2007) show that in many applications this approach out-

performs the standard OaA technique.

3. One-against-one (OaO) strategy. In this case, M�M �

1�	2 two-class SVMs are trained for each pair of classes.

The final decision can then be taken in different ways,

based on the M�M � 1�	2 outputs. A popular choice is

to consider as output of each classifier the class label

and count votes for each class� the test image is then

assigned to the class that received more votes.

SVMs do not provide any out-of-the-box solution for esti-

mating confidence of the decision� however, it is possible to

derive confidence information and hypotheses ranking from

the distances between the samples and the hyperplanes. In the

work presented in this paper, we applied the distance-based

methods proposed by Pronobis and Caputo (2007), which

define confidence as a measure of unambiguity of the final

decision related to the differences between the distances cal-

culated for each of the binary classifiers.

4.2. Generalized Discriminative Accumulation Scheme

G-DAS was first proposed by Pronobis and Caputo (2007),

as a more effective generalization of the algorithm presented

in Nilsback and Caputo (2004). It accumulates multiple cues,

possibly from different modalities, by turning classifiers into

experts. The basic idea is to consider real-valued outputs of a

multi-class discriminative classifier (e.g. SVM) as an indica-

tion of a soft decision for each class. Then, all of the outputs

obtained from the various cues are summed together, there-

fore linearly accumulated. Specifically, suppose we are given

M classes and, for each class, a set of Nm training samples

���m�n�
Nm
n�1�

M
m�1. Suppose also that, from each sample, we ex-

tract a set of T different cues ��t��m�n��
T
t�1. The goal is to per-

form recognition using all of them. The G-DAS algorithm con-

sists of two steps:

1. Single-cue Models. From the original training set

���m�n�
Nm
n�1�

M
m�1, containing samples belonging to all M

classes, define T new training sets ���t��m�n��
Nm
n�1�

M
m�1,

t � 1� � � � � T , each relative to a single cue. For each new

training set train a multi-class classifier. Then, given a

test sample �, for each of the T single-cue classifiers

estimate a set of outputs ��t�
��t�����
V

�1 reflecting the

relation of the sample to the model. In the case of the

SVMs with standard OaO and OaA multi-class exten-

sions, the outputs would be values of the discriminant

functions learned by the SVM algorithm during train-

ing, i.e. �t�
��t���� � ft�
��t����, 
 � 1� � � � � V , and

V � M�M � 1�	2 for OaO or V � M for OaA.

2. Discriminative Accumulation. After all the outputs are

computed for all the cues, combine them with different

weights by a linear function:

�
��� �

T�

t�1

� t�t�
��t����� � t � 	

� 
 � 1� � � � � V �

The final decision can be estimated with any method

commonly used for multi-class, single-cue SVM.

An important property of accumulation is the ability to per-

form correct classification even when each of the single cues
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Fig. 2. A real example of test image misclassified by each of the single cues, but classified correctly using G-DAS.

gives misleading information. This behavior is illustrated on a

real example in Figure 2. Despite these advantages, G-DAS

presents some potential limitations: First, it uses only one

weight for all outputs of each cue. This simplifies the para-

meter estimation process (usually, an extensive search is per-

formed to find the coefficients �� t�
T
t�1), but also constrains the

ability of the algorithm to adapt to the properties of each single

cue. Second, accumulation is obtained via a linear function,

which might not be sufficient in case of complex problems.

The next section shows how our new accumulation scheme,

SVM-DAS, addresses these issues.

4.3. SVM-based Discriminative Accumulation Scheme

The SVM-DAS accumulates the outputs generated by single-

cue classifiers by using a more complex, possibly non-linear

function. The outputs are used as an input to an SVM, and the

parameters of the integration function are learned during the

optimization process, for instance using the SMO algorithm

(Platt 1999). These characteristics address the potential draw-

backs of G-DAS discussed in the previous section.

More specifically, the new SVM-DAS accumulation func-

tion is given by

�u��� �

N�

n�1

�u�n yn���n���
 �u� u � 1� � � � �U�

where � is a vector containing all the outputs for all T cues:

� �
�
��1�
��1�����

V1

�1� � � � � ��T�
��T �����

VT

�1

�
�

The parameters �u�n , yn, �u , and the support vectors �n are in-

ferred from the training data either directly or efficiently dur-

ing the optimization process. The number of the final outputs

U and the way of obtaining the final decision depends on the

multi-class extension used with SVM-DAS. We use the OaO

extension throughout the paper for which U � M�M � 1�	2.

The non-linearity is given by the choice of the kernel func-

tion �, thus in the case of the linear kernel the method is still

linear. In this sense, SVM-DAS is more general than G-DAS,

while it preserves all of its important properties (e.g. the ability

to give correct results for two misleading cues, see Figure 2).

Also, for SVM-DAS each of the integrated outputs depend on

all the outputs from single-cue classifiers, and the coefficients

are learned optimally. Note that the outputs �t�
��t���� can

be derived from a combination of different large margin clas-

sifiers, and not only from SVM4.

5. Place Classification for Semantic Space

Labeling

One of the applications of a place classification system is

semantic labeling of space. This section provides a brief

overview of the problem and describes how we employed our

multi-modal place classification method to build a semantic

labeling system. We evaluated the system in a live experiment

described in Section 7.

5.1. Semantic Labeling of Space

The problem of semantic labeling can be described as as-

signing meaningful semantic descriptions (e.g. “corridor” or

“kitchen”) to areas in the environment. Typically, semantic la-

beling is used as a way of augmenting the internal space repre-

sentation with additional information. This can be used by the

agent to reason about space and to enhance communication

with a human user. In case of most typical environments, it

is sufficient to distinguish between semantic categories which

are usually associated with rooms (Zender et al. 2007), such

as “office”, “meeting room” or “corridor”. It is labeling at this

level that we will discuss in this paper.

4. SVM-DAS can be seen as a variation of ensemble learning methods that em-

ploy multiple models to improve the recognition performance. The key reason

why ensemble algorithms obtain better results is because the individual clas-

sifiers make errors on different data points. Typically, different training data is

used for each classifier (Polikar 2006). In our experiments, we use data repre-

senting different types of information, e.g. obtained using different sensors.
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Fig. 3. Architecture of the semantic space labeling system based on place classification (LTM: Long-Term Memory� STM:

Short-Term Memory).

As will be shown through experiments in Sections 6 and 7,

the place classification system described in this paper can yield

a place class with high accuracy given a single sample of multi-

modal data (e.g. one image and a laser scan). However, when

used for semantic labeling, the algorithm is requested to pro-

vide a label for the whole area under exploration. At the same

time, the system must be resilient and able to deal with such

problems as temporary lack of informative cues, continuous

stream of similar information or long-term occlusions. Given

that the system is operating on a mobile robot, crude infor-

mation about its movement is available from wheel encoders.

This information can be used to ensure robustness to the typ-

ical variations that occur in the environment but also to the

problems mentioned above. Finally, the system should be able

to measure its own confidence and restrain from making a

decision until some confidence level is reached. All of these

assumptions and requirements have been taken into consider-

ation while designing the system described in the following

section.

5.2. Architecture of the System

The architecture of our system is presented in Figure 3. The

system relies on three sensor modalities typically found on a

mobile robot platform: a monocular camera, a single 2D laser

scanner, and wheel encoders. The images from the camera, to-

gether with the laser scans are used as an input for the multi-

modal place classification component. For each pair of data

samples, place classification provides its beliefs about the se-

mantic category to which the samples belong. These beliefs

are encoded in the integrated outputs as discussed in Section 4.

Moreover, the confidence of the decision is also measured and

provided by the classification component.

A labeling system should provide a robust and stable out-

put over the whole area. Since the sensors employed are not

omni-directional, it is necessary to accumulate and fuse infor-

mation over time. Moreover, the data that the robot gathers are

not evenly spread over different viewpoints. As a possible so-

lution, we propose to use a confidence-based spatio-temporal

accumulation method. The principle behind the method is il-

lustrated in Figure 4. As the robot explores the environment, it

moves with a varying speed. The robot has information about

its own movement (odometry) provided by the wheel encoders.

As errors accumulate over time, this information can only be

used to estimate relative movement rather than absolute posi-

tion. This is sufficient for our application. The spatio-temporal

accumulation process creates a sparse histogram along the ro-

bot pose trajectory given by the odometry and described by the

metric position (x , y) and heading (� ) as shown in Figure 4.

The size of the histogram bins are adjusted so that each bin

roughly corresponds to a single viewpoint. Then, as the robot

moves, the beliefs about the current semantic category accu-

mulate within the bins as in the case of G-DAS (with equal

weights). This is what we call the temporal accumulation. It

prevents a single viewpoint from becoming dominant due to

long-term observation. Since each viewpoint observed by the

robot will correspond to a different bin, performing accumula-

tion across the bins (this time spatially) allows to generate the

final outputs to which each viewpoint contributes equally. In

order to exclude most of the misclassifications before they get



306 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February/March 2010

Fig. 4. Illustration of the spatio-temporal accumulation

process. As the robot explores the environment, the beliefs col-

lected on the way accumulate over time within the bin corre-

sponding to the current pose (x , y, � ) and over space in differ-

ent bins.

accumulated, we filter the decisions based on the confidence

value provided by the place classification component. More-

over, as the odometry information is unreliable in the long

term, the contents of bins visited a certain amount of view-

points ago, are invalidated. Note that semantic labeling is an

application of the method presented in this paper and not the

main focus of the paper. The accumulation scheme we present

here builds on the ideas of discriminative accumulation and

confidence estimation to further illustrate their usefulness. If

the emphasis was on labeling, more advanced methods based

on Hidden Markov Models (Rottmann et al. 2005), probabilis-

tic relaxation (Stachniss et al. 2007) or Conditional Random

Fields (Douillard et al. 2007) should be taken into consid-

eration. The advantages of our method are seamless integra-

tion with other components of the system and simplicity (the

method does not require training or making assumptions on

the transition probabilities between locations or areas).

The accumulation process ensures robustness and stabil-

ity of the generated label for a single area. However, another

mechanism is required to provide the system with information

about area boundaries. This is required for the accumulation

process not to fuse the beliefs across different areas. Here, we

propose two solutions to that problem. As described in the pre-

vious sections, we can assume that each room of the environ-

ment should be assigned one semantic label. In the case of

indoor environments, rooms are usually separated by a door

or other narrow openings. Thus, as one solution, we propose

to use a simple laser-based door detector which generates hy-

potheses about doors based on the width of the opening which

the robot passes. Such a simple algorithm will surely gener-

ate a lot of false positives. However, this does not cause prob-

lems in the presented architecture as false positives only lead

to oversegmentation. This is a problem mainly for other com-

ponents relying on precise segmentation rather than for the la-

beling process itself. In fact, the labeling system could be used

to identify false doors and improve the segmentation by look-

ing for directly connected areas classified as being of the same

category.

As a second solution, we propose to use another localiza-

tion and mapping system in order to generate the space repre-

sentation which will then be augmented with semantic labels.

Here we take the multi-layered approach proposed in Zender

et al. (2008). The method presented by Zender et al. (2008)

builds a global metric map as the first layer and a navigation

graph as the second. As the robot navigates through the envi-

ronment, a marker or navigation node is dropped whenever the

robot has traveled a certain distance from the closest existing

node. Nodes are connected following the order in which they

were generated. If information about the current node is pro-

vided to the spatio-temporal accumulation process, labels can

be generated for each of the nodes separately. Moreover, as it is

possible to detect whether the robot revisited an existing node,

the accumulated information can be saved and used as a prior

the next time the node is visited. For the live experiment de-

scribed in this paper, we used the detected doors to bound the

areas and navigation graph nodes to keep the priors. We then

propagated the current area label to all the nodes in the area.

6. Experiments with Place Classification

We conducted several series of experiments to evaluate the

performance of our place classification system. We tested its

robustness to different types of variations, such as those in-

troduced by changing illumination or human activity over a

long period of time. The evaluation was performed on data ac-

quired using a mobile robot platform over a time span of six

months, taken from the IDOL2 database (Image Database for

rObot Localization 2, see Luo et al. (2007)). Details about the

database and experimental setup are given in Section 6.1. The

experiments were performed for single-cue models and mod-

els based on different combinations of cues and modalities. We

present the results in Sections 6.2 and 6.3 respectively. In ad-

dition, we analyze performance and properties of different cue

integration schemes in Section 6.4.

6.1. Experimental Setup

The IDOL2 database was introduced in Luo et al. (2007). It

comprises of 24 image sequences accompanied by laser scans

and odometry data acquired using two mobile robot platforms

(PeopleBot and PowerBot). The images were captured with

a Canon VC-C4 perspective camera using the resolution of

320 � 240 pixels. In this paper, we will use only the 12 data

sequences acquired with the PowerBot, shown in Figure 5(a).

The acquisition was performed in a five room subsection

of a larger office environment, selected in such a way that

each of the five rooms represented a different functional area: a
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Fig. 5. (a) The mobile robot platform used in the experiments. (b) Map of the environment used during data acquisition and an

example laser scan simulated in the corridor. The rooms used during the experiments are annotated.

one-person office (1pO), a two-persons office (2pO), a kitchen

(KT), a corridor (CR), and a printer area (PR). The map of

the environment and an example laser scan are shown in Fig-

ure 5(b). Example pictures showing interiors of the rooms are

presented in Figure 6. The appearance of the rooms was cap-

tured under three different illumination conditions: in cloudy

weather, in sunny weather, and at night. The robot was manu-

ally driven through each of the five rooms while continuously

acquiring images and laser range scans at a rate of 5 fps. Each

data sample was then labelled as belonging to one of the rooms

according to the position of the robot during acquisition. Ex-

tension 1 contains a video illustrating the acquisition process

of a typical data sequence in the database. The acquisition

was conducted in two phases. Two sequences were acquired

for each type of illumination conditions over the time span of

more than two weeks, and another two sequences for each set-

ting were recorded six months later (12 sequences in total).

Thus, the sequences captured variability introduced not only

by illumination but also natural activities in the environment

(presence/absence of people, furniture/objects relocated etc.).

Example images illustrating the captured variability are shown

in Figure 6.

We conducted four sets of experiments, first for each cue

separately and then for cues combined. In order to simplify

the experiments with multiple cues, we matched images with

closest laser scans on the basis of the acquisition timestamp. In

case of each single experiment, both training and testing were

performed on one data sequence. The first set consisted of 12

experiments, performed on different combinations of training

and test data acquired closely in time and under similar illu-

mination conditions. In this case, the variability comes from

human activity and viewpoint differences. For the second set

of experiments, we used 24 pairs of sequences captured still at

relatively close times, but under different illumination condi-

tions. In this way, we increased the complexity of the problem

(Pronobis et al. 2006� Pronobis and Caputo 2007). In the third

set of experiments, we tested the robustness of the system to

long-term variations in the environment. Therefore, we con-

ducted 12 experiments, where we tested on data acquired six

months later, or earlier, than the training data, again under sim-

ilar illumination conditions. Finally, we combined both types

of variations and performed experiments on 24 pairs of train-

ing and test sets, obtained six months from each other and un-

der different illumination settings. Note that in the last two sets

of experiments described, the task becomes more and more

challenging as the difference between training and test set in-

creases. By doing this, we aim at testing the gain in robustness

expected from cue integration in very difficult, but still realis-

tic, scenarios.

For all experiments, model parameters were determined via

cross validation. Since the datasets in the IDOL2 database are

unbalanced (on average 443 samples for CR, 114 for 1pO, 129

for 2pO, 133 for KT and 135 for PR), as a measure of per-

formance for the reported results and parameter selection, we

used the average of classification rates obtained separately for

each actual class (average per-class recall). For each single ex-

periment, the percentage of properly classified samples was

first calculated separately for each room and then averaged

with equal weights independently of the number of samples

acquired in the room. This allowed to eliminate the influence

that large classes could have on the performance score. Sta-

tistical significance of the presented results was verified us-

ing the Wilcoxon signed-ranks test (when performance of two

methods was compared) or Friedman and post hoc Nemenyi

test (when multiple methods were compared) at a confidence

level of � � 0�05 as suggested in Demšar (2006). The results

of the post hoc tests were visualized using critical difference

diagrams. The diagrams show average ranks of the compared

methods and the groups of methods that are not significantly

different are connected (the difference is smaller than the crit-

ical difference presented above the main axis of the diagram).

The reader is referred to Demšar (2006) for details on the ap-

plied tests and the critical difference diagrams presented be-

low.

6.2. Experiments with Separate Cues

We first evaluated the performance of all four types of single-

cue models: the two SVM models based on visual features
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Fig. 6. Examples of pictures taken from the IDOL2 database showing the interiors of the rooms, variations observed over time

and caused by activity in the environment as well as introduced by changing illumination.

(CRFH, SIFT), the AdaBoost and the SVM models trained

on the laser range cues (referred to as L-AB and L-SVM).

For SVM, we tried the three multi-class extensions described

in Section 4.1. The results of all four sets of experiments for

these models are presented in Figures 7–10 (the first four bar

groups). Moreover, the results of statistical significance tests

comparing the models based on the combined results of all

four experiments are illustrated in Figure 11. We first note that,
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Fig. 7. Classification results for Experiment 1: stable illumination conditions, close in time.

as expected, CRFH and SIFT suffer from changes in illumina-

tion (�15�3% and �11�0% respectively), while the geomet-

rical features do not (�1�9% for L-AB and �0�64% for L-

SVM). Long-term variations pose a challenge for both modal-

ities (from �7�0 to �10�2% for vision and �3�7 to �7�9%

for laser). We also see differences in performance between the

two visual cues: CRFH suffers more from changes in illumina-

tion, while SIFT is less robust to variations induced by human

activities. It is also interesting to note that under stable condi-

tions, the vision-based methods outperform the systems based

on laser range cues (95.1% for CRFH and 92.5% for L-SVM�

the difference is statistically significant). This illustrates the

potential of visual cues, but also stresses the need for more

robust solutions.

These experiments are also a comparison between two

recognition algorithms using laser-range features, namely the

boosting-based implementation (L-AB) presented in Mozos

et al. (2005) and the current SVM-based implementation (L-

SVM). Figures 7–10 and Figure 11 show the results. We can

see that the difference in performance is statistically significant

in favor of the SVM-based method for all three multi-class ex-

tensions (from 6.1% for Experiment 1 to 10.3% for Experi-

ment 4 in average). The classification results for the L-AB are

worse than the results of the original paper by Mozos et al.

(2005). There are two main reasons for that. First, the number

of classes is increased to five, while in Mozos et al. (2005) was

of a maximum of four. Second, in these experiments, we used

a restricted field of view of 180�, whilst in Mozos et al. (2005)

the field of view was of 360�. This decreases the classification

rate, as has been shown in previous work (Mozos et al. 2007).

As already mentioned, all the experiments with SVMs were

repeated for three different multi-class extensions: standard

OaO and OaA as well as modified OaA algorithm. The ob-

tained results are in agreement with those of Pronobis and Ca-

puto (2007): in the case of single cue and G-DAS experiments,

the modified version gives the best performance with a statis-

tically significant difference independently of the modality on

which the classifier was trained.

Figure 12 shows the distribution of errors for each actual

class (room) made by the four models. It is apparent that each

of the cues makes errors according to a different pattern. At the

same time, similarities occur between the same modalities. We

see that visual models are biased towards the corridor, while

the geometrical models tend to misclassify places as the printer

area. A possible explanation is that the vision-based models

were trained on images acquired with perspective camera with

constrained viewing angle. As a result, similar visual stimuli

coming from the corridor are present in the images captured

by the robot leaving each of the rooms. The same area close

to a doorway, from the geometrical point of view, is similar

to the narrow passage in the printer area. This analysis is a

strong motivation to integrate these various cues with a stack

of classifiers, as theory indicates that this is the ideal condition

for exploiting the different informative content (Polikar 2006).

6.3. Experiments with Cue Integration

For the final experiments, we selected four different cue ac-

cumulation methods: G-DAS and SVM-DAS with three ker-

nel types (linear, RBF, and histogram intersection (HI) kernel
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Fig. 8. Classification results for Experiment 2: varying illumination conditions, close in time.

Fig. 9. Classification results for Experiment 3: stable illumination conditions, distant in time.

(Barla et al. 2003)). The parameters of the algorithms (weights

in case of G-DAS and SVM model in case of SVM-DAS) were

always adjusted on the basis of outputs generated during all

experiments with single-cue models trained on one particular

data sequence. Then, during testing, the previously obtained

integration scheme was applied to all experiments with models

trained on a different sequence, acquired under similar illumi-

nation and closely in time. This way, the generalization abili-

ties of each of the methods were tested in a realistic scenario.

In all experiments, we found that SVM-DAS with an RBF ker-
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Fig. 10. Classification results for Experiment 4: varying illumination conditions, distant in time.

Fig. 11. Critical difference diagrams comparing four single-cue models and solutions based on multiple cues integrated using

SVM-DAS with the Nemenyi test for a confidence level of � � 0�05. The comparison is based on the combined results of

Experiments 1–4 and presented separately for each multi-class extension. The average ranks of the methods are plotted on the

axis and the groups of methods that are not significantly different are connected.

nel outperforms the other methods and the difference in perfor-

mance with respect to G-DAS was statistically significant for

all combinations of cues and multi-class extensions (Wilcoxon

test). For space reasons, we report results of each of the ex-

periments only using SVM-DAS based on the RBF kernel and

G-DAS for comparison (Figures 7–10, last nine bar groups). A

detailed comparison of all variants of SVM-DAS for the most

complex problem (Experiment 4) is given in Figure 13. Results

of statistical significance tests comparing the multi-cue solu-

tions with single-cue models based on the combined results of

all experiments are illustrated in Figure 11.

We tested the methods with several combinations of dif-

ferent cues and modalities. First, we combined the two visual

cues. We see that the generalization of a purely visual recogni-

tion system can be significantly improved by integrating differ-

ent types of cues, in this case local and global. This can be ob-

served especially for Experiment 4, where the algorithms had

to tackle the largest variability. Despite that, according to the

error distributions in Figure 12, we should expect the largest

gain when different modalities are combined. As we can see

from Figures 7–10 this is indeed the case. By combining one

visual cue and one laser range cue (e.g. CRFH 
 L-SVM),

we exploit the descriptive power of vision in the case of stable

illumination conditions and the invariance of geometrical fea-

tures to the visual noise. Moreover, if the computational cost

is not an issue, the performance can be further improved by



312 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February/March 2010

Fig. 12. Distribution of errors made by the four models for each actual class (bright colors indicate errors). The diagonal elements

were removed.

Fig. 13. Comparison of performance of SVM-DAS based on different kernel functions for the most complex problem (Experi-

ment 4).

using both visual cues instead of just one. As can be seen from

Figure 11, by integrating single-cue models or adding another

cue to a multi-cue system, we always get an improvement sta-

tistically significant.

We performed a more detailed analysis of the best results.

Table 1 contains the confusion matrix for the multi-cue sys-

tem based on CRFH, SIFT and L-SVM integrated using SVM-

DAS with an RBF kernel. We see that even if the corridor class

contained on average four times more samples than each of the

room classes and was visually and geometrically distinctive,

the results are balanced and the recognition rates for each ac-

tual class are similar. In general, during our experiments, more

balanced solutions were preferred due to the performance met-

ric used (average of the diagonal values in brackets in Table 1).

As it was mentioned in Section 4.3, SVM-DAS can be

applied for problems where outputs of different classifiers

need to be integrated. To test this in practice, we com-

bined the SVM models trained on visual cues with Ad-

aBoost model based on geometrical features (L-AB)5. We

present the results in Figures 7–10 (last bar group) and

Figure 11. The method obtained large and statistically sig-

nificant improvements compared to each of the individual

cues. For instance for Experiment 4, the recognition rate in-

5. As usual, for SVM we used several multi-class extensions that in most cases

produced outputs having different interpretation than those generated by the

multi-class algorithm used for AdaBoost. In those cases G-DAS could not be

applied.
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Table 1. Confusion Matrix for the Multi-cue System Based on CRFH, SIFT and L-SVM Integrated Using SVM-DAS

Predicted class

Actual class 1pO CR 2pO KT PR

1pO 11.20 (93.71) 0.36 (3.06) 0.16 (1.33) 0.11 (0.96) 0.11 (0.94)

CR 0.25 (0.53) 45.36 (97.73) 0.19 (0.42) 0.33 (0.70) 0.29 (0.62)

2pO 0.17 (1.22) 0.11 (0.8) 13.26 (96.92) 0.06 (0.46) 0.08 (0.60)

KT 0.17 (1.18) 0.35 (2.45) 0.08 (0.57) 13.42 (95.12) 0.09 (0.67)

PR 0.09 (0.65) 0.77 (5.59) 0.03 (0.19) 0.05 (0.33) 12.90 (93.24)

Normalized average values in percentage over all experiments are reported. The values in brackets were normalized separately for each actual class (row). The

presented results are only for the standard OaO multi-class extension since the results for the remaining extensions were comparable.

creased by 12.2% in average. This proves the versatility of our

approach.

6.4. Analysis of Cue Integration Schemes

Results presented so far clearly show that SVM-DAS performs

significantly better than G-DAS and, by using more sophis-

ticated kernel types for SVM-DAS, it is possible to perform

non-linear cue accumulation. Moreover, the experiments (see

Figure 13) show that we can expect better results with the

RBF kernel (especially for the OaO multi-class extension), al-

though there is no drastic improvement. We therefore suggest

to choose the kernel according to constraints on the computa-

tional cost of the solution. Since there are fast implementations

of linear SVMs, it might be beneficial to use a linear kernel in

cases when the integration scheme must be trained on a very

large number of samples. In applications where only the num-

ber of training parameters is an issue, the non-parametric HI

kernel can be used instead of RBF.

We now further discuss differences between high-level

(e.g. SVM-DAS) and low-level (feature-level) cue integration.

There are several advantages in integrating multiple cues with

a high-level strategy. First, different learning algorithms can

be used for each single cue. In our experiments, this allowed

to combine SVM-based models employing different kernel

functions (e.g. the �2 kernel for CRFH and the match kernel

for SIFT) or even different classifiers (AdaBoost and SVM).

Moreover, parameters can be tuned separately for each of the

cues. Second, both the training and recognition tasks can be di-

vided into smaller subproblems that can be easily parallelized.

Finally, it is possible to decide on the number of cues that

should be extracted and used for each particular classification

task. This is an important feature, since, in most cases, deci-

sions based on a subset of cues are correct while extraction

and classification of additional features introduces additional

cost. For example, a solution based on global visual features,

laser range cues and SVM-DAS runs in real-time at a rate of

approximately 5 fps, which would not be possible if an addi-

tional visual cue like SIFT was used. The computational cost

Table 2. Average Percentages (with Standard Deviations)

of Test Samples for which all Cues had to be Used in Order

to Obtain the Maximal Recognition Rate

Cue integration method

Cues G-DAS SVM-DAS

(Primary cue) RBF Kernel

CRFH 
 SIFT 25�971� 18�503 29�453� 22�139

CRFH 
 L-SVM 21�230� 20�199 32�736� 20�256

SIFT 
 L-SVM 28�820� 20�982 33�344� 22�425

SIFT 
 CRFH 31�858� 20�474 40�833� 21�916


 L-SVM

can be significantly reduced by taking the approach presented

in Pronobis and Caputo (2007). By combining confidence es-

timation methods with cue integration, we can use additional

sources of information only when necessary – when the de-

cision based on one cue only is not confident enough. This

scheme is referred to as Confidence-based Cue Integration. Ta-

ble 2 presents the results of applying the scheme to the experi-

ments presented in this section. We see that, in general, we can

base our decision on the fastest model (marked with bold font

in Table 2), such as the efficient and low-dimensional model

based on simple laser-range features, and we can retain the

maximal performance by using additional cues only in approx-

imately 30% of cases. This greatly reduces the computational

time required on average e.g. approximately three times for

CRFH, L-SVM and SVM-DAS. Additional cues will be used

more often when the variability is large, and rarely for less

difficult cases. This is not possible in the case of low-level in-

tegration where all the cues must be extracted and classified in

order to obtain a decision.

Another important factor is performance. During our exper-

iments, we compared the performance of G-DAS and SVM-

DAS (with an RBF kernel) with models built on cues com-

bined on the feature level. We performed three different sets
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Fig. 14. Comparison of performance of two single-cue models and solutions based on the cues integrated on both low and high

level for the most complex problem (Experiment 4).

of comparisons. In the first comparison, we built single-cue

models and models based on features combined on the low

level using SVM and the non-parametric linear kernel, using

the same values of the SVM training parameters for all mod-

els. Then, we integrated the outputs of the single-cue models

using G-DAS and SVM-DAS. In the case when G-DAS was

used, the solution remained linear. In the second comparison,

for building the models we used the non-linear, non-parametric

HI kernel. In the final comparison, we used an RBF kernel

and performed parameter selection for each of the models. All

comparisons were based on CRFH and laser-range cues, since

the dedicated kernel function required by SIFT could not be

used with any of the other features for low-level integration.

The results for the most complex problem (Experiment 4)

are given in Figure 14 and statistical significance tests compar-

ing the solutions are illustrated in Figure 15. It can be observed

that, in every case, the high-level integration significantly out-

performed solutions based on features combined on the low

level. In only one case there was no significant difference be-

tween G-DAS and low-level integration� however, SVM-DAS

still performed better than the other solutions. This is in agree-

ment with the results reported by Tommasi et al. (2008) and

Nilsback and Caputo (2004) and can be explained by greater

robustness of the high-level methods to noisy cues or sensory

channels and the ability of different classifiers to adapt to the

characteristics of each single cue.

7. Experiments with Semantic Space Labeling

We performed an independent live experiment to test our

multi-modal semantic space labeling system running in real-

time on a mobile robot platform. The experiment was per-

formed during working hours in a typical office environment.

Both the environment and the robot platform were different

than in the case of the off-line evaluation described in Sec-

tion 6. The whole experiment was videotaped and a video pre-

senting the setup, experimental procedure, and visualization of

the results can be found in Extension 2.

7.1. Experimental Setup

The experiment was performed between the 7th and 10th of

September 2008 in the building of the School of Computer

Science at the University of Birmingham, Birmingham, UK.

The interior of the building consists of several office environ-

ments located on three floors. For our experiments, we selected

three semantic categories of rooms that could be found in the

building: a corridor, an office and a meeting room. To build

the model of an office, we acquired data in three different

offices: Aaron’s office (first floor), Robert’s office (first floor)

and Richard’s office (ground floor). To create a representation

of the corridor class, we recorded data in two corridors, one

on the ground floor and one on the first floor. The acquisition
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Fig. 15. Critical difference diagrams comparing two single-cue models and solutions based on the cues integrated at both the

low and high level with the Nemenyi test for a confidence level of � � 0�05. The comparison is based on the combined results

of Experiments 1–4 and presented separately for three kernel functions and multi-class extensions used with SVM. The average

ranks of the methods are plotted on the axis and the groups of methods that are not significantly different are connected.

was performed at night. Finally, to train the model of a meet-

ing room, we used an instance on the second floor. All train-

ing data except the one from the meeting room was acquired

in another part of the building than the one used for testing.

The data for this class were recorded during the day. A video

illustrating the whole data acquisition process is available as

Extension 3. The interiors of the rooms are presented in Fig-

ure 16(a), as seen by vision and laser. The robot was manually

driven around each room and data samples were recorded at

the rate of 5 fps. All the collected training data are available

as Extension 4. In the case of the meeting room, the corridor

on the first floor as well as Aaron’s and Richard’s offices, the

acquisition was repeated twice.

For the real-time experiment, we built the system as de-

scribed in Section 5. Following the findings of the off-line ex-

periments, we used SVM-DAS with the RBF kernel to inte-

grate the classifier outputs for vision and laser range data. For

efficiency reasons, we used only global features (CRFH) for

the vision channel. We used the OaA multi-class SVM exten-

sion for the place models. Other parameters were set as de-

scribed in Section 6.

We trained the place models separately for each modality

on a dataset created from one data sequence recorded in each

of the rooms. One of the advantages of SVM-DAS is the abil-

ity to infer the integration function from the training data, after

training the models. We used the additional data sequences ac-

quired in some of the rooms and trained SVM-DAS on the

outputs of the uni-modal models tested on these data.

The PeopleBot robot platform shown in Figure 3 was used

for data acquisition and the final experiment. The robot was

equipped with a SICK laser range finder and Videre STH-

MDCS2 stereo head (only one of the cameras was used). The

images were acquired at the resolution of 320�240 pixels. The

whole system was implemented in the CAST (The CoSy Ar-

chitecture Schema Toolkit)6 framework and run on a standard

2.5 GHz dual-core laptop. The processing for both modalities

was executed in parallel using both of the CPU cores.

7.2. Experimental Procedure and Results

Three days after the training data were collected, we per-

formed a live experiment in the lab on the second floor in the

same building. The experiment was conducted during the day

with sunny weather. The part of the environment that was ex-

plored by the robot consisted of two offices (Nick’s office and

Jeremy’s office), a corridor and a meeting room. The interiors

of the rooms and the influence of illumination can be seen in

the images in Figure 16(b).

The SLAM system of the robot constructs a metric map

and navigation graph. In this experiment, the task is to se-

mantically label the navigation graph nodes and areas as the

map is being built. The only knowledge given to the robot be-

fore the experiment consisted of the models of the three place

classes: “office”, “corridor” and “meeting room”. As stated in

Section 5, every time the robot created or revisited a node, the

accumulated beliefs about the semantic category of the area

were used to label the node and saved as a future prior. The

label was also propagated to the whole area. We used detected

doors to assign nodes to areas.

The whole experiment was videotaped and a video present-

ing the experimental setup, the test run and visualization of

6. See http://www.cs.bham.ac.uk/research/projects/cosy/cast/
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Fig. 16. Examples of images and laser scans (synchronized) taken from the data sequences used for training the models of place

classes (a) and acquired during the test run (b) in each of the rooms considered during the experiment. The within-category

variations for corridors and offices are illustrated as well as other types of variability observed for each place class (e.g. different

illumination conditions, activity in the environment).
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Fig. 17. Final map obtained after the test run. The navigation

graph is overlaid on the metric map and the color of the circles

around the graph nodes indicate the place class assigned to

each area bounded by detected doors. The system correctly

labeled all of the areas in the environment.

the obtained results can be found in Extension 2. The robot

started in Nick’s office, and was manually driven through the

corridor to Jeremy’s office. Then, it was taken to the meeting

room where the autonomous exploration mode was turned on.

The robot used a frontier-based algorithm based on Yamauchi

(1997). Laser data was limited to 2 m distance in the explo-

ration to make sure that the robot not just perceived how the

environment looked but also covered it to build the navigation

graph. After the meeting room was explored, the robot was

manually driven back to Nick’s office where the experiment

finished. A video presenting visualization of the full test run is

available in Extension 5. The labeling process was running on-

line and the place classification was performed approximately

at the rate of 5 times per second. The final semantic map build

during the run is shown in Figure 17. We can see that the sys-

tem correctly labeled all the areas in the environment.

The sensory data acquired during the test run are available

as Extension 4. Moreover, a video presenting the sequence of

images and laser scans is presented in Extension 6. The fact

that the data were stored allowed for additional performance

analysis of the multi-modal place classification system, simi-

lar to the one presented in Section 6. The results are displayed

in Figure 18. When we look at the overall classification rate

for all the data samples in the test sequence, we see that vi-

sion significantly outperformed laser in this experiment (66%

versus 84%). Still, the performance of the system was boosted

by an additional 8% compared with vision alone when the two

modalities were integrated. The gain is even more apparent

if we look at the detailed results for each of the classes (the

first three charts in Figure 18). We see that the modalities

achieved different performance, but also different error pat-

terns, for each class. Clearly, the system based on laser range

data is a very good corridor detector. On the other hand, vision

was able to distinguish between the offices and the meeting

room almost perfectly. Finally, the integrated system always

achieved the performance of the more reliable modality and

for two out of three classes outperformed the uni-modal sys-

tems. As can be seen in the video in Extensions 2 and 5, this

provided stable performance for each of the classes and a ro-

bust base for the semantic labeling system.

8. Conclusions

In this paper we have addressed the problem of place clas-

sification and showed how it can be applied to semantic knowl-

edge extraction in robotic systems. This is an important and

challenging task, where multiple sensor modalities are neces-

sary in order to achieve generality and robustness, and enable

systems to work in realistic settings. To this end, we presented

a new cue integration method able to combine multiple cues

derived by a single modality, as well as cues obtained by mul-

tiple sensors. The method was thoroughly tested in off-line ex-

periments on realistic data collected under varying conditions

and as part of a real-time system running on a robotic plat-

form. The results obtained using multiple visual cues alone,

and combined with laser range features, clearly show the value

of our approach. Finally, we showed that the system can suc-

cessfully be applied for the space labeling problem where it

can be used to augment the internal space representation with

semantic place information. All of the data used in the paper

are available as extensions to the paper and from the IDOL2

database (Luo et al. 2006).

In the future, we plan to extend this method and attack the

scalability issue, with particular attention to indoor office en-

vironments. These are usually characterized by a large num-

ber of rooms with very similar characteristics� we expect that

in such a domain our approach will be particularly effective.

Another important aspect of place classification is the intrin-

sic dynamics in the sensory information: as rooms are used

daily, furniture is moved around, objects are taken in and out

of drawers and people appear. All of this affects the sensor in-

puts of places in time. We plan to combine our approach with

incremental extensions of the SVM algorithm (Luo et al. 2007�

Orabona et al. 2007) and to extend these methods from fully

supervised to semi-supervised learning, so to obtain a system

able to learn continuously from multiple sensors.
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Fig. 18. Place classification results obtained on the dataset recorded during the test run. The first three bar charts show the results

separately for each place class: “corridor”, “meeting room” and “office”. The charts show the percentage of the samples that

were properly classified (most left bars marked with thick lines), but also how the misclassifications were distributed. The chart

on the right presents the percentage of properly classified samples during the whole run. The two top rows give results for single

modalities, while the bottom row shows results for the multi-modal system.

A preliminary version of part of the experimental evalu-

ation reported in this work was presented in Pronobis et al.

(2008).

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video The acquisition procedure of a typical

data sequence in the IDOL2 database.

2 Video The setup, procedure and visualiza-

tion of the experiment with semantic

space labeling based on multi-modal

place classification.

3 Video The process of acquiring data for

training the models of places for the

experiment with semantic space la-

beling.

4 Data The dataset (sequences of images and

laser scans) collected during the ex-

periment with semantic labeling of

space.

5 Video Visualization of the complete test run

and results obtained during the exper-

iment with semantic space labeling.

6 Video The complete sequence of images and

laser scans acquired during the test

run of the experiment with semantic

space labeling.
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