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Abstract: Background: Cardiovascular diseases (CVDs) are a leading cause of death worldwide.
Deep learning methods have been widely used in the field of medical image analysis and have
shown promising results in the diagnosis of CVDs. Methods: Experiments were performed on
12-lead electrocardiogram (ECG) databases collected by Chapman University and Shaoxing People’s
Hospital. The ECG signal of each lead was converted into a scalogram image and an ECG grayscale
image and used to fine-tune the pretrained ResNet-50 model of each lead. The ResNet-50 model was
used as a base learner for the stacking ensemble method. Logistic regression, support vector machine,
random forest, and XGBoost were used as a meta learner by combining the predictions of the base
learner. The study introduced a method called multi-modal stacking ensemble, which involves
training a meta learner through a stacking ensemble that combines predictions from two modalities:
scalogram images and ECG grayscale images. Results: The multi-modal stacking ensemble with a
combination of ResNet-50 and logistic regression achieved an AUC of 0.995, an accuracy of 93.97%,
a sensitivity of 0.940, a precision of 0.937, and an F1-score of 0.936, which are higher than those of
LSTM, BiLSTM, individual base learners, simple averaging ensemble, and single-modal stacking
ensemble methods. Conclusion: The proposed multi-modal stacking ensemble approach showed
effectiveness for diagnosing CVDs.
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1. Introduction

Cardiovascular diseases (CVDs) are a global public health problem and result from
a variety of causes. Since CVDs are a disease of multifactorial origin, it is not easy to
accurately and timely diagnose the disease [1]. Early and accurate diagnosis and treatment
of CVDs can significantly reduce the risk of morbidity and mortality, making rapid and
accurate CVDs prediction a crucial task in healthcare. Cardiologists use various tools to
diagnose cardiovascular diseases, and one commonly used tool is the electrocardiogram
(ECG). It enables quick detection of abnormal heart rhythms and potential heart disease
signs without any intervention [2,3]. In particular, the most frequently used complementary
exam for cardiac evaluation is a standard short-duration 12-lead ECG (S12L-ECG) since
it can provide a comprehensive evaluation of the heart’s electrical activity. Therefore, the
S12L-ECG system is used in various medical environments, ranging from primary care
centers to intensive care units [4,5].

However, the ECG signal is complex and can be affected by various factors, such as
noises and motion artifacts [6]. This makes it challenging to accurately diagnose CVDs. One
way to overcome this limitation is to apply deep learning methods. Deep learning methods
have been used to improve the accuracy of CVDs diagnosis by automatically learning
features from the ECG signal that are relevant to the CVDs. When it comes to deep learning
techniques utilized in detecting CVDs, recurrent neural networks (RNN), long short-term
memory (LSTM), and gated recurrent units (GRU) have been extensively employed [7–9].
Faust et al. used a bidirectional LSTM (BiLSTM) to identify atrial fibrillation beats in heart
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rate signals, while Gao et al. proposed an LSTM that incorporated focal loss to address the
imbalance of ECG beats [7,8].

Convolutional neural networks (CNN) are also widely used for diagnosing CVDs [10–15].
The one-dimensional CNN (1D CNN) model exploits the one-dimensional (1D) structure
of the signal, so it can be used on these ECG data without transformation. The 1D CNN
models, which are popular representation learning methods of 1D signals, can learn distin-
guishing hierarchical features when applying 1D convolution to 1D signals. The 1D CNN
models hierarchically learn primitive features from the lower layers and complex features
through consecutive higher layers [11]. Yildirim et al. constructed a 1D CNN and LSTM
combination model to detect four and seven rhythm classes [11]. Mousavi et al. proposed
a deep learning architecture that comprises the CNN layers, attention mechanism, and
LSTM units to mitigate the occurrence of false alarms for arrhythmia detection in intensive
care units [12].

Recently, there have been numerous studies conducted to detect CVDs using two-
dimensional CNN (2D CNN) with ECG signals [14–18]. In order to apply a 1D ECG
signal to a 2D CNN, the 1D signal needs to be transformed into a two-dimensional (2D)
image. Jun et al. obtained 2D ECG images from 1D ECG signals by plotting each ECG
beat as a grayscale image to classify eight rhythms [16]. In this study, we refer to the
transformed 2D image as an ECG grayscale image. As another method, we can convert
the 1D ECG signal into a spectrogram through a short-time Fourier transform (STFT) or a
scalogram using wavelet transform. Yildirim et al. fine-tuned 2D CNN models (AlexNet,
VGGNet, ResNet, and DenseNet) with spectrogram images to identify diabetes mellitus
and Yoon et al. applied a pretrained ResNet-50 model to the ECG scalograms to classify
four rhythms [14,15]. We refer to the converted scalograms as scalogram images. As
another method, Zhai et al. used a 2D CNN architecture with a dual beat coupling matrix
to identify supraventricular ectopic beats and ventricular ectopic beats [17]. 2D CNN has
the advantage of utilizing pretrained models that were trained with a large number of
images, such as the ImageNet database. In addition, there are several established 2D CNN
architectures that have demonstrated good performance, so there is no need to design a
new 2D CNN architecture by modifying layers and filters. To take advantage of the 2D
CNN mentioned above, we aim to diagnose CVDs by fine-tuning a pretrained ResNet-50
model with scalogram images and ECG gray-scale images.

However, a single CNN model may not be sufficient to accurately predict CVDs, as
it may suffer from high bias or high variance [19]. One way to address this problem is
through ensemble methods, which combine the predictions of multiple single CNN models.
Ensemble methods can lead to an improvement in performance by combining the strengths
of multiple models and reducing the influence of their individual weaknesses. Ensemble
models can also be used to reduce overfitting and improve generalization [20]. In this study,
we aim to reduce the weakness of 12 individual ResNet-50 models for 12 ECG leads and
enhance the strengths of those models using a simple averaging ensemble and stacking
ensemble with two kinds of input modalities: scalogram image and ECG grayscale image.
The two types of input images exhibit different characteristics. To obtain the characteristics
of each image, we propose a multi-modal stacking ensemble that can utilize information
obtained from different input modalities.

The major contributions of the study are outlined in the following manner: (1) for
each lead, the performances of ResNet-50 based on scalogram images was compared to
the performance of ResNet-50 based on ECG grayscale images; (2) we demonstrated that
the diagnostic performance of the single-modal stacked ensemble was superior to that
of the 12 individual base learners and single-modal simple averaging ensemble for both
scalogram images and ECG grayscale images; (3) we proposed a multi-modal stacking
ensemble that combines base learner predictions obtained from scalogram images and
ECG grayscale images and then fed them as inputs to a meta learner; (4) the proposed
multi-modal stacking ensemble demonstrated superior performance compared to LSTM,
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BiLSTM, 12 individual base learners, simple averaging ensemble, and the single-modal
stacking ensemble.

2. Materials and Methods
2.1. Dataset and Preprocessing

The dataset used in this research was a 12-lead ECG database that was collected by
Chapman University and Shaoxing People’s Hospital in China [6]. The 12-lead ECG database,
which was recorded at a sampling frequency of 500 Hz, consisted of 10,646 patients (including
5956 males) and each recording lasted for 10 s. The ECG database contained 11 different
heart rhythms labelled by professional physicians. Since raw ECG signals contain unwanted
noise, the following three preprocessing steps were sequentially applied: Butterworth low-
pass filter (LPF), local polynomial regression smoother (LOESS) curve fitting, and non-local
means (NLM) technique [21–23]. The Butterworth LPF was used to remove signals with
frequencies above the typical frequency range of a normal ECG (0.5 Hz to 50 Hz). To
eliminate the baseline wandering effect that can be caused by respiration, the LOESS curve
fitting method was used. The NLM technique was employed to reduce residual noises. Of
the ECG data, 58 ECG recordings were excluded from the study since they either only had
zeros or some of their channel values were incomplete. Among the remaining 10,588 data,
the number of ECG samples with atrial tachycardia (AT), atrioventricular node reentry
tachycardia (AVNRT), atrioventricular reentry tachycardia (AVRT), and sinus atrial-to-atrial
wander rhythm (SAAWR) categories was only 121, 16, 8 and 7, respectively. The number of
samples belonging to the four categories mentioned above was extremely small and hence
excluded from this study. Finally, a sum of 10,436 ECG recordings belonging to 7 ECG
rhythms were used in this study. Table 1 provides a comprehensive description of 7 distinct
ECG rhythms along with the corresponding number of subjects.

Table 1. Information on the 7 ECG rhythms.

11 ECG Rhythms Number of
Subjects

Number of
Training Data

Number of
Validation Data

Number of
Test Data

Atrial Fibrillation (AFIB) 1780 1424 178 178

Atrial Flutter (AF) 438 350 44 44

Sinus Tachycardia (ST) 1564 1251 157 156

Supraventricular
Tachycardia (SVT) 544 435 55 54

Sinus Bradycardia (SB) 3888 3110 389 389

Sinus Rhythm (SR) 1825 1460 182 183

Sinus Irregularity (SI) 397 318 39 40

2.2. Data Transformation

To utilize the 2D CNN model, it is necessary to transform the 1D ECG signal into a 2D
image. Among the various methods of converting to a 2D image, we adopted a method
of converting to a scalogram and a method of plotting a 1D ECG signal as it is in two
dimensions. In this study, we refer to the former image as a scalogram image and the latter
image as an ECG grayscale image. An ECG scalogram image is a visual representation of
the time-frequency composition of the ECG signal that can reveal important information
about the frequency characteristics of the ECG over time. Scalogram images were generated
by applying the continuous wavelet transform (CWT) to the ECG recordings. An analytic
Morse wavelet with a symmetry parameter of 3 (γ = 3) and a time-bandwidth product of
60 (P2 = 60) was used to obtain the CWT. The Morse wavelet is perfectly symmetric in
the frequency domain and has zero skewness when γ equals 3. The CWT was calculated
using 10 voices per octave, a 500 Hz sampling frequency, and a signal length of 5000. The
minimum and maximum scales were determined automatically based on the wavelet’s
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energy spread in time and frequency [24]. In this study, we used the cwt.m function provided
by Wavelet Toolbox in Matlab 2020a (https://www.mathworks.com/help/wavelet/ref/
cwt.html, accessed on 13 February 2023). The converted scalogram images were saved as
300× 300 pixel RGB images. For ECG grayscale images, 1D ECG recordings were plotted as
grayscale images with a white ECG signal against a black background. The ECG grayscale
images were saved as 300 × 300 pixels. Examples of scalogram images and ECG grayscale
images for the 7 groups (AFIB, AF, ST, SVT, SB, SR, and SI) are shown in Figure 1.
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Figure 1. Sample images of scalogram and ECG grayscale images for the 7 groups of ECG recordings
(AFIB, AF, ST, SVT, SB, SR, and SI). Each column represents the AFIB, AF, ST, SVT, SB, SR, and SI
categories. The first row shows scalogram images and the second row displays grayscale images of
the ECG signals.

2.3. Ensemble Methods

Ensemble methods are a group of techniques that combine the predictions of multiple
models to improve performance. There are many ensemble methods, but this study adopts
simple averaging ensemble and stacking ensemble. Simple averaging ensemble obtains
the output by averaging the predictions of individual learners directly. Owing to its
simplicity and effectiveness, the method is popular in many real applications. The stacking
ensemble consists of multiple base learners and a meta-learner. In stacking ensemble, each
base learner trains with the original training dataset and then generates new datasets for
training a meta learner, where the outputs of the base learner are regarded as input features
of the meta learner. The stacking ensemble is powerful because it can combine the strengths
of different models to produce a more accurate prediction [20].

Since we propose a multi-modal stacking ensemble method for diagnosing CVDs,
we focus on a stacking ensemble. In this study, we use two types of image modalities:
scalogram images and ECG grayscale images. The single-modal stacking ensemble refers
to the stacking ensemble that utilizes only one image modality, whereas the multi-modal
stacking ensemble refers to the stacking ensemble that incorporates two image modalities.
We first explain the single modal stacking ensemble, and, to ensure clear understanding,
we specifically describe the scenario where the input is a scalogram image. As shown
in Figure 2, scalogram images are fed to a pretrained ResNet-50 model to be fine-tuned
for each lead. Since we have 12 leads, 12 ResNet-50 base learners are fine-tuned with
scalogram images. We can then obtain 12 predictions from 12 individual base learners.
Each base learner’s prediction is a 7-dimensional probabilities vector. Considering 12 leads,
we can obtain 12 predictions that consist of 7-dimensional probability vectors. Simple
averaging ensemble averages the predictions of 12 single-lead ResNet-50 models that were
independently trained. On the other hand, the stacking ensemble combines the predictions
of the 12 base learners. That is, the 7-dimensional output probability vector from each lead
is concatenated to make an 84-dimensional vector. Then the 84-dimensional vector is fed
into a meta learner that outputs prediction values for the 7 ECG rhythms. As the meta
learner, logistic regression, support vector machines (SVM), random forest, and XGBoost
were employed in this study [25–28]. The single-modal stacking ensemble architecture for

https://www.mathworks.com/help/wavelet/ref/cwt.html
https://www.mathworks.com/help/wavelet/ref/cwt.html
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ECG grayscale images is the same as described above, except that the input image is an
ECG grayscale image instead of a scalogram image.
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Figure 2. Architecture of single-modal stacking ensemble for scalogram images. For each lead,
scalogram images are fed to a pretrained ResNet-50 model. The 7-dimensional output probability
vector from each lead is concatenated to make an 84-dimensional vector. Then, the 84-dimensional
vector is fed into a meta learner that outputs prediction values for the 7 classes.

Single-modal stacking ensemble considers only one input modality, whereas multi-
modal stacking ensemble methods take multiple input modalities into account. A detailed
description of the multi-modal stacking ensemble is depicted in Figure 3. In this study,
scalogram images and ECG grayscale images are used as two input modalities. In the
proposed multi-modal stacking ensemble, we combine an 84-dimensional vector obtained
from 12 individual base learners using scalogram images and another 84-dimensional
vector attained from 12 individual base learners using ECG grayscale images. Combining
the vectors obtained from the two modalities results in a 168-dimensional vector. The
concatenated 168-dimensional vector contains the characteristics of a scalogram image and
an ECG grayscale image. The 168-dimensional vector becomes the new input vector for
the meta learner. Similar to the single-modal stacking ensemble, the multi-modal stacking
ensemble employed logistic regression, SVM, random forest, and XGBoost as meta learners
in this study.
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2.4. LSTM

LSTM is a type of recurrent neural network and a powerful method for the diagnosis
of CVDs. By training an LSTM model on labeled ECG recordings, the model can learn to
detect patterns and features that are indicative of CVDs. Due to the sequential nature of
ECG recordings, LSTM is well-suited for this task as it can capture long-term and temporal
dependencies between individual ECG recordings. In this study, LSTM was applied to the
same ECG dataset to demonstrate the effectiveness of the proposed multi-modal stacking
ensemble method. In experiment settings, LSTM has numerous hyperparameters; however,
this study chose to set the batch size, hidden size, dropout, and number of epochs to
fixed values of 128, 128, 0.2, and 100, respectively. The Adam optimizer was used with
β1 set to 0.9 and β2 set to 0.999 to optimize the LSTM model. To determine the learning
rate and number of layers, a grid search was performed where the learning rates were
evaluated over the range of (1e-3, 1e-4, 5e-5, 1e-5), and the number of layers was tested
within the range of (2, 3, 4). The best hyperparameter was chosen by selecting the one with
the highest accuracy on the validation dataset. To prevent the vanishing gradient problem,
the ECG signal sampled at 500 Hz was downsampled to 250 Hz. LSTM was trained for
all 12 leads at the same time since a 12-lead ECG signal can be represented as a sequence
of a 12-dimensional vector with a length of T time sample. On the other hand, ResNet-50
was trained individually for each lead. BiLSTM can be seen as a variation of LSTM. Unlike
LSTM, BiLSTM can analyze input sequences both forward and backward, which gives it the
ability to comprehend information from past and future time-steps and identify complex
inter-dependencies in the data. BiLSTM was also experimented under the same conditions.

2.5. ResNet-50 Model and Machine Learning Algorithms

ResNet is a deep neural network architecture introduced in 2015. It was developed
to address the issue of vanishing gradients that arises in deep networks. This problem is
resolved by adding skip connections between the layers. The skip connection is a type of
feedforward network that involves a shortcut connection. It adds new inputs to the network
and yields new outputs, enabling the network to learn the residual mapping instead of the
original mapping. ResNet has achieved state-of-the-art accuracy in a variety of computer
vision tasks and became one of the most popular architectures for image classification and
computer vision tasks [29]. For this reason, we used a pretrained ResNet-50 model as a base
learner. To fine-tune the ResNet-50 model, we utilized the Adam optimizer with β1 = 0.9
and β2 = 0.999. The experiments were conducted with three initial learning rates (1e-4,
5e-5, 1e-5) of the Adam optimizer. Of the three learning rates, 5e-5 was adopted as the most
accurate in the validation set among individual base learners. We fixed the mini-batch size
at 32 and the number of epochs at 30. The ResNet-50 model was developed with a PyTorch
framework [30]. The computer specifications used in the experiments are as follows: Intel
Core i7-9700K 3.60GHz CPU, 64GB memory, and a 12GB NVIDIA GeForce GTX 2080 Ti
graphics card. In this study, we considered four machine learning classifiers as a meta
learner of the stacking ensemble: logistic regression, SVM, random forest, and XGBoost.
We employed Scikit-learn library (https://scikit-learn.org/stable/index.html, accessed
on 30 January 2023) to implement logistic regression, SVM, and random forest classifiers,
while XGBoost was implemented using XGBoost Python Package (https://xgboost.ai/,
accessed on 30 January 2023). Optimal hyperparameters for the meta learner were chosen
by performing a thorough grid search and evaluating the accuracy of the validation set.
The details of the hyperparameters which were tuned using the grid search are described
in Table 2. The code for training and evaluating the proposed multi-modal stacking
ensemble model is available at: https://github.com/xodud5654/MMSE (accessed on 17
February 2023).

https://scikit-learn.org/stable/index.html
https://xgboost.ai/
https://github.com/xodud5654/MMSE
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Table 2. Hyperparameters used in meta learners. LR, logistic regression; SVM, support vector
machines; RF, random forest.

Meta Learner Classifier Hyperparameters in
Scikit-Learn Hyperparameter Ranges

LR C 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3

SVM C
gamma

1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3
1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3

RF
n_estimators
max_depth

max_features

100, 200, 300, 500, 1000, 2000, 3000
5, 10, 15, 20, None

‘log2′, ‘sqrt’

XGBoost
n_estimators
max_depth

learning_rate

100, 300, 500, 1000
3, 5, 7, 9

0.1, 0.05, 0.01

3. Results

We evaluated the individual base learner, simple averaging ensemble, and stacking
ensemble methods on the publicly available Chapman University and Shaoxing People’s
Hospital dataset. The data was split into three parts: 80% for training, 10% for validation,
and 10% for testing. As represented in Table 1, the samples of each class are imbalanced.
Therefore, we considered a weighted averaging technique instead of a macroscopic aver-
aging technique when evaluating the performance measures such as the area under the
ROC curve (AUC), sensitivity, precision, and F1-score. The weighted averaging calculates a
measure of performance for each class and then calculates a weighted mean. The weight is
determined by the number of samples in each class relative to the total number of samples.

In Table 3, the performances of ResNet-50 based on scalogram images were compared
to the performance of ResNet-50 based on ECG grayscale images for each lead. For
scalogram images, Lead II demonstrated the highest accuracy (92.24%), AUC (0.991),
sensitivity (0.922), precision (0.916), and F1-score (0.916) among the 12 leads. On the other
hand, for ECG grayscale images, the aVR lead achieved the highest accuracy (90.90%),
sensitivity (0.909), precision (0.911), and F1-score (0.909), while the V1 lead obtained the
highest AUC (0.989). Comparing the performance of individual ResNet-50 models for each
lead, the model based on scalogram images generally exhibited superior performance.

Table 3. Diagnostic performance of individual base learners for scalogram and ECG grayscale images.

Scalogram Image ECG Grayscale Image

Lead
Names AUC ACC

(%) SEN PRE F1-Score AUC ACC
(%) SEN PRE F1-Score

Lead I 0.985 88.89 0.889 0.871 0.875 0.981 88.41 0.884 0.867 0.872

Lead II 0.991 92.24 0.922 0.916 0.916 0.988 89.56 0.896 0.888 0.889

Lead III 0.988 90.52 0.905 0.899 0.899 0.987 89.27 0.893 0.886 0.886

aVR 0.986 88.79 0.888 0.889 0.886 0.985 90.90 0.909 0.911 0.909

aVL 0.984 88.79 0.888 0.859 0.870 0.981 86.97 0.870 0.868 0.851

aVF 0.990 90.52 0.905 0.904 0.895 0.983 88.60 0.886 0.877 0.873

V1 0.987 88.51 0.885 0.872 0.874 0.989 90.71 0.907 0.903 0.900

V2 0.981 89.75 0.898 0.892 0.892 0.979 88.51 0.885 0.867 0.867

V3 0.982 89.66 0.897 0.883 0.885 0.978 87.26 0.873 0.866 0.864

V4 0.981 89.08 0.891 0.872 0.878 0.977 89.46 0.895 0.883 0.887

V5 0.974 88.22 0.882 0.878 0.877 0.976 87.07 0.871 0.859 0.862

V6 0.976 88.03 0.880 0.872 0.870 0.980 87.07 0.871 0.856 0.859

ACC, accuracy; SEN, sensitivity; PRE, precision. Highest values are in bold.
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For the single-modal ensemble methods, single-modal stacking ensemble methods
achieved better results than the single-modal simple averaging ensemble and 12 individual
base learners for both scalogram images and ECG grayscale images, as described in Ta-
ble 4. For scalogram images, single-modal stacking ensembles with four machine learning
algorithms showed the following diagnostic performance: AUC (ranging from 0.993 to
0.995), accuracy (ranging from 92.34 to 93.01), sensitivity (ranging from 0.923 to 0.930),
precision (ranging from 0.915 to 0.925), and F1-score (ranging from 0.913 to 0.925). For ECG
grayscale images, single-modal stacking ensembles with four machine learning algorithms
achieved the following: AUC (0.993), accuracy (ranging from 92.34 to 93.01), sensitivity
(ranging from 0.923 to 0.930), precision (ranging from 0.918 to 0.925), and F1-score (ranging
from 0.917 to 0.924). Comparing the scalogram image and the ECG grayscale image, both
single-modal stacking ensemble methods showed similar performance. However, random
forest and XGBoost showed better results in scalogram images, and logistic regression
showed better results in ECG grayscale images.

Table 4. Diagnostic performance of two single leads (Lead II lead for scalogram image and aVR
lead for ECG grayscale image), single-modal simple averaging ensemble, and single-modal stacking
ensemble methods for scalogram and ECG grayscale images.

Scalogram Image ECG Grayscale Image

AUC ACC
(%) SEN PRE F1-

Score AUC ACC
(%) SEN PRE F1-

Score

Single lead 0.991 92.24 0.922 0.916 0.916 0.985 90.90 0.909 0.911 0.909

Simple averaging ensemble 0.993 91.95 0.920 0.912 0.907 0.993 91.95 0.920 0.927 0.904

Stacking ensemble (LR) 0.994 92.72 0.927 0.922 0.921 0.993 93.01 0.930 0.925 0.924

Stacking ensemble (SVM) 0.993 92.34 0.923 0.915 0.913 0.993 92.53 0.925 0.919 0.917

Stacking ensemble (RF) 0.993 93.01 0.930 0.925 0.923 0.993 92.53 0.925 0.918 0.918

Stacking ensemble (XGBoost) 0.995 92.91 0.929 0.924 0.925 0.993 92.34 0.923 0.918 0.919

LR, SVM, RF, and XGBoost indicate the machine learning algorithms used in the meta learner. ACC, accuracy;
SEN, sensitivity; PRE, precision; LR, logistic regression; SVM, support vector machines; RF, random forest. Highest
values are in bold.

For the multi-modal stacking ensemble method, the best accuracy (93.97%), sensitivity
(0.940), precision (0.937), and F1-score (0.936) were obtained when logistic regression was
used as a meta learner as shown in Table 5. In addition, we could obtain the best AUC (0.996)
when XGBoost was used as a meta learner. Compared with LSTM, BiLSTM, individual
base learners, and single-modal ensemble methods, the proposed multi-modal ensemble
methods showed better diagnostic performances. In Figure 4, we represented confusion
matrices of two individual leads, a single-modal stacking ensemble with random forest
for scalogram images, a single-modal stacking ensemble with logistic regression for ECG
grayscale images, multi-modal simple averaging ensemble, and a multi-modal stacking
ensemble with logistic regression for comparison.
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Figure 4. Confusion matrices of two single leads (Lead II lead for scalogram image and aVR lead
for ECG grayscale image), LSTM, BiLSTM, a single-modal stacking ensemble with random forest
(RF) for scalogram images, a single-modal stacking ensemble with logistic regression (LR) for ECG
grayscale images, multi-modal simple averaging ensemble, and a multi-modal stacking ensemble
with logistic regression.



J. Pers. Med. 2023, 13, 373 10 of 13

Table 5. Diagnostic performance of LSTM, BiLSTM, multi-modal simple averaging ensemble, and
multi-modal stacking ensemble methods.

AUC ACC
(%) SEN PRE F1-Score

LSTM 0.976 90.13 0.901 0.898 0.894

BiLSTM 0.974 90.52 0.905 0.901 0.897

Multi-modal simple
averaging ensemble 0.995 92.05 0.920 0.921 0.905

Multi-modal stacking
ensemble (LR) 0.995 93.97 0.940 0.937 0.936

Multi-modal stacking
ensemble (SVM) 0.995 93.39 0.934 0.930 0.928

Multi-modal stacking
ensemble (RF) 0.995 93.58 0.936 0.929 0.933

Multi-modal stacking
ensemble (XGBoost) 0.996 93.68 0.937 0.933 0.933

LR, SVM, RF, and XGBoost indicate the machine learning algorithms used in a meta learner. ACC, accuracy; SEN,
sensitivity; PRE, precision; LR, logistic regression; SVM, support vector machines; RF, random forest. Highest
values are in bold.

4. Discussion

In this study, we proposed a multi-modal stacking ensemble which combines infor-
mation from different two modalities, scalogram images and ECG grayscale images. The
ResNet-50 model was used as the individual base learner of the stacking ensemble, and
one of the machine learning algorithms, logistic regression, SVM, random forest, and XG-
Boost was utilized as the meta learner. Logistic regression exhibited the highest accuracy,
sensitivity, precision, and F1-score and XGBoost achieved the best AUC among the four
machine learning algorithms when employed as a meta learner.

The proposed multi-modal stacking ensemble relies on the predictions obtained from
both the ECG grayscale image and the scalogram image to generate final predictions. The
ECG grayscale image provides cardiologists with information similar to a patient’s ECG
graph displayed on a monitor, while the scalogram image offers information about the
time-frequency relationship of the ECG signals. In other words, the proposed model has
the advantage of collecting multi-modal information potentially contained in the ECG
grayscale image and the scalogram image, thereby enabling more accurate predictions of
CVDs. From a practical perspective, the utilization of multi-modal information can be
crucial for improving the accuracy of predictions in medical environments where accuracy
is of utmost importance.

There are many studies that have applied ensemble algorithms to the healthcare
field. Kang et al. improved the AUC by simply averaging the predictions from five
CNN algorithms (ResNet-101, Xception, Inception-v3, InceptionResNet-v2, DenseNet-
201) in classifying breast microcalcification in screening mammograms [31]. Abdar et al.
introduced a two-layer nested ensemble method that employed stacking and voting as the
classifier to identify benign breast tumors from malignant cancers. Their results indicated
that the proposed ensemble algorithms achieved higher performance than single classifiers
and most of the previous works [32]. Rao et el. proposed an ensemble model, which
integrates three CNNs (DenseNet-121, Inception-v3, and InceptionResnet-v2) in a novel
way. The proposed ensemble model showed better performance than the traditional
ensemble technique in predicting the recurrence of odontogenic keratocysts (OKCs) on a
small chunk of biopsy [33].

There are various public ECG databases on the problem of arrhythmia classification:
MIT-BIH arrhythmia database, CinC/Physionet Challenge 2017 database (CinC2017), China
Physiological Signal Challenge 2018 database (CPSC2018), PTB-XL database, and Chapman
University and Shaoxing People’s Hospital arrhythmia database [6,34–37]. Among these
databases, some of the researchers employed the same database, the Chapman University
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and Shaoxing People’s Hospital arrhythmia database, that we analyzed. Yildirim et al.
constructed an efficient DNN model combining 1D CNN and LSTM and achieved a 92.24%
accuracy [11]. Merdjanovska et al. adopted the CPSCWinnerNet model, the winning
model of the 2018 China Physiological Signal Challenge, consisting of convolutional blocks,
GRUs, and an attention layer. They achieved an accuracy of 94.00% [38]. Baygin et al.
proposed a novel classification model which generated 16,384 multilevel features using
homeomorphically irreducible tree and maximum absolute pooling. The Chi2 feature
selector was used to select the 1000 most informative features, which were subsequently
classified using the SVM classifier. The model showed a 92.95% accuracy despite being a
feature-based method rather than an end-to-end method [39]. Guan et al. presented a new
approach called the hidden attention residual network (HA-ResNet) for the automated
classification of arrhythmia. They used three different images, Recurrence Plot, Gramian
Angular Field, and Markov Transition Field, as input images which were converted from
1D ECG. The Ha-ResNet algorithm achieved an F1-score of 0.876, a sensitivity of 0.882, and
a precision of 0.876 [40]. It is prudent to be careful when comparing directly to the studies
mentioned above due to differences in the test data. However, our proposed multi-modal
stacking ensemble achieved comparable performance.

Despite demonstrating reasonable performance, this study has some limitations. First,
with the exception of LSTM and BiLSTM, the majority of the experiments covered in the
study are based on 2D CNNs. We compared the proposed method with base learners
and single-modal ensemble methods to show the effectiveness of the proposed multi-
modal stacking ensemble. However, it would also be worthwhile to compare the proposed
method with feature-based machine learning algorithms or 1D CNN models. The second
limitation pertains to the dataset utilized in this study. The 12-lead ECG arrhythmia
database collected by Chapman University and Shaoxing People’s Hospital is based on
severely imbalanced data. As described in Table 1, the SB category has 3888 samples,
while the SI category only contains 397 samples. In order to alleviate this problem, we
evaluated the performance measures with a weighted averaging technique instead of a
macroscopic averaging technique. To address this issue, one could consider using several
large publicly available ECG data sets, such as the recently published PTB-XL [37]. Third,
when constructing the stacking ensemble, only one 2D CNN algorithm, ResNet-50, was
used as the base learner. It would be necessary to optimize the architecture of the proposed
model with a variety of combinations of deep learning and machine learning algorithms.

5. Conclusions

In this study, we proposed the use of a multi-modal stacking ensemble for the predic-
tion of CVDs. The proposed method achieved superior performance compared to LSTM,
BiLSTM, individual base learner, simple averaging ensemble, and single-modal stacking
ensemble methods. These results suggest that a multi-modal stacking ensemble may be
a promising approach for improving the accuracy of CVD prediction. Further research
is needed to explore the use of multi-modal stacking ensemble methods with large ECG
datasets and other combinations of 2D CNNs and machine learning algorithms.
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