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Abstract
This paper describes a system which uses multiple

visual processes to detect and track faces for video
compression and transmission. The system is based on
an architecture in which a supervisor selects and activates
visual processes in cyclic manner. Control of visual
processes is made possible by a confidence factor which
accompanies each observation. Fusion of results into a
unified estimation for tracking is made possible by
estimating a covariance matrix with each observation.

Visual processes for face tracking are described using
blink detection, normalised color histogram matching,
and cross correlation (SSD and NCC). Ensembles of
visual processes are organised into processing states so
as to provide robust tracking. Transition between states
is determined by events detected by processes. The result
of face detection is fed into recursive estimator (Kalman
filter). The output from the estimator drives a PD
controller for a pan/tilt/zoom camera. The resulting
system provides robust and precise tracking which
operates continuously at approximately 20 images per
second on a 150 megahertz computer work-station.

1. Introduction

The images transmitted for video-communications are
highly repetitive. In such images, a human face (and
torso) undergoes a limited set of deformations, as the
subject speaks and gestures with his body movements.
These deformations can be captured in an orthogonal
"basis space" of images. Such a space permits each
individual image to be coded and transmitted as a
relatively small vector of coefficients. As few as 15 such
coefficients  (coded as 60 bytes) can be sufficient for
quite realistic reconstruction of a talking face, provided
that the face is registered and normalised in position and
size.

Locating and normalising a face is a processes of
tracking. A variety of methods for detecting and
registering the position and scale of a face can be
demonstrated in laboratory environments. However, each
of these methods can fail in naturally occuring
circumstances. A reliable tracking system for registration
can be obtained by integrating and coordinating several
complementary tracking processes. Integration and
coordination are performed using a synchronous
architecture in which a supervisor activates and controls

visual processes in cyclic manner.
This system demonstrates that robust operation can

be achieved by coordinating multiple visual processes.
Control of individual processes is made possible by the
inclusion of a confidence factor accompanying each
observation. Fusion of the results is made possible by
the determination of an error estimate (a covariance
matrix) for each observation. Composing a system from
a redundant ensemble of processes permits the overall
system to automatically adapt to a variety of operational
circumstances.

The following section reviews the visual process
architecture used for the system and describes techniques
for estimating a confidence factor and an error bounds for
visual processes. A tracking process based on a zero-th
order recursive estimator is described. Visual processes
are described for the detection and tracking of faces using
blink detection, color, and correlation, as well as
processes for estimation and camera control.  Visual
processes are grouped into states with state transitions
triggered by events. An example of an execution  trace is
provided with the  system as configured at the time of
writing.

2. A Synchronous Ensemble of Visual
Processes

The face tracking system described in this paper is
based on an architecture in which a supervisor activates
and coordinates a number of reactive visual processes.
We call such an architecture a synchronous ensemble of
reactive visual processes (SERVP). This architecture has
been developed in the context of robotics [3] and
surveillance tracking [4].

2.1 The SERVP Architecture
The SERVP architecture is designed for controlling

soft real-time processes embedded within single
processor. Within the SERVP architecture,  processes
are executed in a synchronous manner with an explicit
limit placed on the computing time which each process
may use in each cycle. When executed in a standard Unix
environment, such a system provides only soft real-time
response. Hard real time response can be obtained when
such an architecture is used with a real time kernel. In
either case, the supervisor must manage the time used by
each phase so as to assure a  fixed cycle time.
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Figure 1. A Supervisory controller selects and controls
the sequencing of perceptual processes. Multiple

processes can be active at the same time.

The SERVP model is illustrated in figure 1. The core
of the supervisor is an interpreter in which procedures for
image acquisition, visual processes, and device
controllers have been linked. The supervisor acts as a
scheduler which drives the system as a sequence of
phases. The system supervisor is expressed as a set of
objects which represent the current state of visual
processes, and a set of rules which react to events and
commands.  Versions of the supervisor have been built
in both CLIPS (C Language Integrated Production
System) and TCL/TK. The experiments described below
are based on a TCL/TK implementation.

In scheduling and executing visual processes, the
supervisor must manage the time spent in each of the
processes. The supervisor receives messages from the
visual processes concerning commands and visual
events.  In reaction to these messages, visual processes
are activated or dis-activated. At the beginning of each
cycle, the supervisor assigns priorities to individual
processes and then translates these priorities to
allocations of time slices. The supervisor then executes
the image acquisition procedure, as well as initial image
processing, such as resolution reduction. The supervisor
then activates individual visual process, managing the
time budget as the processes are executed. Processes
generate symbolic messages to the supervisor, which can
change the state of subsequent processes. The visual
events used in this system are based on the confidence
factor which accompanies the results of each process.

In our example, visual processes pass information to
a tracking process which maintains an estimate of the
center point and size of the face. This tracking process is
a form of recursive estimator (Kalman filter), commonly
used for sensor fusion [2]. This recursive estimator
provides a reference signal to a PD controller for a
RS232 controlled pan/tilt/zoom camera.  Multiple
copies of a visual processes may be simultaneously
active. In such a case, each process possess a separate
data component which contains its parameters and state.
When several copies of the same process are active, the
supervisor must assure that they are not performing the
same task on the same data.
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Figure 2. The Tracking Process is a zero-th order
recursive estimator for position and size.

 2.2 Fusion and Integration in a Recursive
Estimator

The use of estimation theory for tracking and for
fusion of information in computer vision and robotics is
well established [1], [2]. For our face tracker we use a
zero-th order recursive estimator to maintain estimates of
independent state vectors for the center position of the
face Xp = (i, j) and the vertical and horizontal size of the
face, Xs = (h, v). We chose to estimated the horizontal
and vertical size of the face as two parameters because
the aspect ratio of the face can change with rotations.
Thus our state vector has four parameter, (i, j, h, v),
measured in pixels.

In our application,  size and position are independent.
Thus we can replace the inversion of a 4 x 4 matrix with
two inversions of a 2 x 2 matrix in the fusion stage by
separating the state vector into a position component,
Xp, and a size estimate, Xs.  Both vectors are measured
in pixels. Each vector is accompanied by a covariance
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Fusion of perceptual information is made possible by
an explicit estimate of the precision and confidence of
each observation [1].  The covariance matrix, Cx, is an
estimation of the error of the estimated state vector.
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Every visual process in our system provides an
observation of the state vector (or a subset) accompanied
by a time stamp, t, a covariance matrix, Cy, and a
confidence factor, CF. The update of the estimation by
an observation uses the covariances to determine relative
weights for the observation and the prediction.

Our demonstration system is built under UNIX and is
thus soft real-time; we can not guarantee the time step.
Thus each observation is accompanied by a time stamp,
t. The step, ∆t, is the different between the time the
estimation was last updated, and the time the observation
was made.



∆t  =  tobs  – test
Movements of the subject between observations are

unpredictable, and can be in any direction. Thus we make
no attempt to estimate derivatives. As a result, the
prediction of the state vector, X* at time tobs, is simply
the last updated estimate at time test.

X* : =  X̂
The covariance, on the other hand, does depend on the

time step. The uncertainty in position of the subject is a
quadratic estimate which grows as the square of the time
step. This growth is captured in a 4x4 matrix W, whose
terms give the loss in precision of each component as a
function of seconds-squared. Thus the uncertainty is
updated as:

C*x := C
^

X + ∆t2 W
The loss in precision with time is calibrated by

observing a sequence of position and size estimates of a
normal user, at a regular (unit) sampling interval,
∆tmin. The coefficients of W are given the products of
the expected values of the change in parameters in
adjacent frames.

Statistical estimates combine as the momentum of
masses. Or more precisely, mass is a statistical estimate.
In any case, each visual process in our system produces
an estimate of the uncertainty of each  observation
represented by a covariance matrix, Cy. In most of our
visual processes the covariance matrix can be directly
estimated from the results of processing, as will be
shown below. The correction of the estimation by an
observation uses the covariance to give a relative weight
to the observation and the prediction. The new estimated
covariance is given by:
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The new estimate can then be computed as a weighted
average:
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2.3 Estimating the Confidence of Visual
Processes

The primary visual event used in the current
demonstration system is the confidence factor, CF,
which each process attributes to its result. Confidence is
represented by a numerical value between 0 (no
confidence) and 1 (certainty). The CF factor estimates the
likelihood that a successful detection was achieved.
Confidence is generally computed as a probability using
a pre-trained sample set of correct detections. During
system set up, a large number of correct detections are
hand selected and catalogued. The mean,  µs,  and
covariance, C s, for these sample detections are
computed.

During ordinary operation, the probability of a correct
observation, given the observed vector, Y, is computed

using this pre-calibrated mean and covariance are
parameters for a un-normalized Gaussian density
function. This probability defines the confidence factor
used in controlling and coordinating processes.
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3. Visual Processes for Detection and
Tracking of Faces

Robust continuously operating tracking can be
obtained by driving the tracking process with several
complementary detection processes. The tracking process
then provides a reference with which individual processes
can be re-initialised when their result becomes
unreliable. Such synergistic integration greatly improves
both the reliability and the precision of the tracking
process. This section describes processes for detecting
faces using blinking, normalised color and cross-
correlation.

3.1 Detecting Faces from Blinking
A human must periodically blink to keep his eyes

moist. Blinking is involuntary and fast. Most people do
not notice when they blink. The fact that both eyes
blink together provides a redundancy which permits
blinking to be discriminated from other motions in the
scene. We have found that detecting the motion pattern
of blink is an easy and reliable means to detect the
presence of a face. The fact that the eyes are
symmetrically positioned with a fixed separation
provides a means to normalize the size and orientation of
the head from the detection.

Blink detection is based on the difference of
successive images. The difference image generally
contains a small boundary region around the outside of
the head. If the eyes happened to be closed in one of the
two images, there are also two small roundish regions
over the eyes where the difference is significant, as
shown in figure 3.

Figure 3. A face image and the thresholded
difference with bounding boxes and face position.



The difference image is thresholded, and a connected
components algorithm is run on the thresholded image.
A bounding box is computed for each connected
component. Candidate regions for an eye are selected
based on horizontal and vertical size of the bounding
box. Candidate regions are then paired and tested for a
small vertical displacement and an appropriate horizontal
separation. When this configuration of two small
bounding boxes is detected, a pair of blinking eyes is
hypothesized. The position in the image is determined
from the center of the line between the bounding boxes.
The distance to the face is measured from the separation.
This provides the size of a window which is used to
extract the face from the image. This simple technique
has proven quite reliable for determining the position and
size of faces  [8].

Blink detection detection initially produces a vector of
8 parameters:

vl Vertical size of left rectangle.
hl horizontal size of left rectangle.
vr Vertical size of right rectangle.
hr horizontal size of right rectangle.
vs vertical separation of the rectangles
hs horizontal separation of the  rectangles
i horizontal part of mid-point between rectangles.
j vertical part of mid-point between rectangles.
The midpoint between the rectangles is used as the

observation Xb = [i, j]. A 2 x 2 covariance matrix for
position Cb  is given as a constant which was calibrated
during system set-up. No estimate is produced for the
horizontal and vertical extent of the face.  The confidence
of a blink detection, CFb,  is the resemblance of the
eight parameters to an ideal prototype, Pblink, and its
covariance C b. This prototype was computed by
recording a large number of blink detection and removing
any false detections by hand.

3.2. Detecting the Colour of Skin
Color histograms have been used in image processing

for decades, particularly for segmenting multi-spectral
satellite images, and medical images.  In the early 1990's
Swain and Ballard [9]showed that the intersection of
color histograms was a reliable means of recognizing
colored objects. Unfortunately, their technique  is
sensitive to the color and intensity of the ambient light
source. Schiele and Waibul [8] have demonstrated that
skin could be reliably detected by normalising the color
vector by dividing out the luminance component.

A 2-D joint histogram of the luminance normalised
color components (r, g) can be computed from a patch of
an image known to be a sample of skin. For color
components (R, G, B):

r = 
R

R+G+B
g = 

G
R+G+B

The histogram of normalised color gives the number
of occurrences for each normalised color pair (r, g). This
histogram must be periodically re-initialised to
compensate for changes in ambient light, or differences
in skin color of different users. In our early experiments
with this technique, a cooperative user presented his face
or hand to the camera to initialise the histogram in less
than a second. In our latest system, the color sample is
captured automatically whenever eye blink has been
detected with a sufficient confidence.

A normalised color histogram h(r, g) based on a
sample of N pixels, gives the conditional probability  of

observing a color vector C
→ 

= (r, g), given that the pixel

is an image of skin.  p( C
→  

| skin ). Using Bayes rule, we
convert this to the  conditional probability of skin given

the color vector,  p(skin |  C
→ 

).  This allows us to
construct a probability image in which each pixel is
replaced by the probability that it is the projection of
skin. An example is shown in figure 4.  The center of
gravity from the probability of skin gives the estimate
of the position of the face. The bounding rectangles
gives an estimate of size. A confidence factor is the
computed by comparing the detected bounding box to an
ideal  width and height, using a Normal probability law.
The average width and height and the covariance matrix
are obtained from a number test observations selected by
hand.

Figure 4. A face and the image of the probability of skin.

3.2 Tracking with Cross-Correlation
Detection of a face by color is fast and reliable, but

not always precise. Detection by blinking is precise, but
requires capturing an image pair during a blink.
Correlation can be used to complete these two techniques
and to hold the face centerred in the image as the head
moves. Energy normalised cross-correlation tracking can
be shown to be optimum in the presence of additive
Gaussian noise [5]. The dominant noise in the case of
face detection is neither Gaussian nor additive. However,
when assisted by other detection processes, correlation
tracking provides a technique which is inexpensive,
relatively reliable, and formally analysable.

Correlation tracking processes are initiated by blink
detection. The template for correlation is taken from the
estimated position of the eyes.  The search region for
each tracker is  estimated from the expected speed of the
users movements measured in pixels per frame. This



value can be kept quite small if the frame rate is kept
high [5]. Each reference template is a small
neighborhood, W(m, n),  of size ∆x, ∆y, of the image
P(i, j) obtained during initialisation just after blink
detection. In subsequent images, the reference template is
compared to an image neighborhood (i, j), by computing
the N by N template to the neighborhood of the image
whose upper left corner is at (i, j). The system contains
correlation processes using sum of squared difference
(SSD) and energy normalised cross correlation (NCC).
We have found the SSD generally gives superior results.

SSD(i, j) =    ∑
m=0

N
     ∑

n=0

N
  (Pk(i+m,j+n) – W(m, n))2

The estimated position of the target is determined by
finding the position (i, j) at which SSD measure is a
closest to zero. The actual center position can be
determined by adding the half size of the mask to the
corner position (i, j). By keeping the search region
small, we obtain a processing rate of 25 hz. Figure 5
shows a typical map of the SSD values obtained when a
template for the eye is convolved with a face. The local
image of SSD values is inverted to provide the CF and
Covariance.  The covariance of the detection is estimated
from the second moment of the inverted SSD values. A
sharp correlation peaks give a small covariance, while a
larger correlation gives a larger spread in covariance. The
confidence is estimated from the peak value of the
inverted SSD. When this confidence measure drops
below a threshold the tracking processes is halted or re-
initialised.

Figure 5a.
Correlation template is
taken from eye (detected

from blink detection)

Figure 5b. Map of
values from Sum of

Squared difference with
later image in sequence.

4 Coordination of Multiple Perceptual
Processes.

The perceptual processes of eye blink detection, color
histogram matching, correlation tracking, and sound
localisation are complementary. Each process fails under
different circumstances, and produces a different precision
for a different computational cost. For example, eye
blink is relatively inexpensive in cost and gives a precise

localisation when it works, which is approximately once
every 40 seconds. Thus eye blink is ideal for initialising,
and re-initialising, the other tracking processes.
Correlation tracking of the eyes is extremely fast when
limited to a small search region and produces a precise
result. However, experience shows that correlation will
sometimes loose its track when the user turns his head
more than about 15 degrees or makes a movement which
is too sudden. In some cases, correlation can be recovered
by enlarging the search region, but if this fails, another
tracking mode is required.

Color histogram matching almost always produces a
result, but tends to have an uncertainty of a few pixels.
In particular, color histogram matching produces a
reliable bounding box which can be used to limit other
processes, including background suppression for
incremental eigen-space compression. The probability of
skin is computed by table lookup, but the connectivity
analysis is relatively expensive. If computing cost were
not a constraint, all processes would be run at each
cycle. The fact is that computing cost is an important
constraint. The fact that all three processes produce a
confidence factor makes it possible for the supervisor to
coordinate the different processes in order to maximize
confidence and precision while minimizing computing
cost.
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Figure 6. Cycles per second, for each of three
processes, as the supervisor steps through the 3 states.

Square is Blink Detection, o is correlation, + is
histogram.

The control logic for the supervisor can be defined by
a finite state machine. A current doctoral thesis in our
group is investigating techniques to automatically
generate such control graphs. In the mean time, we
design control graphs by hand. At the time of writing of
this paper, we obtain quite reliable tracking with the
following states:

State 1) Initialisation: When tracking confidence is
low, the supervisor runs blink detection to look
for a face. When blink is detected, a color
histogram is initialised, and a correlation mask is
stored for each eye. The supervisor then shifts to
state 2.

State 2) As long as the tracking CF remains high,



correlation is used to track the eyes. When the
correlation CF drops below .05, control switches
to state 3.

State 3)  Re-initialisatin: Color histogram detection
tracks the face while blink detection runs to try
to re-acquire a correlation mask.  If blink detects
a face, the color histogram and correlation masks
are re-initialised and the supervisor reverts to
state 2.  If blink fails to detect a face, then color
histogram detection is run.

Figure 6 shows an example of the cycle time as the
process moves through the three states. Throughout the
entire process, the tracking precision, as measured by the
covariance remained under 2 pixels.

5. Conclusions

The integration of complementary visual processes
can produce a reliable and robust system, provided that
all processes produce a confidence factor and an error
estimate. Integration and coordination requires an
architecture. Such an architecture is provided by the
Synchronous Ensemble of Reactive Visual Processes
model developed in the VAP project [3]. Coordination of
visual processes requires signalling visual events to the
supervisory controller. An important class of visual
events are the confidence which each process can gives
for its results. Fusion of results is made possible by
estimating error bounds for each process in the form of a
covariance matrix.  Individual processes can be grouped
into states, which permits the control logic of the
system to be designed as a state transition graph.
Improved methods are required for the design of such
state transition graphs.

Acknowledgements:

This work has been supported by France Telecom
CNET (Project COMEDI), based on results from Project
ESPRIT EP 8212 "VIsion as Process".

Bibliography

[1] J. L. Crowley, P. Stelmaszyk, T. Skordas and P.
Puget, "Measurement and Integration of 3-D Structures
By Tracking Edge Lines", International Journal of
Computer Vision, Vol 8, No. 2, July 1992.

[2] J. L. Crowley and Y. Demazeau, "Principles and
Techniques for Sensor Data Fusion", Signal Processing,
Vol 32 Nos 1-2, p5-27, May 1993.

[3] J. L. Crowley and H. I Christensen, Vision as
Process, Springer Verlag, Heidelberg, 1994.

[4] J. L. Crowley and J. M. Bedrune, "Integration and
Control of Reactive Visual Processes", 1994 European
Conference on Computer Vision, (ECCV-'94),
Stockholm, may 94.

[5] J. L. Crowley and J. Martin, "Experimental
Comparison of Correlation Techniques", IAS-4,
International Conference on Intelligent Autonomous
Systems, Karlsruhe, March 1995.

[6] J. L. Crowley, F. Bérard and J. Coutaz, "Finger
Tracking as an Input Device for Augmented Reality",
IWAGFR '95 - International Workshop on Gesture and
Face Recognition, Zurich, June 1995.

[7] H. Inoue, T. Tashikawa and M. I. Inaba, "Robot
vision system with a correlation chip for real time
tracking, optical flow, and depth map generation", The
1992 IEEE Conference on Robotics and Automation,
Nice, April 1992.

[8] B. Schiele and A. Waibul, "Gaze Tracking Based
on Face Color", IWAGFR '95- International Workshop
on Face and Gesture Recognition, Zurich. July 1995.

[9] M. J. Swain and D.H. Ballard, "Color Indexing",
International Journal of Computer Vision, Vol 7, No 1,
1991.


