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Abstract— In a case study of gait classification from floor and 

ambulatory sensors, we compare results with data from each 

modality. The automatic extraction of features is achieved by 

Principle Component Analysis or Canonical Correlation Analysis, 

the latter performing better even with a reduced number of 

components used. Non-linear classifiers are most efficient for fused 

features. With a Kernel Support Vector Machine around 94% 

accuracy is demonstrated, improving over the 87% and 79% 

accuracies obtained with separate floor and ambulatory sensor 

data, respectively. 

Keywords— floor sensors, wearable sensors, sensor fusion, 

machine learning (ML), inertial measurement unit (IMU), principal 

component analysis (PCA), canonical correlation analysis (CCA). 

I. INTRODUCTION 

In this work, the case study of gait classification from two 
separate gait monitoring modalities is used, as an example 
where, due to the complexity of the object under investigation it 
is difficult to define and target experimentally reliable 
classification features. A further motivation is to assess the 
improvement which is possible to achieve by the fusion of data 
from more than one modality. 

 Gait in humans defines their walking behaviour. Humans 
can be differentiated on the basis of their walking pattern, as any 
other biometric entity. Walking behaviour changes on the basis 
of age, weight, height and gender in humans. Human gait can be 
classified as either natural (used by humans instinctively) or 
trained (used by humans not instinctively or learned through 
training) [1]. Abnormal gait is a specific type of gait in which 
humans walk in a way different than natural. Abnormal gait 
could be caused by ageing, physical disability or event, such as 
a stroke. However it could be improved through medical 
treatments and exercises.  

Over the past few decades, the increase in public awareness 
about healthcare, physical activities, health and safety sensing 
has initiated an emerging need for smarter sensor technologies 
and monitoring applications which can sense, monitor and 
provide feedback about the human physical activities and their 
health status [2]. 

Recently, ambulatory sensors and some data mining 
intelligent approaches have been used to analyse human 
activities and gait parameters as convenient and cheaper 

methods. Despite the fact that these sensors are quite usable and 
comfortable as compared to other methods, there are many 
problems to use ambulatory sensors to accurately assess human 
gait patterns. The uses of multi-sensor approach also requires 
proper calibration. High accuracy is also needed while detecting 
and classifying different activities and gait to evaluate the 
quality and performance of systems. 

Machine Learning (ML) as a key tool for sensor data 
analysis, is becoming a centric part of novel sensor design. ML 
is a domain of artificial intelligence which was first introduced 
by Arthur Samuel in 1959. ML algorithms are used to implement 
complex models and methods through predictions [3] which are 
able to learn and make decisions on data obtained from multiple 
sensors; thus ML has a major role to play in the field of data 
processing and sensor fusion in particular. These algorithms are 
also very useful in exploring the hidden aspects through learning 
background relationships and trends in data. ML has now 
entered everyday lives due to the reliable and repeatable results 
delivered, namely with Facebook facial recognition, Kinect 
devices, virtual reality headsets, speech or voice recognition 
over phones, Robot dogs, online retail such as Amazon and 
Netflix etc. 

In this research paper, we have proposed an efficient and 
effective way of sensor fusion of two different modalities i.e., 
Plastic Optical Fiber (POF) based floor sensors and Inertial 
Measurement Unit (IMU) based ambulatory sensors at feature 
level. Different ML algorithms such as Logistic Regression, 
KNN, SVM(Linear), Kernel SVM, Decision Trees and Random 
Forest Algorithm are used to evaluate the performance of ML 
algorithms for gait classification.  It is evident that multi-
modality fusion performs more accurate analysis of effected 
walking behaviours of subjects whilst performing different 
tasks. This paper is organized as follows. Section II briefly 
describes modalities used to capture human gait. Section III 
explains our methodology of multi-modal fusion using data 
processing, dimension reduction, and classification. Result and 
findings have been further concluded and discussed in section 
IV. 

II. GAIT MODALITIES 

There are a number of modalities used to capture and 

analyse human activities and gait. Some of their peculiarities 

and characteristics are discussed as follows: 
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A. Ambulatory Sensors 

Use of ambulatory sensors to monitor and classify human 
activities and gait has proven to be important [4]. A specific type 
of sensor, the inertial measurement unit  (IMU) has been widely 
used due to its small size, cost, light weight and high precision 
characteristics. IMU sensors consist of accelerometer, 
gyroscope and magnetometer which give information about the 
acceleration, angular velocity and the heading direction 
respectively. These sensors could be worn on different parts of 
human body such as head, chest, waist, thigh, shank and foot [5] 
etc. 

For gait analysis, mainly experiments are conducted on Heel 
strike and Toe-off events which determine the stance time and 
swing time of subject in gait cycle. Performance is checked on a 
dataset of information using different classification algorithms 
and techniques [6]. Panebianco et al. [7] reported a systematic 
review to assess the human gait and its temporal parameters in 
terms of accuracy and repeatability using 17 algorithms. 5 IMUs 
were used, one on the back, two on the shanks and two on the 
feet. It was determined that for human gait detection and 
estimation of stance time, algorithms based on the acceleration 
measurements on the shank and foot perform better than those 
based on lower trunk. However, the sensor position did not affect 
the step estimation.  

IMU sensors are widely used in recognition of human 
motion disorders such as Parkinson’s disease (PD) and early 
detection of Freeze Of Gait (FOG) [8]. 

B. Video Cameras 

Human gait is also acquired through video cameras. High 
quality video cameras are required for use under moderate 
lighting conditions. Basic video is captured using two or more 
cameras with a known focal length at a fixed distance from the 
subject. Results obtained from all cameras need calibration to 
give corrected results [9]. 

Mostly human silhouettes are used in gait recognition to 
increase the performance and reduce computational load. 
Human silhouettes are further segmented to divide the human 
body in sections such as head, pelvis and foot regions [10]. 
Image and video processing techniques are used to extract gait 
features such as step length and gait cycle from the data. Bei et 
al. discussed the kinematic aspect of gait such as leg swing 
motion to explain the correlation between the angles formed at 
the hip, knee and ankle joints with the help of a single kinetic 
sensor [11].  

C. Floor Sensors 

 Floor sensors provide an unobtrusive way of acquiring 
gait information and are mainly installed at the front entrance of 
buildings or in access control areas. These systems can also be 
used to identify the location of subject with in a certain area. 
Floor sensors can be used on the factory floor to provide data 
needed for monitoring of the position and activity of ambulatory 
industrial robots and, in cases of co-occupancy with humans, 
provide additional information needed for health and safety. In 
this approach, typically a set of sensors or force plates are used 
on the floor. Mostly resistive, capacitive or fiber optic based 
floor sensors are used. Data obtained from sensors is used to 
calculate gait features. Middleton et all. [12] used different gait 

features such as stride length, stride cadence and ratio between 
time on toe to time on heel and achieved 80% recognition 
accuracy with a resistive sensor mat.  

      Without involving pre-determined gait features or image 
reconstruction for display purposes, raw values from sensors 
could also be used with machine learning methods and 
techniques. For classification purposes, Costilla-Reyes et al. 
[13] used raw readings from plastic optical fiber (POF) based 
floor sensors and achieved 93% of accuracy on large datasets.  

D. Multi-Modal Approach 

Multi-modal approach is used to employ different modalities 
such as ambulatory sensors, video cameras, floor sensors and 
pressure sensors etc. to achieve higher accuracy and reliability. 
A survey of multi-modal approaches is summarised in table I.  

TABLE I.  SURVEY OF MULTI-MODAL APPROACHES 

Reference Modalities Accuracy 

Measures 

Shakhnarovich et 
al. [14], 2001 

Video face & Video Gait 80% & 87% 
Total = 91% 

Vildjiounaite et al. 

[15], 2006 

Voice & IMU Sensors 2%-12% equal 

error rate (err) 
Zhou et al. [16], 

2007 

Video face & Video Gait 64.3% & 85.7% 

Total = 100% 

Chen et al. [17], 
2015 

Video & IMU Sensors 2%-23% 
improvements 

Bai et al. [18], 

2017 

EMG & IMU Sensors Multiple 

improvements 
Leal-Junior et al. 

[19], 2018 

POF & IMU Sensors 1% best case - 

4% worst case 

III. METHODOLOGY OF MULTI-MODAL SYSTEM 

Our multi modal system deals with feature level fusion of 
sensors comprising two modalities: 

A. Ambulatory Sensor System 

User wears the ambulatory sensor system on their body 
based on a portable battery operated Raspberry Pi 3 (RPi model 
B+) connected to the waist and two IMU sensors attached to the 
ankle of each leg of the subject. RPi is connected with IMU 
sensors through usb cables and controlled through a computer 
on a wireless network. The ambulatory sensors system can be 
seen as highlighted yellow in figure 3. Our selection and 
arrangement of sensors together with the wifi based RPi makes 
it a comfortable and portable ambulatory sensor system. 

a) Data Acqusition and Preprocessing: When turned on, 

the RPi connects to the pointed wireless network and waits for 

a connection request from a designated client. IMU sensors are 

configured at sampling frequency of 200Hz. Only acceleration 

and angular velocity values obtained from each IMU sensor are 

used in this research. To isolate the effect of gravity on 

acceleration values, a low pass filter with cut-off frequency of 

5Hz is applied. To remove drift and calculate the angle (θ) from 
angular velocity (ω), the following formula is used: 𝜃 =  𝜃 +  𝜔 . ∆𝑡                                     (1) 

where ∆t represents the change in time. Data is recorded 
from two IMU sensors in a CSV format file. 20 frames of data 
are received in one second with the time stamp information. 
IMU sensors can be aligned to one of the body panels as shown 
in figure 1(a). We have aligned the axis of IMU sensors 
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according to ‘transversal plane’ as the subject will be walking 
across the floor sensor in a horizontal plane. Therefore whilst 
walking in a straight line from one end of carpet to the other 
end, wearing sensors; the maximum acceleration will be in x 
direction, moderate in z direction (between heel strike and toe-

off phases of foot) and minimum along y direction, as shown in 
figure 1(b). 

b) Data verfication and testing: A window of 10 signals 

has been used on the 200Hz signal to calculate the mean value 

which is stored at 20 frames per second. Basic checks are put in 

place to alert if any of the ambulatory sensors are not 

synchronized or delivering an invalid output. The data obtained 

from ambulatory sensors are tested and verified before 

processing. Acceleration and angular velocity signals captured 

from one heel strike to another heel strike for both feet over time 

can be seen in figure 2. 

 

B. POF based Floor Sensors (Smart Carpet) 

The user walks on the floor sensors surface (carpet of size 2 
x 1 m approx.) comprising a mesh of 116 fiber optic sensor 
elements, each terminated with an LED as a light source and a 
photodiode as detector. The signal acquisition from the floor 
sensor is managed by another RPi controlled through a computer 
on wireless network. The floor sensors (“Smart Carpet”) can be 
seen highlighted green in figure 3.

  

a) Data Acqusition and Preprocessing: The data acquired 

from floor sensor is in the form of a string of values in each 

frame, each digital value being output from a 12 bit ADC 

converter. Firstly, received data from RPi is converted into 

fraction of transmitted light by dividing values by 4096 and 

multiplying by 100, then normalised to the maximum 

transmittance. Secondly, the long string of values is truncated 

and organised into three plies as sensors are arranged on the 

sensor, at three projection angles as shown in figure 4. 

  
b) Data Verification and Testing: The data obtained from 

the floor sensor is saved in a CSV file with time stamps at 20 

frames per second. Since the set of measurements constitutes a 

Radon Transformation, a real-time tomography image 

reconstruction algorithm is used to display the movements of 

the subject on the carpet, as shown in figure 5. 

 
Fig. 2. a) Acceleration from left foot IMU sensor (green) and right foot 

IMU sensor (blue) for one step b) Angular velocity from left foot IMU 

sensor (purple) and right foot IMU sensor (black) for one step. 

  
Fig. 3. Multi Model System Design 

 
Fig. 4. Left: 3-Ply arrangement of Smart Carpet (116 sensors);      

Right (top to bottom): Going clock wise 45 deg. ply-1 with 47 sensors; 

135 deg. ply-2 with 47 sensors; 270 deg. ply-1 with 22 sensors. 

 
Fig.1. (a) Body planes to align IMU axis [20]; (b) IMU axis used  
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C. Dimensionality Reduction and Sensor Fusion 

It is widely accepted that data fusion can be performed at 
three levels: feature, score and decision [3]. Decision level and 
score level fusion have been researched immensely, mostly 
using multi classifier methods. Feature level fusion was very 
successful at early times, however it is still an open and 
challenging problem. In this paper, we have applied two 
approaches for dimensionality reduction and sensor fusion at 
feature level as follows: 

a) Principal Component Analysis (PCA): Dealing with a 

number of independent variables creates a problem to visualize 

prediction regions and prediction boundaries. Therefore PCA is 

used as a model based approach for data analysis.  PCA 

identifies the changing patterns in data and detects the 

correlation between variables. PCA was implemented by the 

following sequence [22]: 

 Standardization of data. 

 From the covariance or correlation matrix, get the 

eigenvectors and eigenvalues or perform the singular 

vector decomposition. 

 Sort in descending order the eigenvalues and select the 

k eigenvectors that correspond to the k largest 

eigenvalues where k is the number of dimensions of 

the new feature subspace, k < = d. 

 Create the projection matrix W from the selected k 

eigenvectors. 

 Transform the original dataset say, X using projection 

matrix W to get k-dimension feature subspace Y. 

PCA has multiple applications like filtering of noise, data 

Visualization, extraction of features, predictions in stock 

market, analysis of genetic data and many more. 

 

b) Canonical Correlation Analysis (CCA): CCA is a 

multivariate statistical model that facilitates the study of inter-

relationship between the two sets of variables. As compared to 

multiple regression which predicts only one dependent variable, 

CCA predicts multiple dependent variables. The 

implementation of CCA can be summarized [23] as follows: 

 Take two sets of variables, X = [X1, X2, … , Xp]  and Y = [Y1, Y2, … , Yp] such that p ≤ q. 

 Find linear combinations U and V such that U 

corresponds to X and V corresponds to Y. U and V can 

be described as: 

U1 = A11X1 + A12X2 + ⋯ + A1pXp U2 = A21X1 + A22X2 + ⋯ + A2pXp 

---- Up = Ap1X1 + Ap2X2 + ⋯ + AppXp 

And, V1 = B11Y1 +  B12Y2 + ⋯ + B1qYq V2 = B21Y1 +  B22Y2 + ⋯ + B2qYq 

----  Vp = Bp1Y1 +  Bp2Y2 + ⋯ + BpqYq 

 Find correlation coefficient vectors, A1 =[A11, A21, … , Ap1]T  and B1 = [B11, B21, … , Bp1]T  to 

maximize the correlation (ρ) given by the equation: ρ = corr(XA1, YB1) 

Or 

                          ρ = corr(U1, V1)                        (2) (U1, V1)  is the first canonical variate pair, (U2, V2) is the 

second canonical variate pair and the  rest can be found the same 

way. However, the second pair is uncorrelated with first pair 

and none of the canonical variate pairs are correlated to each 

other. In total p canonical covariates exist in number. 

D. Block Diagram 

 

 

 

Fig. 5. Image reconstructed diagram of a subject standing on carpet 

(Variable legend bar displaying the percentage of light stopped at POF 

carpet sensors) 

Fig.6. Block Diagram of Multi-Modal System 

1470



 

E. Experimentation and Analysis on Data 

In order to test the multimodal system, an ethical approval 

is requested and permission has been granted to ask volunteers 

for experiments. For this research paper, a total 5 young and 

healthy volunteers, as listed in table II, were asked to perform 

dual task gait on the floor sensor whilst wearing the ambulatory 

sensors. 

 

User  Weight(kg) Height(cm) Gender Age(yr) 
1 75 185 Male 31 

2 79 176 Female 21 

3 65 171 Male 23 

4 70 173 Male 29 

5 96 177 Male 33 

Table II. User Profile 
 

After calibration of the floor sensor, 106 sensors values 

were retained as being in the expected range. From ambulatory 

sensors, 3 axis’ values for acceleration and 3 axis’ values for 
angles were used from two sensors, yielding a total of 12 values 

available. Four dual task gait activities were designed to 

characterize the dual task gait among volunteers. All activities 

were recorded 10 times each. The performed dual task activities 

as the volunteer is walking are listed as: 

 Subtraction of a prompted random number. 

 Listening to a story. 

 Texting on personal mobile device. 

 Talking to the operator. 

F. Classification and Comaprison of results 

The dataset from 106 + 12 = 118 sensors acquired with two 

modalities, was used with linear and non-linear classifiers, as 

displayed in table III, in 5 cases for each classifier. The cases 

differ depending on the choice of extracted features used for 

input: 

 Only floor sensors data (106 components) 

 Only ambulatory sensors data (12 components) 

 Combined sensors using PCA (12 components) 

 Combined sensors using CCA (12 components) 

Within the classification procedure, the data is split into 

training and testing sets. The possible outcomes from the 

classification procedure are: True Negatives (TN), True 

Positives (TP), False Negatives (FN) and False Positives (FP). 

These event definitions allow the calculation of the accuracy 

metrics: 

                   Accuracy = TP + TNTP + FN + FP + FN                        (3) 

 

 

IV. DISCUSSION AND CONCLUSIONS 

In table III, highlighted numerical values indicate the cases 
in which the accuracy achieved using sensor fusion is better than 
from individual single modality data, for the same classification 
algorithm (rows). All experiments are 10-fold cross-validated 
with 95% confidence interval. Below is a summary across the 
feature extraction cases and classifiers. 

A. Feature Fusion 

CCA summarizes the data correlation into fewer number of 
statistics while preserving the main aspects of the relationships. 
The motivation for CCA is very similar to PCA, however in the 
latter, the next new variable represents the maximum variance in 
the individual datasets. On the other hand in CCA, the new 
variable is identical for both sets of data such that the correlation 
between the two resulting new variables is maximized. This  

suggests that fewer canonical variates could be adequate to 
identify correlation between two datasets.  

Table III highlights only a single classification accuracy 
measure for 12-component PCA (column C) using K-SVM 
higher when compared to both Floor Sensor System (column A) 
and Ambulatory Sensor System in (column B). Similarly, for 12-
component CCA (column D) accuracy measures for K-SVM and 
K-NN are higher when compared to both Floor Sensor System 
(column A) and Ambulatory Sensor System (column B). It is 
evident that the overall accuracies for 12-component CCA 
(column D) using non-linear classifiers: K-NN and KSVM are 
much higher than 12-component PCA (column C) when 
compared with both Floor Sensor System (column A) and 
Ambulatory Sensor System (column B). 

Indeed, results for CCA fused features reveal that in some 
cases it is possible to reduce the computational load and still 

TABLE III. ACCURACY PERCENTAGES WITH STANDARD DEVIATION FOR SINGLE AND MULTI-MODAL SYSTEMS 

 

 

Machine Learning 

Algorithms 

Accuracy Percentage of 

Single Modality System 

Accuracy Percentage of 

Multi-Modality System 

A B C D E 

106 Floor 

Sensors 

12 Ambulatory 

Sensors 

12-Component 

PCA 

12-Component 

CCA 

9-Component 

CCA 

Logistic Regression 80.17 +/- 1.28 4.73 +/- 1.49 50.73 +/- 1.39 33.94 +/- 2.03 31.25 +/- 1.46 

SVM 89.30 +/- 1.03 25.06 +/- 1.94 88.73 +/- 1.45 36.14 +/- 2.47 31.72 +/- 1.26 

K-NN 94.41 +/- 0.93 85.37 +/- 1.52 88.73 +/- 1.45 94.78 +/- 0.49 94.12 +/- 0.92 

K-SVM 86.53 +/- 1.66 78.81 +/- 1.17 87.14 +/- 1.03 93.81 +/- 0.95 92.03 +/- 1.03 

Decision Tree 98.86 +/- 0.32 78.89 +/- 1.03 90.36 +/- 1.17 80.34 +/- 1.17 80.33 +/- 1.51 

Random Forest 99.86 +/- 0.11 90.31 +/- 1.56 94.88 +/- 1.12 90.75 +/- 1.04 90.44 +/- 0.88 
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increase the overall classification accuracy while selecting fewer 
components. Highlighted is the row in table III (K-SVM), where 
the largest improvement in accuracy is achieved with 9-
component CCA (column E) over 12-component PCA (col: C). 

Further improvements in classification accuracy would be 
expected from data fusion at feature level by using more recently 
introduced Kernel CCA (KCCA) and Deep CCA.  

B. Classification Algorithms 

In the multi-modal cases, KNN, KSVM, Decision Trees and 
Random Forest algorithms yield higher accuracy as compared to 
Logistic Regression and SVM. This is a straightforward 
reflection of the nature of the task and a confirmation of the non-
linear character of the data; e.g., angles from IMU sensors are 
not linear when fed along with the linear acceleration values to 
the classification algorithms. 

KNN outperforms the other algorithms in overall accuracy 
on separate and fused datasets (with the single exception of IMU 
data processed by Random Forest). However, from table III, 
there is no significant change in performance when compared to 
floor sensor data only, while KSVM gives advantage of PCA-
fused features over single modality ambulatory sensor features 
and all CCA-fused cases perform better than any of the two 
individual modality datasets. KSVM avoids mapping of data to 
and from higher dimensional space by introducing a kernel; it 
was observed that a Gaussian kernel performed better than 
sigmoid or polynomial alternatives. 

The Decision Trees algorithm is trained with the bagging 
method, which is a combination of learning models to improve 
the overall results. The Random Forest algorithm is an ensemble 
of decision trees (the default 10 trees were used), therefore yields 
higher accuracies as compared to the Decision Trees algorithm, 
as confirmed in table III. Decision Trees and Random forest 
algorithms simply do not work in this method of sensor fusion. 
Higher accuracies have been achieved for both algorithms on 
Floor Sensor System (column A) as compared to the accuracy 
measures of sensor fusion (columns: C, D & E). 

In conclusion, classifications of human gait are demonstrated 
by ML from data, acquired separately from floor and IMU 
sensors as well as from data fused at feature level by PCA and 
CCA. The latter performs better for most non-linear algorithms 
when 12 components are used. It is possible by fusion to achieve 
improvement over the IMU case even with 9 CCA components. 
Such reduction in the computational cost is essential in a system 
implementation with the best performing KSVM classifier, 
which can be demanding with larger datasets. Multi-modality 
fusion at feature level recommends itself for classification in a 
range of problems and embedding in implementations where the 
primitives of data variability are undefined or unknown. 
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