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Abstract: Ocean renewable wave power is one of the more encouraging inexhaustible energy sources,

with the potential to be exploited for nearly 337 GW worldwide. However, compared with other

sources of renewables, wave energy technologies have not been fully developed, and the produced

energy price is not as competitive as that of wind or solar renewable technologies. In order to

commercialise ocean wave technologies, a wide range of optimisation methodologies have been

proposed in the last decade. However, evaluations and comparisons of the performance of state-of-

the-art bio-inspired optimisation algorithms have not been contemplated for wave energy converters’

optimisation. In this work, we conduct a comprehensive investigation, evaluation and comparison

of the optimisation of the geometry, tether angles and power take-off (PTO) settings of a wave

energy converter (WEC) using bio-inspired swarm-evolutionary optimisation algorithms based on

a sample wave regime at a site in the Mediterranean Sea, in the west of Sicily, Italy. An improved

version of a recent optimisation algorithm, called the Moth–Flame Optimiser (MFO), is also proposed

for this application area. The results demonstrated that the proposed MFO can outperform other

optimisation methods in maximising the total power harnessed from a WEC.

Keywords: renewable energy systems; wave energy converters; power take-off; bio-inspired;

meta-heuristics; optimisation algorithms; Moth Flame Optimisation; evolutionary algorithms;

swarm intelligence

1. Introduction

Global energy demand has increased tremendously during the last decade and is
expected to surge by 4.6% in 2021 [1] and rise to 45% by 2040 [2]. Renewable energy
sources are considered alternatives and are one of the fastest-growing technologies globally.
Renewables are set to produce around 30% of generated electricity globally in 2021. The
most significant contribution is from solar and wind renewable energy. The electricity
produced from wind power and solar PV is predicted to increase by 275 terawatt-hours
and 145 terawatt-hours in 2021, respectively. More than 50% of the world’s green power
has been generated by China, followed by the United States, the European Union (EU) and
India [1].

Ocean wave energy is currently considered the cleanest, safest and most reliable
source of renewable energy [3]. Furthermore, the density of wave energy is significantly
higher than that of solar and wind energy [4]. Nevertheless, this new kind of renewable
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energy needs more development and has not fully matured; its commercial perception is
still shallow. The main reason for this is that the cost associated with generating energy
using sea waves is much higher than that of other kinds of renewable and clean power,
such as wind energy [5].

To handle these challenges, numerous studies have been conducted in order to op-
timise different aspects of wave energy converters (WECs), such as geometry parame-
ters [6–11], power take-off settings (PTO) [12,13] and the arrangement of WECs [14–18].
The optimisation of the shape of WECs can be significant for wave energy conversion
models, such as oscillating water columns, where the optimum parameters achieved an
immersion depth of 0.45 of the water depth and a chamber diameter of 0.92 of the water
depth [19]), and over-topping designs [20], where the optimum length to opening ratio
should be 2.5–3 m.

Most of the studies on optimising the geometry parameters of WECs have been
developed to examine a few predefined shapes, because the computational cost of exploring
the multi-parameter search space and assessing all feasible designs is high.

This paper develops an improved Moth–Flame Optimisation (IMFO) method in order
to maximise the harnessed power output of a WEC. To evaluate the quality of the best-found
configurations using the IMFO, we developed a comparison framework including five
robust and popular optimisation algorithms including Grey Wolf Optimiser [21] (GWO),
Whale Optimisation Algorithm (WOA) [22], standard Moth–Flame Optimisation Algorithm
(MFO) [23], Particle Swarm Optimisation (PSO) [24] and Covariance matrix adaptation
evolution strategy (CMA-ES) [25]. The experimental results confirm that the proposed
MFO method performed the best compared with the other meta-heuristics applied in this
work, in terms of higher produced power.

The structure of the article is as follows: Section 2 presents a review of the previous
developments of the shape and PTO parameters. Next, Section 3 describes the details
of the WEC design and the formulas that are used in order to simulate the incorporated
power. Then, the optimisation problem is explained, and Section 5 outlines the proposed
and applied meta-heuristic approaches. The optimisation performances are introduced
and studied in Section 6. Subsequently, Section 7 presents the conclusions of this research.

2. Related Works

One of the initial efforts to optimise the shape of WECs was proposed by Vantorre et al. [26];
an assortment of geometries for a heaving point absorber were evaluated and compared
based on the Belgian coastal area. These shapes incorporated a hemisphere and two
different conical geometries. In [26], the most reliable power efficiency was achieved with
a cylindrical cone at 90◦.

Goggins and Finnegan [27] investigated different heights and radii for a point absorber
with a vertical-shape cylinder under wave conditions off the west coast of Ireland. Goggins
and Finnegan [27] proposed that a trimmed cylinder with a hemisphere, with a full draft
at an aspect ratio of 2.5, can produce the maximum power. However, Hager et al. [28]
suggested that a concave-shape buoy can extract more power from ocean waves than other
shapes, such as a flat or convex model, after evaluating several asymmetrical converter
designs.

Another recent published study recommends using a bi-cubic B-spline wave converter
shape [29], which can produce more energy than other conventional WEC models. Recently,
Neshat et al. [30] proposed a bi-level optimisation algorithm that consists of Grey Wolf
Optimiser [21] (GWO) and a self-adaptive differential evolution with ensemble sinusoidal
parameter adaptation called LSHADE-EpSin [31]). The authors suggested a large vertical
cylinder converter with a radius and height of 14.51 m and 30 m, respectively.
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3. Modelling

3.1. Wave Energy Converter

This study focuses on optimising a generic multi-mode wave energy converter that
absorbs power from multiple degrees of freedom due to the arrangement of mooring lines.
The buoy is positively buoyant, and three inclined tethers should always be under tension
to keep it fully submerged. The power is generated using a rotary generator connected
to each tether to convert the orbital motion of the WEC to electricity. A simplified sketch
of the system is shown in Figure 1. The buoy sits 2 m below the sea water level, has a
cylindrical shape, and its geometry is defined by a radius of a and a height of H. The angles
αt and αap define how the tethers are inclined and attached to the buoy hull.

a
H

αap
αt

x
y

z

Buoy

Tethers

Seabed

Figure 1. A generic multi-mode wave energy converter.

3.2. Site Location and Wave Resource

The wave characteristics dataset was collected using a point absorber located at
37.96◦ N, 12.04◦ E, Aegadian sea (Italy), near Marettimo island, over the 32 years between
1979 and 2010. The climate of Marettimo island is Mediterranean; the number of cold
months is less than four and the average temperature is below 10 ◦C. Generally, summer
is warm (temperature >22 ◦C), dry, and calm in terms of wind speed. Most of the storms
happen in the fall and winter seasons. The maximum wind speed is approximately
28 Km/h, blowing from North to North West.

The potential location for this WEC deployment is demonstrated in Figure 2 and the
detailed parameters are specified in Table 1.

Figure 2. Location of the Marettimo test site.
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Table 1. Parameters of the Marettimo test site.

Location 37.96◦ N, 12.04◦ E

Type of data Real sea measurement [32]
Water depth 10 m
Mean wave power density 6.38 kW/m
WXSD resource class [33] Class 1

Figure 3a shows the wave scatter diagram of the deployment site. The wave climate is
not energetic, with a wave power density of 6.38 kW/m. The dominant wave period is
approximately 6 s, and the dominant wave height is less than 1 m.

As optimisation requires a large number of objective function evaluations, it is possible
to replace the wave climate in Figure 3a with a subset of sea states in order to evaluate
the performance of the WEC. Following the procedure explained in [34], a cluster analysis
was applied to extract 10 representative sea states using the k-means clustering method, as
shown in Figure 3b. The probability of each centroid was then recalculated to make sure
that the weighted wave power flux from each centroid corresponded to the sum of all of
the probabilities within each cluster.

0

0.01

0.02

0.03

0.04

P
ro

b
ab

il
it

y

(a) (b)

Figure 3. The Marettimo test site: (a) wave scatter diagram and (b) ten representative sea states

identified using the k-means clustering method.

3.3. Equations of Motion

For this work, it was assumed that waves are mono-directional and propagate along
the x axis. The wave structure interaction was modelled using linear wave theory assuming
inviscid, irrotational and incompressible fluid. The only nonlinear effects included in the
WEC model were viscous forces. It was assumed that the PTO machinery behaves as a
linear spring-damper system, where spring and damper parameters that are identical for
all three generators are optimised for each sea state of interest.

The dynamics of the WEC were modelled using a spectral-domain approach, where all
nonlinear forces were replaced by equivalent linear matrices that were calculated iteratively,
applying the statistical linearisation technique [35]. The WEC motion is described by the
vector û(ω), which represents the complex amplitude of the buoy velocity in all six degrees
of freedom:

[

iω(M + Arad(ω)) +
(

Brad(ω) + Dpto + Bvisc

)

− i
Kpto

ω

]

û(ω) = F̂exc(ω), (1)

where M is the diagonal mass matrix, Arad(ω) is the frequency-dependent matrix of added
mass coefficients, Brad(ω) is the frequency-dependent radiation damping matrix, Kpto and
Dpto are linearised stiffness and damping matrices that represent the load from the power
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take-off machinery (refer to [36]), Bvisc is the equivalent damping term that corresponds to
the viscous drag force, and F̂exc(ω) = Aw(ω)f̂exc(ω) is the excitation force vector (Aw is
the wave amplitude, and f̂exc(ω) is the vector of excitation force coefficients).

In this work, the hydrodynamic parameters Arad(ω), Brad(ω) and f̂exc(ω) were cal-
culated using a semi-analytical model [37,38]. The mass matrix M is defined by the buoy
geometry, assuming that the mass of the buoy is equal to half of the displaced water mass.
The PTO matrices Kpto and Dpto are defined by the arrangement of tethers and PTO control
parameters. The value of the equivalent damping term Bvisc depends on the WEC motion
and should be calculated iteratively according to [35]:

Bvisc = −

〈

∂Fvisc(t)

∂u(t)

〉

, (2)

where 〈·〉 denotes the mathematical expectation, and the viscous force in time domain has
the form:

Fvisc(t) = −
1

2
ρwCdAd(||u(t)|| ⊙ u(t)). (3)

ρw is the water density, Cd is the diagonal matrix of drag coefficients, Ad is the diagonal
matrix of the cross-section areas of the buoy perpendicular to the direction of motion, and
⊙ denotes the Hadamard product (element-wise multiplication).

The following iterative procedure should be followed to estimate Bvisc and the WEC
response in any irregular sea state of interest:

Step 1. Select the sea state of interest and calculate the incident wave spectrum Sη(ω)
for the given Hs and Tp. A Pierson–Moskowitz wave spectrum was used in this
study [39].

Step 2. Calculate the power spectral density (PSD) matrix of the excitation force:

SF(ω) = Sη(ω)f̂exc(ω)f̂∗exc(ω), (4)

where ()∗ denotes the conjugate transpose of a vector/matrix.
Step 3. Evaluate the WEC transfer function:

H(ω) =

[

iω(M + Arad(ω)) +
(

Brad(ω) + Dpto + Bvisc

)

− i
Kpto

ω

]−1

, (5)

where Beq = 06×6 is the first iteration.
Step 4. Calculate the PSD matrix of the buoy velocity:

Su(ω) = H(ω)SF(ω)H∗(ω). (6)

Step 5. Compute the covariance matrix of the buoy velocity:

σ
2
u = cov[u, u] =

∫ ∞

0
Su(ω)dω. (7)

Step 6. Approximate the viscous damping matrix Bvisc as [35]:

Bvisc = −

〈

∂Fvisc

∂u

〉

=
1

2

√

8

π
ρwCdAdσ

2
u. (8)

Step 7. Check the convergence:

|Bvisc[n]− Bvisc[n − 1]| < δ, (9)

where n is the iteration number and δ is set to 0.01. Return to Step 3 if Step 7 is
not satisfied.
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Equation (1) describes the motion of the WEC in the Cartesian coordinate system.
However, the power is generated based on the tether elongations and velocities that can be
calculated using the inverse kinematic Jacobian as q̇ = J−1u (q̇ is the vector containing the
rate of change of each tether length).

If the damping coefficient of each PTO unit is equal to Dpto, the average wave power
converted by the WEC in the irregular wave is defined by Hs and Tp is [35]:

P̄(Hs, Tp) = Dpto

3

∑
k=1

σ2
q̇k
(Hs, Tp), (10)

where k corresponds to the PTO number, and the variance matrix of the tether velocity q̇ is
calculated as:

σ
2
q̇ =

∫ ∞

0
J−1Su(ω)J−Tdω. (11)

For a location with a wave climate described by the matrix O(Hs, Tp), the annual
average power production is:

PAAP = ∑
Hs

∑
Tp

O(Hs, Tp) · P̄(Hs, Tp). (12)

4. Optimisation Setup

With regard to defining the fitness function, we consider that the most significant
optimisation variables of the applied cylinder are as follows: (1) The cylinder radius (a);
(2) the aspect ratio, which is the dimension of the cylinder height over the radius (H/a);
(3) tether attachment angle (αap); (4) tether inclination angle (αt); (5) a vector of parameters
of damping PTO; and (6) a vector of stiffness coefficients’ PTO values, which are shown
as follows:

dpto = [D
(1)
pto, D

(2)
pto, . . . , D

(Nd)
pto ]T, and kpto = [K

(1)
pto, K

(2)
pto, . . . , K

(Nk)
pto ]T. (13)

The variable numbers of both kpto and dpto vectors are the same at Nk = Nd = 10,
and also the total length of optimisation designs is 24. These decision variables must be
optimised in what follows:

z = [a, H, αt, αap, kpto ∈ R
Nk×1, dpto ∈ R

Nd×1]. (14)

The objective function we considered in this study is:

fO = arg max
z

PAAP(z), subject to: z ∈ [zmin, zmax]. (15)

Equation (15) shows the generated power output, on average, of the WEC in one year,
and this power should be maximised. Table 2 presents the feasible ranges of the applied
optimisation variables.

Table 2. The feasible range of the cylinder hyper-parameters settings.

Parameter Unit Min Max Length

a m 1 10 1
H m 1 10 1
(H/a) 0.4 2 1
αt deg 10 80 1
αap deg 10 80 1
Kpto N/m 103 108 10
Dpto N/(m/s) 103 108 10
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5. Bio-Inspired Optimisation Algorithms

To optimise the performance of a three-tether converter that is fully-submerged, in this
paper we mainly considered a broad and well-known optimisation strategy called ‘all-at-
once’. In this strategy, we performed the optimisers on all decision variables simultaneously.
The mentioned variables are as follows: the radius a, aspect ratio (H/a), both tether
inclinations (αt), attachment angle (αap), both series of the spring stiffness (kpto) and
damping coefficients (bpto) of the power take-off features.

According to the previous study [30], by analysing the characteristics of the search
space of this optimisation problem, we can see that these combined parameters formed a
multi-modal, constrained and large-scale search space that is sensitive to PTO parameters
alteration. These challenges provide the main motivation for applying the meta-heuristic
optimisation methods, which are similar to genetic, evolutionary and swarm optimisa-
tion methods.

The meta-heuristics performed and compared in this work incorporate Covariance
matrix adaptation evolution strategy (CMA-ES) [40], Grey Wolf Optimiser (GWO) [21],
Particle Swarm Optimisation (PSO) [41], Whale Optimisation Algorithm (WOA) [22],
standard Moth–Flame Optimisation Algorithm (MFO) [23] and the developed MFO. Table 3
lists the applied optimisation methods and their control parameters, where λ shows
the initial population size; c1 and c2 are cognitive and social acceleration coefficients,
respectively; and ω signifies the inertia weight. In GWO, α shows the relative coefficient
for balancing the exploration and exploitation of the search process. Moreover, both α1 and
α2 explain the convergence coefficients of WOA. β denotes a constant in order to determine
the shape of the logarithmic spiral.

Table 3. Details of the control parameters of the applied optimisation algorithms. All algorithms are

limited to the same number as the fitness function evaluation.

Methods Settings

CMA-ES [40] λ = 25 with the default settings recommended in reference [40];

PSO [41]
with λ = 25, c1 = 1.5, c2 = 2, ω = 1 (reduced by a damping ratio
w f = 0.99 exponentially);

GWO [21] λ= 25, α = 2 (linearly decreased to zero)

WOA [22]
λ = 25, α1 = 2 (declines linearly from 2 to 0), α2 = −1 (linearly reduced
from −1 to −2), β = 1

MFO [23] λ = 25, α = −1 (linearly drops from −1 to −2), β = 1, t = (α − 1)×
rand + 1;

IMFO λ = 25, the same MFO’s control parameters

5.1. Improved Moth–Flame Optimisation (IMFO)

The Moth–Flame Optimisation (MFO) algorithm [23] is a state-of-the-art, nature-
inspired meta-heuristic method that demonstrates a considerable performance in optimis-
ing various numerical [42,43] and real engineering [44,45] optimisation problems. The
principal motivation of the Moth–Flame Optimisation algorithm is the navigating strategy
of the moth, called ’transverse orientation’. Indeed, some groups of insects, like the moth
family, explore their environment based on a navigation model that involves flying a route
at a specific angle based on the distance between them and the light source, such as natural
or man-made lights. If the natural light sources are followed by the moths, due to the long
distance this navigation system assists with keeping to a straight flight path. However,
for the man-made lights, the situation is different and leads to the moths flying in a spiral
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pattern. Equation (16) shows the mathematical model of this logarithmic spiral movement
in one dimension, as follows:

S = Debt cos(2πt) + F, (16)

where F denotes the situation of each flame in the search space; M signifies the location of
the moth, D = |M − F| is the absolute interval between each moth and the existing flame.
Moreover, t ∈ (−1, 1) equals a time step. Based on Equation (16), a route from the moth to
a flame is formed while t linearly reduces between −1.5 and 1; b is a constant and restricts
the speed of approach to a flame.

In the MFO, particles cross in the d dimensional search space and their situations
are depicted as feasible or infeasible solutions. Hence, a population of moths and their
situations can be identified as follows:

M =











M11 M12 · · · · · · M1d

M21 M22 · · · · · · M2d
...

...
...

...
...

Mn1 Mn2 · · · · · · Mnd,











(17)

where n denotes the size of the population, and the fitness value of the solutions are
recorded as a vector in the following:

f (M) =











f (M1)
f (M2)

...
f (Mn).











(18)

To show the flames, the same matrix that can be seen in Equation (19) is used, and
each flame shows the best-found solution so far.

F =











F11 F12 · · · · · · F1d

F21 F22 · · · · · · F2d
...

...
...

...
...

Fn1 Fn2 · · · · · · Fnd











−→ f (F) =











f (F1)
f (F2)

...
f (Fn).











(19)

Thus, the area around the flames in the search space is explored by a formal moth in
order to search for better solutions. The flames’ situations will be updated when a better
configuration is observed. Furthermore, Function I initialises a population of random
solutions and then determines the fitness values of the solutions. The following approach
is used in this way:

Mij = (ubi − lbi) ∗ rand() + lbi −→ i ∈ [1, n], j ∈ [1, d], (20)

where both ub and lb are vectors of decision variables’ upper and lower boundary con-
straints as follows:

ub =[ub1, ub2, . . . , ubd], lb =[lb1, lb2, . . . , lbd]. (21)

The second step is the P function, which signifies the principal component of the MFO
algorithm. This function transfers solutions throughout the search space and also renews
the status of the recorded flames during the optimisation process. The state of the i-th
solution in the population with regard to the j-th flame will be updated as follows:

Mi =S(Mi, Fj) = Dije
btcos(2πt) + Fj −→ Dij =|Mi − Fj|. (22)
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In the MFO, the exploration procedure strengthens the candidate solutions to improve
the flying direction in general. As a result, the exploration strategy supports the optimisa-
tion process to evade trapping in local optima. Furthermore, the exploitation procedure
runs while the new location extends inside the search space between the moth and the
flame. The next step of the MFO is to sort the candidate solutions with regard to their
quality from the best performers to the worst performers. Later, the moth’s location will be
updated again, depending on the corresponding flame. Furthermore, in order to obtain a
good balance between the exploitation and exploration processes, an adaptive strategy was
recommended. This formula reduces the number of flames through iteration, as follows:

Fn = round

(

N − iter ∗
N − 1

Maxiter

)

, (23)

where Fn and N are the number of flames and the size of the population, respectively.

5.2. Diversification Strategy

In the MFO, in order to avoid local optima and premature convergence, and to
improve the exploration ability, we proposed a diversification strategy for the MFO. In this
mechanism, we alllow the MFO to generate a small percentage of new random solutions in
each iteration, based on a probability threshold (µ = 0.1). These newly generated solutions
keep the diversity between the solutions in the population and lead to strengthening the
exploration ability until the last iterations. This is mainly because, in the last iterations of
the standard MFO, the diversity rate of the population has been reduced and the search
algorithm is not able to explore properly. Equation (24) shows the formulation of the
diversification strategy.

Mij = (ubi − lbi) ∗ rand() + lbi −→ i f rand < µ. (24)

As in the standard MFO, the number of both moths and flames dwindles, and the
exploration ability gradually weakens. The proposed improved MFO was developed using
a simple and effective diversification strategy. Therefore, keeping the population diversity
extends the algorithm’s global search capability and prevents premature convergence.
However, it is expected that the convergence rate of IMFO decreases due to the generation
and addition of a few random design solutions in the population. This improved algorithm
will be applied to case studies in the next section.

6. Results and Discussions

In this paper, in order to evaluate the searchability of the proposed IMFO algorithm, we
developed a comparative framework consisting of a well-known evolutionary algorithm—
called CMA-ES [40]—and four popular swarm intelligence methods—Particle Swarm
Optimisation (PSO) [41], Grey Wolf Optimiser (GWO) [21], Whale Optimisation Algorithm
(WOA) [22] and standard Moth–Flame Optimisation Algorithm (MFO) [23].

The applied control parameters for all optimisation methods are listed in Table 3, as
suggested by their developers. In this way, we developed a fair comparison between the
applied optimisation methods.

In the first step of this comparison for maximising the absorbed power output of the
cylinder, each optimisation method was run ten times and the minimum, maximum and
median of the best-found solutions are reported as a box-and-whisker diagram (Figure 4).
In Figure 4, we can see that the IMFO could propose the best settings for the cylinder
in terms of harnessing sea wave energy. Furthermore, the performance of the standard
MFO is competitive and, in the following, the GWO performed better than the WOA, PSO
and CMA-ES.

The second comparison metric for the optimisation methods’ performance is the
convergence rate. In this study, we set the maximum evaluation number at 5 × 103, which
was suggested by a prior study [30]. According to the results represented in Figure 5,
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it is obvious that the standard WOA could converge substantially faster than the other
meta-heuristics. However, WOA could not be released from the local optima and was faced
with a premature convergence issue. Interestingly, CMA-ES shows the same convergence
behaviour as WOA, but the performance of the WOA method is better than CMA-ES in
terms of best-found configurations. In the following convergence trajectories, the original
MFO algorithm outperforms both WOA and CMA-ES after consuming only 25% of the
whole computational budget, and maintains this superiority over the others until near
the last iterations. However, surprisingly, the improved MFO surpasses all optimisation
algorithms and can propose better solutions on average. This achievement comes from the
high exploration ability, using the proposed diversification strategy.
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Figure 4. Statistical optimisation results of the improved MFO (IMFO) and the five other meta-

heuristics. Each experiment runs ten times.
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Figure 5. Convergence speed of the improved MFO (IMFO) and the five other meta-heuristics.

The average optimisation results of ten experiments is plotted.

Table 4 presents the average, minimum, maximum and standard deviation of the
best-found solutions proposed by the improved MFO and the five other optimisation
algorithms. It is noted that IMFO found the best optimisation settings for the cylinder
in order to harness the maximum power from the sea wave. Meanwhile, both the GWO
and MFO heuristics worked well as the second and third best performing wave power
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optimisers at finding solutions with the highest absorbed power at 8.5985 × 104 and
8.5933 × 104, respectively.

Table 4. Optimisation performance of IMFO and the five other optimisation methods based on the

best-found configuration per each experiment.

CMA-ES PSO GWO WOA MFO IMFO

Mean 8.0621 × 104 7.9192 × 104 8.1757 × 104 8.1134 × 104 8.3430 × 104 8.4448 × 104

Min 8.0003 × 104 7.1264 × 104 7.9016 × 104 7.9956 × 104 8.1406 × 104 8.1534 × 104

Max 8.1032 × 104 8.5783 × 104 8.5985 × 104 8.4410 × 104 8.5933 × 104 8.8274 × 104

STD 3.6621 × 102 5.1481 × 103 2.3205 × 103 1.3638 × 103 1.7451 × 103 2.5527 × 103

Table 5 shows the list of the best-found design parameters, including the cylinder
radius (a), height (H), both tether attachment angles (αap), the tether inclination angle,
(αt) and, finally, the damping-spring PTO values. The first and foremost observation
from Table 5 is that both the radius and height values of the best-found solutions are
converged to the upper bound, and it is expected that a bigger cylinder can produce more
power. However, most of the time the costs of developing, installing and maintaining
the large wave converters restricted the developers. Furthermore, it can be seen from
Table 5 that the optimised values of the tether angles are within a wide range between 10◦

and 80◦. This evidence demonstrates that there is a straightforward method for setting
these design parameters. This is mainly because there are strong dependencies between
design parameters (tether angles and PTO parameters) and the hydrodynamic model that
dominates the power extraction (surge, pitch or heave).

Table 5. The best-found geometric and PTO settings of the cylinder.

CMA-ES PSO GWO WOA MFO IMFO

a [m] 10 10 9.97 9.99 10 10

H [m] 10 10 10 10 10 10

αt [deg] 80 36 10 79.99 80 79.85

αap [deg] 79 33 80 76.98 29.85 11

∑
NK
i=1 Kpto(×107) 8.85 4.9415 4.4482 7.5518 5.8939 5.0907

∑
NB
i=1 Dpto (×107) 9.575 6.3568 5.5574 9.4748 7.6913 6.7046

Power (Watt) 8.10 × 104 8.58 × 104 8.60 × 104 8.44 × 104 8.59 × 104 8.83 × 104

In order to provide deeper insight into the optimisation achievements, we compared
the performance of the proposed optimisation method with other meta-heuristics, which
can be seen in Table 6. In terms of the average best-found WEC’s settings, IMFO can perform
substantially better than PSO by 6.64%, and the percentage improvements of IMFO can
be considerable compared with CMA-ES, WOA and GWO at 4.75%, 4.08% and 3.29%,
respectively. Furthermore, according to the best-found optimal WEC’s configurations,
IMFO is able to outperform the standard MFO by 2.72%.
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Table 6. The percentage improvement of the WEC absorbed power using IMFO compared with the

other optimisers applied in this study.

CMA-ES PSO GWO WOA MFO

Mean 4.75% 6.64% 3.29% 4.08% 1.22%

Worst 1.91% 14.41% 3.19% 1.97% 0.16%

Best 8.94% 2.90% 2.66% 4.58% 2.72 %

The sizes of the cylinder’s radius and height have a substantial impact on the power
conversion from the converter. Figures 6 and 7 show the process of the cylinder size
optimisation using (a) the standard MFO and (b) the proposed MFO. Each line represents
the search process of the optimisation algorithm, which is repeated ten times. As there is a
semi-direct relationship between the radius and height size and the produced power output,
both methods could converge rapidly and have approximately the same performance.

(a) (b)

Figure 6. The historical exploration and exploitation trajectories of the best-found designs per

generation in radius for (a) standard MFO; (b) improved MFO. Each line shows an independent run.

(a) (b)

Figure 7. Trajectory of the best-found solution’s parameters of the (a) MFO and the (b) improved

MFO algorithms for height of the converter.

The inclination angle of the tethers (α) of the developed cylinder can modify the
absorbed power of the ocean wave. As the tether angle cannot be adjusted after installing
the converter, optimising this parameter plays an important role in the average performance
of the cylinder during its lifetime. As a result, for more powerful sea states, it is suggested
that the tether angles be larger because more power will be absorbed from the surge than
the heave of the incident wave. The comparison of both optimisation methods—(a) MFO
and (b) IMFO—in order to explore the best configurations of the inclination and attachment
angles can be seen in Figures 8 and 9, respectively.
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(a) (b)

Figure 8. The searchability of (a) MFO and (b) IMFO in order to find the best inclination angle of the

tethers (α).

Furthermore, from Figure 8, we can observe that for both MFO and IMFO methods,
after exploring the search space of the tether’s inclination angle (α), most of the experiments
are converged to the upper bound in order to absorb the maximum level of wave energy.
It can be seen in Figure 8a that the standard MFO rapidly converged to a specific range
(perhaps a local optimum) and was not able to keep the exploration ability. However, the
proposed MFO kept its exploration searchability even among the last iterations (Figure 8b).

(a) (b)

Figure 9. A performance comparison between MFO and IMFO in terms of exploration and exploita-

tion ability.

Figure 9 demonstrates the trajectory of the (a) MFO and (b) IMFO methods to optimise
the attachment angles of the three tethers. According to the optimisation results, MFO pro-
posed a specific range of angles from 50◦ to 80◦ for ten independent runs. However, we can
see that the IMFO algorithm suggested a different range of attachment angles during the
optimisation process, with a higher exploration ability compared to the MFO method.

In Figure 10, we can see clearly that the best-found Kpto parameters using the MFO
method are converged to less than 5× 107. Nevertheless, IMFO proposed the values of Kpto
in a wide range of search domains. As a result, these found Kpto configurations can produce
more power compared with the MFO performance. Additionally, Figure 10b shows that
the search space of the PTO parameters is multi-modal with highly dynamic behavior.
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(a) (b)

Figure 10. The ten best-found Kpto values per generation during the optimisation process using

MFO (a) and IMFO (b).

In order to clarify and provide an observable comparative landscape for both MFO
and IMFO, Figure 11 is presented. To study the exploration and exploitation abilities
of IMFO carefully and in great detail, the last ten iterations of the proposed method are
plotted. We can notice clearly that the best-found configurations for both Kpto and Dpto
using IMFO are distributed throughout the search space; however, the proposed settings of
MFO are concentrated in a narrow range.
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Figure 11. The search pattern of (a,b) standard MFO, and (c,d) improved MFO for damping-

spring settings.

Moreover, we can see that it is more challenging to find the optimal values for the tether
angles than for the radius and height values. Finally, it seems that the most challenging
part of the optimisation is related to finding the appropriate values for the PTO parameters.

7. Conclusions

In this study, an improved Moth–Flame Optimisation Algorithm is proposed for the
purpose of enhancing the power output extracted from ocean waves by a fully-submerged,
cylindrical wave energy converter with three tethers. The applied wave climate in this
optimisation work was a Mediterranean sea site that is located in Sicily, Italy. As optimising
the shape features, PTO parameters and tether angles simultaneously is a complex and
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time-consuming optimisation problem, we proposed a robust and reliable development
of the Moth–Flame Optimisation (MFO) Algorithm using a diversification strategy. With
regard to evaluating the developed method’s effectiveness, we take into account five state-
of-the-art swarm and evolutionary optimisation algorithms for comparison. According
to the findings, the improved MFO method is able to outperform recent meta-heuristic
methods in terms of the absorbed power output of the best-found WEC configurations.
In order to develop the current method in terms of dealing with multi-directional wave
conditions, in the future we will focus on the adaptive and self-adaptive meta-heuristics to
achieve a good search balance that will result in a fast and effective wave energy converter
optimiser. Future plans also include considering whether the speed of the convergence rate
can be beneficial in terms of saving on computational costs.
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Abbreviations

The following abbreviations are used in this manuscript:

WEC Wave energy converters

PTO Power take-off

PSD Power spectral density

MFO Moth Flame Optimisation

EAs Evolutionary algorithms

SI Swarm intelligence

CMA-ES Covariance matrix adaptation evolution strategy

PSO Particle Swarm Optimisation

GWO Grey Wolf Optimiser

WOA Whale Optimisation Algorithm

LSHADE-EpSin Self-adaptive version of differential evolution

References

1. Newell, R.G.; Raimi, D. Global Energy Outlook Comparison Methods: 2020 Update. Available online: https://www.rff.org/

publications/reports/global-energy-outlook-comparison-methods-2020 (accessed on 10 June 2020).

2. Murdock, H.E.; Gibb, D.; André, T.; Appavou, F.; Brown, A.; Epp, B.; Kondev, B.; McCrone, A.; Musolino, E.; Ranalder, L.; et al.

Renewables 2019 Global Status Report. Available online: https://www.ren21.net/wp-content/uploads/2019/05/gsr-2019-full-

report-en.pdf (accessed on 15 July 2020).

3. Aderinto, T.; Li, H. Ocean wave energy converters: Status and challenges. Energies 2018, 11, 1250. [CrossRef]

4. Falnes, J. A review of wave-energy extraction. Mar. Struct. 2007, 20, 185–201. [CrossRef]

5. Astariz, S.; Iglesias, G. Wave energy vs. other energy sources: A reassessment of the economics. Int. J. Green Energy 2016,

13, 747–755. [CrossRef]

6. Wen, Y.; Wang, W.; Liu, H.; Mao, L.; Mi, H.; Wang, W.; Zhang, G. A Shape Optimization Method of a Specified Point Absorber

Wave Energy Converter for the South China Sea. Energies 2018, 11, 2645. [CrossRef]

7. Alamian, R.; Shafaghat, R.; Safaei, M.R. Multi-Objective Optimization of a Pitch Point Absorber Wave Energy Converter. Water

2019, 11, 969. [CrossRef]

8. Esmaeilzadeh, S.; Alam, M.R. Shape optimization of wave energy converters for broadband directional incident waves. Ocean.

Eng. 2019, 174, 186–200. [CrossRef]

9. Wang, L.; Ringwood, J.V. Geometric optimization of a hinge-barge wave energy converter. In Proceedings of the 13th European

Wave and Tidal Energy Conference, Napoli, Italy, 1–6 September 2019; p. 1389.

10. Garcia-Teruel, A.; Forehand, D.I.M.; Jeffrey, H. Metrics for wave energy converter hull geometry optimisation. In Proceedings of

the 13th European Wave and Tidal Energy Conference, EWTEC, Napoli, Italy, 1–6 September 2019.

https://www.rff.org/publications/reports/global-energy-outlook-comparison-methods-2020
https://www.rff.org/publications/reports/global-energy-outlook-comparison-methods-2020
https://www.ren21.net/wp-content/uploads/2019/05/gsr-2019-full-report-en.pdf
https://www.ren21.net/wp-content/uploads/2019/05/gsr-2019-full-report-en.pdf
http://doi.org/10.3390/en11051250
http://dx.doi.org/10.1016/j.marstruc.2007.09.001
http://dx.doi.org/10.1080/15435075.2014.963587
http://dx.doi.org/10.3390/en11102645
http://dx.doi.org/10.3390/w11050969
http://dx.doi.org/10.1016/j.oceaneng.2019.01.029


Energies 2021, 14, 3737 16 of 17

11. Sergiienko, N.Y.; Neshat, M.; da Silva, L.S.; Alexander, B.; Wagner, M. Design optimisation of a multi-mode wave energy converter.

In Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2020), Fort

Lauderdale, FL, USA, 28 June–3 July 2020; ASME: New York, NY, USA 2020.

12. Abdelkhalik, O.; Zou, S.; Robinett, R.D.; Bacelli, G.; Wilson, D.; Coe, R.G.; Korde, U.A. Multiresonant Feedback Control of a

Three-Degree-of-Freedom Wave Energy Converter. IEEE Trans. Sustain. Energy 2017, 8, 1518–1527. [CrossRef]

13. Neshat, M.; Alexander, B.; Sergiienko, N.; Wagner, M. A Hybrid Evolutionary Algorithm Framework for Optimising Power Take

Off and Placements of Wave Energy Converters. arXiv 2019, arXiv:1904.07043.

14. Sharp, C.; DuPont, B. Wave energy converter array optimization: A genetic algorithm approach and minimum separation

distance study. Ocean Eng. 2018, 163, 148–156. [CrossRef]

15. Fang, H.W.; Feng, Y.Z.; Li, G.P. Optimization of Wave Energy Converter Arrays by an Improved Differential Evolution Algorithm.

Energies 2018, 11, 3522. [CrossRef]

16. Neshat, M.; Alexander, B.; Wagner, M.; Xia, Y. A detailed comparison of meta-heuristic methods for optimising wave energy

converter placements. In Proceedings of the Genetic and Evolutionary Computation Conference, Kyoto, Japan, 15–19 July 2018,

ACM: New York, NY, USA: 2018; pp. 1318–1325.

17. Neshat, M.; Alexander, B.; Sergiienko, N.Y.; Wagner, M. Optimisation of Large Wave Farms Using a Multi-Strategy Evolutionary

Framework. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO’20, Cancun, Mexico, 8–12

July 2020;

Association for Computing Machinery: New York, NY, USA, 2020; pp. 1150–1158.

18. Giassi, M.; Castellucci, V.; Göteman, M. Economical layout optimization of wave energy parks clustered in electrical subsystems.

Appl. Ocean Res. 2020, 101, 102274. [CrossRef]

19. Bouali, B.; Larbi, S. Contribution to the geometry optimization of an oscillating water column wave energy converter. Energy

Procedia 2013, 36, 565–573. [CrossRef]

20. Kramer, M.V.; Frigaard, P. Efficient wave energy amplification with wave reflectors. In Proceedings of the Twelfth International

Offshore and Polar Engineering Conference, Kitakyushu, Japan, 26–31 May 2002.

21. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]

22. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]

23. Mirjalili, S. Moth–Flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.

[CrossRef]

24. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [CrossRef]

25. Hansen, N.; Müller, S.D.; Koumoutsakos, P. Reducing the time complexity of the derandomized evolution strategy with

covariance matrix adaptation (CMA-ES). Evol. Comput. 2003, 11, 1–18. [CrossRef] [PubMed]

26. Vantorre, M.; Banasiak, R.; Verhoeven, R. Modelling of hydraulic performance and wave energy extraction by a point absorber in

heave. Appl. Ocean Res. 2004, 26, 61–72. [CrossRef]

27. Goggins, J.; Finnegan, W. Shape optimisation of floating wave energy converters for a specified wave energy spectrum. Renew.

Energy 2014, 71, 208–220. [CrossRef]

28. Hager, R.; Fernandez, N.; Teng, M.H. Experimental study seeking optimal geometry of a heaving body for improved power

absorption efficiency. In Proceedings of the Twenty-second International Offshore and Polar Engineering Conference, International

Society of Offshore and Polar Engineers, Rhodes, Greece, 17–22 June 2012.

29. McCabe, A. Constrained optimization of the shape of a wave energy collector by genetic algorithm. Renew. Energy 2013, 51, 274–284.

[CrossRef]

30. Neshat, M.; Sergiienko, N.Y.; Amini, E.; Majidi Nezhad, M.; Astiaso Garcia, D.; Alexander, B.; Wagner, M. A New Bi-Level

Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island,

Mediterranean Sea. Energies 2020, 13, 5498. [CrossRef]

31. Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Reynolds, R.G. An ensemble sinusoidal parameter adaptation incorporated with

L-SHADE for solving CEC2014 benchmark problems. In Proceedings of the 2016 IEEE congress on evolutionary computation

(CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 2958–2965.

32. Iuppa, C.; Cavallaro, L.; Vicinanza, D.; Foti, E. Investigation of suitable sites for Wave Energy Converters around Sicily (Italy).

Ocean Sci. Discuss. 2015, 12, 543–557. [CrossRef]

33. Fairley, I.; Lewis, M.; Robertson, B.; Hemer, M.; Masters, I.; Horrillo-Caraballo, J.; Karunarathna, H.; Reeve, D.E. A classification

system for global wave energy resources based on multivariate clustering. Appl. Energy 2020, 262, 114515. [CrossRef]

34. Lavelle, J.; Kofoed, J. Representative Spectra of the Wave Resource from Real Sea Wave Measurements. In Proceedings of the

European Wave and Tidal Energy Conference (EWTEC 2013), Aalborg, Denmark, 2–5 September 2013.

35. Silva, L.; Sergiienko, N.; Pesce, C.; Ding, B.; Cazzolato, B.; Morishita, H. Stochastic analysis of nonlinear wave energy converters

via statistical linearization. Appl. Ocean Res. 2020, 95, 102023. [CrossRef]

36. Scruggs, J.; Lattanzio, S.; Taflanidis, A.; Cassidy, I. Optimal causal control of a wave energy converter in a random sea. Appl.

Ocean Res. 2013, 42, 1–15. [CrossRef]

37. Jiang, S.C.; Gou, Y.; Teng, B.; Ning, D.Z. Analytical solution of a wave diffraction problem on a submerged cylinder. J. Eng. Mech.

2014, 140, 225–232. [CrossRef]

38. Jiang, S.C.; Gou, Y.; Teng, B. Water wave radiation problem by a submerged cylinder. J. Eng. Mech. 2014, 140, 6014003. [CrossRef]

http://dx.doi.org/10.1109/TSTE.2017.2692647
http://dx.doi.org/10.1016/j.oceaneng.2018.05.071
http://dx.doi.org/10.3390/en11123522
http://dx.doi.org/10.1016/j.apor.2020.102274
http://dx.doi.org/10.1016/j.egypro.2013.07.065
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1162/106365603321828970
http://www.ncbi.nlm.nih.gov/pubmed/12804094
http://dx.doi.org/10.1016/j.apor.2004.08.002
http://dx.doi.org/10.1016/j.renene.2014.05.022
http://dx.doi.org/10.1016/j.renene.2012.09.054
http://dx.doi.org/10.3390/en13205498
http://dx.doi.org/10.5194/os-11-543-2015
http://dx.doi.org/10.1016/j.apenergy.2020.114515
http://dx.doi.org/10.1016/j.apor.2019.102023
http://dx.doi.org/10.1016/j.apor.2013.03.004
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000637
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000723


Energies 2021, 14, 3737 17 of 17

39. The Specialist Committee on Waves. Final Report and Recommendations to the 23rd ITTC. In Proceedings of the 23rd

International Towing Tank Conference, Venice, Italy, 8–14 September 2002; Volume II, pp. 505–736.

40. Hansen, N. The CMA evolution strategy: A comparing review. Towards a New Evolutionary Computation; Springer: New York, NY,

USA, 2006; pp. 75–102.

41. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on

Micro Machine and Human Science, MHS’95, Nagoya, Japan, 4–6 October 1995; pp. 39–43.

42. Alzaqebah, M.; Alrefai, N.; Ahmed, E.A.; Jawarneh, S.; Alsmadi, M.K. Neighborhood search methods with Moth Optimization

algorithm as a wrapper method for feature selection problems. Int. J. Electr. Comput. Eng. 2020, 10, 3672. [CrossRef]

43. Fakhouri, S.N.; Hudaib, A.; Fakhouri, H.N. Enhanced optimizer algorithm and its application to software testing. J. Exp. Theor.

Artif. Intell. 2020, 32, 885–907. [CrossRef]

44. Mehne, S.H.H.; Mirjalili, S. Moth–Flame optimization algorithm: Theory, literature review, and application in optimal nonlinear

feedback control design. Nat. Inspired Optim. 2020, 811, 143–166.

45. Ghobaei-Arani, M.; Souri, A.; Safara, F.; Norouzi, M. An efficient task scheduling approach using Moth–Flame optimization

algorithm for cyber-physical system applications in fog computing. Trans. Emerg. Telecommun. Technol. 2020, 31, e3770. [CrossRef]

http://dx.doi.org/10.11591/ijece.v10i4.pp3672-3684
http://dx.doi.org/10.1080/0952813X.2019.1694591
http://dx.doi.org/10.1002/ett.3770

	Introduction
	Related Works
	Modelling
	Wave Energy Converter
	Site Location and Wave Resource
	Equations of Motion

	Optimisation Setup
	Bio-Inspired Optimisation Algorithms
	Improved Moth–Flame Optimisation (IMFO)
	Diversification Strategy

	Results and Discussions
	Conclusions
	References

