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Species distribution models (SDMs) are important tools to explore the effects of future global changes in biodiversity. Previous studies show that

variability is introduced into projected distributions through alternative datasets andmodelling procedures. However, a multi-model approach to

assess biogeographic shifts at the global scale is still rarely applied, particularly in the marine environment. Here, we apply three commonly used

SDMs (AquaMaps, Maxent, and the Dynamic Bioclimate EnvelopeModel) to assess the global patterns of change in species richness, invasion, and

extinction intensity in theworld oceans.Wemake species-specific projections of distribution shift using each SDM, subsequently aggregating them

to calculate indices of change across a set of 802 species of exploitedmarine fish and invertebrates. Results indicate an average poleward latitudinal

shift across species and SDMs at a rate of 15.5 and 25.6 km decade21 for a low and high emissions climate change scenario, respectively. Predicted

distribution shifts resulted in hotspots of local invasion intensity in high latitude regions, while local extinctions were concentrated near the

equator. Specifically, between 108N and 108S, we predicted that, on average, 6.5 species would become locally extinct per 0.58 latitude under

the climate change emissions scenario Representative Concentration Pathway 8.5. Average invasions were predicted to be 2.0 species per 0.58 lati-

tude in the Arctic Ocean and 1.5 species per 0.58 latitude in the Southern Ocean. These averaged global hotspots of invasion and local extinction

intensity are robust to the different SDM used and coincide with high levels of agreement.

Keywords: climate change, hotspots, marine biodiversity, multi-model approach, species distribution modelling.

Introduction
The latest assessment by the Intergovernmental Panel on Climate

Change projects sea surface temperature (SST) to warm from 18C

(Representative Concentration Pathway, or RCP 2.6) to more than

38C (RCP 8.5) by 2081–2100, relative to 1986–2005 (IPCC,

2013). Although ocean warming is predicted to be the greatest in

the upper 700 m (IPCC, 2013), mixing and advection processes

will gradually transfer the additional heat to deeper waters, with

observations since 1961 showing average temperature to be increas-

ing toadepthof3000 m(Levitus et al., 2000).As ectothermicmarine

species rely on a characteristic temperature window within their

natural environment (Portner, 2001), there is increasing concern

for species’ ability to survive long-termchanges in themean climatic

conditions, as well as increased climatic variability, acidification,

and expansion of oxygen minimum zones (Orr et al., 2005;

Fabry et al., 2008; Cheung et al., 2011). Observations and theory

have indicated that marine fish and invertebrates frequently

undergo shifts in distribution in response to changing environmen-

tal factors, in directions that are most commonly towards higher

latitudes (Parmesan and Yohe, 2003; Perry et al., 2005; Hiddink

and ter Hofstede, 2008; Doney et al., 2012; Poloczanska et al.,

2013), deeper waters (Dulvy et al., 2008), and in general, following

temperature velocity (Pinsky et al., 2013). These responses to

ocean–atmospheric changes have been projected to lead to altered

patterns of species richness (Cheung et al., 2009), changes in com-

munity structure (MacNeil et al., 2010), ecosystem function

(Petchey et al., 1999), and consequential changes in marine goods

and services (Cheung and Sumaila, 2008; Sumaila et al., 2011;

Madin et al., 2012). In the marine environment, patterns of

species richness are strongly related to environmental factors such
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as temperature and nitrate concentration (Macpherson, 2002). It is

therefore likely that the intensity of climate change impacts will vary

geographically according to changes inkeyhabitat types and the sen-

sitivity of species inhabiting them (Roessig et al., 2004; Harley et al.,

2006; Munday et al., 2008; Cheung et al., 2009).

Species distributionmodels (SDMs) have beenwidely applied to

evaluate the likely responses of species to climate change, and assess

the resulting impacts on biodiversity or ecosystem services in both

the terrestrial (Polce et al., 2013; Warren et al., 2013) and marine

environments (Cheung et al., 2010). SDMs combine data indicating

the current occurrence of a species with environmental parameters

to form a bioclimatic envelope for that species. The bioclimatic

envelope may thus be defined as the set of physical and biological

conditions suitable for a given species (Hutchinson, 1957).

Projecting this envelope under scenarios of climate change subse-

quently allows its potential shift in distribution to be estimated.

However, alternative SDMs and input data frequently lead to vari-

ability in projections (Warren et al., 2013; Jones et al., 2013a), and

the need to explicitly consider the inherent uncertainties and

assumptions within the modelling procedure is frequently high-

lighted (Brander et al., 2013; Jones et al., 2013a). Although variation

attributable to alternative SDMs has been found to be a large source

of uncertainty in estimating species’ range shifts under climate

change (Jones et al., 2013a, b), few studies have attempted to incorp-

orate this uncertainty into model evaluations and outcomes, and

none has done so at a global scale for a large number of species.

Here, we apply SDMs to project the future distributions and

latitudinal shifts of a set of 802 marine fish and invertebrate

species under scenarios of climate change. This set comprises

species exploited by fisheries, which generally include those

species that aremore abundant.We thereby evaluate global patterns

of local extinction and invasion, and identify areas where climate

change may thus have the greatest impact on biodiversity and com-

munity structure. We use the term “local extinction” to refer to a

species ceasing to exist in a particular location, despite existing else-

where (Townsend Peterson et al., 2002; Dulvy et al., 2003; Cheung

et al., 2009), while invasion indicates the expansion of a species

into an area not previously occupied by it (Rahel and Olden,

2008; Cheung et al., 2009). To evaluate and incorporate the uncer-

tainty attributable to alternative SDM procedures, we apply three

models that are among the most commonly applied SDMs in the

marine environment and were designed to cope with issues of

data quality and quantity. These are Maxent (Phillips et al., 2004;

Phillips, 2008), AquaMaps (Kaschner et al., 2006, 2011), and the

Dynamic Bioclimate Envelope Model (Cheung et al., 2011). We

examinewhether projections frommultiple SDMswill result in esti-

mates of shifts in the distribution ofmarine biodiversity that are dif-

ferent from previous projections using a single model only. In

particular,wehypothesize that local extinctionswill be concentrated

in lower, equatorial latitudes, while invasions are more common

near the poles (Cheung et al., 2009).Moreover, using amulti-model

approach will highlight where predictions are most robust to varia-

tions in SDM (Jones et al., 2013b).

Material and methods
Modelling approaches

We applied the three SDMs, Maxent, AquaMaps, and the Dynamic

Bioclimate EnvelopeModel (DBEM), to predict the distributions of

a set of marine fish and invertebrates at a global scale. These SDMs

have previously been applied and tested at a regional scale (Jones

et al., 2012, 2013a) and have been shown to be suited to modelling

the distribution of marine species, for which data and knowledge

are frequently scarce (Jones et al., 2012). AquaMaps and Maxent

use generative statistical procedures to determine species’ environ-

mental envelopes from species occurrence data and a suite of envir-

onmental variables. Species occurrence data are represented by

presence data only, which is considered more appropriate when

absence data are likely to be inaccurate. Although absence data are

occasionally available for marine species, they are not available for

many of the species modelled here. The two models, contrasting

each other in the algorithms used (Jones et al., 2012), were

applied to predict the “current” distributions of the set of species

using 30-year averaged environmental data centred on 1985

(1970–1999). The third model, the DBEM (Cheung et al., 2011),

combines statistical and mechanistic approaches in predicting

species’ distributions. First, a species’ current distribution is pre-

dicted using the Sea Around Us Project model (Close et al., 2006),

thereby restricting a species’ distribution using known parameters,

geographic limits, or habitat preferences (“filters”). Filters were

applied for FAO area, habitat, latitudinal limits, and depth. The

DBEM then uses the predicted current distribution to define a

species’ bioclimatic envelope by its “preference profile” (the relative

suitability of difference environmental values) for each environ-

mental variable, again using environmental data averaged between

1970 and 1999. Detailed descriptions of the three SDMs are pro-

vided in the Supplementary data and publications indicated.

Having trained the three models on current environmental

data to calculate the environmental envelope for each species, as

described above and in greater detail in the Supplementary data,

environmental envelopeswereprojectedunderclimate change scen-

arios to predict annual distributions up to 2059. Projections were

then used to calculate average estimates of change, as described

below. Seasonal data (April–February and October–March) were

used to model both summer and winter distributions for pelagic

species, respectively, these then being averaged to assess annual

patterns of distribution shift, consistent with demersal species.

Species’ occurrence data

Datawere obtained for exploited fish and invertebrates in the world

oceans. Presence-only species occurrence data were obtained from

the Ocean Biogeographic System (OBIS, http://www.iobis.org/),
accessed in 2013. Occurrence records were spatially aggregated on

a 0.58 latitude × 0.58 longitude grid and filtered to omit points oc-

curring innon-verifiedFAOareasandoutside validateddepth limits

using FishBase (Froese and Pauly, 2011). Species data were cleaned

as described in the Supplementary data, and species with fewer than

ten occurrence records were discarded, resulting in a set of 802

species.

Projecting distribution shifts under climate change

Projections of oceanographic variables from the Geophysical Fluid

Dynamics Laboratory’s Earth System Model (version 2.1, GFDL

ESM2.1;Dunne et al., 2010)were applied toproject species distribu-

tions using the three SDMs. Oceanographic variables for predicting

species distributions using Maxent and AquaMaps were bathym-

etry; sea surface temperature (SST); seabed temperature (SBT);

salinity; ice; primary productivity; and distance to coast. In add-

ition, the DBEM uses O2 concentration to simulate changes in

growth and body weight as described in the Supplementary data.

The original data were interpolated and regridded onto 0.5o

latitude × 0.5o longitude resolution using the nearest neighbour
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method. Two scenarios used in the 5th Assessment Report of IPCC

were used: RCP 2.6 (van Vuuren et al., 2006, 2007) and RCP 8.5

(Riahi et al., 2007). RCP 2.6 is characterized by a peak in greenhouse

gases inmid-20th century, before adecline that results in a reduction

in GHG levels over time (van Vuuren et al., 2007). Conversely, RCP

8.5 is characterized by increasing emissions over time, leading to

high GHG concentrations by the end of the century (Riahi et al.,

2007). A threshold value was used to exclude low values of relative

habitat suitability in each prediction, with values lower than the

threshold being set to 0. The threshold applied was that of the

minimum relative habitat suitability value predicted across the set

of species occurrence points, for each species. The effect of applying

a threshold on results obtained is explored below.

Modelswere previously tested andvalidatedusing the area under

the curve of the receiver operating characteristic plot test statistic, as

well as the Point Biserial Coefficient (Zheng andAgresti, 2000; Jones

et al., 2012). However, as this only allows evaluation of a model’s

ability to portray a species’ distribution in the current period, hind-

cast environmental and oceanographic data were obtained using a

historical (1959–2004) simulation of ocean conditions using the

GFDL ESM2.1 forced with re-analysis data (hindcast data). The

three SDMs were trained on 30-year averaged data centred on

1985 and projected using annual environmental data from years

1982 to 2006. Observations were obtained for a set of species in

the Bering Sea from Mueter and Litzow (2008) and distribution

shifts were compared at the community level. GFDL hindcast data

for SSTand ice concentration were further compared with observa-

tion data obtained from theMETOffice UKHadley Centre (Rayner

et al., 2003) and the variation between anomalies examined to assess

the accuracy of these modelled data.

Latitudinal shifts

Latitudinal centroids were calculated for each species in each year

using Equation (1; Cheung et al., 2009):

C =

∑n
i=1 Lati × Abdi∑n

i=1 Abdi
, (1)

where Lati is the latitude of the centre of each 0.58 lat × 0.58 long

spatial cell, Abd its predicted relative environmental suitability,

and n the total number of cells (Cheung et al., 2009). The annual

latitudinal shift for each species was calculated as the difference

between latitudinal centroids (Dx, calculated in km) in consecutive

years using Equation (2; Cheung et al., 2009):

Dx = (Cm − Cn) ×
p

180
× r, (2)

where r ¼ 6378.2 km, the approximate radius of the earth, and Cm

and Cn are the latitudinal centroids in years m and n. Estimates of

annual latitudinal shift for every year between 1970 and 2060 were

used to calculate the average decadal shift per species.

Changes in species richness

We investigated likely impacts of climate change on potential global

patterns of biodiversity. The latitudinal trend in species richness is

well established in both terrestrial and marine environments

(Macpherson, 2002). A change in this pattern resulting from

species-specific shifts in distribution may have implications for

species interactions as well as affecting the availability of commer-

cially targeted species to fisheries. First, we calculated species

richness (number of occurring species) within each 0.58 lat × 0.58

long grid cell by overlaying global distribution maps of each of the

802 species. Thiswasdone for twoperiods, using averagedprojected

distributions for each species: 1991–2010 (“current”, “2000”) and

2040–2059 (“future”, “2050”), and the latitudinal averageswere cal-

culated for each SDM for RCP 2.6 and RCP 8.5 emissions scenario.

Second, we explored the changing pattern of species richness in

terms of the frequency of local extinctions and invasions in each 0.58

lat × 0.58 long grid cell. Species occurrence data available for the

marine environment are biased towards temperate regions in the

Northern hemisphere as well as shelf seas, coastal and surface

waters (Mora et al., 2008). As this would have resulted in species dis-

tribution maps also being unevenly distributed, the number of

species invading or going locally extinct in each cell was standar-

dized, giving the invasion intensity (I) [Equation (3)] and local

extinction intensity (E) [Equation (4)], thereby expressing values

as a percentage of the number of species initially present in each

cell (Cheung et al., 2009).

Ii,y =
nIi,y

ni + 1
. (3)

Ei,y =
nEi,y

ni + 1
. (4)

Where n is the species richness in the current period (2001–

2005) and nIi,y and nEi,y are the number of species invading and

going locally extinct in cell i and year y, respectively. Resulting

data were averaged latitudinally to explore the impact of any pro-

jected changes in species richness, invasion, and local extinction

on the global latitudinal pattern of marine biodiversity.

Projections from the three SDMs were then combined to depict

the locations of hotspots of agreement between different model

outputs. First, changes in species richness, invasion, and local

extinction intensity were averaged across modelling procedures.

Then, the extent of agreement (Jones et al., 2013b) between

models for a particular level of invasion or local extinction intensity

was calculated. Areas with good agreement between modelling pro-

cedureswere located in the followingway. First of all, specific levels of

local extinction and invasion intensity were chosen according to the

distribution of intensity values predicted from each model. They

were (i) 1%, (ii) 20%, and (iii) 40% for invasion intensity and

(i) 1%, (ii) 20%, and (iii) 60% for extinction intensity. We then

assessed how the models agreed in predicting invasion or local ex-

tinction at or above a particular intensity level. Predictions of local

extinction or invasion intensity were then converted into binary

maps, allocating values at or above a particular threshold to 1 and

values below to 0 in each 0.58 lat. × 0.58 long grid cell. To examine

where hotspots of different level of biodiversity impactsmight coin-

cide with areas of maximum agreement across models, the three

binary predictions were then summed to give an index of agreement

from 0 to 3. Thus, while 0 indicates that no model predicts above a

specified percentage of local extinction or invasion, a value of 3 indi-

catesmaximumagreement at or above the specified level of biodiver-

sity impact. Furthermore,we assessed the level of agreement between

models in predicting invasion and location extinction in species’

most suitable habitats. To do this, binary maps were calculated

after applying a 0.7 percentile threshold to restrict each species’

distribution using a high threshold of potential occurrence. This
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threshold was chosen as one of a set of thresholds applied in a sensi-

tivity analysis (outlined below).

Sensitivity analysis

The sensitivity of the projected species’ distributions to restriction

using a minimum presence threshold was examined. As there is

currently no consensus on the most suitable method for applying

thresholds (Nenzén and Araújo, 2011), to test the effect of this pro-

cedure on results obtained and conclusions drawn, a set of contrast-

ing thresholds was selected and results from each compared (Jones

et al., 2012).Theuseof increasingly larger thresholdvalues restricted

projected occurrence to areas of increasing relative habitat suitabil-

ity. The extent to which results are robust to threshold setting was

thus assessed by comparing outputs obtained using the following

set of threshold cut-offs: (i) theminimumrelative habitat suitability

value at a species occurrence datapoint (minimum presence point

threshold), and the fixed threshold at the (ii) 0.1, (iii) 0.5, and

(iv) 0.7 percentiles for each prediction. Predictive values of relative

habitat suitability below the threshold value obtained for each

species were set to 0.

Results
Applying the three models to simulate historical (1959–2004)

changes in species distributions in the Bering Sea allowed projected

model results to be compared with observations of species’ range

shift at a community level (Supplementary Figure S1). Annual

changes in modelled hindcast climate data are shown to compare

well with observed data (Supplementary Figure S2). However, all

three SDMs have a tendency to overestimate poleward latitudinal

shifts at a community level, in particular for the upper extremes of

the projections, where species are predicted as shifting the furthest.

This is highlightedby the differences inprojecteddecadal latitudinal

shifts between modelled and observational data at a community

level (Supplementary FigureS1).Maxent (difference at:median lati-

tudinal shift ¼ 4.2 km decade21, at 25th percentile ¼ 3.0 km

decade21, at 75th percentile ¼ 8.0 km decade21, n ¼ 20) and the

DBEM (differences at median latitudinal shift ¼ 4.1 km

decade21, at 25th percentile ¼ 3.1 km decade21, at 75th

percentile ¼ 8.5 km decade21, n ¼ 20) are shown to simulate the

community level response more accurately than AquaMaps (differ-

ences at median latitudinal shift ¼ 33.3 km decade21, at 25th

percentile ¼ 23.1 km decade21, at 75th percentile ¼ 36.7 km

decade21, n ¼ 20).

Climate-induced range shifts

Applying themulti-model procedure to a set of 802 globally distrib-

utedmarine species predicted that 93%of species would showpole-

ward shifts in latitudinal centroid between 2000 and 2059 under a

low emissions climate change scenario, and 97%under a high emis-

sions climate change scenario.Overall, themedian rate of latitudinal

poleward centroid shift was predicted at 15.5 km decade21 under

RCP 2.6, with a minimum and maximum range of 292 to

286 kmdecade21 (Figure 1a). Projected shifts increased significant-

ly under RCP 8.5, with a median of 25.6 km decade21, ranging

between 275 and 282 km decade21 (paired Wilcoxon’s test, p,

0.05, using species within SDM as replicates). The differences in

shifts betweenpelagic and demersal species were found to be signifi-

cant when modelled using the DBEM or AquaMaps models and

environmental data representing RCP 2.6 (Figure 1b; two-sample

Wilcoxon’s test, p , 0.05, using species as replicates). However,

except DBEM and AquaMaps modelling pelagic species under

RCP 2.6, the differences between species’ latitudinal shifts predicted

using different SDMs were significantly different (paired

Wilcoxon’s test, p , 0.05, n ¼ 802 spp.).

Change in species richness

The latitudinal pattern of species richness for the set of speciesmod-

elled here in the current period is shown in Figure 2. Projecting

species’ distributions under climate change predicts alteredpatterns

of global species richness by 2050. High intensities of species

invasions are projected to occur in higher latitude regions, such as

the Arctic Ocean, South Pacific, and South Atlantic Oceans

Figure 1. Projected changes in latitudinal centroid in kilometre per decade (averaged between 1970 and 2060) (a) for each RCP scenario across all
species and SDM models and (b) for demersal and pelagic species for each SDM model and RCP scenario. The thick horizontal lines represent
median values, while lower andupper boundaries of the box represent the upper and lower quartiles of the data, and thewhiskers themost extreme
data points no greater than 1.5 times the inter-quartile range from the box. Points more extreme than this range are represented as open circles.
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Figure 2. Species richness averaged across SDMs for the current period (1991–2010).

Figure 3. Latitudinal average of invasion and local extinction intensities per 0.58 latitude between 2000 and 2050 under climate change scenarios
(a) RCP 2.6. and (b) RCP 8.5. The shaded area represents confidence intervals at 1 standard deviation (s.d.).
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(Figure 3).While global average latitudinal invasion intensity is pre-

dicted to be 6% of the initial species richness for RCP 2.6, this

increases to 15% at latitudes .608 north, and 10% between 40

and 608S (the Southern Ocean), but decreases to only 2% in equa-

torial regions (10–108N). Under the high emissions scenario, inva-

sion intensity remains low in the Equatorial regions (at 8%) but

increases to 26% in the Arctic Ocean (.608N).

Contrasting the latitudinal pattern of invasion intensity, hot-

spots of local extinction intensity are concentrated in lower latitude

regions around the equator. Local extinction intensitiesmeasure 8%

between 10 and 108S compared with 2% globally, with estimates in-

creasing to 12 and 4%, respectively, under RCP 8.5. Although the

magnitudes of species invasion and local extinction intensities are

higher inRCP8.5 than those inRCP2.6, the patterns of species inva-

sions and local extinctions are similar between the two scenarios.

The variation in invasion intensity is also highest in the Southern

Ocean in both scenarios, highlighting relatively higher uncertainty

of the projections in this region.

Presenting predicted changes as the total numbers of species in-

vading or going locally extinct per degree latitude shows that, while

species invasions continue to be more common at the poles, there

are regionally fewer species invading than those going locally

extinct in equatorial regions (Figure 4). Specifically, in tropical

regions between 108N and 108S, our study predicted an average of

6.5 species becoming locally extinct per 0.58 latitude compared

with 1.4 species per 0.58 latitude globally under RCP 8.5. Average

invasions were predicted to be 2.0 species per 0.58 latitude in the

Arctic Ocean, 1.5 species per 0.58 latitude in the Southern Ocean,

and 1.3 species per 0.58 latitude globally.

The degree of geographic variation in projected species local

extinction varies between SDM (Supplementary Figure S3). For

example, total numbers of projected local extinction by latitude

are most concentrated in the lower latitudes using the DBEM (an

average of nine species per 0.58 latitude at 108N–08S compared

with one averaged globally), whereas Maxent predicts the most

even distribution of local extinctions (average of three species per

degree of latitude at 108N–108S compared with one averaged

globally).

Model agreement

Predicted local extinction hotspots with high agreement (i.e. all

three models) between SDMs are concentrated in tropical oceans.

Under the high emissions scenario, areas that are predicted to

experience ≥20% local extinction using all three distribution

models are relatively rare and mostly located in the tropical Pacific

Ocean (Figure 5a). When agreement between two or more SDMs

(instead of only three) was considered, the hotspots of ≥20%

local extinction spread throughout the tropical regions on the

central and eastern Pacific, extended towards Malaysia and into

the central Indian Ocean and the Gulf of Guinea. When a more

restricted threshold for species occurrence was applied (occurrence

of the species was includedwhen habitat suitability values≥0.7 per-

centile for each species), the areas of high agreement of ≥20% local

extinction are more extensive, in particular expanding into the

equatorial regions of major oceans, including the central Indian

andAtlanticOceans and theEast Pacific (Supplementary FigureS4).

Conversely, high agreement inhotspots of≥30%invasion inten-

sity was projected to occur in the northern Barents Sea, Greenland

Sea, Bering Sea, and East Siberian Sea in the Arctic (Figure 5b).

When species invasions are restricted to the new occurrence of

species in the most suitable areas (habitat suitability ≥0.7), the

invasion hotspots in the Arctic Ocean generally move coastward,

in particular in the Barents and Greenland Seas (Supplementary

Figure S5). Although small, localized patches of invasion intensity

≥20% are predicted to occur in the Southern Ocean and North

Pacific, these areas are more extensive when assessing areas of

Figure 4. Latitudinal average of total number of species predicted to invade and go locally extinct per 0.58 latitude between 2000 and 2050 under
climate change scenarios (a) RCP 2.6. and (b) RCP 8.5. The shaded area represents confidence intervals at 1 standard deviation (s.d.).
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Figure 5. Hotspots of (a) local extinction and (b) invasion intensity of 20% of more, between 2000 and 2050 averaged across AquaMaps, Maxent,
and the DBEM under scenario RCP 8.5 and using the minimum presence point threshold, the minimum relative habitat suitability at a species
occurrence data-point. Shading shows areas of high (3 models) and moderate (2 models) agreement.
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moderate agreement (two or more models). Under the RCP 2.6

scenario, hotspots of agreement show similar patterns of distribu-

tion but are more localized (Figure 5b).

Sensitivity analysis

Projected patterns of species richness in 2000 and 2050 varied only

slightly with different habitat suitability thresholds (Supplementary

FigureS6),while the variationbetween richness calculatedusingdif-

ferent SDMs was greater using the fixed thresholds (0.1, 0.5, and

0.7). Restricting species distributions to only those most suitable

areas resulted in an overall decrease in richness across latitudes.

The general patterns of local extinction and invasion intensity

were not sensitive to the threshold applied, although themagnitude

of projected changes averaged for each 0.58 latitude, and their varia-

tions acrossSDMs increase asmore restrictive thresholds areapplied

(Supplementary Figure S7).

Discussion
This study shows a general signal of potential future climate change

impacts on biodiversity that is robust to characteristics of the mod-

elling procedures. Previous analyses using the same set of SDMs that

were applied here advocate the need for a multi-model approach,

thereby encompassing uncertainties due to differences in validated

modellingmethodologies andalgorithms (Jones et al., 2012, 2013a).

The multi-model approach allows us to assess the uncertainties

associated with the lack of knowledge surrounding many marine

organisms and their responses to change. Particularly, the skills of

different modelling approaches may vary between species and

regions. In our case study of historical changes in the Bering Sea,

the DBEM and Maxent are shown to be slightly more accurate in

simulating the community level response to climate change (mean

percentile differences ¼ 7.0 and 6.7, respectively). Such difference

between SDMs may be attributed to the ability of Maxent to

weight variables, while no weighting of variables was applied in

AquaMaps, or further variations in modelling parameterizations

and characteristics (Jones et al., 2012). This overestimation of

latitudinal shifts in the Bering Sea may cause AquaMaps to bias

the multi-model average. However, this study only allows compari-

son at a regional scale within a relativity small climatic gradient.

Undertaking similar assessments within tropical, temperate, and

polar regions would allow the capability of all models to project

range shifts to be more comprehensively assessed. Global scale

comparisons would also allow the overestimation of the highest

observed distribution shifts by all models to be more adequately

assessed. Furthermore, we do not know whether species at different

latitudes vary in their relative sensitivities to change in particular

climate variables, or whether the SDMs vary in their ability to

reflect this sensitivity. Until data can be obtained to undertake this

global scale assessment, using a set of SDMs enables us to bracket

uncertainties in exploring the response of marine organisms to

climate change at a global scale, reducing the potential bias from

applying a singlemodel. This is particularly important when apply-

ing a generalized approach to many species.

Latitudinal shifts

This study predicts that large numbers of commercially targeted

marinefishand invertebrateswill exhibitpoleward shifts indistribu-

tion, agreeingwith distribution shifts observed formarine species in

the last fewdecades (Stebbing et al., 2002;Macleod et al., 2005; Perry

et al., 2005; Simpson et al., 2011; Poloczanska et al., 2013). For

example, six species in the North Sea were found to exhibit

boundary shifts in relation to climate and time at a rate of 22 km

decade21 (Perry et al., 2005). Although this shift is similar to that

projected using a high emissions climate change scenario (RCP

8.5), this is consistent with the relatively shallow depth and thus

higher rates of warming in the North Sea relative to the global

average. There is variation, however, between rates of shift projected

here and those obtained from a meta-analysis of 1 735 marine

responses (Poloczanska et al., 2013), which found the leading, trail-

ing edge, and centre of marine species’ ranges to be shifting at a rate

of 30.6+ 5.2 km decade21. This higher rate of range shift is likely

due to the inclusion of shifts of range edge, as well as the set of

species examined. The species used in this study are predominantly

commercially exploited species. Because these are also, in general,

wide-ranging, extinctions are concentrated in the tropics, with

fewer local extinctions in sub-Arctic regions. This study supports

the higher rates of latitudinal shift in the marine environment

than on land that have been observed (Parmesan and Yohe, 2003)

and predicted elsewhere using a single SDM (Cheung et al., 2009),

likely due to higher velocities of climate change (Burrows et al.,

2011) and lower constraints on dispersal in the sea. However, it

should also be noted that, as mentioned above, comparing results

withobservations in theBering Sea indicated a slight overestimation

in projecting latitudinal shifts. While the extent of this difference

might vary with species and region, the uncertainties in projections

should be considered.

Changing patterns of species richness

Projected species’ distribution shifts will likely affect global latitu-

dinal patterns of biodiversity, with the greatest levels of change in

species richness predicted to be at the poles and tropics, which

will becomehotspotsof invasions and local extinctions, respectively.

This supports the hypothesis that the intensity of climate change

impacts will vary geographically, consistent with the distribution

of climate change impacts on land (Sala, 2000) and predictions of

faster rates of warming near the equator and poles than the global

average (IPCC, 2013). In addition, results are consistent with the

theory proposing that the response of biodiversity to changing en-

vironmental variables, such as temperature, will depend not only

on themagnitude of change but also on the physiological sensitivity

of organisms to change (Pörtner and Peck, 2010; Scott and

Johnston, 2012) and the position of that change within an organ-

ism’s characteristic tolerance limits. For example, species in tropical

and polar regions have narrower thermal tolerances and live closer

to their tolerance limits than those in temperate regions (Deutsch

et al., 2008). Furthermore, the strongest oceanwarmingsignal is pre-

dicted to be in subtropical and tropical regions, with SST data used

in this study projecting warming between 1951 and 2069 by 0.988C

in the Arctic Ocean (.608N), compared with a 2.088C increase

around the equator (108S–108N) and a 1.368C global average SST

increase, under RCP 8.5 (GFDL ESM 2.1). Therefore, in addition

to tropical species exhibiting high sensitivities to environmental

change, the high level of exposure to warming in these areas

increases their vulnerabilities and the likelihoodof high local extinc-

tion intensities in tropical regions. This overall vulnerability in the

tropics, and the relatively shallow depths of seas surrounding

Indonesia, explain the hotspot of extinction in this area.

Conversely, it has been suggested that species living in thermally

stable environments have reducedacclimatory ability (Portner et al.,

2000; Nguyen et al., 2011). In polar regions, for example, this might

be caused by cold-adaptation, which has led to fewer red blood cells,

oxygen-binding proteins (Nikinmaa, 2002), and enzymes that
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are particularly sensitive to temperature (Portner et al., 2000). In

addition to pronounced increases in surface waters near the

equator, future projections of ocean warming are characterized by

heat uptake in the deep Southern Ocean at the end of the century

(IPCC, 2013). This combined exposure and organism sensitivity

to exposure at their upper thermal limit likely explains the areas of

local extinction projected there, although the total numbers of

local extinctions are shown to be relatively small. For other polar

species, warming temperatures will reduce the likelihood that

organisms will be exposed to their lower thermal limits, therefore

allowing increases in both numbers and extent of populations pre-

viously at the edges of the lower thermal range. In addition, melting

sea ice will open up habitats in the high latitude reaches of their

ranges, leading to the projected increases in species richness pre-

dicted here, as indicated by the higher invasion intensity. The

greater prevalence of invasion in the Arctic than the Antarctic is

likely due to the greater rate of warming in this area (0.988C com-

pared with 0.728C increase in SST and 0.608C compared with

0.248C in SBT, respectively). Furthermore, the higher invasion in-

tensity in the Arctic Ocean may reflect the closer distance of the

Arctic to other land masses. For example, if a species is restricted

to coastal regions for feeding or spawning, dispersal towards the

Antarctic may be restricted, despite seemingly favourable habitat.

As an environmental layer indicating the presence of critical

habitat, such as shelf regions required for spawning, was not avail-

able, depth was here used as a proxy.

As estimates of invasion and local extinction intensity indicate

the percentage loss or gain in species per 0.58 latitude × 0.58 longi-

tude grid cell, the initial species richness in an area contributes to the

perceived relative levels of change and biodiversity impact. As the

species set assessed in this study was weighted to exploited species,

and data were more scarce in certain regions (such as the

Southern Ocean) than others (such as the Northeast Atlantic),

local invasions at the poles may appear relatively common simply

because fewer species are being projected there. For this reason,

total numbers of species invading and going extinct were also

assessed. However, a small number of species in regions such as

the SouthernOcean also attributes high levels of uncertainty to pro-

jecting general patterns of biodiversity change. For example, the

projected low levels of extinction might be misleading if resulting

from changes in a couple of key species. It would thus be beneficial

to extend this work as data become available, exploring how

warming Polar Waters might impact the distributions and persist-

ence of cold-adapted species.

Exploring how areas predicted to be hotspots of change in

species richness coincide with agreement between models allows

an assessment of how robust particular scenarios of change are

to aspects of the modelling procedure. This may be interpreted

as the risk posed by climate change to different geographic areas

(Jones et al., 2013b); those areas showing both relatively high

levels of extinction, for example, and agreement in a level of extinc-

tion or higher, may be described as being areas at high risk of

climate change impacts. The level at which agreement of change

is cut off (here 20%) may then be altered to further explore the

geographic localization of particular levels of local extinction,

or invasion, intensity. However, the analyses carried out here

aimed to make projections of future patterns of species richness,

local extinction, and invasion intensity. They were thus limited

in their scope to estimate factors such as when local extinction

might lead a particular species’ range to decrease below a

minimum viable size, or when a change in community structure

in a particular area might lead to loss of species or traits vital to

ecosystem function.

There are also limitations and uncertainties associated with the

approaches applied here that should be considered when extending

analyses and interpreting or applying model projections, for

example, to inform conservation priorities or management plans.

Variability and uncertainty will, for example, be introduced into

the modelling procedure through variations in the data used to

train and project a model as well as the SDM itself (Jones et al.,

2013a). Although the multi-model approach attempts to partly

assess structural uncertainty of the models and incorporate this

variability, input data may also affect model accuracy and inter-

pretation through the inherent assumptions of species distribution

modelling. For example, SDMs assume that species are in pseudo-

equilibrium with their environment, and that occurrence data

used represent the entire ecological niche of a species (Svenning

and Skov, 2004; Guisan and Thuiller, 2005). In reality, if these

data only reflect a subset of a species’ true niche space due to the

impact of, for example, adaptation, species interactions, and disper-

sal on a species’ distribution, both the estimated climatic envelope,

and theway that itmight be projected to estimate a potential current

or future distribution, may be inaccurate (Soberón, 2007;

Jiménez-Valverde et al., 2008; Warren, 2012). However, it has

been suggested that marine ectotherms conform more closely to

their thermal tolerance limits than terrestrial species and are more

likely to fulfil their potential latitudinal ranges (Sunday et al.,

2012). To overcome, as far as possible, the problem of temporally

changing realized climatic space and its implication for estimating

a species’ potential current and future distributions, all available

valid occurrence data on each species were included to obtain as

near as possible an estimate of a species’ absolute tolerance limits

and climatic envelope. Even if a species’ exact climatic niche is

known, however, further inaccuracies may be introduced into esti-

mates of species’ future potential distributions if biotic interactions,

which are not taken into account by the models, prevent a species

occupying otherwise suitable habitat (Araújo and Luoto, 2007).

As a recent study using the DBEM found projections of species dis-

tribution shifts changed little following inclusion of competitive

interactions (Fernandes et al., 2013), it may be the case that the

parameterizations of the model, such as the inclusion of natural

mortality, may already account for some of the effects of trophic

interactions. However, further work would benefit from exploring

predator–prey interactions, and how they might change or limit

responses to climate changeandprojected range shifts. Forcommer-

cially targeted marine species, realized responses to climate change

may further be influenced by the impacts of fisheries (Planque et al.,

2010). The interaction of fishing pressure, and its impacts on the

demographic structureof apopulation, and the integrityof breeding

grounds and habitat, with stock reactions to environmental change

may thus have implications for the accuracy of future distribution

predictions. For example, if north and south regions of the North

Sea are home to different abundances of particular commercial

species due to higher rates of fishing mortality in the south, rather

than a causal difference in habitat suitability, predictions based on

the assessment of habitat suitability may be incorrect, with conse-

quences for any management plans and conservation actions they

might inform (Dulvy et al., 2008). In addition, species in the

North Sea have been observed to be adapting to increasing tempera-

tures through a shift in depth (Dulvy et al., 2008). Depth and SBT

were here included as predictor variables, thereby accounting

for the influence of depth in determining habitat suitability.

Multi-model ensemble projections of climate change effects 749
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However, allowing species to adapt by shifting their distribution to

deeper, cooler waters and thereby potentially reducing predicted

latitudinal shifts in distribution would require data on projected

temperature changes throughout the water column, which is not

currently available over a global extent. Developments have been

made, however, in the three-dimensional modelling of marine

species’ distributions (Bentlage et al., 2013). Thus, although the

multi-model ensemble approach provides a way for broadly asses-

sing the impact of climate change on species for which knowledge

and data may be scarce, the challenge in their development would

seem to be the incorporation of the influence of changing climate

and the changing distributions and abundances of species with

which they interact. However, their improvement and continued

validation and assessment with observed data and knowledge of

species biology and ecology that might impact the realization of

predicted range shifts remain important.

There are also uncertainties in the climate data input into the

SDM procedure. Although the world’s continental shelf regions

and coastal waters account for most known marine biodiversity

(Mora et al., 2008), modelling continental shelf seas presents par-

ticular difficulties in climate modelling as the present generation

of climate models does not have sufficient resolution to resolve

the shelf topography and many of the processes that influence

primary production in the shelf sea ecosystem (such as run-off, sea-

sonal stratification, tides, and nutrient recycling; Ådlandsvik, 2008;

Holt et al., 2009). For example, Holt et al. (2010) used a regional

model to predict that the climate change effects on the Northwest

continental shelf would be very different from those in the open

ocean over the next 100 years (Holt et al., 2010).However, these pre-

dictions still contained unexplored uncertainty and differed from

those made using a regional climate model by Ådlandsvik (2008).

Exploring the sensitivity of projected changes in biodiversity in

coastal regions to downscaled data and regional climate models

may therefore be useful, although an ensemble of regional models

may be needed to enable a reliable assessment of the effects of

future climate change in shelf seas, and the uncertainties involved.

Although model outputs here reflect species-specific environ-

mental tolerance limits, and results are consistent with regional dif-

ferences in vulnerability due to alternative physiologies, differences

between species in traits that might impact their overall response to

climate change, or adaptability, havenot themselves been accounted

for. Species may, however, vary considerably in the extent to which

changes in their biophysical niche space impact their local, or

overall, extinction risk due to particular life history characteristics,

or traits (Foden et al., 2013; Garcia et al., 2014). For example, if a

species exhibits narrower thermal tolerances or has highly specific

habitat requirements at particular life cycle stages that have not

been accouted for in these modelling aproaches, the impact of

climate change on a particular species may be underestimated

(Petitgas et al., 2013). There may also be interactions between the

impact of fisheries on species’ traits and abundances and their

response to climate change. For example, both fisheries and

warming waters are thought to have caused the decline in sandeel

in UK waters (Pinnegar et al., 2012). Developments are also being

made in linking impacts from these two sources in species distribu-

tion modelling. However, given the lack of knowledge frequent for

marine species, this study provides a first step in indicating key

areas where further vulnerability assessment on a set of species,

for which there are sufficient data, would be beneficial. For

example, these might be in regions predicted to experience high

levels of extinction intensity, or those that show medium risk

from climate change, but which have high economic or social

dependence on fisheries. Future studies will also account for the un-

certainties associated with the projections of ocean conditions by

applying different Earth SystemModel outputs to the SDMs.

Conclusions
This study is thefirst to applyamulti-model SDMapproach toassess

the potential impact of climate change on marine biodiversity at a

global scale. Using generalized approaches to elucidate the averaged

signal of response in latitudinal patterns of species richness gave

average results consistent with previous observations and empirical

projections of a trend for poleward shifts in species’ distributions

and altered patterns of biodiversity under climate change.

Analyses presented here allow the identification of hotspots of bio-

diversity impacts, with hotspots of local extinction intensity occur-

ring mostly notably in the tropical Pacific ocean, and hotspots of

invasion occurring in Arctic regions such as the Barents Sea, East

Siberian Sea, and Greenland Sea. In addition, we indicate where

identified hotspots of change, and the extent of change, are robust

within the multi-model approach, coinciding with high levels of

agreement. This study therefore expands on previous global assess-

mentsof climate change impact byprovidingan initial framework to

incorporate particular aspects of projection uncertainty and depict

the risks to biodiversity of climate change in the oceans.

Supplementary data
Supplementary material is available at the ICESJMS online version

of the manuscript.
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