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ABSTRACT  

Southern African December-January-February (DJF) probabilistic rainfall forecast  

skill is assessed over a 22-year retro-active test period (1980/81 to 2001/02) by  

considering multi-model ensembles consisting of downscaled forecasts from  

three of the DEMETER models, the ECMWF, Météo-France and UKMO coupled  

ocean-atmosphere general circulation models. These models are initialized in  

such a way that DJF forecasts are produced at an approximate 1-month lead- 

time, i.e., forecasts made in early November. Multi-model forecasts are obtained  

by 1) downscaling each model’s 850 hPa geopotential height field forecast using  

canonical correlation analysis (CCA) and then simply averaging the rainfall  

forecasts, and 2) by combining the three models’ 850 hPa forecasts and then  

downscaling them using CCA. Downscaling is performed onto the 0.5°x0.5°  

resolution of the CRU rainfall data set south of 10° south over Africa. Forecast  

verification is performed using the relative operating characteristic (ROC) and the  

reliability diagram. The performance of the two multi-model combinations  

approaches are compared with the single model downscaled forecasts and also  

with each other. It is shown that the multi-model forecasts outperform the single  

model forecasts, that the two multi-model schemes produce about equally skilful  

forecasts, and that the forecasts perform better during El Niño and La Niña  

seasons than during neutral years.   
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1. Introduction  

  

The scientific basis for the existence of seasonal climate predictability originates  

from the observation that slowly evolving sea-surface temperature (SST)  

anomalies influence seasonal-mean weather conditions (Palmer and Anderson  

1994). Therefore, estimation of the evolution of SST anomalies, which are often  

relatively predictable, and subsequently employing them in atmospheric general  

circulation models (GCMs), potentially provides means of generating forecasts of  

seasonal-average weather (Graham et al. 2000). With the advent of fully coupled  

ocean-atmosphere models (Stockdale et al., 1998; Saha et al., 2006; Weisheimer  

et al. 2009), evidence that the ocean models participating in fully coupled GCMs  

can predict the evolution of SSTs to elevated levels of skill has been presented.  

This notion has been demonstrated conclusively through the DEMETER  

(Development of a European Multimodel Ensemble system for seasonal to  

interannual prediction) project (Palmer et al. 2004), and recently the usefulness  

of these forecasts over the mid-latitudes has been further demonstrated (Coelho  

et al. 2006; Frias et al. 2010). In theory coupled models should eventually  

outperform using GCMs as a second step in a 2-tiered system in which SSTs are  

first predicted since the former is able to describe the feedback between ocean  

and atmosphere while the latter assumes that the atmosphere responds to SST  

but does not in turn affect the oceans (Copsey et al., 2006; Troccoli et al., 2008).   
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Although GCMs, commonly configured with an effective resolution of 100-300  

km, have demonstrated skill at global or even continental scale, they are unable  

to represent local sub-grid features, subsequently overestimating rainfall over  

southern Africa (Joubert and Hewitson 1997; Mason and Joubert 1997). Also, the  

representation of rainfall at mid-to-high latitudes is complex and often not well  

estimated (Graham et al. 2000; Goddard and Mason 2002). Such systematic  

biases have created the need to downscale GCM simulations over southern  

Africa. Semi-empirical relationships exist between observed large-scale  

circulation and rainfall, and assuming that these relationships are valid under  

future climate conditions and also that the large-scale structure and variability is  

well characterized by GCMs, mathematical equations can be constructed to  

predict local precipitation from the forecast large-scale circulation (Landman and  

Goddard, 2002; Wilby and Wigley 1997). Empirical remapping of GCM fields to  

regional rainfall has been demonstrated successfully over southern Africa  

(Bartman et al. 2003; Landman and Goddard 2002, 2005; Landman et al. 2001;  

Shongwe et al., 2006).   

  

The chaotic inherent variability of the atmosphere requires seasonal climate  

simulations to be expressed probabilistically. Probabilistic forecasts are made  

possible through the proper use of GCM ensembles since ensemble forecasting  

is a feasible method to estimate the probability distribution of atmospheric states  

(Branković and Palmer 2000). In addition, errors in the initial conditions as well as  

deficiencies in the parameterizations and systematic or regime-dependent model  
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errors can be to a large part accounted for through ensemble forecasting (Evans  

et al. 2000). Moreover, there is inevitable growth in differences between forecasts  

started from very slightly different initial conditions suggesting that there is no  

single valid solution but rather a range of possible solutions (Tracton and Kalnay  

1993). Information contained in the distribution of the ensemble members can  

subsequently be used to represent forecast probabilities by calculating the  

percentage of ensemble members that fall within a particular category (e.g.  

below-normal, near-normal or above-normal). Similarly, forecast probabilities can  

be produced indicating the percentage of ensemble members in the upper or  

lower extremes, e.g., 15th percentiles (Mason et al. 1999).    

  

There are advantages in combining ensemble members of a number of GCMs  

into a multi-model ensemble since GCMs differ in their parameterizations and  

therefore differ in their performance under different conditions (Hagedorn et al.,  

2005). Using a suite of several GCMs not only increases the effective ensemble  

size; it also leads to probabilistic simulations that are skilful over a greater portion  

of the region and a greater portion of the time series. Multi-model ensembles are  

nearly always better than any of the individual models (Dirmeyer et al. 2003,  

Doblas-Reyes et al. 2000, 2005, Hagedorn et al., 2005; Krishnamurti et al. 2000).  

The benefits from combining ensembles are a result of the inclusion of  

complementary predictive information since the forecast scheme is able to  

extract useful information from the results of individual models from local regions  

where their skill is higher (Krishnamurti et al. 2000). In fact, the most striking  
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benefit obtained from multi-model ensembles is the skill-filtering property in  

regions or seasons when the performance of the individual models varies widely  

(Graham et al. 2000). Moreover, increased ensemble size leads to further  

benefits (Brown and Murphy 1996), but the multi-model approach is only  

beneficial if the individual models produce independent skilful information  

(Graham et al. 2000). A number of ensemble combining algorithms exists. The  

most simple of these is the unweighted combination of ensembles from different  

models (Hagedorn et al. 2005; Graham et al. 2000, Mason and Mimmack 2002;  

Peng et al. 2002; Tippet and Barnston 2008). The improvements of a multi-model  

over the individual ensemble systems are attributed to the collective information  

of all the models used in the mean of probabilities algorithm. However, the  

forecast quality of a simple multi-model ensemble is often difficult to improve on  

when the available sample size is relatively small (Doblas-Reyes et al. 2005).   

  

An association exists between South Africa’s summer seasonal rainfall and the  

equatorial Pacific Ocean. However, the association in the middle to late austral  

summer season is higher than earlier in the summer rainy season (e.g., Tyson  

and Preston-Whyte, 2000), and it is also non-linear (Fauchereau et al. 2008).  

Notwithstanding, in the mid-summer months South Africa tends to be  

anomalously dry during El Niño years and anomalously wet during La Niña years,  

although wet El Niño seasons and dry La Niña seasons are not uncommon.  

Indian and Atlantic Ocean SST also have a statistically detectable influence on  

South African rainfall variability (e.g., Mason, 1995; Reason et al., 2006).  
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Moreover, while the El Niño-Southern Oscillation (ENSO) has a control on rainfall  

variability over the southern African region, Indian Ocean SST anomalies,  

sometimes varying independently of ENSO, are important for the skilful  

simulation of southern African seasonal rainfall variability using atmospheric  

GCMs (e.g., Washington and Preston, 2006). Since ENSO is the dominant mode  

of seasonal and interannual climate variability globally, and since ENSO has a  

strong influence on southern African rainfall, it needs to be investigated to what  

extent ENSO influences coupled model performance over southern Africa.   

  

The paper consists of three parts: 1) single coupled model downscaled forecast  

performance during mid austral summer over southern Africa compared with that  

of multi-models, 2) the comparison between unweighted and weighted  

combination of forecasts, and 3) multi-model performance during ENSO and  

during neutral years. For the second part, the unweighted combination involves  

downscaling and correcting GCM output first before combining, while for the  

weighted combination weighting is done and then combined before downscaling  

and correcting.  
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2. Data, models and methods  

  

2.1. Rainfall data  

  

The season of interest is December-January-February (DJF) when southern  

Africa is being dominated by influences mainly from the tropics and so is a  

season of relatively high predictability and ideal for seasonal predictability studies  

over the region. The University of East Anglia Climatic Research Unit (CRU)  

global 0.5° x 0.5° monthly data, Version 2.1 (Mitchell and Jones, 2005) are used  

to construct DJF seasonal averaged rainfall totals for southern Africa south of 10°  

south for the period 1959/60 to 2001/02. This data set is used for both empirical  

downscaling and for forecast verification.   

  

2.2. Coupled general circulation models  

  

The atmosphere-ocean models used in this study are from the DEMETER project  

(Palmer et al., 2004) and in particular are the ECMWF, Météo-France and UKMO  

coupled models. These models were selected since they each have 43 years of  

available hindcast data, and the longer the record of archived model data the  

better the chance is to develop robust empirical downscaling equations.   

Hindcasts had been started from 1 November and nine ensemble members  

created. Seasonal means are used in the study.  
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2.3. Model output statistics  

  

Given the low spatial resolution of the coupled models (Palmer et al., 2004) there  

is a need to downscale the global model output to a higher resolution to satisfy  

end-user needs and to further improve on the forecasts (Landman and Goddard,  

2002) through the correction of systematic deficiencies in the global models  

(Tippet et al., 2005). Model output statistics (MOS; Wilks, 2006) equations are  

developed here because they can compensate for these errors in the model  

fields directly in the regression equations. The reason why these errors can be  

overcome is because MOS uses predictor values from the global models in both  

the development and forecast stages. Notwithstanding, the selection of the  

appropriate model field require careful consideration: Raw model forecast of  

rainfall that is a result of, for example, the interaction between atmospheric  

circulation and topography is poorly resolved, and may therefore not be a good  

predictor of rainfall observed at ground level. Rainfall fields, even when totalled  

over a season, are noisy, and normally contain structures on spatial scales well  

below those resolved by the models. However, variables such as large-scale  

circulation are more accurately simulated by models than rainfall and should  

therefore be used instead in a MOS system to predict seasonal rainfall totals  

(Landman and Goddard, 2002).   

  

The MOS equations are developed by using the canonical correlation analysis  

(CCA; Barnett and Preisendorfer, 1987) option of the Climate Predictability Tool  
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(CPT). This tool was developed at the International Research Institute for Climate  

and Society (IRI; http://iri.columbia.edu). The forecast fields from each GCM used  

in the MOS are restricted over a domain that covers an area between the  

Equator and 40°S, and Greenwich to 60°E. Empirical orthogonal function (EOF)  

analysis is performed on both the predictor (model forecast fields) and predictand  

sets (CRU data over southern Africa) prior to CCA, and the number of EOF and  

CCA modes to be retained in the CPT’s CCA procedure is determined using  

cross-validation skill sensitivity tests. Both the models’ ensemble mean rainfall  

and 850 hPa geopotential height fields were separately considered over the  

available 43-year period (1959/60 – 2001/02) to find out which of the two fields  

provide the best first estimate for the downscaled forecasts. A 5-year-out cross- 

validation design was selected and it was found that for both the ECMWF and  

UKMO models, the height field is the better option, but for the Météo-France  

model, rainfall was a slightly better performer. Notwithstanding, 850 hPa  

geopotential heights were selected for all three models for consistency and  

because of the potential problems mentioned above when rainfall as a  

downscaling predictor field is used. Considering other model fields such as  

moisture and geopotential heights at levels other than 850 hPa showed no further  

benefits over only using the 850 hPa geopotential fields as a single predictor field  

either.   
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2.4. Model combination  

  

A number of forecast combining algorithms exists, but only two are considered  

here. The first is the most simple of all combination schemes and involves  

unweighted averaging of the forecast probabilities (e.g., Hagedorn et al., 2005).  

For this simple combination approach, the 850 hPa height forecasts from the  

three coupled models are first separately downscaled to DJF rainfall at the 0.5° x  

0.5° CRU resolution and then averaged, and is referred to here as a combination  

using equal weights (MMeqw). The second approach allows the models to be  

weighted by combining the 850 hPa geopotential height forecasts fields from the  

models prior to EOF pre-filtering in the CCA process. Downscaling is then  

performed as before, but with combined forecast fields (MMcca) as opposed to  

individual model fields.   

  

2.5. Retro-active forecasts   

  

In order to minimize artificial inflation of forecast skill, the performance of the  

individual models and the two multi-model systems (MMeqw and MMcca) should  

be verified over a test period that is independent of the training period and should  

involve evaluation of predictions compared to their matching observations  

excluding any information following the forecast year. Such a system mimics a  

true operational forecasting environment where no prior knowledge of the coming  

season is available. The individual models and two multi-model systems are first  
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trained with information from 1959/60 and leading up to and including 1979/80.  

The seasonal rainfall of the next year (1980/81) is subsequently predicted using  

the trained models. The various MOS sets of equations are subsequently  

retrained using information leading up to and including 1980/81 to predict for  

1981/82 conditions. This procedure is continued until the 2001/02 DJF rainfall is  

predicted using MOS systems trained with data from 1959/60 to 2000/01,  

resulting in 22 years (1980/81 – 2001/02) of independent forecast data. In  

estimating the skill in predicting DJF rainfall over southern Africa, the observed  

and predicted fields are separated into three equi-probable categories based on  

the preceding years’ climatology defining above-normal, near-normal and below- 

normal seasonal rainfall totals.   

  

The distribution of individual ensemble members is intended to be able to  

indicate forecast uncertainty. However, only a finite ensemble is available (9  

members from each coupled model) suggesting that the forecast distribution may  

be poorly sampled – and so the uncertainty associated with the forecasts has to  

be estimated. Probabilistic MOS forecasts for each of the 22 retro-active years  

are obtained here from the error variance of the cross-validated predictions using  

the ensemble mean (Troccoli et al., 2008) for each of the various training periods.  

The errors in the predictions are assumed to be Gaussian. Cross-validation is  

performed using a (large) 5-year-out window, which means that 2 years on either  

side of the predicted year are omitted, in order to minimize the chance of  

obtaining biased results.  



 13 

  

This modelling study also focuses on one of the major sources of predictability  

over southern Africa, namely the El Niño – Southern Oscillation (ENSO)  

phenomenon, and how forcing from the equatorial Pacific Ocean influences  

predictability over the region. The El Niño, La Niña and neutral years considered  

are those listed by Coelho et al. (2006). Rainfall retro-active forecast skill over the  

subcontinent is then assessed during El Niño (1982/83, 1986/87, 1987/88,  

1990/91, 1991/92, 1992/93, 1994/95 and 1997/98 = 8 seasons), La Niña  

(1983/84, 1984/85, 1988/89, 1995/96, 1998/99, 1999/00 and 2000/01 = 7  

seasons) and neutral (1980/81, 1981/82, 1985/86, 1989/90, 1993/94, 1996/97  

and 2001/02 = 7 seasons) events.   

  

2.6. Estimating true forecast performance  

  

For the generation of verification data we adopt an approach that minimizes the  

inflation of forecast skill by testing the models in an environment that mimics that  

of an operational centre, i.e. a retro-active forecast setting (Wilks, 2006).  

However, owing to the limited archived model data set available the MOS  

equations used for the prediction of the first part of the verification set may not  

display a robust relationship between the predictor (850 hPa heights) and  

predictand (rainfall at the surface) throughout the retro-active process, but this  

problem should become less of an issue as the forecast process progresses  
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beyond about 30 years of training data. Notwithstanding, here we assume that  

the relationships remain robust, a notion that will be tested later on in the paper.   

  

Since seasonal climate is inherently probabilistic, seasonal forecasts should be  

judged probabilistically. The main attributes of interest for probabilistic forecasts  

are: 1) reliability (is the confidence communicated in the forecast appropriate and  

are there systematic biases in the forecast probabilities?), 2) resolution (is there  

any useable information in the forecast?), 3) discrimination (are the forecasts  

discernibly different given different outcomes?), and 4) sharpness (what is the  

confidence level that is communicated in the forecast?) (Troccoli et al., 2008;  

Wilks, 2006). The forecast verification measures are the reliability diagram  

(Hamill 1997; Wilks, 2006) and the relative operating characteristic (ROC; Mason  

and Graham, 1999; Wilks, 2006). A forecast system is deemed reliable if there is  

consistency between predicted probabilities of an event such as drought/floods  

(or below/above-normal rainfall in this paper) and the observed relative  

frequencies of drought/floods. Reliability diagrams will be used here to assess  

the reliability and confidence of the forecasts. ROC applied to probabilistic  

forecasts indicates whether the forecast probability was higher when an event  

such as drought occurred compared to when it did not occur, and therefore  

identifies whether a set of forecasts has the attribute of discrimination. Here the  

area underneath the ROC curve is used as a measure of discrimination in the  

prediction of below-normal and above-normal DJF rainfall totals.   

  



 15 

3. Results  

  

3.1. Deterministic assessment of forecasts  

  

Although the seasonal climate is inherently probabilistic and therefore seasonal  

forecasts globally are for the most part issued probabilistically, it is often  

informative to investigate deterministic forecast performance. Figure 1 shows  

area-averaged (Africa south of 10°S) deterministic cross-validated (5-year-out  

approach) multi-model DJF rainfall (mm) forecasts over the available 43-year  

period (1959/60 – 2001/02) compared with the observed. The cross-validation  

procedure is designed in such a way that the data is “wrapped” around in order to  

make a 5-year-out approach possible while at the same time producing cross- 

validated forecasts for the whole period. Forecasts for both MMcca and MMeqw  

are shown, and El Niño and La Niña seasons are respectively marked with “E”  

and “L”. The vertical line on the figure divides the time series into two parts: The  

initial training period for the creation of retro-active forecasts (1959/60 – 1979/80;  

21 years) and the retro-active test period (1980/81 – 2001/02; 22 years) for which  

probabilistic forecasts are generated. The Spearman’s correlation between the  

area-averaged 22-year forecasts and observations for MMcca and MMeqw are  

respectively 0.4783 and 0.4873, suggesting about equally skilful area-averaged  

deterministic forecasts from the two multi-model methods. The Spearman’s  

correlation is used here since the 1997/98 rainfall predictions are considered  

outliers (Figure 1). The four driest years during the 22-year test period (1982/83,  
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1986/87, 1991/92, 1994/95) are associated with El Niño seasons and the four  

wettest with La Niña seasons (1988/89, 1995/96, 1998/99, 1999/00). For the  

most part, the forecasts do not capture the size of the observed anomalies for  

these extreme seasons, but this is often found with linear regression-based  

downscaling techniques such as the one used here. Notwithstanding, no attempt  

was made here to inflate the forecasts since variance adjustment of forecasts are  

generally discouraged (Trocccoli et al., 2008).   

  

The length of the training period may have an effect on the robustness or stability  

of the MOS equations (Doblas-Reyes et al., 2005; Wilks, 2006). For stability it is  

understood that the fitted equations are also applicable to independent data.  

Since the initial training period (for making the 1980/81 rainfall forecasts) is only  

21 years long, investigation into the variation of forecast performance over the  

various training periods is warranted. Figure 2 shows area-averaged Spearman’s  

correlations (adjusted with the Fisher Z transformation (Wilks, 2006)) for various  

cross-validation training periods ranging from 12 years to 43 years, using MMcca,  

and using August-September-October averaged SSTs as predictor in a statistical  

model (CCA). The SST predictor field is between 170°E to 80°W and 20°N to  

20°S in order to capture central and eastern equatorial Pacific SST variability. A  

4th order polynomial is fitted to the averaged Spearman’s correlations and a  

gradual improvement in forecast skill can be seen towards a training set  

consisting of 32 years when MMcca is used, and throughout the whole period  

when using SSTs as predictor in the statistical model. A skill plateau could have  
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been attained with the MMcca were it not for the large errors associated with the  

rainfall prediction of the 1997/98 El Niño season and of the two preceding years.  

Thereafter a gradual decrease is seen until 43 years are included in the MOS  

training period. Using the DJF 850 hPa geopotential field predicted at the end of  

October by the coupled ECHAM4.5-MOM3-DC2  

(http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.MP/.RESEARCH/.COUPLED/.GL 

OBAL/.ECHAM4p5-MOM3-DC2/) as predictor in the same MOS downscaling  

approach for southern Africa, a similar shape is found in the variation of skill  

(Figure 2). Here the initial training period is from 1982/83 to 1991/92. It is  

suggested that the decrease in skill towards the 2001/02 season is therefore not  

a function of the DEMETER data used here, since a differently configured  

coupled model produces similar results. Forecast skill using physical models may  

thus not be constant in time. However, the dominant modes of CCA (Barnett and  

Preisendorfer, 1987) for the multi-model considered here remain the same (not  

shown) regardless of the training period used (e.g. Landman and Goddard,  

2002), which suggests stability in the selected dominant modes of variability  

included in the MOS equations, and therefore implies stability in the MOS  

prediction equations even though forecast skill may not be constant in time.  

  

3.2. Multi-model vs. single model results  

  

By knowing the probability of a predicted category occurring, additional forecast  

value is obtained (Mason and Graham, 1999), since probabilistic forecasts exhibit  

http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.MP/.RESEARCH/.COUPLED/.GLOBAL/.ECHAM4p5-MOM3-DC2/
http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.MP/.RESEARCH/.COUPLED/.GLOBAL/.ECHAM4p5-MOM3-DC2/
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reliability considerably in excess of that achieved by corresponding deterministic  

forecasts (Murphy, 1998). Probabilistic rainfall forecasts are produced here for  

three equi-probable categories of above-normal, near-normal and below-normal.  

Only the verification results for the above- and below-normal categories are  

presented here since there is little skill to be derived from predicting the near- 

normal category (Van den Dool and Toth 1991).   

  

A ROC graph is made by plotting the forecast hit rates against the false alarm  

rates (Wilks, 2006). The area beneath the ROC curve is used as a measure of  

discrimination here and is referred to as a ROC score. If the area would be ≤0.5  

the forecasts have no skill, and for a maximum ROC score of 1.0, perfect  

discrimination has been obtained. The ROC score can be interpreted here as a  

probability of the forecast system successfully discriminating respectively above-  

or below-normal seasons from other seasons.   

  

The ROC graph and its score can be meaningfully applied in seasonal  

forecasting given the small sample size normally associated with these forecasts  

(Troccoli et al., 2008). Figure 3 shows the area-averaged ROC scores for above-  

and below-normal DJF rainfall for each of the individual downscaled models  

(Météo-France – MF; ECMWF and UKMO) and for the two multi-models (MMeqw  

and MMcca) as calculated over the 22-year test period in a retro-active design.  

All area-averaged scores are above 0.5, which means that on average there is  

more than a 50% chance that all the forecast systems have the ability to  
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successfully discriminate respectively wet and dry seasons from other seasons.  

Two of the three single models have a greater ability to discriminate the below- 

normal category as opposed to the above-normal one, but both the multi-models  

are better able to discriminate the below-normal category. Moreover, the multi- 

models have higher averaged ROC scores than any of the individual models. In  

fact, based on the area-averaged scores the multi-models each have at least a  

61% chance of discriminating the above-normal category and at least a 63%  

chance of discriminating the below-normal DJF rainfall. The outperformance by  

the multi-models over southern Africa confirms what has been found with many  

other studies that multi-model forecasts usually outscore single model forecasts  

(e.g. Barnston et al., 2003; Doblas-Reyes et al., 2005; Hagedorn et al., 2005;  

Coelho et al., 2006; Weigel et al., 2008; Wang and Fan, 2009).   

  

The improvement in forecast performance of the multi-models over the single  

models is further demonstrated in Figure 4 that shows the geographical  

distribution of ROC score differences between the multi-models and the  

individual models. Figure 4(a) shows where the multi-model that uses equal  

weights (MMeqw) outscore each of the individual models, and Figure 4(b) where  

the weighted forecast combination multi-model (MMcca) outscores them. Shaded  

areas are where the multi-models outperform the single models. Both sets of  

maps show that most of southern Africa is associated with positive ROC score  

differences, thus providing further evidence that the multi-models are outscoring  

the single models.   
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The ROC score is sometimes criticized as a measure of forecast performance  

because of its insensitivity to reliability (Troccoli et al., 2008). Figure 5 shows the  

reliability diagrams for the individual models. In addition to the respective  

reliability curves for the two categories, their least-squares regression lines are  

presented on the diagrams. The regression lines are calculated with weighting  

relative to how frequently forecasts are issued at a given confidence. When these  

regression lines lie along the diagonal, the forecasts are perfectly reliable. When  

the regression line lies above the diagonal observed above- or below-normal DJF  

rainfall tends to occur more frequently than forecast, but when it lies below the  

diagonal the observed categories respectively tend to occur less frequently than  

forecast, indicating under- and over-forecasting respectively. The most common  

slope of the regression line found for seasonal forecasting is one that is shallower  

than the diagonal line (Troccoli, et al., 2008) – the forecasts are said to be over- 

confident. Histograms are also included in the figures, and they show the  

frequencies with which forecasts occur in probability intervals of 10%, starting at  

5%.    

  

All the forecasts made by the single models for both above- and below normal  

DJF are over-confident (Figure 5). However, forecasts for below-normal rainfall  

totals are less over-confident than forecasts for above-normal rainfall for all three  

single models. Since the single models are over-confident, multi-model  

ensembles can enhance prediction skill regardless of which combination  
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approach is used since multi-model combination reduces over-confidence  

(Weigel et al., 2008). Figure 6 shows the reliability diagrams of the two multi- 

models, and here improved reliability over the single models is in fact seen (the  

regression lines for both categories tend to be closer to the diagonal). However,  

for both multi-models the high-probability above-normal forecasts are not reliable,  

as well as the high-probability below-normal forecasts of the MMeqw model. This  

result suggests that a simple equal weighting scheme to combine forecasts may  

not sufficiently reduce over-confidence (Barnston et al., 2003) for high-probability  

forecasts. Difference maps (not shown) of ROC scores (MMcca minus MMeqw)  

for the two categories show more or less an even split in terms of the areas of  

positive and negative score differences. This result indicates that both multi- 

model approaches are not much different in their ability to discriminate events  

from non-events, and that the MMcca is only slightly better able to produce  

reliable high-probability below-normal rainfall forecasts. However, such forecasts  

are often made during El Niño seasons   

  

It has been shown that both the single and multi-models have the ability to  

discriminate between different observed situations. However, the multi-models  

outscore the single models, both in terms of discrimination and reliability. Since  

southern African mid-summer rainfall is influenced by the state of the equatorial  

Pacific Ocean, there is a need to investigate how skilful a multi-model predicts  

the two rainfall categories during ENSO and during neutral events separately.  
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3.3. Multi-model forecast performance during ENSO years  

  

CCA pattern and time series analysis (Barnett and Preisendorfer, 1987) of the  

multi-model (MMcca) forecast system suggests that the dominant modes of  

predictor variability (three or four canonical modes that produce the best forecast  

results over the retro-active forecast period) are partly related to different  

influences of ENSO on southern African mid-summer rainfall (Fauchereau et al.,  

2008) since the correlations between the Oceanic Niño Index (ONI;  

www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) and  

the three leading canonical temporal scores of the predictor (combined 850 hPa  

geopotential height fields) are respectively 0.5017 (p<0.01), -0.5337 (p<0.01) and  

-0.3023 (p<0.05) over the 43-year period. The question may arise then what  

added benefit there may be in running multi-model systems that consist of  

physical models that are primarily ENSO driven, over a simple statistical model  

that uses Pacific Ocean SSTs as predictors and is much cheaper to run. This  

question is answered by referring back to Figure 2. The gray dashed line is the  

4th order polynomial that is fitted to the area-averaged Spearman’s correlation  

obtained by using a simple statistical model (CCA) with central and eastern  

equatorial Pacific Ocean SST (170° E to 80° W; 20° N to 20° S) as predictor.  

Although there is convergence in the performance of the forecasting systems  

towards the end of the cross-validation period, the multi-model outscores the  

simple model throughout. This result suggests that the coupled models’  

downscaled forecasts include additional forecast information that cannot be  
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derived from equatorial Pacific SST alone, which justifies the use of physical  

forecast models to predict seasonal rainfall variability over southern Africa. Take  

note that the introduction here of the statistical model was not to set an easy to  

beat baseline skill level, but to demonstrate that the skill of the GCMs comes  

from climatological forcings beyond the central and eastern equatorial Pacific  

Ocean.  

  

The multi-model DJF rainfall forecast performance during the El Niño (8  

seasons), La Niña (7 seasons) and neutral (7 seasons) years over the 22-year  

retro-active period are shown in Figure 7 to 9. The forecasts for the ENSO and  

non-ENSO years are separately taken from the retro-active forecasts prior to  

calculating the verification statistics for these years. Since the skill calculations  

are based on only a few cases (7 or 8) they may be sensitive to sampling errors.  

ROC calculations are however less sensitive to sampling errors than reliability  

diagrams (Troccoli et al., 2008). Figure 7 presents area-averaged ROC scores  

and it is shown that on average the multi-model is able to discriminate the above- 

normal and below-normal rainfall categories during ENSO years, but fails to do  

so during neutral years (averaged ROC scores are below 0.5 for both  

categories). Moreover, the multi-model performs best predicting drought during El  

Niño years and floods during La Niña years, but there is skill in predicting wet El  

Niño and dry La Niña seasons over southern Africa too. This result is further  

manifested in the geographical distribution of ROC scores for the above- and  

below-normal rainfall categories and for ENSO and neutral years as shown in  
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Figure 8. Large patterns of ROC scores in excess of 0.5 are seen for the El Niño  

and La Niña cases, but much smaller areas associated with neutral years are  

found. The multi-model therefore performs poorly during neutral years. The  

reliability diagrams for rainfall prediction during El Niño and La Niña years are  

shown in Figure 9. Forecasts are again over-confident, but as is found with the  

ROC scores there is skill in predicting both drought and wet seasons during El  

Niño years and predicting wet and drought seasons during La Niña years. The  

forecasts at least correctly indicate increases and decreases in the probabilities  

of the wet and dry events.  

  

4. Discussion and conclusions  

  

Southern African mid-summer probabilistic rainfall prediction skill has been  

assessed by using forecasts from state-of-the-art fully coupled models that are  

empirically downscaled and combined in order to produce multi-model forecasts.  

Forecast performance was tested over a retro-active period of 22 years that  

mimics an operational forecast configuration. Multi-model forecasts outscore  

single model forecasts and can be used with confidence during El Niño and La  

Niña seasons. In addition, the two multi-model forecast approaches produce  

about equally skilful forecasts.   

  

The robustness of the MOS equations was tested and found that although  

forecast skill may not be constant in time, especially with short training periods,  
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the dominant modes of variability included in the equations remain similar for a  

variety of training periods. Regardless of this variation in skill, multi-model  

performance consistently outscored a simple statistical model that only includes  

equatorial Pacific Ocean SST variability as predictor. The improved multi-model  

forecasts are therefore a result of the system’s ability to include forecast  

information in addition to the signal originating from the central and eastern  

equatorial Pacific Ocean. Both single model downscaled forecasts and multi- 

model forecasts seems to be able to discriminate between different observed  

situations such as below-normal and above-normal DJF rainfall seasons,  

notwithstanding the result that forecasts are overconfident. Prediction of wet or  

dry conditions during ENSO years is also skilful, but little skill has been found  

predicting DJF rainfall when the equatorial Pacific Ocean is in a neutral state.  

Predictions during El Niño seasons are strongly overconfident, but are less so for  

rainfall predictions during La Niña seasons.   

  

The paper has demonstrated that multi-model systems are able to provide useful  

operational mid-summer rainfall forecasts over southern Africa, but only during  

ENSO years. Rainfall forecasts for southern Africa produced by the EUROSIP  

multi-model, that consists of later versions of the three coupled GCMs discussed  

here, made near the end of 2009 for the 2009/10 DJF El Niño season show  

mostly enhanced probabilities for dry conditions to occur. A similar forecast was  

also issued by other international centres such as the IRI, and also by the South  

African Weather Service. Moreover, summer rainfall forecasts for 2009/10 issued  
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to the South African public was made with high confidence, partly based on the  

result that multi-models can produce reliable drought forecasts and because of  

the confidence in summer rainfall forecasts during El Niño seasons. However,  

DJF rainfall over South Africa was anomalously high, especially over the central  

and western parts of that country (http://www.weathersa.co.za) and so the  

observed wet 2009/10 austral summer season over the region was largely  

missed by most forecasting systems. Further model development (e.g.  

Engelbrecht et al., 2007) and modelling studies on how models represent the  

coupled system over southern Africa are therefore warranted.   
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Figure captions   

  

Figure 1. Area-averaged observed (thick line) DJF rainfall (mm) over Africa south  

of 10° S, versus cross-validation forecasts (thin lines) from the two multi-models  

described in the text. El Niño (E) and La Niña (L) seasons are also shown. The  

arrow indicates where the retro-active test period starts. The years on the x-axis  

refer to the December months of the DJF seasons.   

  

Figure 2. Variation in cross-validation forecast skill predicting DJF rainfall over  

southern Africa as reflected by area-averaged Spearman’s correlation values.  

The thick black solid line (4th order polynomial) and associated thin black solid  

line show the MMcca multi-model’s performance as a function of cross-validation  

training period, while the thick black dotted and thin black dotted lines represent  

the ECHAM4.5-MOM3-DC2 coupled model. The remaining gray lines represent  

the statistical model that uses equatorial Pacific Ocean SST as predictor. The  

arrow indicates where the retro-active test period starts.  

  

Figure 3. ROC scores, averaged over the southern African domain, for the  

above-normal and below-normal rainfall categories. Scores for the single models  

and for the two multi-models are shown.   
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Figure 4. ROC score differences between the a) MMeqw multi-model and the  

single models, and b) MMcca multi-model and single models. Positive ROC  

score differences are where the multi-models are superior.   

  

Figure 5. Reliability diagrams and frequency histograms for above- and below- 

normal DJF rainfall forecasts produced by the single models. The thick black  

curves and black bars of the histogram represent the below-normal rainfall  

category, while the thick black dotted curves and white bars of the histogram  

represent the above-normal rainfall category. For perfect reliability the curves  

should fall on top of the thick black diagonal line. The thin solid and dotted lines  

are respectively the weighted least-squares regression lines of the above-normal  

and below-normal reliability curves.   

  

Figure 6. As in Figure 5, but for the two multi-models.   

  

Figure 7. ROC scores, averaged over the southern African domain, for the  

above-normal and below-normal rainfall categories during El Niño, La Niña and  

neutral seasons. Scores for the MMcca multi-model are shown.  

  

Figure 8. ROC scores of the MMcca multi-model, for El Niño, La Niña and neutral  

seasons, and for the above- and below-normal rainfall categories. ROC scores  

≥0.5 are shaded.   
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Figure 9. As in Figure 5, but for rainfall predictions during El Niño and La Niña  

seasons using the MMcca multi-model.   

  



Figure 1. Area-averaged observed (thick line) DJF rainfall (mm) over Africa south of 10°S, versus cross-validation forecasts (thin lines) from the two
multi-models described in the text. El Niño (E) and La Niña (L) seasons are also shown. The arrow indicates where the retroactive test period starts.
The years on the x-axis refer to the December months of the DJF seasons



Figure 2. Variation in cross-validation forecast skill predicting DJF rainfall over southern Africa as reflected by area-averaged Spearman's correlation
values. The thick black solid line (4th-order polynomial) and associated thin black solid line show the MMcca multi-model's performance as a function of
cross-validation training period, while the thick black dotted and thin black dotted lines represent the ECHAM4.5-MOM3-DC2 coupled model. The
remaining gray lines represent the statistical model that uses equatorial Pacific Ocean SST as predictor. The arrow indicates where the retroactive test
period starts



Figure 3. ROC scores, averaged over the southern African domain, for the above-normal and

below-normal rainfall categories. Scores for the single models and for the two multi-models are

shown



(a)

Figure 4. ROC score differences between the (a) MMeqw multi-model and the single models, and (b) MMcca multi-model and single models.

Positive ROC score differences are where the multi-models are superior.



(b)

Figure 4. (Continued ).



Figure 5. Reliability diagrams and frequency histograms for above- and below-normal DJF rainfall forecasts produced by the single

models. The thick black curves and black bars of the histogram represent the below-normal rainfall category, while the thick black

dotted curves and white bars of the histogram represent the above-normal rainfall category. For perfect reliability the curves should

fall on top of the thick black diagonal line. The thin solid and dotted lines are respectively the weighted least-squares regression lines

of the above-normal and below-normal reliability curves.



Figure 6. As in Figure 5, but for the two multi-models.



Figure 7. ROC scores, averaged over the southern African domain, for the above-normal and below-normal rainfall categories during

El Ni˜no, La Ni˜na and neutral seasons. Scores for the MMcca multi-model are shown.



Figure 8. ROC scores of the MMcca multi-model, for El Niño, La Niña and neutral seasons, and for the above- and below-normal rainfall

categories. ROC scores ≥0.5 are shaded.



Figure 9. As in Figure 5, but for rainfall predictions during El Ni˜no and La Ni˜na seasons using the MMcca multi-model.


