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This work was conducted during the video quality modelling competition "AVHD/P.NATS Phase 2" which was a joint project of ITU-T

Study Group 12 and the Video Quality Experts Group (VQEG, https://www.its.bldrdoc.gov/vqeg/vqeg-home.aspx). The resulting

bitstream-based model ITU-T Rec. P.1204.3 was developed by the authors from 1 and 5, the reduced / full reference model ITU-T Rec.

P.1204.4 was developed by the authors from 2, and the hybrid pixel-based no-reference model ITU-T Rec. P.1204.5 by the authors from 3.

ABSTRACT The paper presents a series of three new video quality model standards for the assessment of

sequences of up to UHD/4K resolution. They were developed in a competition within the International

Telecommunication Union (ITU-T), Study Group 12, in collaboration with the Video Quality Experts

Group (VQEG), over a period of more than two years. A large video quality test set with a total of 26

individual databases was created, with 13 used for training and 13 for validation and selection of the

winning models. For each database, video quality laboratory tests were run with at least 24 subjects each.

The 5-point Absolute Category Rating (ACR) scale was used for rating, calculating Mean Opinion Scores

(MOS) as ground-truth. To represent today’s commonly applied HTTP-based adaptive streaming context,

the test sequences comprise a variety of encoding settings, bitrates, resolutions and framerates for the three

codecs H.264/AVC, H.265/HEVC and VP9, applied to a wide range of source sequences of around 8 s

duration. Processing was carried out with an FFmpeg-based processing chain developed specifically for

the competition, and via upload and encoding through exemplary online streaming services. The resulting

data represents the largest, lab-test-based dataset used for video quality model development to date, with

a total of around 5,000 test sequences. The paper addresses the three models ultimately standardized in

the P.1204 Recommendation series, resulting in different model types and for different applications: (i)

Rec. P.1204.3, no-reference bitstream-based, with access to encoded bitstream information; (ii) P.1204.4,

pixel-based, using information from the reference and the processed video, and (iii) P.1204.5, no-reference

hybrid, using both bitstream- and pixel-information without knowledge of the reference. The paper outlines

the development process and provides holistic details about the statistical evaluation, test databases, model

algorithms and validation results, as well as a performance comparison with state-of-the-art models.

INDEX TERMS bitstream, full reference, http adaptive streaming (HAS), hybrid, pixel-based, QoE,

reduced reference, video quality.
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I. INTRODUCTION

T
HE video quality achieved with a given encoding setting

is of relevance for a variety of applications, such as

video on demand, live streaming or audiovisual communica-

tion. For example, in services applying HTTP-based adaptive

streaming (HAS), such as Video on Demand (VoD) or live

streaming, the different video representations are typically

realized by encoding each sequence at different resolutions

and bitrates, reflecting a balance between target screen res-

olution and expected channel bandwidth (also referred to as

“bitrate ladders”), see e.g. [1, 2, 3]. Depending on its usage,

a video bitrate ladder reflects aspects such as the optimal

resolution and encoder setting for a given target bitrate, or the

bitrate that is needed for a given resolution to reach a certain

quality level.

For video-media services and applications, video quality

represents an important component of the users’ experience

at large, the latter typically referred to as Quality of Expe-

rience (QoE). According to [4, 5, 6], QoE is "the degree of

delight or annoyance of the user of an application or service".

During a typical, HAS-based video streaming session, video

quality may vary due to a time-varying network bandwidth

characterized by quality switches, initial loading delay during

the filling of the playout buffer when starting streaming, or

stalling of the video playout when the buffer has run empty

due to network problems. Considerations on a more holistic

view of QoE for HAS-type or other streaming that includes

long-term integration or effects such as initial loading and

stalling may be found in [7, 8, 9, 3, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19]. The present paper focusses on video

quality, as a key element for video streaming QoE. The

described models were designed for short-term video quality

assessment of videos of around 10 sec duration. The primary

focus of the models is the type of video used for HAS (e.g.

MPEG-DASH or HTTP Live Streaming). For example, the

models can be applied to analyze the quality of individual

segments of HAS-type representations. Accordingly, reliable

transport is assumed, using e.g. TCP or QUIC. It is noted that

the models presented in this paper can principally be used

also for assessing video quality for streams with unreliable

transport, e.g. via plain UDP with RTP. Here, with the models

described in this paper, the impact due to resolution re-

scaling, framerate and encoding can be covered. Degrada-

tions due to packet loss resulting in slicing, freezing or some

catching-up accelerations of the stream are not addressed by

the models.

Due to its perceptual character, evaluating video quality

ultimately requires feedback from users. Corresponding data

have been collected during formal laboratory or crowd-

sourcing tests [16, 11, 12, 20, 21], or were measured in

terms of the viewing behaviour of users of a given service,

e.g. in terms of whether users were stopping playback or

take other actions in case of problems [22, 13, 23, 24, 25].

When aiming for a sensitive assessment of encoding quality

for high resolutions such as 4K UHD (3840 × 2160 pixels),

laboratory tests with a controlled and 4K-appropriate viewing

distance of 1.5 to 1.6 times the height of the screen (“1.5H”

or “1.6H”) are recommended, see [26, 27]. As was shown

in a number of studies, even in laboratory tests with high-

quality screens and controlled viewing conditions that follow

recommendations such as those in [27, 28], in many cases

video quality can hardly be distinguished between HD and

4K UHD resolution, specifically depending on the initial

quality of the source content used [29, 30, 31, 32, 33]. On the

other hand, test contents in video quality tests1often are rather

artificial and not representative of actual target applications

such as VoD or live streaming. The role of content and its

quality and representative character is discussed for example

in [29, 34, 12, 32]. As a consequence, well-designed and

well-conducted subjective tests are required, with a repre-

sentative choice of contents for a valid determination of the

video quality as experienced by end users.

Running such well-conceived subjective tests requires sub-

stantial human and material resources. Hence, for a system-

atic and automatic video quality assessment that is repre-

sentative of human video quality ratings, instrumental pre-

diction, that is, "objective" models are needed. Here, the

suitability of a given model not only depends on the required

prediction accuracy, but also on the targeted application

and thus model input information and processing resources

available. With a well designed and validated video quality

model, a variety of applications may benefit, such as the

aforementioned encoding-related bitrate ladder derivation,

or a holistic streaming-service or network monitoring, as

discussed further in Section VII.

Four basic categories of video quality models can be

distinguished (see also [10, 35, 36]):

1) Metadata-based

2) Bitstream-based

3) Pixel-based

4) Hybrid

Metadata-based quality models (1) use information from the

metadata layer such as the video codec used, image reso-

lution, framerate and bitrate, which may be available from

player logs or during the planning of a service. Metadata-

based models can also be seen as lightweight variants of

bitstream models that analyze only the metadata portion of

the bitstream. An example is ITU-T Rec. P.1203.12, "Mode

0" [37, 38]. Bitstream-based video quality models analyze

the encoded video bitstream without decoding and do not

require access to the original bitstream of the source signal.

Examples are ITU-T Rec. P.1203.1 (Modes 1 and 3) [37, 38]

for HAS-type streaming over TCP or QUIC, or P.1201.2 for

1In the state-of-the-art literature, quality tests with human subjects are
typically referred to as "subjective tests", and instrumental quality-prediction
models as "objective models". This terminology is also adopted in this paper,
in spite of some limitations.

2It is noted that the models described in ITU-T Rec. P.1203.1 [37] only
provide a per-one-second video quality estimation on the 5-point ACR scale
(MOS). In the absence of other degradations such as quality-switches due to
changes in the representation, stalling or initial loading delay, a video quality
estimate for short sequences of around 10 sec duration can principally be
obtained e.g. by simple averaging of the per-one-second scores over time.
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IPTV over UDP that may show effects of packet loss [39,

40, 41]. Also ITU-T Rec. P.1204.3, which is addressed in the

present paper as one of the three models, is an example of a

bitstream-based model, with open-source software available

from [42]. Further examples of bitstream-based models can

be found in [10] and in Section II.
Pixel-based video quality models analyze the decoded

frames of the video. Different variants can be distinguished:

• Full Reference (FR) models, which derive quality esti-

mates from a comparison of the original content with

the decoded, processed sequence under test. Examples

range from Peak Signal-to-Noise Ratio (PSNR) [36]

to Structural Similarity (SSIM) Index [43] and mod-

els such as Video Multi-Method Assessment Fusion

(VMAF) [44] and several ITU recommendations, such

as J.144 [45], J.247 [46], J.341 [47] – see Section II.

• Reduced Reference (RR) models, where "reduced" rep-

resentations of the reference and the sequence to be

evaluated are used. The new standard ITU-T Rec.

P.1204.4 presented in this paper is a reduced-reference

model. As was shown during the development of this

standard, quality-prediction performance of this model

is as good as with an FR-version of the same algorithm.

Hence, in the remainder of this paper, P.1204.4 is re-

ferred to as "RR/FR". Further examples are mentioned

in Section II.

• No Reference (NR) models, where the evaluation is

performed without access to the reference content. Cur-

rently, no purely pixel-based NR model is known to

provide sufficiently good prediction accuracy that could

enable its usage in practical applications. In principle,

both the bitstream-based and the hybrid video quality

models presented in this paper are of the NR-type. More

information on NR models is provided in Section II and

[10].

Hybrid models are based on an evaluation of pixel infor-

mation and additional bitstream or metadata information, as

with the new standard ITU-T Rec. P.1204.5 presented in this

paper. Further state-of-the-art hybrid models are outlined to

in Section II.
The paper presents the results of a so far unique cam-

paign to video quality model development: For the first time,

bitstream-, pixel-based and hybrid models were developed,

trained and validated on a large common subjective test

dataset consisting of a total of 26 individual video quality

tests, each with at least 24 subjects. The work on develop-

ing the video quality models was conducted in collabora-

tion between Study Group 12 (SG12) of the International

Telecommunication Union (ITU-T) and the Video Quality

Experts Group (VQEG), referred to as the "P.NATS Phase

2" project. It followed up on the previous standardization

project "P.NATS Phase 1" run in ITU-T SG12, leading to the

standards series ITU-T Rec. P.1203, P.1203.1, P.1203.2 and

P.1203.3 [48, 37, 49, 50].
The bitstream-based P.1203 is primarily targeted towards

prediction of the integral quality of longer video streaming

sessions between 1 min and 5 min duration, more in line

with the idea of an overall session QoE rather than sheer

video quality. The P.NATS Phase 1 model series comprises

a short-term video quality component as well, P.1203.1 (see

[38, 37]). However, so as to develop short-term video quality

models with a degree of accuracy that would allow ap-

plications such as deriving fine-grained video-quality-based

encoding ladders, ITU-T SG12 and VQEG launched the

P.NATS Phase 2 project. While Phase 1 addressed bitstream-

based models only, for Phase 2, a wider scope was envis-

aged, focusing on all relevant video quality model types that

can enable high prediction accuracy: Bitstream-based, pixel-

based (FR, RR) and hybrid.

The P.NATS Phase 2 standardization work has recently

resulted in the new standard series ITU-T Rec. P.1204 [51],

consisting of the bitstream-based NR model according to

P.1204.3 [52], the pixel-based, RR/FR model ITU-T Rec.

P.1204.4 [53] and the hybrid NR model ITU-T Rec. P.1204.5

[54].

The new P.1204 models presented in this paper target video

resolutions up to 4K/UHD. They were trained and validated

for three different video codecs, H.264, HEVC/H.265 and

VP9, covering video framerates between 15 up to 60 fps, with

different model variants for video presentation on PC or TV

type screens, tablets and mobile phones. More details on the

development procedure are presented in Sections III and IV.

In light of the target 4K/UHD resolution, the ground-truth

data for model development and validation had to be based on

a rigorous subjective laboratory testing approach. A dataset

of 26 subjective video quality test databases were created for

the competition, with a total of around 5,000 test sequences,

each rated by at least 24 test subjects. Here, special emphasis

was laid on selecting appropriate source sequences, coverage

of a wide range of encoding settings, well-controlled presen-

tation and rating conditions used in the cross-lab testing cam-

paigns, based on dedicated approaches for data alignment

such as common set sequences and common test conditions,

a subsequent diligent checking of the individual test datasets

with regard to subject bias and inter-rater agreement, and

corresponding outlier detection and removal.

The paper, for the first time, summarizes the model de-

velopment and standardization process in a scientific pub-

lication. The result of the according competition is a set

of models applicable in a variety of contexts, enabling the

choice from three highly accurate models, for example de-

pending on the type of model input information that can be

made available in a given application context. Hence, besides

the large underlying subjective test dataset, the new P.1204

standard represents a unique combination of all relevant

models, applicable to a wide range of encoding settings

and formats. The analysis of the model prediction given in

Section VI indicates the outstanding performance of all the

three models, also in comparison to other metrics and models

such as PSNR, SSIM and VMAF.

The key contributions of the paper can be summarized as

follows:
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1) Details on the ITU-T SG12 / VQEG "P.NATS Phase

2" standardization project are provided, including the

statistical model evaluation criteria and procedure to

determine the winning model candidates.

2) Description of the procedure to automatically generate

a set of processed sequences to be rated in the P.NATS

Phase 2 subjective tests. The procedure includes the

creation of a dedicated processing chain to realize a

variety of encodings and thus representations of video

contents. The subsequent subjective tests resulted in a

novel large proprietary subjective test database with a

total of around 5,000 test sequences each rated by at

least 24 test subjects that was established to train and

validate the different model candidates targeted with

the P.NATS Phase 2 work. The creation process and

characteristics of the database are presented in detail in

this paper for the first time. The novelty of the resulting

database lies in the coverage of the three different

codecs H.264, HEVC/H.265 and VP9, the inclusion of

different resolutions, bitrates, framerates, and encoder

settings, and the fact that all information is contained

to enable that bitstream- and pixel-based models could

be trained and validated on the same databases.

3) The resulting three different types of high-precision

video quality models of the P.1204-series are presented

in a scientific and harmonized form for the first time,

outlining key algorithmic concepts.

4) A detailed model performance analysis is presented

for the initially submitted model candidates as well as

for the finally standardized models, using the P.NATS

Phase 2 databases. Further, the performance of all

models is compared to other models of similar kind,

using the P.NATS Phase 2 database as well as addi-

tional open-source databases that enable a performance

analysis across all three model types.

The paper is organized as follows: Section II provides

an overview of the state-of-the-art, considering all the three

model types addressed in this paper. The P.NATS Phase 2

competition run in collaboration between ITU-T SG12 and

the VQEG Section III, including considerations such as the

statistical model evaluation. In the subsequent Section IV,

the training and validation databases are described, with

details about source contents, processing chain and database

characteristics. Then, Section V presents algorithmic descrip-

tions of the bitstream-based (P.1204.3), pixel-based RR/FR

(P.1204.4) and hybrid NR (P.1204.5) models, using a unified

nomenclature for an aligned presentation. An in-depth model

performance analysis is provided in Section VI, with per-

formance indicators given for the initially submitted model

candidates evaluated as it was done during the competition,

performance data for the finally standardized models and a

comparison with other metrics and models such as PSNR,

SSIM, and VMAF, also including publicly available test

databases.

II. RELATED WORK
A variety of bitstream-, pixel-based and hybrid video quality

models have been reported in the literature over the past

years. In this section, we focus on analysing some of these

and present the need for novel approaches. For more compre-

hensive reviews and surveys on state-of-the-art video quality

models, the authors refer to the various works provided, for

example, by [55, 56, 57, 58, 36, 59]. A recent review of

the HAS QoE modelling literature has been provided by

Barman et al. in [10]. It primarily focusses on a more holistic

modelling of HAS QoE, including audio and video quality as

well as initial loading delay and stalling, as it can be done for

example using the standard family ITU-T P.1203 [48, 37, 49,

50], see Sec. II-A. In turn, the present paper proposes new

high-performance, short-term video quality models, solving

some of the challenges mentioned in [10]. Correspondingly,

this section primarily focuses on video quality models for

video durations around 10 s.

A. BITSTREAM MODELS

Several bitstream-based no-reference models have been pro-

posed in the literature for different use cases. The proposed

models range from very simple curve-fitting-based bitstream

models to more complex machine-learning-based ones. An

earlier review of bitstream models for video quality predic-

tion is presented by Joskowicz et al. in [60]. They conclude

that the bitstream models show good results when compared

with subjective quality ratings.

A more complex Mode 3 bitstream model for H.264/AVC-

encoded videos using motion values, QP-values, frame types

etc. is proposed by Keimel et al. [61]. The study shows

good performance of this type of model, also in compar-

ison to a number of full-reference models. For the case

of IPTV (RTP/UDP or MPEG2-TS/RTP/UDP) with coding

and packet-loss degradation, Raake et al. [62] and Garcia

et al. in [40] propose two evolutions of packet-header-based

bitstream-based models, for SD and HDTV resolution with

H.264-type video encoding. The resulting video quality es-

timation can be integrated with audio quality [63] into an

audiovisual quality estimation [64]. The complete audiovi-

sual quality model for IPTV is standardized as ITU-T Rec.

P.1201.2 [39, 41]. A complementary approach developed for

RTP/UDP-based transmission and lower video resolutions,

corresponding to typical mobile phone screens around 2010,

was developed by Yamagishi et al. in [65] and has been

standardized as ITU-T Rec. P.1201.1 [66]. Note that on the

way towards the HAS-related standard ITU-T Rec. P.1203,

the higher-resolution model in ITU-T Rec. P.1201.2 was

extended to streaming with reliable transport, addressing

HAS’ predecessor "progressive download", based on the

work presented by Hossfeld et al. and Garcia et al. in [67,

68] and [69], respectively.

In addition to the curve-fitting-based bitstream models,

several machine-learning-based approaches have been re-

ported in the literature. An approach based on Support Vec-

tor Regression (SVR) was presented in [70], applicable to
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streaming over unreliable transport including packet loss.

A model based on genetic programming-based symbolic

regression was proposed by Staelens et al. in [71]. Mocanu

et al. in [72] proposed a random neural network (RNN) no-

reference bitstream model. Demirbilek et al. introduced a set

of decision trees, deep learning and genetic programming

based models [73]. These models were developed for H.263

or H.264 encoded videos and for non-reliable transmission,

that is, including cases of packet loss and resulting in artifacts

such as slicing. Since these effects are not present in HAS

as addressed in this paper, the models are not directly appli-

cable here. While encoding-type degradations are naturally

included in these models as well, the underlying subjec-

tive tests used for model development are naturally biased

towards packet-loss-type degradations. Moreover, different

resolutions and framerates are typically not considered, fur-

ther limiting the usage for today’s streaming service quality

assessment.

ITU-T Recommendation P.1203 [48, 74, 38] describes the

first standardized QoE model for audiovisual HTTP-based

adaptive streaming. The recommendation is divided into

three modules, one each for audio quality [49], video quality

[37] and quality integration [50]. The quality integration

module [50] takes into account the per-one-second audio- and

video quality output provided by the corresponding audio-

and video quality modules, also considering corresponding

quality switches, as well as information about the initial

loading delay and stalling events. This standard explicitly

handles the case of HAS, but is applicable only for H.264

encoded videos of up to 1080p resolution and framerate up

to 30fps. An open-source implementation of the complete

P.1203 model set is described in [74]. As mentioned in

Section I, in the absence of quality-level switches, initial

loading delay or stalling, the per-one-second video quality

scores provided by the different bitstream-models described

in ITU-T Rec. P.1203.1 [37, 38] can be integrated by simple

averaging over time to video quality estimates for the short

sequence durations addressed in this paper of around 8 to

10 sec. To take into account higher resolutions and framerates

and also newer codecs, Ramachandra Rao et al.[75] proposed

an extension to the the standardized P.1203 Mode 0 model.

However, this extension is only based on two subjective tests

with limited range of encoding settings.

Besides the standardized P.1203 series of models, several

models have been proposed to predict video quality for the

HAS-specific scenario [76, 77, 78, 79, 80].

In essence, although the presented models together are

applicable in a wide range of scenarios, they suffer from the

following drawbacks: (a) they were not developed to handle

the case of higher resolutions (up to 4K/UHD-1), higher

framerates (up to 60fps) and newer codecs such as MPEG-H

HEVC/H.265 and VP9; (b) if applicable to higher resolutions

and framerates and newer codecs, they are developed using a

very limited number of quality test databases. To overcome

these drawbacks, the bitstream model presented in this paper

was developed, which is now standardized as ITU-T Rec.

P.1204.3 [52]. Further details are provided in Sec. V-A.

B. PIXEL-BASED MODELS

Unlike bitstream models, pixel-based models use raw pixel

data as model input to estimate video quality. Since these

models do not require any knowledge of how the video was

encoded, these types of models are agnostic to the underlying

encoding or transmission technologies. As outlined in Sec. I,

depending on the availability of the original undistorted,

reference video, Full Reference (FR), Reduced Reference

(RR) and No Reference (NR) models can be distinguished.

FR models require complete access to the reference video.

These models compute quality indicators using frame-by-

frame comparison of the reference and degraded video. Ex-

amples of such metrics are PSNR (Peak Signal-to-Noise

Ratio), SSIM (Structural Similarity) [81, 43], Netflix’ VMAF

(Video Multimethod Assessment Fusion) [44] and several

ITU recommendations, such as J.144 [45], J.247 [46], J.341

[47].

Reduced Reference (RR) models extract a fixed, reduced

set of features from the reference and from the processed

video sequence, and compare these to estimate quality. Due

to the limited access to the reference video, RR models

were in the past less accurate than the FR models. Examples

of such models include the ITU-T Recommendations J.246

[82], J.249 [83], J.342 [84]. Other examples are ST-RRED

[85] and SpEED-VQA [86]. In their default versions, these

include a higher amount of features extracted from the refer-

ence. Further, less complex variants were described that use

one feature value per reference frame only and also show a

lower prediction performance.

No Reference (NR) Models have no access to the reference

video and use only the degraded pixel information to predict

video quality. Examples of NR models include DIIVINE,

BRISQUE, BLIINDS and NIQE [87, 88, 89, 90]. In the

absence of source information, such models are usually less

accurate than the corresponding FR and RR counterparts [91,

92]. As a consequence, purely pixel-based NR models are

not considered further in this paper, which targets higher-

accuracy video quality models.

C. HYBRID MODELS

Hybrid models use video pixel information in combination

with bitstream information for predicting video quality. Like

pixel-based models, hybrid models can be classified into

three main categories, depending on the availability and

use of reference-video pixel information, namely, hybrid-FR,

hybrid-RR and hybrid-NR models.

The use of bitstream information helps such models to

improve prediction accuracy considerably compared to the

traditional NR models. One example of a hybrid-NR model

is the model presented by Yamagishi et al. in [93] which

was developed for estimating video quality in the IPTV

scenario. This model uses features derived from the received

packet headers and pixel information such as spatial and

temporal information to estimate video quality. This model
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was developed for H.264 encoded videos with resolution of

1440× 1080 and framerate of 30 fps.

Further, Osamu et al.[94] also propose a hybrid no-

reference model applicable to H.264 encoded video. This

model uses the quantization parameter (QP) as the bitstream

feature. A spatial and temporal image feature each were

developed to be used as an input to the proposed model. The

spatial image feature estimates the block distortion that is

usually encountered in block-based encoding schemes. The

temporal image feature used in the model is used to quantify

the extent of the flickering artifact and hence a "flickering

measure" was developed. These features were then integrated

to estimate the video quality.

A hybrid no-reference model that takes into account packet

loss rate information has been proposed by Farias et al.[95].

The model uses features to estimate blockiness and blurriness

as the pixel features that is then integrated with the packet

loss rate information for video quality estimation. Like with

the models proposed in [93] and [94], this model is applicable

to H.264 encoded videos. This necessitates the development

of models that are applicable for videos encoded with modern

video codecs such as H.265, VP9 and capable of handling

higher resolutions like UHD-1 and framerates like 60fps.

In addition to these models, the J.343-series of ITU Rec-

ommendations contains hybrid models of all types, devel-

oped to measure the perceptual video quality for HDTV and

multimedia applications. These models are applicable for

H.264 encoded videos, so similarly to ITU-T Recs P.1201

and P.1202 address unreliable transport resulting in possible

packet-loss artifacts. These models cannot be used for reso-

lutions higher than fullHD, or framerates above 30 fps. The

standardized P.1204.5 [54] model is a hybrid no-reference

model developed specifically for the case of reliable trans-

port, thus not taking into account degradations like packet

loss. In addition this model is applicable to resolutions up to

UHD-1 and framerates upto 60fps.

III. OVERVIEW OF THE COMPETITION
The video quality model development campaign was con-

ducted as a joint-venture between the ITU-T Study Group 12

(SG12), Question Q14/12 and the Audiovisual HD (AVHD)

project of VQEG3, under the name "AVHD-AS / P.NATS

Phase 2", or simply "P.NATS Phase 2". Its predecessor,

"P.NATS Phase 1", was finalized in late 2016 with the consent

of the standards series ITU-T Rec. P.1203, P.1203.1, P.1203.2

and P.1203.3 [48, 37, 49, 50]. The P.1203-series addresses

metadata- and bitstream-based models to predict integral

quality scores for longer video streaming sessions between

1 min and 5 min duration. With the inclusion of audio and

video quality as well as initial loading delay and stalling, the

P.1203 predictions represent holistic QoE measurements.

The P.1203 model has a modular architecture, using a

short-term (per-1-second) estimation of video (P.1203.1 [37,

38]), and audio quality (P.1203.2 [49]) and their integration

3www.vqeg.org

with additional information on initial loading delay and

stalling into an estimate of streaming session QoE (P.1203.3

[50]). More details about the P.1203 model series and an

open-source implementation can be found in [38, 74], and

an independent evaluation in [96].

The video quality module P.1203.1 [38, 37] was developed

by primarily reverse-engineering the retrospective integral

quality ratings obtained from the test subjects after watching

1 min up to 5 min long audiovisual streaming sequences that

partly included quality switches, initial loading delay and

stalling events. As a consequence, it was clear to the involved

parties that the video quality module P.1203.1 itself was of

sub-optimal prediction accuracy so as to enable more precise

quality estimations suitable for applications such as a highly

accurate bitrate ladder derivation or quality monitoring, or

possibly a monitoring-based player optimization.

The P.NATS Phase 2 project was run as a competition

between nine participating institutions ("proponents") de-

veloping candidate models. A set of different competition

"disciplines" is represented by the different types of models

that could be submitted to the competition: (i) Bitstream-

based, (ii) pixel-based, namely RR, and FR, and (iii) hybrid,

metadata- and pixel-based, NR.

During model development, the nine proponents jointly

created a set of dedicated training databases. Before submis-

sion, the proponents could train their model candidates on the

training dataset, consisting of 13 individual video quality test

databases. After model submission, a second, new validation

dataset of further 13 subjective test databases was established

by the proponents. Each proponent contributed a pre-defined,

roughly equal number of training and validation databases

to the competition, following a common test protocol. In

total, about 5,000 test sequences were rated by at least 24

test subjects each (with one exception, see Section IV). The

P.NATS Phase 2 development and standardization process is

outlined in more depth in the following.

1) List of acronyms

The following acronyms are used in the remainder of this

paper to specify different components of the model training

and validation databases.

• SRC (Sources): This refers to the original undistorted

source material, also referred to as the reference video,

that is subjected to different encodings.

• HRC (Hypothetical Reference Circuit): The various en-

coding conditions that the SRC is treated with is referred

to as the HRCs.

• PVS (Processed Video Sequence): This refers to the

encoded video that is shown to the subjects for rating

the video quality.

• P2STR: All databases related to the training stage of the

competition are identifiable with this tag.

• P2SVL: This tag is used to indicate the validation

databases.
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A. GENERAL PROCEDURE

The PNATS2/AVHD project was conducted in 5 project

parts, namely:

1) Training database creation

2) Model training and submission

3) Validation database creation

4) Model verification/validation

5) Model merging/optimization

In the training-database creation part (1), a total of 13

training databases (5 with display on a PC-monitor, plus 4

on TV and 4 on mobile) were created by the nine propo-

nents. The training part involved identifying source material,

defining the encoding conditions (also known as hypothetical

reference circuits, HRCs) and subjective test conduction. The

source material for both training and validation databases

were obtained from free-sources, i.e. sources with Open CC

license and further ones available to individual proponents.

These databases were used for training the models during

the model training part (2). A period of around 4 months was

allocated for training all the proponents’ models. In total,

35 model candidates have been submitted into the different

competition categories. This paper focusses on the three

finally standardized models. Following the P.NATS Phase

2 approach of only standardizing models that provide an

actual added value in terms of prediction performance and/or

model complexity, the RR model was ultimately standardized

as ITU-T Rec. P.1204.4. The FR model developed by the

same institution as the RR model, and following a similar

philosophy in algorithm design, did not show a significantly

better performance than the RR variant, so that only the latter

was standardized.

Each proponent submitting models did so by uploading

a virtual machine to a dedicated ITU Telecommunication

Standardization Bureau (TSB) server, containing all their

submitted models in a runnable format.

After model submission, preparation of video sources and

creation of validation databases was carried out (3). This

separation between the training and validation-database cre-

ation was chosen so as to make sure that the validation data

was completely unknown to the models at the time of model

development and submission. During this validation part of

the competition, a total of 13 databases (number of tests

per display type: 1 PC-monitor, 8 TV, 3 mobile, 1 tablet)

were created by the contributing proponents. The resulting

subjective scores were submitted to the ITU TSB, while the

data needed to run the models and obtain predictions was

shared among all proponents.

The subjective scores were disclosed to the individual pro-

ponents during the following model verification/validation

part of the competition (4), upon request to ITU. Before shar-

ing the subjective scores for the validation databases, a bug

fixing of submitted models could be requested by proponents

from the rest of the group. Such bugs were typically identified

after proponents had run their models on the validation-

database model input information (i.e. bitstream and / or pixel

info). Following a well-defined bug-fixing procedure, issues

such as parsing errors or obvious mistakes which could not

alter the performance of the models were agreed upon as

allowable fixes by all proponents. After a bug fix (if any),

each proponent was asked to derive the predicted scores using

their submitted models on the validation databases, without

the knowledge of the subjective scores for these databases.

The produced scores were uploaded to the ITU TSB server

into dedicated folders only accessible to the given proponent.
At a verification/validation meeting held in Stockholm in

late 2019, a verification of the submitted scores was carried

out to make sure that these were indeed produced by the

submitted models. This way, it was sought to prevent that

the model scores on the validation databases were obtained

with a model that was modified over the initially submited

version. In particular, proponents were asked to reproduce

scores under the supervision of one other proponent. The

newly produced scores had to match the earlier submitted

scores, to confirm the verification of the models.
Once all models were verified, the subjective test scores

were disclosed to all proponents by ITU TSB. The predicted

scores were then compared against the subjective test scores

to compute the model performance for each of the submitted

models. Based on the criteria described in Sec. III-B, "win-

ning groups" were determined for each model category.
According to the rules set out for the competition, in the

model merging/optimization phase (5), all winning models

of a certain category were to be merged and optimized to

create the finally standardized model for that category. For

all three model types presented in this paper, only one model

candiate each ended up in the corresponding winning group.

As a consequence, no model merging was required.
The model coefficients were optimized based on the cross-

validation strategy elaborated in Sec. VI. In total, 5 such

splits were created, and for each split the models were

re-optimized. Following the validation criteria laid out in

Sec. III-B, a training weight of 0.1 and validation weight

of 0.9 was used to compute the average RMSE for a given

cross-validation optimization run. The coefficients for the

model version that led to the least average RMSE were

finally reported in the corresponding ITU-T P.1204 model

standards.

B. STATISTICAL EVALUATION

This section details the procedure followed to determine the

winning models/groups across the different model categories.

The final statistical evaluation procedure consisted of

• Data cleaning and mapping

• Calculating performance in terms of model prediction

error per database for each submitted model

• Definition of the minimum model acceptance require-

ments

• Model performance comparison

• Selection of winning models/groups

The following subsections describe in details each step of

the statistical evaluation process.
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1) Data Cleaning and Mapping

Prior to computing model performance, an inspection of the

subjective test data was performed to identify problematic

model input cases. Examples of such cases are errors in the

applied processing chain or settings, or the use of unsuitable

source sequences. Also, issues found with the subjective test

procedure were used to remove databases. In case that it

could be assumed that a whole database was affected by

non-allowable conditions, the respective database was to be

removed from validation.

A common set of PVSs was specified to help with

analysing database validity. Three SRCs of varying complex-

ity were matched with the HRCs described in Table 3. This

set could then be used to investigate, how the rank order and

absolute scores differed between labs and tests. The analysis

of these PVSs enabled to confirm that every test had a similar

quality range with both high and low quality scores.

During the analysis, one of the training databases for

PC playout, P2STR07, was found to not comply with the

subjective test procedure agreed upon at the beginning of

the competition (see Sec. IV), and was hence removed. This

database consisted of a total of 183 PVSs.

For all other databases, any bias between the subjec-

tive tests was removed by applying a linear mapping (per

database) to the objective scores before computing any of

the performance evaluation metrics [97]. The mapping coef-

ficients were optimized by maximizing model performance,

as discussed in the following subsection.

2) Performance Measure

The models were evaluated and optimized based on one sin-

gle statistical metric, i.e., the root mean square error (RMSE),

aggregated across all databases [97]. The calculation of the

RMSE for a model v and database k can be expressed as

RMSEk,v =

√

√

√

√

1

Nk − 2

Nk
∑

i=1

(si − ŝv,i)2, (1)

where si is the subjective score for the ith sample in the

considered test, the score ŝv,i denotes the objective score

of the model v for the ith sample, and Nk the number of

samples in the test k. The use of the subtraction by 2 in

the denominator reflects the linear mapping to the subjective

scale described in Sec. III-B1.

For the model performance comparison, both training and

validation databases were used but weighted with different

coefficients: wtraining and wvalidation for training and vali-

dation databases, respectively:

wtraining = 0.1 and wvalidation = 0.9. (2)

The evaluation of the models was based on their per-

formance across all subjective experiments, included in the

training (known) and validation (unknown) datasets. There-

fore, for each model v the aggregated error across all the

databases was computed as a weighted sum of the mean

squared error per database,

pv =
1

W

M
∑

k=1

wk · RMSE2
k,v, (3)

where M represents the total number of (training and

validation) databases, wk the weight of each database given

in (2), and RMSEk,v the root mean square error of model

v for database k. The normalization constant W is given

by W =
∑M

k=1 wk. A large value for pv represents poor

performances, therefore, the best model is the one achieving

lowest pv value.

3) Minimum Requirement

As a minimum requirement for model performance, a simple

baseline model was defined as a parametrized linear mapping

of log(bitrate) to subjective MOS,

Qbaseline = a · log(bitrate+ b) + c, (4)

where the coefficients a, b and c depend on the codec and on

the target device. Thus, the six sets of coefficients (a, b, c),
for the three codecs times the two target devices, were

optimized on the corresponding samples of the training data.

These coefficients were then fixed and used to determine the

performance pbaseline of the baseline model according to (3).

Model candidates with an aggregated error pv ≥ pbaseline
did not satisfy minimum requirements and were removed

from any further evaluation.

4) Model Performance Comparison

All the models which pass the minimum requirement criteria

qualify for this step. Model performances are not compared

on absolute-RMSE basis, rather any difference in model

performance was tested for statistical significance. The sta-

tistical significance test was applied to the aggregated error

pv . The aggregated error pv is approximately χ2-distributed

according to the Welch-Satterthwaite approximation [98],

with the degrees of freedom θ calculated by

θ ≈
(
∑M

k=1 wk)
2

∑M

k=1
(wk)2

θk

, (5)

where wk represents the weight of the database k given

in equation (2) and θk denotes the degrees of freedom of

RMSE2
k,v and is given by θk = Nk−2, with Nk the number

of samples in the database k. For the aggregated error pv of

model v, the statistical significance test takes the form

tv = max

(

0,
pv

pvmin

− F (0.95, θ, θ)

)

(6)

Here, vmin denotes the model with lowest error pvmin
in

the evaluation, F (0.95, θ, θ) denotes the 0.95-quantile of the

F -distribution with θ degrees of freedom [99]. If tv = 0,

the model v is considered to be statistically equivalent to

the model vmin. In case that tv > 0, the difference in
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performance between the model vmin and model v is called

"statistically significant", or "significant" for short.

5) Model Selection Procedure

The three proposed models are the result of the model se-

lection procedure described in this section. For most model

categories, multiple models were submitted to the competi-

tion. The model selection procedure was used to determine

the best performing model candidate per model category.

First, all models were required to perform better than

the baseline model, Sec. III-B3. Second, for each model

category, the best model together with all statistically equiv-

alent performing models were determined, according to Sec.

III-B4. Third, more complex models4, in terms of model in-

put, were required to perform significantly better than simpler

models. With the present paper, it is intended to provide

an overview of the competition and especially the three

standardized models and their performance, omitting some of

the more fine-grained details about what other models were

submitted, etc. The interested reader can find some more

information in [100], for example.

C. RESULT OF COMPETITION

As a result of the competition, each of the three mod-

els proposed in this paper, the bitstream model ITU Rec.

P.1204.3, the reduced-reference pixel-based model P.1204.4,

and the no-reference hybrid model P.1204.5 were the single

best performing model in their category. In particular, none

of the full-reference pixel-based models submitted to the

competition performed significantly better than the reduced-

reference model (P.1204.4) described in this paper. As a

consequence, due to its equivalent performance, the P.1204.4

model is referred to as reduced-/full-reference model.

IV. DATABASES CREATION
In this section, details about each step of the database creation

part of the competition are provided. The database creation

stage involved content selection, HRC design, the encoding

pipeline to create the resultant processed video sequences

(PVS) and the final distribution of these PVSs into different

databases. Content selection and HRC design steps were

conducted in parallel to use the time optimally, and a final

mapping of HRCs to the content complexity was done using

a content complexity measure described later.

A. CONTENT SELECTION

The subjective tests used in the process of creating the

P.1204.3-5 recommendations were performed with SRC clips

of around 8 s duration. 4K Source footage from both openly

available internet sources and some provided to the project

in kind by proponents (Yonsei University, TU Ilmenau and

Ericsson AB) was collected to create a large pool to draw

4Here, complexity means that either additional sources of information are
required (e.g. a pixel-based NR model vs. a pixel-based hybrid NR model),
or referring to complexity of input information of similar type, e.g. reduced
reference vs. full reference, with FR being more complex.

from. 1440p Source footage was allowed for databases in-

tended to run on Mobile or Tablet. All these videos were

individually reviewed and screened for impairments such as

shaky scenes, regions of non-pristine picture quality etc. The

Source footage parts deemed to be of appropriate quality

were then cut into source files (SRC) according to the in-

formation specified in the manually created Scenecut file for

each corresponding Source footage. The cutting was done

with FFmpeg using the -copy video codec option to capture

the correct frames into a new file.

Each resulting SRC was further manually reviewed by

each proponent to ensure the best content clarity and, in case

problems were identified, either a recut was performed or

the corresponding SRC was rejected. For example, SRCs

with at least a scene cut in the first and last 2 seconds

were rejected. Approval from at least three proponents was

needed to consider an SRC to be valid for being included in

subjective testing.

The collection of Source footage for validation was per-

formed only after the model submission, to ensure that pro-

ponents had no prior knowledge of the validating contents.

The selected footages encompass a vast variety of possible

contents, i.e. natural scenes, movies, dynamic scenes, anima-

tions, video games etc. 3 SRCs were used both in the training

and validation phase to generate the "common set PVSs"

(see section IV-B). One further SRC from the training phase

was re-used in validation with different test conditions. The

number of unique footages and SRCs for both the training

and validation phases is reported in Table 1.

TABLE 1. Number of unique footages and SRC files used in the
training (TR) and validation (VL) phase, and according footage
framerates in frames per second (fps).

TR VL TOT

50/60 fps 27 20 43 (4 common TR/VL)
Footages 24/25/30 fps 32 97 129

Total 59 117 172 (4 common TR/VL)

50/60 fps 203 79 278 (4 common TR/VL)
SRC files 24/25/30 fps 138 294 432

Total 341 373 710 (4 common TR/VL)

All SRCs were characterized in terms of spatial and tem-

poral complexity, using the spatial and temporal information

measures SI and TI, respectively, as specified in ITU-T Rec.

P.910 [28]. The mean SI and TI values per SRC used in the

training and validation tests are shown in Fig. 1.

B. HRC DESIGN

In this section, details about the HRC design process and

hence test conditions are provided.

At first, the codec parameter ranges were agreed upon

among all the proponents. Since the application areas of

the models developed are wide-spread, the parameter ranges

cover the typical encoding settings used in adaptive stream-

ing applications, and extend even beyond. In Table 2, all

parameter ranges are listed that were used for the three video
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FIGURE 1. SI-TI of all the sources used in training and valida-
tion.

TABLE 2. Parameter ranges for video encoders.

Parameter Range

Video Codec H.264, H.265, VP9

Encoded Resolution TV/Monitor: 640×360 – 3840×2160,
Mobile/Tablet: 426 × 240 – 2560 ×

1440

Framerate 15, 24, 25, 30, 50, 60 frames per sec-
onds

Presets H.264/H.265: online, i.e. Youtube, Bit-
movin or Vimeo; medium, ultrafast,
fast, veryfast, slower, slow, veryslow.
VP9: speed presets 0, 1, 2, 3, 4

GOP Size Auto, 2, 5 seconds

Encoder Implementation H.264: libx264 (ffmpeg),
H.265: libx265 (ffmpeg),
VP9:libvpx-vp9 (ffmpeg),
YouTube, Bitmovin, Vimeo

Chroma Subsampling YUV420, YUV422

Bit-depth 8,10 bits

Encoding Types 1-pass, 2-pass (with and without min
max bitrate constraints),
Constant rate factor (CRF) encoding.
Unknown encoding recipes employed
by YouTube, Vimeo, Bitmovin

Bitstream Container mp4, webm, mkv

encoders across all the subjective tests. Fig. 2 depicts the

bitrate ranges for each encoder.

Framerate up-sampling and resolution upscaling, where

the encoded framerate and resolution is higher than the

reference video framerate and resolution, was not part of

our test matrix. HRCs were designed using a top-down

approach, where the above parameter ranges were spanned

using a number of test conditions. Then these test conditions

were split into individual databases by making sure that

each database contained roughly equal representations of

different video codecs, encoded resolutions and framerates.

The bitrate for different encoding resolutions was randomly

sampled from the specified ranges. For YouTube, Bitmovin

and Vimeo encodings, defined as “online conditions” in Table

102 103 104

Bitrate [kbps]
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1440p

1080p

720p

540p

480p

360p

240p

Re
so

lu
tio

n

encoder
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FIGURE 2. Bitrate range for each encoder–resolution pair.

2, the SRCs were uploaded to the respective service, and the

encoded video bitstreams were downloaded. For YouTube

and Vimeo, no encoding parameters were allowed to be

specified. For Bitmovin, it is possible to exactly specify

the input parameters. However, it was completely unknown,

how exactly the actual video encoding was performed for

these services. All databases include 5 common HRCs. Each

common condition was mapped to 3 common SRCs, re-

sulting in 15 common PVSs. The idea with this "common

set" used in the tests across the different labs is to find out

whether all databases were roughly aligned in terms of the

resulting quality ratings and hence scale usage. The encoding

parameters for the common set are detailed in Table 3.

To account for the difference in the target resolution of

the considered display devices, namely, PC/TV and Mobile

(MO) / Tablet (TA), implicitly comprising also different

subject expectations for quality on these different device

categories, the highest and lowest anchors were adjusted

accordingly. Since the display resolution of the MO/TA

category was 2560 × 1440, the highest anchor HRC was

HRC0484 and not HRC0571 as it was used for PC/TV, for

which the coding resolution is 3840 × 2160. The lowest-

quality anchor for MO/TA was chosen as HRC0001, with an

encoding resolution of 426× 240 and encoding framerate of

15 fps. For the PC/TV case, the lowest-quality anchor was

HRC0115, with an encoding resolution of 640 × 360 and

encoding framerate of 24/25/30 fps, to account for typical

real-life conditions and the higher expectation of quality on

these devices.

To balance SRCs in terms of content complexity, a coding-

specific complexity measure was conceived. To this aim,

CRF encoding with the H.264 codec was used, encoding all

the SRCs at a fixed CRF value of 30. The resulting bitrate

was used to categorize SRCs into four different complexity

classes. For each HRC, 2 alternative values for bitrate were
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specified as low/high value. The actual bitrate of a given PVS

took into account the complexity class of the corresponding

SRC: The low value was assigned to sources with complexity

0 or 1, while high was assigned to sources with complexity

class 2 or 3.

C. DATABASES

A total of 13 training and 13 validation databases were

created as part of the competition. Each database contains

between 180-203 PVSs, each of 7 to 9 s duration. Subjec-

tive tests were performed on four different display devices,

namely, PC-Monitors (31.5-37 inch size), TV (55-75 inch

size), Mobile (Samsung Galaxy S7, 5.1 inch) and Tablet (10

inch size). For the PC-Monitor and TV tests, the viewing

distance was 1.5H [101], where H denotes the height of

the display. The display resolution for PC-Monitor/TV tests

was 4K/UHD-1 (3840 × 2160 pixel). For mobile and tablet

databases, the viewing distance was 5-7H [101]. All subjec-

tive tests were conducted in compliance with ITU.P910 [28].

Subjects were handed written instructions common to all test

labs, and shown training videos to provide an understanding

of the test. Each test was roughly an hour long, including the

breaks. A minimum of 24 valid subjects were required for

each test. Outlier detection was based on Pearson Correlation

(PCC) of individual subjects with all others, using a threshold

of 0.75 below which subjects were considered as outliers.

The details of individual databases in terms of the number of

PVSs, display type, number of subjects, average correlation

over all subjects and the average confidence interval are

provided in Tables 4 and 5.

Some training PVSs were screened out due to bad content

or wrong encoding settings. The total number of training and

validation PVSs after the screening process was respectively

2464 and 2483.

D. VIDEO PROCESSING

An FFmpeg-based processing chain was developed to con-

veniently go from the selected SRCs and HRC-setting files

to the PVSs intended to be viewed in the subjective tests. To

make the processing as repeatable as possible without having

all parties to buy the same hardware, an Ubuntu 16.04 virtual

machine (VM) image was shared. This image was prepared

with a specific build of FFmpeg 3.2.2 that could handle

both 8-bit and 10-bit video for all combinations of H.264,

H.265, and VP9 encoding/decoding. It also included specific

versions for the other software and libraries necessary for

running the processing chain. The FFmpeg lossless codec

ffv1 was used as an intermediate codec for all modifications

that were not codec-specific. An overview of the Processing

Chain is shown in the flow-chart in Fig. 3.

To process the set of HRC and SRC combinations that

comprise a database, a Settings file had to be created in a pre-

defined YAML format. This file contains information about

the HRCs such as encoder settings, adaptation levels and du-

rations, stalling duration and so on. Only codec, pixel depth,

framerate- and resolution-related parameters were part of the

HRCs in the tests for the P.NATS Phase 2 competition. No

stalling or explicit bitrate adaptation was used, even though

the processing chain has the capabilities to automatically

produce PVSs with such degradations. The .yaml-file also

describes how these HRCs should be combined with the

available SRCs and what, if any, post-processing should be

performed to create playable video output files.

Based on these inputs, the processing chain then creates

a set of FFmpeg commands to encode, decode, add stalling

events, and, if necessary, concatenate the decoded video

sequences. These commands are put in a queue and are

processed in series or in parallel, depending on the available

hardware, to create bitstream videoSegment files, decoded

video files referred to as AVPVSs, and meta data information

files describing quality-change events, stalling events and

media frame sizes (.qchanges-files, .buff-files and .afi/.vfi-

files)5. Following this, CPVS files are generated from the

AVPVS to create a video file that is not further upscaled or

changed in any way by the display it is played on. This last

step, Display processing, is done to minimize the effect of the

different TV and PC-display brands’ proprietary upscaling

algorithms. All CPVSs intended for PC/TV were output with

a resolution of 3840× 2160 and 60 frames per second, while

the CPVS for Mobile/Tablet were in 2560 × 1440 pixel res-

olution with the same frame rate, matching the resolution of

the display used in each test. PC/TV CPVS used a rawvideo

or v210 codec, depending on whether it was an 8-bit or 10-

bit video. The playout software for PC/TV supported both

.mkv and .avi containers. The Mobile/Tablet player [102]

could not play out rawvideo without stuttering or frame loss,

so a very high quality H.264 setting was used instead. The

CPVS were encoded with libx264 in FFmpeg using -crf

15 -preset fast -profile:v high settings.

If a video was supposed to be processed by online services

(YouTube/Vimeo/Bitmovin), the SRC was uploaded using

SFTP or manual upload, depending on the service. Some

services did not leave any choice for different encoding

parameters, while other presented a number of quality levels.

The intended encoded video was downloaded and renamed as

a valid videoSegment file. This enabled the processing chain

to generate all the metadata, AVPVS and CPVS files even

for cases for which the encoding was not performed by the

processing chain itself.

V. MODEL DESCRIPTION
A detailed description of the three standardized mod-

els, namely, the bitstream-based NR model (ITU-T Rec.

P.1204.3), the pixel-based FR/RR model (P.1204.4) and the

hybrid, meta-data and pixel-based NR model (P.1204.5) is

provided in this section.

At the start of the P.NATS Phase 2 standardization project,

the design of the P.1204 models was chosen so as to prin-

5It is reminded that for the short-term video quality models presented in
this paper, no quality changes, stalling or initial loading delay were used, in
contrast to what was done during the development of the longer-sequence
ITU-T Rec. P.1203 standard family.

VOLUME xxx, 2016 11



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3032080, IEEE Access

Raake et al.: Multi-model standard for bitstream-, pixel-based and hybrid video quality assessment of UHD/4K: ITU-T P.1204

TABLE 3. Common HRCs for the PC-Monitor/TV case. Video codec is H.264 for all common conditions.

HRC-ID Resolution Bitrate (kbps) FPS MOS Range
PC/TV MO/TA

HRC0001 240p 100/200 15 - 1.167 - 2.476

HRC0115 360p 300/500 24/25/30 1.160 - 2.917 1.792 - 3.571

HRC0388 720p 800/1600 50/60 1.500 - 3.917 2.833 - 4.542

HRC0436 1080p 3500/7000 50/60 2.958 - 4.833 3.833 - 4.810

HRC0484 1440p 6000/10000 50/60 3.333 - 4.875 4.083 - 4.762

HRC0571 2160p 30000/45000 50/60 3.667 - 5.000 -

TABLE 4. Training database details. ("DB-ID": Database ID.
"Display" used for playout. "N": number of subjects. Avg. cor-
rel.: Average correlation of individual subjects with mean. "Avg.
CI": Average confidence interval of mean. "PVSs": Number of
PVSs in test.)

DB-ID Display N Avg.
correl.

Avg. CI PVSs

P2STR01 Mobile 26 0.82 0.29 203
P2STR02 Mobile 24 0.87 0.27 199
P2STR03 Mobile 30 0.87 0.23 200
P2STR04 PC 26 0.91 0.24 199
P2STR05 PC 26 0.84 0.27 187
P2STR06 Mobile 24 0.82 0.25 187
P2STR08 TV 24 0.89 0.26 179
P2STR09 PC 25 0.86 0.25 187
P2STR10 PC 34 0.86 0.21 187
P2STR11 TV 24 0.89 0.25 187
P2STR12 PC 24 0.85 0.28 183
P2STR13 TV 25 0.87 0.25 187
P2STR14 TV 24 0.84 0.24 179

TABLE 5. Validation database details. ("DB-ID": Database ID.
"Display" used for playout. "N": number of subjects. Avg. cor-
rel.: Average correlation of individual subjects with mean. "Avg.
CI": Average confidence interval of mean. "PVSs": Number of
PVSs in test.)

DB-ID Display N Avg.
Correl

Avg. CI PVSs

P2SVL01 TV 30 0.82 0.25 185
P2SVL02 Mobile 24 0.82 0.26 186

P2SVL03 Mobile 21* 0.82 0.30 186
P2SVL04 Mobile 24 0.88 0.28 195
P2SVL05 TV 25 0.87 0.28 194
P2SVL06 TV 24 0.89 0.26 191
P2SVL07 TV 25 0.86 0.26 188
P2SVL08 PC 27 0.82 0.29 195
P2SVL09 TV 28 0.81 0.28 191
P2SVL10 TV 26 0.86 0.21 195
P2SVL11 TV 24 0.87 0.27 195
P2SVL12 Tablet 24 0.84 0.20 195
P2SVL13 TV 26 0.84 0.25 187

*
Extra subjects were removed from this database due to file copying bugs.

Database was kept since correlation and CI was deemed ok after extensive
analysis.

TABLE 6. Proportions of different parameters in validation
databases.

Parameter Type Parameter Value Proportion

Codec
H.264 34%
H.265 33%

VP9 33%

Coding Type (per codec)

1-pass encoding 20%
2-pass encoding 65%

crf encoding 7%
online services 8%

Encoding Presets
ultrafast,veryfast,fast 10%

medium 75%
veryslow,slow,slower 15%

Frame rate
15 fps 3%

24/25/30 fps 81%
50/60 fps 16%

Resolution

240p 4%
360p 10%
480p 10%
540p 10%
720p 13%

1080p 18%
1440p 20%
2160p 15%

cipally be compatible with the modular P.1203 model ar-

chitecture [48, 38, 74]. Accordingly, besides video quality

estimates for sequences of between 5 to 10 sec duration as the

primary model output, all models also provide per-1-second

video quality scores on a 5-point scale.

It is noted that this continuous score can be considered as

a memoryless instantaneous score, related with but concep-

tually different from the instantaneously rated quality as it

has been assessed, for example, in [8, 9, 17, 18, 19]. In such

studies, test subjects typically rate quality on a continuous

scale with a slider, following perceived quality over time.

A corresponding test method is SSCQE (Single Stimulus

Continuous Quality Rating), see ITU-R BT.500 [27]. Here,

ratings are dependent on the quality at previous times of the

same viewing session, and hence comprise aspects of human

memory.

The memoryless instantaneous score, provided per-1-

second by the P.1204.X models – and also their FHD

bitstream-based predecessor P.1203.1 – do not include these

memory effects, for a reason. As they are quasi memory-less,

they can be used continuously regardless of the prior history
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FIGURE 3. Processing chain flowchart.

of quality in a given session. With a model that predicts in-

stantaneously rated quality, there is no time-shift invariance,

since memory will differ depending on when the viewing is

considered to have started. Instead, with the chosen per-1-sec

scores, memory and longer-term integration can be addressed

at a later stage by a suitable quality integration module, such

as P.1203.3 [50, 14, 74], possibly together with according

per-1-second audio-quality data, as well as initial loading

delay and stalling information.

An illustration of the three P.1204 models and their corre-

sponding input information is shown in Figure 4.

As can be seen from the diagram, information about the

device used is available to all three model types (i.e., PC/TV,

tablet, mobile). Further, the P.1204.3 bitstream model uses in-

put information obtained from parsing the encoded bitstream.

The P.1204.3 model algorithm and the bitstream information

that the model requires are summarized in Section V-A. An

open-source implementation including the bitstream parser is

available, see [42]. The P.1204.4 pixel-based RR/FR model

requires both the processed-pixel and reference-pixel in-

formation as input. Details about the model algorithm are

given in Section V-B. The hybrid NR model P.1204.5 uses

video metadata such as the codec used, resolution, framerate

and bitrate together with the processed-pixel information as

input. The algorithm of the hybrid model is described in
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FIGURE 4. Model outline for the three different P.1204 model
variants P.1204.3, P.1204.4 and P.1204.5 and their respective
input information.

detail in Section V-C.

A. BITSTREAM-BASED MODEL: P.1204.3

The bitstream model P.1204.3 consists of two parts, a "para-

metric" model part based on arithmetic functions mapping

input parameters to quality, and a machine learning model

part. The two parts are described in detail in the following

sections.

1) Parametric part – Core Model

The parametric part of the model, also referred to as “Core

Model”, follows the principle of degradation-based model-

ing, as used for example in ITU-T Rec. P.1203.1 [37, 38].

The general idea is that video quality can be modelled as

the subtraction of different video degradations from a quality-

value for a pristine presentation. Three different degradations

are considered in this model: quantization degradation Dq ,

upscaling degradation Du and temporal degradation Dt. All

degradation values are expressed on a scale from 0 to 100,

following the impairment principle underlying the “Trans-

mission Rating Scale” of the so-called E-model, a planning

tool for speech-quality assessment [103]. This mapping from

the 5-point ACR scale to the 100-point scale is performed to

compensate for the known compression of the 5-point ACR

scale at its ends, which is due to, among others, the avoidance

of extreme ratings by subjects (see e.g. [104]).

a: Quantization Degradation: Dq

Quantization degradation relates to the observable coding

degradations that are introduced due to the chosen quanti-

zation settings during the encoding process and is usually

visible as blockiness or deblocking-filter-related blurring to

the end-user. The Core Model handles Dq separately per

codec.

First, the variable quant is defined as a function of the

quantization parameter by

quant =
QPnon−Iframes

QPmax

, (7)
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where QPnon−Iframes is the average of the Quantization

Parameter (QP) for all non-I frames for an entire segment,

and QPmax is the maximum quantization parameter. The

number of codec categories is extended from the initial

three (H.264, H.265, VP9) to five, by including the bit-depth

information and splitting H.264 and H.265 into 8- and 10-

bit variants. Here, QPmax is codec- and bit-depth-dependent,

using 51 for the 8-bit variant of H.264 and H.265, 63 for the

10-bit variant of H.264 and H.265, and 255 for VP9. The

calculation results in a scaled value quant ∈ (0, 1]. This

value of quant is used to estimate an intermediate quality

value resulting from encoding mosq , using a parametrized

exponential function,

mosq = a+ b · exp(c · quant+ d). (8)

with mosq ∈ [1, 5].
Finally, mosq is converted to a degradation Dq_raw, using

the inverse-S-shape mapping function RfromMOS to map

the 5-point ACR scale to a 100-point scale, similar to the one

used in the E-model, see ITU-T Rec. G.107 [103].

Dq_raw = 100−RfromMOS(mosq) (9)

The final Dq value is the result of clipping Dq_raw to the

range [0, 100],

Dq = max(min(Dq_raw, 100), 0). (10)

b: Upscaling Degradation: Du

Besides the one for coding degradation, the Core Model

comprises a component for resolution upscaling degradation.

In general, an upscaling degradation results from upscaling

the distorted video to the screen resolution during playback,

which can be perceived by an end-user as blurriness. In

the real-world streaming scenario, upscaling is typically per-

formed by the player software, where streaming resolutions

lower than the target screen resolution typically are a result

of the adaptive streaming of bandwidth-dependent represen-

tations. In the model development process, this degradation

was assumed to be codec-independent.

First, the factor fscale is calculated as the ratio of the

number of pixels Ncoding at coding resolution to the number

of pixels Ndisplay at display resolution,

fscale = Ncoding/Ndisplay, (11)

with Ndisplay = 3840 × 2160 for PC/TV display and

Ndisplay = 2560 × 1440 for mobile/tablet. Ncoding is the

number of pixels of the encoded video. The factor fscale
is always limited to fscale ∈ (0, 1]. Next, the upscaling

degradation Du_raw is calculated based on the scaling factor

fscale by

Du_raw = x · log(y · fscale) (12)

and then clipped to the range [0, 100] by

Du = max(min(Du_raw, 100), 0). (13)

Here log denotes the natural logarithm, and x and y are

device-specific coefficients determined during model train-

ing.

c: Temporal Degradation: Dt

The third degradation type considered by the Core Model is

based on lower framerate representations as a possible means

of streaming adaptation and subsequent adjustment to the

used display, which may be perceivable as jerkiness. Similar

to upscaling Du, we handle this in a codec-independent

fashion.

First, a frame rate factor cframerate ∈ (0, 1] is calculated

as the ratio of coding frame rate fpscoding to the fixed display

frame rate fpsdisplay = 60,

cframerate =
fpscoding
fpsdisplay

. (14)

Next, the temporal degradation Dt_raw is computed based on

the frame rate factor by

Dt_raw = z · log(k · cframerate) (15)

and then clipped to the range [0, 100] using

Dt = max(min(Dt_raw, 100), 0). (16)

Here, z and k are device-specific coefficients.

d: Prediction and Model Coefficients

The quality prediction Qp,0−100 of the parametric part on the

[0, 100]-scale is given by subtraction of all three degradations

from the maximum quality,

Qp,0−100 = 100− (Dq +Du +Dt). (17)

The final prediction Qparametric is given by a further rescal-

ing to a 5-point MOS-scale, the details of which can be found

in [52].

During training of the model, the subjective scores were

linearly mapped to a 4.5-point scale from the 5-point scale in

order to avoid information loss due to the RfromMOS and

MOSfromR computations, since both of these mapping

functions assume that the highest MOS that can be reached

is 4.5. As a final step, the predictions on the 4.5-point scale

were mapped back to the full 5-point scale range using a

simple linear transformation, the details of which can be

found in [52].

The coefficients for both the PC/TV and mobile/tablet

cases are reported in the corresponding ITU-T standard ITU-

T Rec. P.1204.3 and in the open-source model implementa-

tion6, see [42, 52].

6https://github.com/Telecommunication-Telemedia-Assessment/
bitstream_mode3_p1204_3
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TABLE 7. Aggregated features for RF model.

Aggregated Feature Type

Framerate float
Resolution (width × height) of the distorted video int
Codec (H.264, H.264_10bit, H.265, H.265_10bit, VP9) boolean
Qparametric float

Mean bitrate per segments float
Maximum frame size int
Kurtosis of the non-I frame sizes float
Standard deviation of frame size of non-I frame in bits float

Quant (Quant =
QPnon−Iframes

QPmax
) float

IQR of the average QP of non-I frames float
IQR of the minimum QP per frame float
Kurtosis of the average QP of non-I frames float
Mean of the average QP of non-I frames float
Standard deviation of maximum QP of non-I frames float

Kurtosis of the average motion per frame over all frames in a segment float
Minimum standard deviation of motion in the x-direction (horizontal
motion) per frame

float

2) Machine-learning-based Video Quality Model

The second part of the model uses a machine learning ap-

proach to estimate video quality. This part of the model is

used mainly to estimate the “residual”, that is, the part of

the MOS that the parametric Core Model part is unable to

predict. Hence, the target for the training of the machine

learning part of the model is the residual

Rtarget = MOS −Qparametric. (18)

Random Forest (RF) regression is used to predict the

residual. Two different RF models are trained, one for PC/TV

and mobile/tablet cases. The model output is the predicted

residual Rpred.

Features such as the average motion per frame, motion

in the x-direction (horizontal motion) and frame sizes with

frame types are used in addition to the features of the para-

metric, Core Model part. The rationale behind this is that

the parametric part is not able to fully incorporate spatio-

temporal content complexity of the video sequences. Further,

encoding-specific choices for certain bitstream representa-

tions cannot completely be captured by QP, framerate and

resolution alone. The RF model also uses the parametric

part’s prediction Qparametric as an additional feature. These

features are aggregated according to different functions and

used as input to the random forests. These aggregations are

presented in Table 7. The Random Forest model used 20 trees

with a fixed depth of 8. The final Random Forest quality

prediction Qrandomforest is given by

Qrandomforest = Qparametric +Rpred. (19)

Hence, it is the addition of the predicted residual value Rpred

to the parametric prediction Qparametric.

3) Overall Video Quality Prediction

The final predicted quality Q of the model is then the convex

linear combination of the prediction Qparametric from the

parametric part and the prediction Qrandomforest from the

machine learning part,

Q = w ·Qparametric + (1− w) ·Qrandomforest (20)

In the presented model, equal weights, thus w = 0.5, are

assigned to both of the predictions, shown in Eq. 20.
In addition to the per-segment scores, the model also

predicts the per 1-sec scores. The specific details of the per

1-sec score calculation can be found in the corresponding

standard [52].

B. PIXEL-BASED MODEL: P.1204.4

This section describes the reduced-reference pixel-based

model P.1204.4. A reduced-reference model is a special form

of full-reference model. In a full-reference model, quality Q
of a test video v – called degraded video – is estimated by

a function G depending on the degraded video v and on the

reference video vref ,

Q = G(v, vref ). (21)

In the reduced-reference case, the function G depends on the

reference through features fref of the reference vref only.

The features are extracted by the reference-feature extraction

function φ,

fref = φ(vref ), (22)

and there is a restriction on the size of the features. The

quality of the degraded video is estimated by function G′ by

Q = G′(v, fref ). (23)

The reference features fref are sometimes called the side in-

formation, as in an operational setup this information can be

transmitted over a side-channel to the measurement device.
The following description contains the main ideas of the

reduced-reference model. The full details can be found in

ITU-T Rec. P.1204.4 [53], together with the values of con-

stants and parameters used in this description.

1) Overview
The general computation steps are presented here slightly

simplified to outline the overall ideas. For the video frames of

the test video and the reference, a multi-resolution pyramid of

the Y-component is computed. For each resolution, an edge

representation is determined. Local patch statistics based

on this edge representation are computed, where the local

patches are local both in space and orientation. Based on

patch statistics, relative feature values are determined: the

feature value of the test video is measured relative to the

reference feature. Features computed per video frame are

converted to a common scale with values in [0,1], measuring

degradations, D0, D1, .., such that larger values correspond

to stronger degradations and lead to lower quality. This con-

version uses S-shaped parametrized transformations Spar :
R

+ → [0, 1], mapping values from the positive real numbers

to the unit interval. Aggregated, the quality Q is given by a

multiplication of the form

Q =
∏

i

(1−Di) (24)
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to account for interactions between different degradations.

Besides a temporal degradation accounting for low frame

rates, main degradations are spatial degradations based on a

common edge feature described in the next paragraph.

2) Edge Representation

Let Y denote the Y component of a video frame for a given

resolution, a matrix, with the indices denoted by i, j in the

following. Features based on edge orientation and strength

are computed. To reduce the complexity of the algorithm,

edges are computed using the simplest possible filter: by

difference of adjacent pixels. The resulting pixel difference is

compressed using an inverse tangent function. A normalized

edge representation is computed in the following way: Let

R[i, j] denote the edge strength at a spatial position (i, j) of

the frame and φ[i, j] the orientation, the angle of the edge. Let

S[i, j] denote the average edge strength at the two positions

at a fixed distance ∆ of the point (i, j) on a line perpendicular

to the edge.

The normalized edge strength Z is computed as the ex-

ceeding of the center edge strength above the lateral average

S[i, j], relative to the sum of center and lateral edge strength,

Z[i, j] =
max(0, R[i, j]− S[i, j])

c+R[i, j] + S[i, j]
. (25)

Here, the strictly positive value of c avoids a division by zero.

The lateral inhibition by S is twofold, in the numerator by

subtraction, and by inclusion in the denominator.

3) Patch Statistic

Based on the normalized oriented edge statistic computed

at different resolutions, local patch statistics are computed.

Patches are determined in a continuous way using a partition

of unity in the spatial domain, and a partition of unity in

orientation. For each of these local patches, a statistic is

computed. In more detail, a partition of unity is a family of

positive continuous [0, 1]-valued functions (θk)k=0,,,L−1 for

some integer L having
∑L−1

k=0 θk = 1. A family of patches

(Pmnk) is computed using the partition of unity (Ψmn) in

the spatial domain and the partition (θk) in orientation, i.e.

a partition of unity on the unit circle. For orientation index

k, and location indices m,n, a local patch P is computed by

multiplication of the spatial partition, the orientation partition

and the edge strength

Pmnk[i, j] = Ψmn[i, j] · Z[i, j] · θk(φ[i, j]). (26)

A patch statistic smnk is computed as the average over all

values of Pmnk above a fixed quantile q,

smnk =
∑

i,j

Pmnk[i, j], (27)

where the sum runs over all indices i, j with Pmnk[i, j] > q.

The patch statistics are also called patch features. The value

of q depends on the resolution at which the patch statistic

is computed. The values of smnk are determined by the

strongest edges of similar orientation at a close location. In

particular, at high resolutions, there is a relation between the

values of smnk and the sharpness, or the loss of sharpness

due to up-scaling of the video.

Hence, at highest resolution, the sharpness statistic ssharp
is computed as the average over all patch statistic values

above the q = 0.95 quantile, independent of spatial location

and orientation.

These patch statistics smnk, computed at a fixed medium

resolution, the sharpness statistic, together with the frame

timestamps constitute extracted features of the video se-

quence.

For the reference video, the patch statistics, the sharpness

statistics, together with the display time of each frame corre-

spond to the extracted features fref of equation (22). These

features can be computed based on the reference only. Thus,

for a fixed reference, these features need to be computed just

once and can be stored. All degraded videos having the same

reference can be evaluated by using only the stored features

of the reference. These features take at most 32kB for each

second of reference video duration.

4) Quality Prediction

Relating patch statistics of the degraded video to those of the

reference allows estimation of degradations. Missing details,

blurriness of the test video show up in patch statistics having

lower relative values. On the other hand, blockiness, de-

formed details as a result of strong compression can lead to an

increase in patch statistics values. In particular, it can change

the orientation of strong edges locally due to deformed details

or blockiness. Thus, the orientation sensitivity of the patch

statistics is important to measure an increase and decrease

of relative patch features at the same time. The perception

of degradations due to missing details and blurriness can

be quite different from deformed details and blockiness.

Therefore, the relative patch features are decomposed into

a positive and a negative part. Either degradation part is

mapped with a different S-transformation onto the quality

scale, whose product according to equation (24) determines

the overall quality.

Quality prediction is based on four spatial degradation

measures: increase and decrease in patch feature values at

a fixed medium resolution are the first two. Based on patch

feature values at the highest resolution, sharpness is com-

puted, and a decrease and increase in sharpness are the other

two degradation measures. In more detail, the decrease of

sharpness statistic ssharp of the test video relative to the

sharpness statistic rsharp of the reference, is computed as

srel_sharp = min

(

1,
ssharp + cs
rsharp + cs

)

, (28)

where a constant cs > 0 avoids a division by zero. Similarly,

a fourth degradation measure determines the increase in

the relative sharpness statistic. These degradation measures

correspond to D1, ..D4 in equation (24).

This presentation is simplified, as perceptually and in the

model, the estimated degradation is a function on the amount
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and spatial distribution of edges. In particular, a relative

degradation close the border of the frame is weighted less

than in the center, as attention is rarely driven to the border

area. Further, a weighting based on motion and luminance is

included.

Besides relative degradations estimated based on patch

statistics, there is a degradation measure d0 determining the

impact of low framerates, as a function of display time of

each frame and motion in the video sequence. As framerates

below 24 fps are rare nowadays, the impact of this last

"jerkiness"-type degradation measure is minor. Each degra-

dation is computed per-frame: the product of equation (24)

computes a per-frame quality in the range [0, 1]. This per-

frame quality is non-linearly aggregated to an overall video

quality. This non-linear aggregation takes into account that

low quality can have a stronger impact on the overall quality

than what is achieved by a linear aggregation. Finally, the

overall quality is rescaled to the MOS range [1, 5]. In addition

to the overall quality, the model outputs a per 1-second score,

which is the average per-frame quality over the 1-sec interval.

Model parameters were optimized for two different view-

ing conditions: a viewing condition using a small relative

viewing distance representing a TV set or PC monitor setting,

and a viewing condition representing a mobile use case with

a smartphone display. The model can provide predictions for

intermediate viewing distances by interpolation within the

core model.

C. HYBRID MODEL: P.1204.5

Next, the hybrid no-reference model ITU-T Rec. P.1204.5

will be described [54]. The input for the hybrid model in-

cludes

• raw pixels as seen by the test subjects: i.e., decoded and

up-scaled video degV id
• bitstream metadata information: type of encoder (H.264,

H.265 or VP9), encoded video bitrate, encoded video

resolution, encoded video framerate and the display

resolution

The performance of the hybrid model was assessed with

respect to three models, namely, the baseline model, the best

pixel-based no-reference model working using the pixels of

the decoded and upscaled video, the best bitstream model of

the corresponding category (in this case Metadata Mode 0

model).

The hybrid no-reference model presented in this section

has a 4-parameter logistic a-like function which for a given

encoder maps average bitrate based feature x to an intermedi-

ate quality prediction S, where x is computed for each video

segments of fixed resolution and framerate.

S = a ·

(

1− exp(−d · (x− c))

1 + exp(−b · (x− c))

)

. (29)

Note that the above function without the term (1− exp(−d ·
(x− c))) is exactly the logistic function, where the constants

a, b and c determine the saturation point, decay rate and shift

of the quality curve with respect to x. The additional term

(1 − exp(−d · (x − c))) is introduced to add a faster decay

of the curve towards lower values of x, where the constant d
determines the decay factor of this additional decay term.

The constants a, b and c of the above equation are further

functions of the three quantities, namely, the framerate, en-

coded resolution and the content complexity.

1) Definition of x

For a metadata-only model, bitrate carries the most important

information about the quality of the video. However, bitrate

only makes sense together with the information of encoder

used and the encoded chroma subsampling format. This is

because different encoders offer different compression effi-

ciency and different chroma formats, due to their different

size of the raw color information, may yield slightly different

encoded bitrates. Let bitrate be defined in kilobits per second,

then x is defined as:

x = log10(bitrate · exp(−h0 · (r − 1))), (30)

where r has a different value for each chroma subsampling

format. Precisely, r have values 1.0, 2/1.5, 5/4 and 5/3 for

YUV420-8buit, YUV422-bit, YUV420-10bit and YUV422-

10bit chroma subsampling modes, respectively. h0 > 0 is

a codec-specific constant. In other words, the raw bitrate is

adjusted depending on the actual chroma format of degV id.

Additionally, log10 is used to compress the range of the

adjusted bitrate values.

2) Impact of Encoded Framerate on Quality

a in Eq.29 is an increasing function of the framerate. This

is because high framerate yields a smoother representation

of motion and hence a higher quality compared to low

framerates. However, higher framerate means more frames

to be encoded, which in turn means higher encoded bitrate.

Hence, the quality curve shifts slightly to the right for high

framerates. In other words, c increases with framerate. On

the other hand, quality decay rate with regard to the bitrate

increases for lower framerates, because low framerate brings

more jerkiness in the represented motion, and hence b is a

decreasing function of the framerate. The above understand-

ing of the trend of the quality curve as functions of framerate

(fps) can be formulated as:

a′ = a0 − af ·

(

60

fps

)

(31)

b′ = b0 + bf ·

(

60

fps

)

(32)

c′ = c0 − cf ·

(

60

fps

)

, (33)

where af > 0, bf > 0 and cf > 0 are codec-specific

constants. a0, b0 and c0 are codec-specifc initial values.
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3) Impact of Encoded Resolution on Quality

The quality curve for a higher resolution saturates at a higher

MOS and at higher bitrate values, so like the framerate case, a
and c are also increasing functions of the encoded resolution.

However, unlike framerate, quality decay reduces for lower

resolution, i.e., the quality versus bitrate curve for a lower

resolution is generally flatter compared to a higher resolution.

Hence we can say that b is an increasing function of the

encoded resolution. The above understanding of the trend of

the quality curve as functions of encoded resolution can be

formulated as

a′′ = a′ − as · log10(ua · (fscale − 1)) (34)

b′′ = b′ − bs · log10(ub · (fscale − 1)) (35)

c′′ = c′ − cs · log10(uc · (fscale − 1)), (36)

where all constants in the above equations are codec-specific

positive constants. The factor fscale is defined as:

fscale = max

(

Wd ·Hd

We ·He

, 0

)

, (37)

where Wd ·Hd and We ·He define the display and encoded

resolutions, respectively.

4) Impact of Content Complexity on Quality

Content complexity perhaps plays the most important role in

determining the saturation points, decay rate and the shift of

the quality curve of Eq.29. A simple content, for example,

involving talking heads, is much easy to compress compared

to a more complex content involving high motion or fast

camera movement.

Traditionally, the content complexity is categorized us-

ing spatial information (SI) and temporal information (TI)

features [28]. These measures require the availability of the

original reference video to categorize the source complexity.

Being no-reference, the standardized hybrid model only uses

the pixels of the decoded signal which will have all the

distortions, hence such a SI/TI characterization will not be

accurate.

Moreover, these measures do not reflect the spatial and

temporal complexity from the encoders point of view. For

example, if we consider a video capturing only the translation

motion of an object, TI will reflect temporal activity. How-

ever, for encoders it is still a low temporal complexity scene,

as the motion compensation can perfectly capture the simple

translation motion of the object. Similarly, fairly regular

spatial features in a video image can be easily predicted

using the intra prediction components in the encoder, while

SI may suggest a higher spatial activity for such frames.

So it is important that an encoder-consistent view of the

content complexity is employed to make a quality prediction

of encoded videos.

The standardized P.1204.5 hybrid model employs a VP9-

based content complexity characterization feature. Using the

constant rate factor (CRF) coding recipe of the VP9 codec,

the degV id is encoded at a certain quality Q to an encoded

file degV idEncoded, where Q is an unknown quality value

resulting from the CRF encoding of degV id at CRF value

of 32. The bitrate of the resulting degV idEncoded is nor-

malized with respect to framerate and resolution to create a

content complexity feature Ccomplexity . The idea is that with

a higher content complexity, videos will require higher bitrate

to encode to the quality Q. Similarly, a lower-complexity

content will require lower bitrate to achieve Q. This way,

the VP9 codec can be used as a tool to obtain an encoder-

consistent view of the content complexity.

It is known that the quality of a high-complexity source

decays fast with regard to the bitrate compared to a low-

complexity source. This is because complex videos are more

susceptible to blocking artifacts compared to low-complexity

videos. Hence, b is an increasing function of the source

complexity. Since a higher-complexity video requires more

bits to achieve the same quality than a low complexity

video, c is an increasing function of the source complexity.

As for the saturation point a is concerned, the higher the

content complexity, the lower the saturation point. The above

understanding of the trend of the quality curve as functions

of content complexity can be formulated as

a = a′′ − ak · Ccomplexity (38)

b = b′′ + bk · Ccomplexity (39)

c = c′′ + ck · Ccomplexity, (40)

where ak > 0, bk > 0 and ck > 0 are codec specific

constants.

Equations 31 to 40 can be additively combined to yield

values of a, b and c, which can then be used to compute the

quality S for a certain video codec using the Eq.29.

5) Impact of Display Device on Quality

The standard model has two sets of model coefficients,

one set for the PC-Monitor/TV displays and the other for

Tablet/Mobile displays. This is logical as subjects may assess

the quality differently on different devices. Quality assess-

ment on PC-Monitor and TV was quite consistent, hence

these devices were not dealt with separately at the coefficient

level. The same is true for the Tablet and Mobile display type.

A final linear mapping accounts for slight variation in quality

prediction between PC-Monitor and TV, and the Tablet and

Mobile cases. Q, where 1.0 ≤ Q ≤ 5.0, is the actual model

prediction output.

Sd = m · S + g (41)

Q = min(5,max(1, Sd)), (42)

where Sd denotes the device-based mapped quality. The table

below reports the slope m and offset g values for the linear

mappings for different devices.

18 VOLUME xxx, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3032080, IEEE Access

Raake et al.: Multi-model standard for bitstream-, pixel-based and hybrid video quality assessment of UHD/4K: ITU-T P.1204

TABLE 8. Linear mapping coefficients for device separation.

Device m g

PC Monitor 0.967 0.153
TV 1.051 -0.187

Mobile 0.942 0.146
Tablet 1.080 -0.330

In addition to per-segment score, the model also produces

per 1-sec scores, which are directly derived from the per-

segment score. The specific details of the per 1-sec score

calculation can be found in the corresponding standard [54].

VI. MODEL PERFORMANCE
In this section, the prediction performance of each of the

three models is presented. To evaluate the models, two dif-

ferent categories of databases were considered, namely the

competition databases and open databases. The competition

databases consist of the training and validation databases

developed during the course of the P.NATS Phase 2 project

within ITU-T/VQEG. The open databases are publicly avail-

able ones, which can be further categorized into two types

• Databases developed during the competition: For these

databases the HRCs are developed with a similar design

philosophy as the P.NATS Phase 2 databases, and can be

used to evaluate other models in comparison, in contrast

to the proprietary standardization databases.

• Completely independent databases, which are available

from external sources. The HRCs of such databases can

be designed with focus on a particular aspect of the

application area.

The evaluation on complementary open databases is done

to ensure that the model-performance evaluation is repro-

ducible.

As a first step to evaluate the performance of the models,

the P.NATS Phase 2 training and validation databases are

used. To start, the output of the baseline model is plotted in

comparison to the mean subjective scores (MOS) in the scat-

ter plot shown in Fig. 5a. For each database, a linear mapping

was used to map the model output to the subjective scores,

to normalize the scale of the subjective databases, following

[97]. Further details on this normalization step are given in

Sec. III-B. The figure shows the mapped model output with

respect to the MOS for the 13 validation databases.

The x = y line depicts the ideal prediction line, for the

theoretical case of perfect agreement between model output

and subjective MOS scores for each tested video. The indi-

cated right boundary line corresponds to under-predictions of

the subjective scores by 1 MOS. Similarly, the left boundary

line corresponds to over-predictions of 1 MOS. It can clearly

be seen that the baseline model has a significant number

of points falling away from the ideal prediction line. The

prediction is particularly bad for lower MOS values. Fig. 5b

depicts the probability distribution function (PDF) of the

prediction error. For the computation of the PDF, a bin size

of 0.05 is used. Note that the prediction error for the baseline

model is not symmetric. The PDF indicates that the baseline

model over-predicts quality when compared to the MOS. The

over-prediction is particularly high for lower MOS values –

see the model prediction for the MOS range 1.0 to 2.5 in Fig

5a. This means that despite the per-database mapping, the

baseline model does not have a neutral, unbiased scale for

MOS prediction.

Figures 5c, 5e, and 5g depict the scatter plots for the

winning bistream, pixel-based RR and Hybrid model can-

didates, recpectively. As discussed in Sec. III-A, the ini-

tially submitted model candidates were optimized before

final standardization. Only the points for the 13 validation

databases are shown in the scatter plots. For all three winning

candidates, a large majority of points lie close to the ideal

prediction line. There are some outlier cases for each of the

three models. However, in general the prediction is signifi-

cantly better compared to the baseline model. Additionally,

the points are roughly equally spread along the two sides

of the ideal prediction line. This can be confirmed by the

roughly symmetric nature of the prediction error PDF plots

of the three models shown in 5d, 5f, 5h. Moreover, from

the three scatter plots it is evident that the models have a

fairly neutral model scale for prediction of normalized MOS

quality. Like for the baseline model, a MOS normalization

was performed using a per-database linear mapping (based

on [97], see Sec. III-B).

After the model-validation phase, which determined the

winning models for each model category, the model coef-

ficients for the three winning models for the three model

categories were then re-optimized based on a cross-validation

strategy (cf. Sec. III-A). Note that the submitted models

were trained on the training databases identified by the prefix

"P2STR" and validated on the databases identified by the

prefix "P2SVL", see Tables 4 and 5.

The model re-optimization was done using a 5-fold

cross validation. First, from the 26 databases, five splits of

databases were created, each split containing 13 training and

13 validation databases. The following procedure was used

to define the splits:

• Firstly, a level of prediction difficulty for each database

was determined using the average RMSE of three mod-

els for that database. A lower average RMSE means the

database is easy to predict while a high average RMSE

means the database is difficult to accurately predict

quality.

• Following this, 5 sets of 50 : 50 training-validation

split were determined by ensuring that (a) splits have

least similarity with each other, i.e., minimum overlap of

databases between different splits, (b) for each split, the

overall prediction difficulty of training databases is not

very different from the one for the validation databases.

(a) ensures that coefficients for models trained on dif-

ferent cross-validation splits are different, while (b)

ensures that the trained models will generalize well for

validation databases.
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(f) Error PDF, pixel RR model
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(h) Error PDF, hybrid model

FIGURE 5. Scatter plots of MOS vs the predicted scores and error probability distribution function (PDF) for the baseline model
and the three winning model candidates.
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TABLE 9. Aggregated RMSE on validation and on all databases
(training and validation databases according to (3)) of the
models submitted to the competition, and the standardized (re-
trained) versions of the models.

Model Validation DBs All DBs

Submitted Bistream Model 0.429 0.421
P.1204.3 Standard 0.397 0.394

Submitted Pixel RR Model 0.448 0.444
P.1204.4 Standard 0.415 0.418

Submitted Hybrid NR Model 0.451 0.452
P.1204.5 Standard 0.442 0.440

• For each split, databases of different display types

(TV/PC-Monitor and Mobile/Tablet) have a balanced

representation in the training and validation sets.

Model re-optimization was performed for each of the 5

cross-validation splits. The procedure outlined in Sec. III-B

was used to compute the aggregated RMSE for each split.

The coefficients corresponding to the best performing splits

(the ones with the least aggregated RMSE for the respective

model) have been reported in the final standard documents

[52, 53, 54].

Table 9 reports the aggregated RMSE of the three sub-

mitted models and their standardized versions on the vali-

dation database set and for all databases. When computing

the aggregated RMSE for all (both training and validation)

databases, a 0.1/0.9 training/validation weighting is used, as

explained in Sec. III-B. Note that for the submitted and stan-

dardized models, the actual training and validation databases

are different. As indicated above, for the submitted models,

the training databases are indicated by "P2STR" (Table 4),

and the validation databases by "P2SVL" (Table 5). For the

standardized models, the training and validation databases

were determined by the respective cross-validation split, as

described above. Note that all three models have comparable

RMSE figures when comparing the submitted and the finally

optimized/standardized versions. This confirms that the three

models, already in their submitted versions, provided sta-

ble predictions. The model optimization via cross-validation

only resulted in a slight improvement in the performance of

each model. Since for each model the RMSE of the optimized

version on the validation databases ("VL") is comparable to

the RMSE for the training ("TR"), it can be ensured that the

standardized models generalize well to unknown cases.

In Table 10, the model performance of the submitted ver-

sions of the three models described in this paper is compared

against FR models commonly used in the literature, namely

PSNR, SSIM and VMAF. For each model, a per-database

mapping is used to map the objective scores to the subjective

MOS before computing the performance metrics. For VMAF

and the three models described in this paper, a linear mapping

is used, while for PSNR and SSIM, a 3rd-order polynomial

mapping is used, as PSNR/SSIM are known to show a

non-linear relationship to subjective quality scores. As the

main performance criterion, the RMSE is employed in this

paper also for comparison with other than the standardized

models, reflecting the criterion used for model-performance

evaluation in the P.NATS Phase 2 competition. In addition,

values for Pearson correlation are provided as indicative

information, reflecting the common practice in video quality

model evaluation.

For the computation of Pearson correlation, remapped

scores from all validation databases were pooled together.

Here, all MOS values from different experiments were first

combined to a joint set, then used to calculate correlations.

Note that this is unlike the derivation of the values given

in Table 9, where the RMSE per database was first com-

puted, and then a weighted aggregation of RMSE values was

performed. For both performance metrics reported in Table

10 (left part, "All HRCs"), the proposed models outperform

PSNR, SSIM and VMAF. As can be seen from the results,

VMAF performs better than PSNR and SSIM, which is

expected. The lower performance of VMAF compared to the

proposed models can be partly explained by the fact that

the validation set includes frame-rate reduction HRCs, and

VMAF lacks a feature to handle such cases. This can be con-

firmed when considering the complementary values in Table

10, columns denoted by "HRCs using SRC fps", obtained by

recomputing the two performance figures for VMAF and the

other models for a subset of cases that do not simulate frame

rate reduction, that is, only consider cases where the SRC and

HRC framerates are the same. The performance figure for

VMAF on this subset (right two columns) is better compared

to the full set, while for submitted models roughly show the

same performance as on all data. It is worth pointing out that

frame rate reduction scenarios are quite common in actual

video streaming services. Just to give an example, a 60 fps

4K upload to YouTube will yield HD quality level with 30

fps.

The RMSE on individual validation databases is shown in

the subplots of Fig. 6 for the three models P.1204.3, P.1204.4,

and P.1204.5 as a deviation from the mean RMSE. In each

subplot, the RSME values for PSNR, SSIM and VMAF are

added for comparison. In general, the databases vary in terms

of quality-prediction difficulty, and hence model efficiency

can be different across databases. Moreover, since the three

models use different types of input information and follow

different modeling strategies, it can happen that one model

performs better on one database than other models. Note that

P.1204.3 and P.1204.5, which do not have access to the ref-

erence, have quite similar per-database RMSE distributions

around the mean, while for P.1204.4, the RMSE distribution

is slightly different. For database 10 ("P2SVL10"), P.1204.4

performs much better than the other two models.

A. EVALUATION ON OPEN DATABASES

A performance of the models on the aforementioned open

databases is presented in the following. For this purpose,

two different datasets, namely, AVT-VQDB-UHD-1 [91] and

MCML [92] are considered. To evaluate the model on the
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TABLE 10. Overall model performance of different models on P.NATS Phase 2 validation databases only (the ones with prefix
"P2SVL"). Left: All HRCs. Right: Only HRCs where the HRC framerate corresponds to that of the SRC.

Model All HRCs HRCs using SRC fps
RMSE Pearson Spearman RMSE Pearson Spearman

PSNR 0.716 0.630 0.615 0.688 0.625 0.609
SSIM 0.648 0.609 0.704 0.580 0.665 0.725
VMAF 0.611 0.761 0.773 0.548 0.794 0.790

P.1204.3 0.422 0.899 0.883 0.429 0.891 0.875
P.1204.4 0.441 0.889 0.872 0.440 0.884 0.864
P.1204.5 0.448 0.885 0.880 0.447 0.880 0.871

FIGURE 6. Model prediction error (RMSE) per validation dataset. Plotted is the prediction error for the submitted models P.1204.3
(red, left), P.1204.4 (green, middle), P.1204.5 (blue, right), and on all three subplots PSNR (purple), VMAF (orange), and SSIM
(brown). For each model, the bars show the deviation from the mean prediction error. It can be seen that the prediction error for the
models P.1204.x is lower than the prediction error of VMAF and PNSR.

TABLE 11. Details of the additional databases used for model validation.

Test 1 Test 2 Test 3 Test 4 MCML

Sources 6 6 6 6 10
Codecs 3 (H.264, H.265,

VP9)
2 (H.264, H.265) 2 (H.265, VP9) 1 (H.264) 3 (H.264, H.265, VP9)

Resolution 4 (360p, 720p,
1080p, 2160p)

4 (360p, 720p,
1080p, 2160p)

4 (360p, 720p,
1080p, 2160p)

6 (360p, 480p, 720p.
1080p, 1440p, 2160p)

2 (1080p, 2160p)

Framerate 1 (60 fps) 1 (60 fps) 1 (60 fps) 4 (15, 24, 30, 60 fps) 1 (30 fps)
PVSs 180 192 192 192 250
Participants 29 24 26 25 25
Display 65" (Panasonic) 55" (LG OLED) 55" (LG OLED) 55" (LG OLED) 84" (LG 84LM9600)

AVT-VQDB-UHD-1 database, only samples for which the

source video was available were considered. Due to limited

digital rights for some sources, not all sequences could be

made available. This resulted in considering 432 out of 756

samples for this part of the evaluation. The resolutions that

were used in this dataset range from 240p to 2160p and

framerates from 15 fps to 60 fps. Three codecs, namely,

H.264, H.265 and VP9 were used to encode the videos.

libx264, libx265 and libvpx were the encoder implemen-

tations used for H.264, H.265 and VP9 respectively. This

database consists of four different subjective tests that are

denoted as Test 1, Test 2, Test 3 and Test 4 in Tables 11

and 12.

The four sets use similar conditions (HRCs) as in the

P.NATS Phase 2 databases. Contrary to the P.NATS Phase

2 databases, the four sets use a full-matrix design with a

smaller number of source videos, which can explain the large

variation in RMSE values among the sets. These databases

were developed during the competition and use the same

HRC design philosophy as the P.NATS Phase 2 databases,

that is, a similar processing chain and FFmpeg-based encod-

ing algorithms.

As a completely independent database, the MCML

databases by Cheon et al.[92] is considered for model evalua-

tion. This database consists of 250 samples (240 compressed

and 10 reference videos) that are used for evaluation. It
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should be noted that the samples span only two resolutions

namely, FHD and 4K UHD with a framerate of 30fps. This

database uses different encoder implemenatations than the

ones used for the P.NATS Phase 2 databases. For the case

of H.264/AVC, the JM reference software version 18.5 was

used, while for H.265, the HM reference software version

10.0 was used. The libvpx software version 1.3.0 was used

for VP9 encoding and decoding. More detailed information

of these two datasets is provided in Table 11.

TABLE 12. Model validation on additional databases – RMSE
figures.

Model Test 1 Test 2 Test 3 Test 4 MCML

VMAF 0.459 0.448 0.588 0.631 0.340

P.1204.3 0.270 0.222 0.328 0.501 0.378
P.1204.4 0.341 0.334 0.380 0.420 0.322
P.1204.5 0.239 0.458 0.327 0.371 0.395

VII. MODEL APPLICATIONS
There are a variety of application areas for the standardized

models presented here. Criteria for classification can be

found, for example, in [35]. For the models presented in

this paper, the applications can be categorized in terms of a

set of non-orthogonal factors, such as (1) the target service

to be assessed, e.g. on-demand streaming, live-broadcast,

interactive, real-time communication etc., (2) the goal of the

assessment, such as encoding ladder derivation or holistic

service or network monitoring, (3) the implementation of the

assessment approach, considering the locations of the quality

model and of the probe for input data acquisition along the

distribution chain, (4) whether the assessment takes place

during service operation in a non-intrusive, that is passive

manner, or off-line, as active (intrusive) measurement, (5)

the target quality-criterion being assessed, i.e. in the case of

this paper short-term video quality or an integrated quality

reflecting the QoE of a longer session.
In principle, all three models can be applied to a variety

of cases, with somewhat differing implications for the ac-

tual implementation. In the paper, the models are described

in an integrative way that comprises the feature extraction

and quality estimation parts. Generally, implementaions are

conceivable where these parts are distributed and done in

different phyiscal or topological places, with the quality-

estimation itself and the measurement probe for model input

data acquisition implemented in different locations. Accord-

ingly, different "modes of operation" may be distinguished.

Similar to [35], a 2-letter code can be used to describe the

selected approach, one each for the probe and the model

locations. Considering that today’s streaming is typically

operated in end-to-end encrypted sessions, the following dis-

cussion does not include within-network monitoring (based

on encrypted traffic). Hence, for both probe and model,

the possible locations are: (H) Head-end server, in case

that the service-provider is involved in the measurements or

provides quality-related information as side information; (C)

client, which may be the case if any of the involved entities

is running a measurement based on data obtained at the

streaming client; (B) both, where the respective component

is distributed across head-end server or client. A few likely

combinations of probe and model placement are given in

the following. It is noted that further combinations can be

conceived.

HH Probe and model are located at the server site. Pos-

sible applications here are encoding-ladder deriva-

tion or encoder optimization. To this aim, in princi-

ple any of the three models can be used. An RR/FR

model may have the advantage that it may be more

robust against variations of encoder settings. This

assumption has to be substantiated by further re-

search, though.

CC Both model input information acquisition and the

model are run in the client. This is possible for

NR models that have access to all required types of

input information. Depending on the level of access

enabled to bitstream and/or pixel information, the

bitstream-based NR model P.1204.3 or the hybrid

NR model P.1204.5 may be used.

BC Some model input information is provided from the

head-end, some from the client, and the model is

located in the client. An example is the provision

of reference-information to an RR or FR model

such as P.1204.4 running in the client, via a side

channel. Or, short-term quality information for the

current segment may be provided from the head-

end server to an NR-model located in the client via

a side channel, either for short-term quality calcula-

tions using P.1204.3 or P.1204.5, or for longer-term

session QoE assessment together with a quality-

integration component such as P.1203.3 [50].

BH Similar to "BC", where the model input infor-

mation is partly provided from the client, partly

from the head-end. Here, the model is located in

the head-end server. Any of the BC use cases

are similarly possible here. However, a dedicated

example may be quality-monitoring by an over-

the-top (OTT) service provider, whereby reference,

encoded-bitstream or processed-signal information

are acquired at the head-end server site, and client

information is used to indicate which segments are

being played out during streaming. This case could

be realized with any of the three models presented

in this paper, possibly in conjunction with a quality

integration component such as P.1203.3 [50].

In the following, exemplary possible applications are

briefly discussed per model type.

A. APPLICATIONS BITSTREAM-BASED MODEL P.1204.3

The required input information for the bitstream model is

readily available at the head-end site. Consequently, it can

be used for bitrate ladder derivation (HH) or, in conjunction
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with additional information from the client side about the

played out segments, for more holistic service monitoring

(BH). Similarly, the model can be used for real-time quality

derivation at the head-end, delivered as side information to

the client side for such a more holistic service monitoring

(BC). When bitstream information is made available at the

client during decoding, also purely client-side monitoring

can be realized (CC). Since the bitstream model is com-

putationally much less complex than a decoder, real-time

implementations are easily conceivable.

B. APPLICATIONS RR/FR MODEL P.1204.4

The reduced-reference model has three computational parts:

extraction of the features of the reference video, extraction of

the features of the transmitted video, and the score prediction

based on these two sets of features. As full-reference model,

it can be used to e.g. evaluate a codec’s performance, or

estimate a bitrate ladder (see e.g. HH-mode above). An ad-

ditional operational setup for a reduced-reference model is to

compute the reference features at the head-end and transmit

these over a side channel to the client, to predict the scores on

the client side (BC). It is also possible to extract the features

on the client side, and transmit these back to the head-end,

where the reference features are computed and the score

prediction takes place (BH). In such a setup, it can serve as a

monitoring solution. For the evaluation of a fixed reference,

the reference features, which are very small in size compared

to the size of the reference video, can be directly installed

on the client side (specific implementation of BC). The

computational complexity of the reduced reference model is

kept low by design. It is much lower than encoding a video

at medium settings, thus real-time applications are possible.

C. APPLICATIONS HYBRID NR MODEL P.1204.5

Extracting segment-level parametric information (like video

bitrate, codec, resolution and framerate) can be done by

parsing the bitstream header in real-time (i.e., as the segments

are decoded and played out on the screen). For source-

complexity measurement, screen capturing solutions can be

used to capture the frames. These capturing solutions can be

applied to dump the frames of a played out video segment in

CRF encoding format. This way, the hybrid model’s source

complexity feature can be extracted on a per-segment basis

in real-time. These aspect makes the P.1204.5 model suitable

for CC type video quality monitoring applications. Note that

the per-segment content complexity feature can already be

computed offline at the server side and transmitted along a

side channel to the client to realize BC type applications.

Or, the played out segment information can be relayed back

to the server to realize a BH type of applications with the

P.1204.5 model.

VIII. DISCUSSION
It was shown that the three models all are of very high predic-

tion performance across a number of databases. The authors

acknowledge, that due to the standardization framework that

lead to the three models, specific encoder implementations

have been dominant during training and standardization-

related validation. However, performance was shown to be

similarly good also for other test databases, which the models

were either not trained on, or which were completely un-

known.

In comparison to other typical models such as PSNR,

SSIM and VMAF, it was shown that the new standards series

can achieve highly competitive performance. Considering

the fact that none of these models comprise a dedicated

component for the case of frame-rate reduction to lower than

24 fps, model performance was analyzed also for a reduced

set of test cases of higher frame rates. Here, too, the three

new models underlined their competitive performance.

When inspecting performance on specific databases such

as P2SVL10, a somewhat lower prediction performance was

found especially for the two NR-models, the bitstream-based

and the hybrid. This can be explained with the partly un-

common encoding cases included in these specific tests. For

example, with the automatic generation of HRCs, a number

of cases with "ultrafast 2-pass encoding" have been applied.

Since these cases were not present during training, especially

the initially submitted models did not cater as well for the

resulting degradations as they did for the more common

ones. The RR/FR model can better handle this case, since

it is based on a comparison of a degraded sequence with

the reference. In real-life settings, this encoding approach is

likely to never be used, since the two comprised approaches

actually contradict each other.

For the performance comparison with the other metrics

and models PSNR, SSIM and VMAF, it needs to be men-

tioned that these do not comprises a specific framerate or

"jerkiness"-related feature. Hence, in Sec. III-B4, the com-

parison was carried out by considering only the cases for

which the HRC framerate was not different from the SRC

framerate. While especially VMAF performs better in this

case than on the full dataset, overall the three new models

still clearly perform better than the state-of-the-art ones.

Hence, for practical usage scenarios with the encoding

settings common today, all three models may be applied.

Especially due to their high prediction accuracy, the models

can be employed also in case of demanding tasks such as

bitrate ladder derivation, as well as for a variety of other

applications.

IX. CONCLUSIONS AND OUTLOOK
This paper presents the details of the P.NATS Phase 2 compe-

tition that resulted in the P.1204 series of Recommendations

for video quality prediction for sequences of up to 4K/UHD

resolution. Further, the paper provides and evaluation of the

models on open databases, showing the strong performance

also in com parison to other models. An overview of the

competition encompassing the competition procedure, statis-

tical evaluation of the models and the determination of the

winning groups are presented. The descriptions of the three

standardized models, namely, bitstream (P.1204.3), pixel-
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based reduced reference (P.1204.4) and hybrid no-reference

(P.1204.5) indicate key algorithmic modelling concepts. The

models were analyzed to be the best among the submitted

models for the respective model categories in the so-called

ITU-T "PNATS Phase 2" competition, where 9 proponent

companies and research institutions had submitted models.

Extensive model training, validation and optimization phases

were carried out to yield stable model coefficients.

As shown in the paper, the models demonstrate a neutral

prediction scale with regard to the subjective video quality

scores used for validation, as well as a symmetrically dis-

tributed prediction error. The models were first evaluated on

the PNATS Phase 2 databases. Here, it was found that the

prediction performance for all three standardized models is

significantly superior in comparison to the most widely used

open source full-reference metrics PSNR, SSIM and VMAF,

for both mobile and TV display type viewing. To ensure

the reproducibility of the performance analysis of the three

new models and also their applicability to different encoder

configurations, the models were evaluated on open datasets.

Here, too, a high prediction performance could be shown,

also in comparison with the best performing state-of-the-art

model VMAF.

The general application scope of the standardized models

is that of HAS/DASH-type video streaming video quality and

QoE prediction. In particular, the models can be used for

short-term video segment quality evaluation of up to 10 s

duration, or to determine per-1-second video-quality scores

as part of a more holistic QoE evaluation of up to 5 min

long streaming sessions, together with an integration module

such as ITU-T Rec. P.1203.3. The three new short-term video

quality models cover a wide range of settings, for encoding

with either H.264, H.265/HEVC or VP9, and a variety of

video encoding resolutions from 240p to 4K/UHD-1. Based

on the good prediction performance, the paper describes a

number of possible application scenarios for the new models.

As future work, the new model standards can be extended

for different formats such as HDR, higher resolutions (UHD-

2/8K) and framerates (> 60 fps). Moreover, the applicability

of the models for different related use cases such as gaming-

and 360◦-video quality assessment will be investigated. A

further logical extension will be to develop a more optimally

tailored long-term integration model, beyond the existing

ITU-T Rec. P.1203.3, to best combine the short-term video-

quality predictions of the new P.1204 standard series with

DASH/HAS-specific impairments such as quality switching

and stalling.
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quality metrics and performance comparison using different databases”. In:
Signal Processing: Image Communication 28.1 (2013), pp. 1–19.

[60] J. Joskowicz, R. G. S. Bovino, and J. C. L. Arado. “Comparison of
parametric models for video quality estimation: Towards a general model”.
In: IEEE international Symposium on Broadband Multimedia Systems and
Broadcasting (2012), pp. 1–7.

[61] C. Keimel, J. Habigt, M. Klimpke, and K. Diepold. “Design of no-reference
video quality metrics with multiway partial least squares regression”. In:
2011 Third International Workshop on Quality of Multimedia Experience.
2011, pp. 49–54.

[62] A. Raake et al. “T-V-model: Parameter-based prediction of IPTV quality”.
In: 2008 IEEE International Conference on Acoustics, Speech and Signal
Processing. 2008, pp. 1149–1152.

[63] M.-N. Garcia, A. Raake, and B. Feiten. “Parametric audio quality model
for IPTV services-ITU-T P. 1201.2 audio”. In: 2013 Fifth International
Workshop on Quality of Multimedia Experience (QoMEX). IEEE. 2013,
pp. 194–199.

[64] M.-N. Garcia, R. Schleicher, and A. Raake. “Impairment-factor-based au-
diovisual quality model for IPTV: influence of video resolution, degradation
type, and content type”. In: EURASIP Journal on Image and Video Process-
ing 2011.1 (2011), p. 629284.

[65] K. Yamagishi and S. Gao. “Light-weight audiovisual quality assessment
of mobile video: ITU-T Rec. P. 1201.1”. In: 2013 IEEE 15th International
Workshop on Multimedia Signal Processing (MMSP). IEEE. 2013, pp. 464–
469.

[66] ITU-T Rec. P.1201.2. Parametric non-intrusive assessment of audiovisual
media streaming quality - Lower resolution application area. Geneva,
Switzerland: International Telecommunication Union, 2012.

[67] T. Hoßfeld, R. Schatz, E. Biersack, and L. Plissonneau. “Internet video
delivery in YouTube: From traffic measurements to quality of experience”.
In: Data Traffic Monitoring and Analysis. Springer, 2013, pp. 264–301.

[68] T. Hossfeld, D. Strohmeier, A. Raake, and R. Schatz. “Pippi Longstocking
calculus for temporal stimuli pattern on YouTube QoE”. In: Proceedings of
the 5th Workshop on Mobile Video. 2013, pp. 37–42.

26 VOLUME xxx, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3032080, IEEE Access

Raake et al.: Multi-model standard for bitstream-, pixel-based and hybrid video quality assessment of UHD/4K: ITU-T P.1204

[69] M.-N. Garcia, D. Dytko, and A. Raake. “Quality impact due to initial
loading, stalling, and video bitrate in progressive download video services”.
In: 2014 Sixth International Workshop on Quality of Multimedia Experience
(QoMEX). IEEE. 2014, pp. 129–134.

[70] S. Argyropoulos, A. Raake, M.-N. Garcia, and P. List. “No-reference
video quality assessment for SD and HD H. 264/AVC sequences based on
continuous estimates of packet loss visibility”. In: 2011 Third International
Workshop on Quality of Multimedia Experience. IEEE. 2011, pp. 31–36.

[71] N. Staelens et al. “Constructing a no-reference H. 264/AVC bitstream-
based video quality metric using genetic programming-based symbolic
regression”. In: IEEE Transactions on Circuits and Systems for Video
Technology 23.8 (2013), pp. 1322–1333.

[72] D. Mocanu et al. “No-reference video quality measurement: Added value
of machine learning”. In: Journal of Electronic Imaging 24 (Dec. 2015),
p. 061208.

[73] E. Demirbilek and J.-C. Grégoire. “Machine Learning–Based Parametric
Audiovisual Quality Prediction Models for Real-Time Communications”.
In: ACM Trans. Multimedia Comput. Commun. Appl. 13.2 (Mar. 2017).

[74] W. Robitza et al. “HTTP Adaptive Streaming QoE Estimation with ITU-
T Rec. P.1203 – Open Databases and Software”. In: 9th ACM Multimedia
Systems Conference. Amsterdam, 2018.

[75] R. R. Ramachandra Rao et al. “Adaptive video streaming with current
codecs and formats: Extensions to parametric video quality model ITU-T
P.1203”. In: Electronic Imaging (2019).

[76] H. T. T. Tran, N. P. Ngoc, A. T. Pham, and T. C. Thang. “A Multi-Factor
QoE Model for Adaptive Streaming over Mobile Networks”. In: 2016 IEEE
Globecom Workshops (GC Wkshps). 2016, pp. 1–6.

[77] H. T. T. Tran, T. Vu, N. P. Ngoc, and T. C. Thang. “A novel quality model for
HTTP adaptive streaming”. In: 2016 IEEE Sixth International Conference
on Communications and Electronics (ICCE). 2016, pp. 423–428.

[78] K. D. Singh, Y. Hadjadj-Aoul, and G. Rubino. “Quality of experience
estimation for adaptive HTTP/TCP video streaming using H.264/AVC”.
In: 2012 IEEE Consumer Communications and Networking Conference
(CCNC). 2012, pp. 127–131.

[79] J. De Vriendt, D. De Vleeschauwer, and D. Robinson. “Model for esti-
mating QoE of video delivered using HTTP adaptive streaming”. In: 2013
IFIP/IEEE International Symposium on Integrated Network Management
(IM 2013). 2013, pp. 1288–1293.

[80] Jingteng Xue, Dong-Qing Zhang, Heather Yu, and Chang Wen Chen.
“Assessing quality of experience for adaptive HTTP video streaming”. In:
2014 IEEE International Conference on Multimedia and Expo Workshops
(ICMEW). 2014, pp. 1–6.

[81] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image quality
assessment: from error visibility to structural similarity”. In: IEEE transac-
tions on image processing 13.4 (2004), pp. 600–612.

[82] ITU-T Rec. J.246. Perceptual visual quality measurement techniques for
multimedia services over digital cable television networks in the pres-
ence of a reduced bandwidth reference. Geneva, Switzerland: International
Telecommunication Union, 2008.

[83] ITU-T Rec. J.249. Perceptual video quality measurement techniques for
digital cable television in the presence of a reduced reference. Geneva,
Switzerland: International Telecommunication Union, 2010.

[84] ITU-T Rec. J.342. Objective multimedia video quality measurement of
HDTV for digital cable television in the presence of a reduced reference
signal. Geneva, Switzerland: International Telecommunication Union, 2011.

[85] R. Soundararajan and A. C. Bovik. “Video Quality Assessment by Reduced
Reference Spatio-Temporal Entropic Differencing”. In: IEEE Transactions
on Circuits and Systems for Video Technology 23.4 (2013), pp. 684–694.

[86] C. G. Bampis, P. Gupta, R. Soundararajan, and A. C. Bovik. “SpEED-QA:
Spatial Efficient Entropic Differencing for Image and Video Quality”. In:
IEEE Signal Processing Letters 24.9 (2017), pp. 1333–1337.

[87] A. Mittal, A. K. Moorthy, and A. C. Bovik. “No-reference image quality as-
sessment in the spatial domain”. In: IEEE Transactions on image processing
21.12 (2012), pp. 4695–4708.

[88] A. Mittal, R. Soundararajan, and A. C. Bovik. “Making a “completely blind”
image quality analyzer”. In: IEEE Signal Processing Letters 20.3 (2012),
pp. 209–212.

[89] M. A. Saad, A. C. Bovik, and C. Charrier. “Blind image quality assessment:
A natural scene statistics approach in the DCT domain”. In: IEEE transac-
tions on Image Processing 21.8 (2012), pp. 3339–3352.

[90] A. K. Moorthy and A. C. Bovik. “A two-step framework for constructing
blind image quality indices”. In: IEEE Signal processing letters 17.5 (2010),
pp. 513–516.

[91] R. R. R. Rao, S. Göring, W. Robitza, B. Feiten, and A. Raake. “AVT-VQDB-
UHD-1: A Large Scale Video Quality Database for UHD-1”. In: 21st IEEE
International Symposium on Multimedia (2019 IEEE ISM). 2019, pp. 1–8.

[92] M. Cheon and J.-S. Lee. “Subjective and objective quality assessment
of compressed 4K UHD videos for immersive experience”. In: IEEE
Transactions on Circuits and Systems for Video Technology 28.7 (2017),
pp. 1467–1480.

[93] K. Yamagishi, T. Kawano, and T. Hayashi. “Hybrid video quality-estimation
model for IPTV services”. In: GLOBECOM 2009-2009 IEEE Global
Telecommunications Conference. IEEE. 2009, pp. 1–5.

[94] Osamu, Sei Naito, Shigeyuki Sakazawa, and Atsushi Koike. “Objective
perceptual video quality measurement method based on hybrid no refer-
ence framework”. In: 2009 16th IEEE International Conference on Image
Processing (ICIP). 2009, pp. 2237–2240.

[95] M. C. Q. Farias, M. M. Carvalho, H. T. M. Kussaba, and B. H. A. Noronha.
“A hybrid metric for digital video quality assessment”. In: 2011 IEEE Inter-
national Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB). 2011, pp. 1–6.

[96] S. Satti et al. “P. 1203 evaluation of real OTT video services”. In: 2017 Ninth
International Conference on Quality of Multimedia Experience (QoMEX).
IEEE. 2017, pp. 1–3.

[97] ITU-T Rec. P.1401. Methods, metrics and procedures for statistical evalu-
ation, qualification and comparison of objective quality prediction models.
Geneva, Switzerland: International Telecommunication Union, 2014.

[98] J. Neter, M. Kutner, C. Nachtsheim, and W. Wasserman. Applied Linear
Statistical Models. WCB McGraw-Hill, 1996.

[99] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria, 2019. URL: https:
//www.R-project.org/.

[100] Satti, Shahid and Borer, Silvio and Raake, Alexander and Gustafsson, Jör-
gen. AVHD-AS/P.NATS Phase 2 Project. https://www.its.bldrdoc.gov/vqeg/vqeg-
home.aspx: Video Quality Experts Group, 2019. URL: ftp : / / vqeg . its .
bldrdoc.gov/Documents/VQEG_Shenzhen_Oct19/VQEG_AVHD_2019_
October_AVHD-AS_P.NATS_overview.pptx.

[101] ITU-T. RECOMMENDATION ITU-R BT.500-13 – Methodology for the
subjective assessment of the quality of television pictures. Tech. rep. Inter-
national Telecommunication Union, 2014.

[102] W. Robitza. Subjective Player. 2018. URL: https : / / github . com / slhck /
SubjectivePlayer.

[103] ITU-T Rec. G.107. The E-model: a computational model for use in trans-
mission planning. Geneva, Switzerland: International Telecommunication
Union, 2015.

[104] S. Möller. Assessment and Prediction of Speech Quality in Telecommuni-
cations. Springer Science & Business Media, 2000.

ALEXANDER RAAKE (M’07) was appointed

head of the Audiovisual Technology Group as

a Full Professor at TU Ilmenau in 2015. From

2009 to 2015, he held Assistant then Associate

Professor positions at TU Berlin, heading the As-

sessment of IP-based Applications group at TU

Berlin’s An-Institut T-Labs, a joint venture be-

tween Deutsche Telekom AG and TU Berlin. From

2005 to 2009, he was a senior scientist at the

Quality & Usability Lab of T-Labs, TU Berlin.

From 2004 to 2005, he was a Postdoctoral Researcher at LIMSI-CNRS in

Orsay, France. He obtained his doctoral degree (Dr.-Ing.) from the Electrical

Engineering and Information Technology Faculty of the Ruhr-Universität

Bochum (Jan. 2005), with a book on the speech quality of VoIP (Speech

Quality of VoIP, Wiley, 2006). Before, he studied Electrical Engineering and

Physics in Aachen (RWTH) and Paris (ENST/Télécom), with a subsequent

research stay at EPFL, Lausanne, Switzerland. His research interests are in

speech, audio and video communication, Quality of Experience, audiovisual

and multimedia services and networks, human perception and cognition.

Since 1999, he has been involved in the standardization activities of the

International Telecommunication Union (ITU-T) on performance, quality of

service (QoS) and quality of experience (QoE), where he currently acts as a

Co-Rapporteur for question Q.14/12 on monitoring models for audiovisual

services.

VOLUME xxx, 2016 27



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3032080, IEEE Access

Raake et al.: Multi-model standard for bitstream-, pixel-based and hybrid video quality assessment of UHD/4K: ITU-T P.1204

SILVIO BORER is Team Leader Video Analy-

sis at Rohde & Schwarz SwissQual AG. Video

quality in communication systems and quality of

experience are among his main interests. He is

active in standardization projects at the ITU-T. He

is a member of the board of VQEG, and is vice

chair of the Audiovisual HD Quality project. He

obtained his doctoral degree from EPFL Lausanne

in the Lab of Computational Neuroscience, and

his Diploma in Mathematics from University of

Zurich.

SHAHID M. SATTI holds a PhD in Multimedia

Communication from Free University of Brussels

(VUB), Belgium. He worked as a Post-doctoral re-

searcher at the department of Electrical Engineer-

ing VUB between 2012–2013. As a senior video

quality research engineer at OPTICOM GmbH,

Shahid is active in video quality standardization

at ITU-T since 2013. He contributed to ITU-T

P.1203.X and P.1204.X series of standards. He

is also the chair of the Audio-visual HD Quality

(AVHD) project at the Video Quality Expert Group (VQEG) since 2018.

His specialization involve video encoding, video quality modeling, machine

learning, optimizations and statistical analysis.

JÖRGEN GUSTAFSSON is part of the Eric-

sson AI Research leadership, heading research

teams in the areas of machine learning and arti-

ficial intelligence. He has experience from several

Swedish national research projects together with

academia and other industry companies. Jörgen is

co-rapporteur of ITU-T Study Group 12 Question

14 since many years, and the technical focus is on

AI, machine learning and Quality of Experience.

Jörgen is an inventor of several patents and has a

M.Sc. in computer science from Linköping University.

RAKESH RAO RAMACHANDRA RAO is an

electrical engineer working at the Audiovisual

Technology (AVT) at TU Ilmenau since 2017.

His main focus is on video quality analysis and

modeling. Before joining AVT, he worked as an

intern at HEAD acoustics where he worked on

reference-based noise estimation. He completed

his M.Sc in Communications Engineering from

RWTH Aachen in 2017 with focus on image

content analysis and millimeter wave transmission

systems. His specializations include image content analysis and video qual-

ity analysis and modeling.

STEFANO MEDAGLI works as Research Engi-

neer at Rohde & Schwarz SwissQual AG. Cur-

rently, his activities focus on video quality in

communication systems and data analysis. Previ-

ously he worked as Synthetic Aperture Radar Im-

age Processing Engineer at CerICT and as Radar

Signal Processing and Electromagnetic Research

Engineer in a joint project involving TU Delft and

Thales air System SAS. He obtained his M.Sc in

Telecommunication Engineering from the Univer-

sity of Napoli ’Federico II’ in 2015. His specializations are electromagnetics,

digital signal processing, statistics and communication systems.

PETER LIST is currently with Deutsche

Telekom. He graduated in physics in 1985 and

received his Ph.D in applied physics in 1989, both

from the University of Frankfurt/Germany . Since

1990 he has been in various positions in R&D of

Deutsche Telekom. For many years he attended

the standardization bodies for video compression

in ITU and ISO/MPEG.

STEVE GÖRING is a computer scientist working

in Audiovisual Technology Group at TU Ilmenau.

Currently his focus is on data analysis problems

for video quality models and video streams. Be-

fore he started 2016 at Audiovisual Technology

Group he was working at Bauhaus University

Weimar in Big Data Analytics group. His research

focus in Weimar was improving search engines

(using axiomatic re- ranking approaches), argu-

mentation analysis and analyzing large unstruc-

tured datasets using machine learning approaches. From 2008 to 2013 he

studied at TU Ilmenau and graduated with a B.Sc. and M.Sc. in computer

science. His specializations are data analytics/machine learning, video qual-

ity and distributed communication/information systems.

DAVID LINDERO finished his M.Eng degree at

Luleå University of Technology in 2007. He im-

mediately started working at Ericsson Research

after this, first focusing on speech quality assess-

ment and statistical modelling. Later projects have

been in video quality, VR and deep learning areas.

He has been active in ITU-T SG12 standardization

work since 2009, developing video quality estima-

tion models and evaluation procedures.

28 VOLUME xxx, 2016



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3032080, IEEE Access

Raake et al.: Multi-model standard for bitstream-, pixel-based and hybrid video quality assessment of UHD/4K: ITU-T P.1204

WERNER ROBITZA is a PhD researcher associ-

ated with the Ilmenau University of Technology in

Germany. He is also the CEO and co-founder of

AVEQ GmbH, a company based in Vienna, Aus-

tria, which offers video streaming and web quality

monitoring solutions. He was a staff researcher at

TU Ilmenau in 2018. From 2014-2018, he was

researcher at the Telekom Innovation Laboratories

of Deutsche Telekom AG and TU Berlin. He has

been actively involved in ITU-T’s video quality

standardization work since 2014. In 2013, he received his diploma degree

in computer science from the University of Vienna, where he worked as

a research assistant starting in 2009. His research interests are Quality of

Experience for multimedia applications and user behavior aspects for Web

TV services, with a focus on subjective video quality testing and video

quality measurement tools.

GUNNAR HEIKKILÄ is a senior specialist in

performance measurements at Ericsson Research.

Since 1996 he has focused on user experience

quality assessment and measurements, including

standardization in ITU-T, 3GPP, ETSI and CTA.

He joined Ericsson in 1987 and has previously

worked with control system software for mili-

tary defense radar systems, and with software

design for synchronous digital hierarchy optical

fiber transmission systems. He holds an M.Sc. in

computer science from Luleå University of Technology, Sweden.

SIMON BROOM graduated from the University

of York in 1995 with a M.Eng degree in Elec-

tronic Systems Engineering. After graduating he

joined BT to work on developing objective mod-

els to predict voice transmission quality and was

first involved in ITU-T SG12 standards, actively

contributing to various speech and video quality

related standards. In 2001 he joined Psytechnics, a

BT spin-off company, to develop VoIP quality as-

sessment software. Psytechnics were subsequently

acquired by NETSCOUT in 2011 where he continues his interest and

involvement in ITU-T SG12 video quality assessment projects and manages

NETSCOUT’s subjective testing facility in Ipswich, UK.

CHRISTIAN SCHMIDMER studied electronic

engineering at the University of Erlangen. After

achieving his M.S. degree (Diplom) he spent five

years as a scientist at the audio department of the

famous Fraunhofer Institute for Integrated Circuits

in Erlangen (the home of mp3), mostly dedicated

to the research of psychoacoustics and the devel-

opment of perceptual measurement tools as well

as audio codecs, contributing to the development

of mp3. In 1997 he joined OPTICOM as CTO and

co-owner. OPTICOM’s core business is the development and management of

IPR for voice, audio and video quality measurement. Christian Schmidmer

is active in standardisation bodies like ITU, VQEG and ETSI. He is the

author of many scientific publications and frequently presented papers at

conferences and workshops. He is one of the main developers behind the

recommendations ITU-R BS.1387 / PEAQ (Perceptual Evaluation of Audio

Quality), ITU-T P.563 / 3SQM (no-reference voice quality assessment) and

ITU-T P.863 / POLQA (full reference voice quality assessment).

BERNHARD FEITEN studied Electronic En-

gineering at the Technische Universität Berlin

graduated to a doctor of science in the field of

psychoacoustics and audio bit rate reduction. He

worked as an assistant professor at the Technische

Universität Berlin in the field of communication

science, digital signal processing and computer

music at the "Elektronisches Studio". Since 1996

he is with Deutsche Telekom, now Technology &

Innovation, working as senior expert and project

manager for innovative multimedia services, Quality of Experience and

network analytics. His research and development activities comprise audio

and video coding quality, broadcasting applications, high quality Internet

media distribution and streaming, QoE monitoring and optimization.

ULF WÜSTENHAGEN is with Deutsche

Telekom since 1990. He studied technical acous-

tics at Technical University of Dresden and be-

came graduate engineer with room acoustic and

subjective acoustics. Afterwards he was working

in several fields especially in subjective assess-

ment for audio and video services. He was in-

volved in development of ITU standards for mea-

surement and evaluation of Quality of Experience.

Later he was involved in the planning and set-up

of Deutsche Telekom’s IPTV service. Currently he is dealing with quality

evaluation for audio and video applications in fixed and mobile IP networks.

VOLUME xxx, 2016 29



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3032080, IEEE Access

Raake et al.: Multi-model standard for bitstream-, pixel-based and hybrid video quality assessment of UHD/4K: ITU-T P.1204

THOMAS WITTMANN studied Electrical En-

gineering at the Friedrich-Alexander-Universität

Erlangen-Nürnberg to a degree of Dipl.-Ing. Univ.

He has been working at Vierling Electronics as

a software developer from 1997 to 2005. One of

his projects was a telecommunication measure-

ment system that estimates the speech quality with

the algorithms TOSQA and PESQ (ITU-T P.862).

Away from the test and measurement industry he

worked at BHS Corrugated Maschinen- und Anla-

genbau as a software developer from 2005 to 2009. BHS manufactures and

installs machinery for the production of corrugated cardboard. Since 2009

he is working at OPTICOM GmbH as software developer. He contributed

to OPTICOM’s products PESQ (ITU-T P.862) and POLQA (ITU-T P.863)

and implemented OptiPlay. OptiPlay is a video player, which can play

back uncompressed UHD video up to a framerate of 60 fps on a specific

video card (Blackmagic Decklink) and is used for subjective video tests.

His specializations include digital signal processing, video encoding and

cryptography.

MATTHIAS OBERMANN is project leader at

OPTICOM GmbH for bit stream based quality

assessment products. He received his M.S. degree

(Diplom) in electrical engineering from the Uni-

versity of Erlangen. He joined OPTICOM in 2009

to work on various topics of objective quality of

experience assessment including voice and video

quality. He was involved in the standardization at

ITU-T (P.863) and ITU-R (J.343). His interests

are deep packet inspection, video streaming and

encoding.

ROLAND BITTO received his Dipl.-Ing. de-

gree in Electrical Engineering from the Friedrich-

Alexander University of Erlangen-Nürnberg, Ger-

many in 1992. After three years in industry, he

joined the Fraunhofer Institute for Integrated Cir-

cuits as a research scientist. His work there was

dedicated to the research of psychoacoustics, the

development of perceptual measurement tools and

audio codecs, also contributing to mp3 and aac. In

2000 he joined OPTICOM, where he is focusing

on development on voice-, audio-, and video quality measurements metrics.

He is one of the main contributors to the recommendations ITU-R BS.1378

PEAQ, ITU-T P.563 3SQM and ITU-T 247, ITU-T343 PEVQ.

30 VOLUME xxx, 2016


