
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 344

Multi Neuron Heuristic Search
Dr. Anupam Shukla and Rahul Kala

Indian Institute of Information Technology and Management Gwalior, Gwalior, Madhya Pradesh, INDIA

Summary
We know the various searching algorithms available today.
Searching has become one of the most essential parts of
the artificial intelligence algorithms these days. We have
so many algorithms like A*, Heuristic Search, Breadth-
First Search, Depth First Search, etc. All these are applied
to various problems in their own way. We need to predict
the most appropriate search technique as the input data is
not known. In this paper we present a new searching
algorithm. This algorithm works on the principle of
applying many neurons (elementary searching units) for
working on different data one after the other. Hence as in
the case of A* and heuristic search, we do not only select
the best current node, but we select a range of nodes from
the best to worst. At each iteration various nodes are seen
and expanded which have varying heuristic costs. This
algorithm would work very well on data in which
heuristics change suddenly from very good to bad or vice-
versa. We implemented this algorithm and put it on the
maze-solving problem, where the heuristic cost was the
distance between the nodes to goal point. We saw that the
algorithm worked better than any existing algorithm and
visited the least number of nodes. This proves the
efficiency of the algorithm. We have also shown that this
algorithm lies between A* Algorithm and Breadth First
Search. Both these algorithms can be reached using this
algorithm.

Key Words
Searching, artificial intelligence, A*, heuristics, multi-
processing, multi-neurons

1. Introduction

We have a huge number of search algorithms available for
us today. Any programmer tries to select the best out of
the available alternatives by making a guess of the input
data. All the search algorithms work well on a set of data.
There may have a set of data for which the performance is
bad. Hence for most of the problems, input drives the
performance. The choice of the search algorithm is driven
by practical scenarios that are encountered. People are
spending huge times to improvise on the searching
algorithms as it is the most basic operation. The normal
sequence followed is to implement an algorithm, find out
the weaknesses when applied on practical data, and then if
required change the algorithm.

We can see that all algorithms of searching have some or
the other weaknesses for most of the problems. People
mostly try to shift to the modern algorithms, A* and
heuristic search. But for these algorithms, the choice of
the heuristic function should be very good. A bad choice
of heuristic can lead to a reduced performance from the
Breadth-First Search or the Depth First Search.

In this paper we propose an algorithm that optimizes the
performance of searching in cases where the heuristics are
not very strong and can’t be depended upon very much.
This algorithm uses a kind of multi-processing or multi-
neuron model which optimizes the performance.

In section 2 we have a look at the present algorithms and
their strengths and weaknesses. In Section 3 we would
discuss the conditions in which this algorithm may be
used. The algorithm is discussed in Section 4. In Section
4.2 we will discuss the various factors affecting the
algorithm. In Section 5 we give a comparative analysis of
various algorithms using a particular problem. Section 6
gives some problems where this algorithm may be applied.
Section 7 gives the conclusion and scope for future work.

2. Present Algorithms

Presently the following are the major algorithms being
used. We discuss their strengths and weaknesses in brief,
one by one[8].

2.1 Breadth First Search
The algorithm iterates from one level to other, taking the
breadth of the graph/tree first. Various improvements in
the past like introduction of parallels[1][5][10][12].
Strengths: Very good for small input size (gives the node
closest to the starting point)
Very good if the node is very close to the start point.
Weaknesses: Practically data may be very large and nodes
may be very far away from the start. Very poor
performance in such cases.

2.2 Depth First Search
The algorithm iterates and tries to go to the innermost
levels, taking the depth of the graph/tree first[3][4][9][11].
Strengths: Very good for highly connected graphs where
one node may be connected in many ways to many nodes.

 Manuscript received June 5, 2008.
Manuscript revised June 20, 2008.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 345

Very good if the node is very far from start point but can
be reached in many ways, so that the probability of
reaching the goal from any node is high.
Weaknesses: Does not work well if the nodes go on
expanding indefinitely. Algorithm can not guess how
close it is from goal.

2.3 Iterative Deepening Search
The algorithm works quite similar to the Breadth first
Search. It iterates from one level to other, at each level.
Inside a level the function is similar to depth first
search[11].
Strengths: Very good for small input size
Very good if the node is very close to the start point.
Weaknesses: the algorithm faces problems if the goal is
very deep, or when the input size is very large.

2.4 A* Algorithm
The algorithm tries to minimize the sum of heuristic cost
and the cost from the start point till the node. Hence it
takes into account both the major costs and tries to find
the most optimal solution[6][7][13][14][15].
Strengths: Very good if a decent heuristic function is
available. It tries to get closer and closer to goal keeping
the distance from source shortest.
Very commonly used in practical applications for its
efficiency.
Weaknesses: If the heuristic function is bound to sudden
changes, on moving a unit node, the algorithm would
reduce its efficiency.

2.5 Heuristic Search Algorithm
The algorithm tries to minimize the heuristic cost. Hence
it is a kind of futuristic algorithm which tries to minimize
the distance from goal[2][13][14][15].
Strengths: Very good if a decent heuristic function is
available.
Always tries to get closer and closer to the goal.
Weaknesses: If the heuristic function is bound to sudden
changes, on moving a unit node, the algorithm would
reduce its efficiency.

3. Conditions for Implementation of New
Algorithm

The algorithm can be taken as a betterment of all the
above algorithms where the heuristic function exists, but
is bound to change suddenly. The heuristic and A*
approach use the heuristic function in order to get the
search closer and closer to the goal, but when it changes
suddenly, the strategy is destroyed. Hence these
algorithms suffer. Also if the heuristic function is

available, it is always better to use it rather than not to use
it altogether as was the case with other algorithms.

The algorithm can be applied to the cases where he
following problems occurs in heuristic function:

• The heuristic function reaches near goal, but
suddenly shows that no way is possible to reach
goal.

• The heuristic function keeps fluctuating from the
good values to bad values making it hard to
predict the goal.

• The heuristic function drops suddenly from very
high value to low value.

These conditions can easily be understood from the
problem of maze solving, if the heuristic function of any
point (x,y) on the maze denotes its squared distance from
the goal. We can see that if the search algorithm reaches
last but one position and then finds itself surrounded by
walls, the heuristics increase suddenly. Similarly if the
solution is a series of bad moves followed by another
series of good moves, the heuristics decrease from high to
low.

Hence in such problems though we may take the heuristic
function, its performance would be low. The solution is to
use the new algorithm which respects all the good, bad
and moderate values of heuristics, so that no value suffers.

Readers may kindly note that such an algorithm, due to its
parallel nature will take huge benefits from modern
concepts like multi-processor, grid computing etc.

4. Algorithm

The basic idea of this algorithm is the use of many
neurons working one after the other. Each of these take
care of high to low values of the heuristic functions. The
algorithm hence gives respect to all values of the
heuristics. It may be seen as the way of employing
different neurons for different types of works and
whichever finds the target, is rated successful. If you were
to find a treasure, it would be justified to divide your team
at various places, some at high probability places, some at
low.

In all we take α neurons. We have a list of heuristic costs
each corresponding to node seen but waiting to be
processed. We divide the cost range into α ranges equally
among them. Each of these neurons is given a particular
range. Each neuron selects the minimum most element of
the cost range allotted to it and starts searching. At one
step of each neuron processes its element by searching and
expanding the element. This process is repeated.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 346

4.1 Algorithm
Step 1: open ← empty priority queue
Step 2: closed ← empty list
Step 3: add a node n in open such that position(n) = CurrentPosition, previous(n) = null and f(n), g(n), h(n) are as calculated
by respective formulas with priority f(n)
Step 4: while open is not empty
 Begin
Step 5: extract the node n1, n2, n3, n4….. nα from open with the priority of n1 as highest and the others equally

distributed between other α-1 nodes.
Step 6: if ni = final position for i=1,2,3,4,5…..α then break
Step 7: else
Step 8: nodes ← nodes from the expanding of node ni
Step 9: for each node m in nodes
 Begin
Step 10: if m is already in open list and is equally good or better then discard this move
Step 11: if m is already in closed list and is equally good or better then discard this move
Step 12 delete m from open and closed lists
Step 13: make m as new node with parent n
Step 14: calculate f(m), h(m), g(m)
Step 15: Add node m to open with priority f(m)
Step 16: Add n to closed
Step 17: Remove n from open

Here for any node n,
h(n) = heuristic cost
g(n) = cost from source
f(n) = is the total cost.
F(n) = g(n)+h(n)

4.2 Factors affecting the algorithm
The various factors which may affect the algorithm are:

• The number of neurons, α: It has a huge impact
on the algorithm. If α=1, the search is an A*
algorithm. If α=infinity, the search is equivalent
to breadth first search.

• The fluctuation of the heuristic function: The
more the fluctuation, the better will be its
performance from other algorithms.

5. Implementation on a Problem

Consider the problem of solving a maze. The problem is
that we have to move from the initial position to the final
position in the maze without colliding from walls.

Refer Table 1 for the problem input. Here 0 represents
the region we cannot move (wall) and 1 represents the
region we can move (path). Top left is the start point.
Bottom right is the finish point. The heuristic function is
taken as the square of the distance of the current point to
the final point. As mentioned in table 1, the numbers in
results show the order in which they were discovered.

The number of bottom right corner is the number of
nodes explored. The results recorded are as given in table
1.

5.1 Relation between α and the number of nodes
visited
It can easily be predicted that for very small value of α
the algorithm behaves like heuristic search and for very
large value, the behavior is similar to a breadth first
search. If we study the various values of α against the
number of nodes for the previous inputs, we see the
results as given in table 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 347

Table1: Inputs and Results to the maze solving problem
Input #1 A*

1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 0 1
1 0 0 0 0 0 0 1 0 1
1 1 1 1 1 1 0 1 0 1
1 0 0 0 0 1 0 1 0 1
1 1 1 1 0 1 0 1 0 1
1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1

01 02 03 04 05 06 07 08 09 10
17 00 00 00 00 00 00 00 00 11
18 19 20 21 22 23 24 25 00 12
30 00 00 00 00 00 00 26 00 13
31 32 33 34 35 36 00 27 00 14
39 00 00 00 00 37 00 28 00 15
40 41 42 43 00 38 07 29 00 16
44 00 00 00 00 00 00 00 00 00
45 46 47 48 49 50 51 52 53 54

Nodes Visited: 54

Heuristic Search BFS

01 02 03 04 05 06 07 08 09 10
17 00 00 00 00 00 00 00 00 11
18 19 20 21 22 23 24 25 00 12
30 00 00 00 00 00 00 26 00 13
31 32 33 34 35 36 00 27 00 14
39 00 00 00 00 37 00 28 00 15
40 41 42 43 00 38 07 29 00 16
44 00 00 00 00 00 00 00 00 00
45 46 47 48 49 50 51 52 53 54

Nodes Visited: 54

01 03 05 08 11 15 19 24 29 34
02 00 00 00 00 00 00 00 00 38
04 07 10 14 18 23 28 33 00 42
06 00 00 00 00 00 00 37 00 45
09 13 17 22 27 32 00 41 00 48
12 00 00 00 00 36 00 44 00 50
16 21 26 31 00 40 07 47 00 52
20 00 00 00 00 00 00 00 00 00
25 30 35 39 43 46 49 51 53 54

Nodes Visited: 54

DFS Our Algorithm

01 02 03 04 05 06 07 08 09 10
17 00 00 00 00 00 00 00 00 11
18 19 20 21 22 23 24 25 00 12
30 00 00 00 00 00 00 26 00 13
31 32 33 34 35 36 00 27 00 14
39 00 00 00 00 37 00 28 00 15
40 41 42 43 00 38 07 29 09 16
44 00 00 00 00 00 00 00 00 00
45 46 47 48 49 50 51 52 53 54

Nodes Visited: 54

01 02 04 06 08 09 11 13 15 17
03 00 00 00 00 00 00 00 00 19
05 10 26 28 35 40 00 00 00 21
07 00 00 00 00 00 00 22 00 00
12 32 00 00 00 00 00 00 00 23
14 00 00 00 00 00 00 00 00 25
16 24 38 00 00 00 00 00 00 27
18 00 00 00 00 00 00 00 00 00
20 29 30 31 33 34 26 37 39 41

Nodes Visited: 41 (α=3)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 348

Input #2 A*

1 1 1 1 1 1 1 1 1 1 1

01 02 03 04 05 06 07 08 09 10 11
1 0 0 0 0 0 0 0 0 0 1 34 0 0 0 0 0 0 0 0 0 12
1 0 1 1 1 1 1 1 1 0 1 35 0 29 28 27 26 25 24 23 0 13
1 0 1 0 0 0 0 0 1 0 1 36 0 30 0 0 0 0 0 22 0 14
1 0 1 0 1 1 1 0 1 0 1 37 0 31 0 49 50 51 0 21 0 15
1 0 1 0 1 0 1 0 1 0 1 38 0 32 0 48 0 52 0 20 0 16
1 0 1 0 1 0 1 0 1 1 1 39 0 33 0 47 0 53 0 19 18 17
1 0 0 0 1 0 1 0 0 0 0 40 0 0 0 46 0 54 0 0 0 0
1 1 1 1 1 0 1 1 1 1 1 41 42 43 44 45 0 55 56 57 58 59

Nodes Visited: 59

Heuristic Search BFS

01 02 03 04 05 06 07 08 09 10 11

01 03 05 07 09 11 13 15 17 19 21
34 0 0 0 0 0 0 0 0 0 12 02 0 0 0 0 0 0 0 0 0 23
35 0 29 28 27 26 25 24 23 0 13 04 0 00 00 00 51 49 47 45 0 25
36 0 30 0 0 0 0 0 22 0 14 06 0 00 0 0 0 0 0 43 0 27
37 0 31 0 49 50 51 0 21 0 15 08 0 00 0 32 34 36 0 41 0 29
38 0 32 0 48 0 52 0 20 0 16 10 0 00 0 30 00 38 0 39 0 31
39 0 33 0 47 0 53 0 19 18 17 12 0 00 0 28 0 40 0 37 35 33
40 0 0 0 46 0 54 0 0 0 0 14 0 0 0 26 0 42 0 0 0 0
41 42 43 44 45 0 55 56 57 58 59 16 18 20 22 24 0 44 46 48 50 52

Nodes Visited: 59 Nodes Visited: 52
DFS Our Algorithm

01 02 03 04 05 06 07 08 09 10 11

01 02 05 05 06 08 09 10 12 14 15
34 0 0 0 0 0 0 0 0 0 12 03 0 0 0 0 0 0 0 0 0 17
35 0 29 28 27 26 25 24 23 0 13 07 0 00 00 00 49 47 33 32 0 19
36 0 30 0 0 0 0 0 22 0 14 11 0 00 0 0 0 0 0 31 0 20
37 0 31 0 49 50 51 0 21 0 15 13 0 00 0 40 41 42 0 29 0 21
38 0 32 0 48 0 52 0 20 0 16 16 0 00 0 39 0 43 0 28 0 23
39 0 33 0 47 0 53 0 19 18 17 18 0 00 0 38 0 44 0 27 26 25
40 0 0 0 46 0 54 0 0 0 0 22 0 0 0 37 0 45 0 0 0 0
41 42 43 44 45 0 55 56 57 58 59 24 30 34 35 36 0 46 48 50 51 52

Nodes Visited: 59 Nodes Visited: 52 (α=3)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 349

Table 2: α v/s The number of nodes visited
Input
No.

α The number of
nodes visited

1 54
2 54
3 41
4 44
5 54

I

Infinity 54
1 59
2 52
3 56
4 59
5 56
6 56
7 56
8 54
9 56
10 56
11 55
12 55
13 54
14 52

II

Infinity 52

6. Problems where the algorithm can be
applied

Some of the problems that may serve better using this
algorithm are:

• Consider the 8 queens problems. If we lay down
a constraint that a set of final positions can never
be the final answer, then this algorithm would
prove better.

• Consider the problem of Hannibal and the
Cannibals, if we lay a constraint that a specific
set of configurations is not possible, then this
algorithm may be better.

• Consider a game where the player is expected to
move from one specific position to the other such
that it takes the minimum points during its path,
where the points are scattered all over the board.
If the player moves over a point, the points
associated with that point are awarded to the
player. If the points can take values in any range,
this algorithm would prove better.

• Consider the 8 puzzle problem where we slide
pieces on a grid, so as to reach a final
configuration. If we say that the puzzle
automatically shuffles at some state of the board,
this algorithm might be useful.

7. Conclusion

In this paper we saw the new search algorithm and we
studied the various cases in which it may beat its
counterparts ie A* algorithm, Breadth First Search, Depth
First Search. We saw the algorithm working very well in
conditions where a heuristic function is available, works
well, but still lags behind in certain conditions. In
searching we must be prepared well in advance of the case
of failure of the heuristics. This is exactly what this
algorithm tried to do.

We studied the effect of this algorithm and saw it beating
all it counterparts on the given data. This result proves the
might of this algorithm and ensures a better result in
certain conditions.

So far we have fixed value of α. The relation between α
and the input size needs to be studied. If we are able to
predict the correct α for the input, our search efficiency
would improve a lot.

 References
[1] Yang Zhang and Eric A. Hansen, “Parallel Breadth-First

Heuristic Search on a Shared-Memory Architecture”,
Workshop on Heuristic Search, Memory-Based Heuristics
and Their Applications Boston, MA July 17, 2006

[2] Meyer Harald and Weske Mathias, “Automated Service
Composition using Heuristic Search”

[3] Sitompul Opim Salim, Noah Shahrul Azman Mohd,
“Multidimentional Model Visualization Using Depth-First
Search Algorithm”, Proceedings of the 2nd IMT-GT
Regional Conference on Mathermatics, Statics and
Applications Universiti Sains Malaysia, Penang, June 13-15,
2006

[4] Yeoh William, Koenig Sven, Felner Ariel, “IDB-ADOPT : A
Depth-First Search DCOP Algorithm”

[5] Ezzahir Redouane, Bessiere Christian, “Asynchronous
Breadth-First Search DCOP Algorithm”, Applied
Mathematical Sciences, Vol. 2, 2008, no. 37, 1837 - 1854

[6] Bentley Jon L., Sedgewick Robert, “Fast Algorithms for
Sorting and Searching Strings”

[7] Areibi Shawki, Moussa Medhat, Abdullah Hussein, “A
Comparison Of Genetic/Memetic Algorithms And Other
Heuristic Search Techniques”

[8] Liotta Giuseppe, Tollis Ioannis G., “Advances in Graph
Algorithms Special Issue on Selected Papers from the
Seventh International Workshop on Algorithms and Data
Structures, WADS 2001 Guest Editors’ Foreword”

[9] Jornsson Yngvi B and Marsland Tony, “Selective Depth-First
Search Methods”

[10] Yoo Andy, Chow Edmond, Henderson Keith, McLendon
William, Hendrickson Bruce, ÄUmit C, atalyÄurek, “A
Scalable Distributed Parallel Breadth-First Search Algorithm
on BlueGene/L”

[11] Rao V. Nageshwara and Kumar Vipin,”Parallel Depth First
Search”

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 350

[12] Korf Richard E. and Schultze Peter, “Large-Scale Parallel
Breadth-First Search”

[13] Jensen Rune M, Bryant Randal E, and Veloso Manuela M.,
“An Efficient BDD-Based Heuristic Search Algorithm”

[14] Pearl J., “Heuristics: Intelligent Search Strategies for
Computer Problem Solving”, Addison-Wesley, Reading, MA

[15] Luger, G. F. and Stubblefield, W. A., “Artificial
Intelligence: Structures and Strategies for Complex Problem
Solving”, The Benjamin/ Cummings Publishing Co., Menlo
Park, CA

About the Authors

Dr. Anupam Shukla is an
Associate Professor in the ICT
Department of the Indian Institute
of Information Technology and
Management Gwalior. He has 19
years of teaching experience. His
research interest includes Speech
processing, Artificial Intelligence,
Soft Computing and
Bioinformatics. He has published

around 62 papers in various national and international
journals/conferences. He is referee for 4 international
journals and in the Editorial board of International journal
of AI and Soft Computing. He received Young Scientist
Award from Madhya Pradesh Government and Gold
Medal from Jadavpur University.

Rahul Kala is a student of 3rd
Year Integrated Post Graduate
Course (BTech + MTech in
Information Communication
Technology) in Indian Institute of
Information Technology and
Management Gwalior. His fields
of research are robotics, design
and analysis of algorithms,
artificial intelligence and soft

computing. He secured 7th position in the ACM
International Collegiate Programming Contest, Kanpur
Regionals. He is a student member of ACM. He also
secured Al India 8th position in Graduates Aptitude Test in
Engineeging-2008 with a percentile of 99.84.

