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Abstract: The boundaries of tracking and sensing solutions are continuously being pushed. A
stimulation in this field over recent years is exploiting the properties of millimeter wave (mmWave)
radar to achieve simultaneous tracking and sensing of multiple objects. This paper aims to provide a
critical analysis of the current literature surrounding multi-object tracking and sensing with short-
range mmWave radar. There is significant literature available regarding single-object tracking using
mmWave radar, demonstrating the maturity of single-object tracking systems. However, innovative
research and advancements are also needed in the field of mmWave radar multi-object tracking,
specifically with respect to uniquely identifying multiple target tracks across an interrupted field of
view. In this article, we aim to provide an overview of the latest progress in multi-target tracking. In
particular, an attempt to phrase the problem space is made by firstly defining a typical multi-object
tracking architecture. We then highlight the areas for potential advancements. These areas include
sensor fusion, micro-Doppler feature analysis, specialized and generalized activity recognition, gait,
tagging and shape profile. Potential multi-object tracking advancements are reviewed and compared
with respect to adaptability, performance, accuracy and specificity. Although the majority of the
literature reviewed has a focus on human targets, most of the methodologies can be applied to targets
consisting of different profiles and characteristics to that of humans. Lastly, future research directions
are also discussed to shed light on research opportunities and potential approaches in the open
research areas.

Keywords: mmWave; tracking; sensing; multi-object; micro-Doppler; sensor fusion; activity
recognition

1. Introduction

Millimeter wave (mmWave) radars have been widely studied over recent years for
multi-object tracking and sensing. The potential and motivation for mmWave radars in
this field is primarily driven by the micro-Doppler information that can be extrapolated.
Micro-Doppler generally refers to the Doppler information generated by movements of
individual parts of a particular target [1]. The micro-Doppler features can be exploited to
determine characteristics of multiple targets for tracking and sensing purposes. The identi-
fied characteristics can ultimately be translated into sub-millimeter individual movements
of the targets. This is attributed to the high sensitivity of mmWave radars empowered by
their extremely short wavelength.

The research and techniques available for achieving robust and reliable multi-object
tracking and sensing, specifically with mmWave radar, are yet to be consolidated into
a unified architecture. Complications, such as harsh signal propagation environments,
make the task of multi-object tracking and sensing quite difficult [2]. However, it should
be highlighted that tracking and sensing, unspecific to mmWave, is not a new concept
in regards to radio in general. This concept has been proven successful in other types
of radios, such as impulse radio ultra-wide band (IR-UWB) [3]. Therefore, the findings
from multi-object tracking and sensing with alternate types of radios can be assessed for
potential applications of similar techniques to mmWave radars.
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MmWave radars can be found in continuous and discontinuous multi-object tracking
literature. Continuous tracking refers to the ability to track multiple targets in an environ-
ment only whilst it is in the current field of view of the radar. Discontinuous tracking on
the other hand is an extension on continuous tracking, whereby the targets can be tracked
whilst in the current field of view and also correlated to a previous track if it re-appears
in the future field of view of the radar. To clarify the difference between the two types of
tracking, Figure 1 is provided; an individual, who is currently not in the field of view of the
radar, performing the following sequence of events:

1. Moving into the radar’s field of view
2. Leaving the radar’s field of view
3. Moving back into the radar’s field of view

Figure 1. Discontinuous tracking scenario; An individual (1) moves into the radar’s field of view,
(2) leaves the radar’s field of view and (3) moves back into the radar’s field of view.

In the described scenario, a solution that is capable of continuous tracking is one
that is capable of detecting and tracking multiple individuals in both event 1 and event 3.
However, a continuous tracking solution would not be capable of correlating individuals
that have been tracked in event 3 with their previous tracks in event 1. On the other hand,
a solution that is capable of discontinuous tracking is one that is capable of detecting and
tracking individuals in both event 1 and 3, as well as recognizing if the same individual is
being tracked across the two events. Thus, a discontinuous tracking solution is one that
can correlate and track multiple targets across a discontinuous sequence of events.

A sophisticated combination of tracking and sensing in multi-object scenarios are
capable of reliably discontinuously tracking, and have found a number of applications. A
new level of security and surveillance systems could potentially be achieved by a mmWave
tracking and sensing system to expose and detect threats or concerns that cannot easily
be identified in vision-based security systems. It is also achieved without compromising
individual privacy. Furthermore, a mmWave multi-object tracking and sensing system
could also be adapted to provide a means of mass patient monitoring in the health care
industry. Passive and respectful monitoring of patients with a system of this nature could
provide a means of continuous monitoring of metrics that would usually require a nurse
to manually measure. This, in turn, could lead to earlier insight and awareness of patient
complications. Lastly, a mmWave multi-object tracking and sensing solution can also
provide a means of an affordable wide-scale generalized analytical and auditing platform
that can monitor fine-grain people movement and activities within public spaces, such as
shopping centers, parks, etc. This could lead to better optimization and utilization of space
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layout, particularly in a space where congestion occurs or where specific behaviors are
exhibited by individuals when given environmental events occur.

The major contributions of this paper are to provide an overview of the literature
surrounding multi-object tracking with mmWave radar systems, highlighting key advanced
technologies and hinting future research opportunities. We first present a typical general-
ized mmWave multi-object tracking architecture. Then, we provide a detailed review and
comparison of potential advancements that can contribute to further developing the multi-
object tracking architecture. Future research opportunities are then discussed to enhance
and evolve mmWave multi-object tracking. The context of mmWave radar in this paper
specifically relates to short-range applications, both indoors and outdoors. Furthermore,
the intended usage of mmWave radar in this paper is to focus on multi-object tracking
of targets traveling at low speeds that are within natural human capability. The method-
ologies and models explored and presented in this paper are not specifically intended
to be applied to targets traveling at speeds greater than general human motion, such as
automotive targets.

2. Typical Tracking System Architecture

An overview of how multi-object tracking with mmWave can be modeled architec-
turally from data collection through to tracked target information is illustrated in Figure 2.
The intention of the architecture model depicted in Figure 2 is to provide a foundation
to compare and contrast mmWave tracking research, both continuous and discontinuous
in fashion.

Figure 2. mmWave tracking architecture block diagram.

In order to help understand the events that take place to successfully perform dis-
continuous multi-object tracking with mmWave, the system can be illustrated as a series
of five chained components. These five components and the sequence in which they are
invoked is illustrated in Figure 2. The generalized aim of the system is to comprehend the
influence multiple targets simultaneously have on radar chirps. This signal disturbance
translates to information being exploited to initiate or resume a maintained track on an
object whilst it is in the radars field of view. The system should ultimately produce a
stream of uniquely identifiable objects along with their corresponding tracking context.
The overall system architecture and sequence of components is a well established pattern in
radar tracking literature. The uniqueness of a mmWave tracking system is ultimately held
in the implementation of the system components and the mechanisms that are employed
to characterize the tracked objects. The remainder of this section will explore and describe
the purpose of each stage illustrated in the generalized architecture shown in Figure 2.

2.1. Radar Architecture

The radar architecture of a typical tracking system consists of the components required
to ultimately collect the data describing the observed environment. This usually involves
the hardware utilized, the antenna configuration, and the signal configuration employed.
Over the last couple of years, single board general-purpose mmWave radars have become
readily available as off-the-shelf products. However, prior to this hardware advancement
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mmWave radar hardware architectures were primarily designed for their specific industrial
or research application. Such an architecture is demonstrated in the research performed
by [4]. The authors of [4] implement a frequency-modulated continuous-wave (FMCW)
module with a custom designed data acquisition and intermediate frequency (IF) digitizer
and signal amplifier. The hardware implementation details of the acquisition board used in
the research presented in [4] are lacking. As a result, it can be difficult to obtain consistent
results across research due to hardware implementation differences.

The advancement and availability of single board multi-purpose mmWave radars has
been promising in ensuring consistency across research in the regard of radar hardware
implementation. This in turn ensures the primary focus of the research remains on the
intended research challenge being addressed and not questioned by any discrepancies that
might be present in the radar hardware implementation. The most commonly used off-
the-shelf mmWave radars are Texas Instrument’s (TI) family of industrial and automotive
mmWave radar sensors. The TI mmWave radar sensors have gained popularity in academia
due to their reliability and extensive support.

There are a number of considerations to be made when determining the antenna
configuration to employ for a mmWave radar multi-object tracking system. Specifically,
an acknowledgment should be made regarding the components that contribute to the
instability and non-ideal nature of the transmitted signal [5]. A multiple-input multiple-
output (MIMO) antenna array is the most commonly utilized antenna configuration in
radar systems. This is primarily due to its spatial diversity characteristics, ultimately
resulting in a more superior detection performance, compared to traditional directional
or phased-array antenna configurations [6,7]. A study conducted in [7] demonstrates
statistically the performance advantages of MIMO systems in comparison to alternate
antenna models. The study presented in [7] highlights the ability to exploit the spatial
diversity of a MIMO system to ultimately overcome target fading in radar applications.
One of the most important characteristics that dictates the dimensionality of the measured
data is the antenna array’s vertical and/or horizontal placement. In order to simultaneously
obtain three-dimensional real-world coordinate data points for detected objects, the antenna
array must have both horizontally and vertically placed arrays. The literature discussed in
this paper, unless otherwise noted, assumes an antenna configuration that only has either
horizontal or vertical placement.

Lastly, the final component to consider when discussing the radar architecture for an
mmWave multi-object tracking system is the transmit (TX) signal characteristics. Specifi-
cally, the linear change in frequency of a single tone over time, referred to as the signal chirp.

The signal components encapsulated and described by the chirp are illustrated in
Figure 3. The signal chirp in an mmWave radar system indirectly impacts the measurability
and resolution of range and velocity [8].

Rmax =
IFmaxc

2S
(1)

Figure 3. Signal chirp components. An example chirp, where the frequency is represented over time
to ultimately demonstrate sweep bandwidth and frequency slope.
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The equation illustrated in (1) demonstrates the relationship between the signal chirp
slope and the maximum possible measurable range (Rmax). In Equation (1), IFmax refers to
the maximum IF supported by the mmWave radar hardware, c refers to the speed of light
(3× 108 m/s) and S corresponds to the frequency slope of the signal illustrated in Figure 3.

Rres =
c

2B
(2)

The equation shown in (2) highlights the indirect correlation between the chirp sweep
bandwidth and the maximum resolution of the measurable range (Rres). In Equation (2), B
corresponds to the sweep bandwidth, also illustrated in Figure 3.

Vmax =
λ

4Ct
(3)

The maximum radial velocity that can be measured without ambiguity (Vmax) is
calculated using Equation (3). In Equation (3), λ refers to the wavelength of the TX signal
and Ct corresponds to the total chirp time, which can also be seen in Figure 3.

Vres =
λ

2CtCn
(4)

Lastly, the unambiguous velocity resolution can be calculated using Equation (4),
where Cn is the number of chirps in a single frame. A frame simply refers to a sequence of
chirps, followed by a delay before beginning the next frame. The frame can be considered
as the window of observation that is operated on.

2.2. Position and Velocity Estimation

Once the appropriate radar architecture has been decided, a strategy for calculating
the estimated position and velocity of reflected points should be determined. It should be
acknowledged that the position of a reflected point is comprised of the range and azimuth
of the reflected point, with respect to the radar. Consider a typical FMCW radar system
illustrated in Figure 4. In Figure 4, the synthesizer is responsible for generating the chirp
TX signal, and the reflections of the transmitted chirp are captured by the receiver and
mixed with the TX signal to ultimately produce the IF signal.

Figure 4. Typical FMCW radar system.

Assuming the transmitted chirp (CTx) is sinusoidal, the waveform that is transmitted
and the corresponding received (RX) signal (CRx) can be described as Equations (5) and (6)
respectively. Furthermore, the IF signal (IF) of the transmitted and received sinusoidal
chirps is described as Equation (7).

CTx = sin(ωTxt + φTx) (5)

CRx = sin(ωRxt + φRx) (6)
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IF = sin((ωTx −ωRx)t + (φTx − φRx)) (7)

where ωTx and ωRx are the instantaneous frequencies of the TX and RX signals respectively,
and φTx and φRx are the phase of the TX and RX signals respectively.

In an environment where multiple objects are presently causing an influence on the
IF signal, a fast Fourier transformation (FFT) of the IF signal can be performed to express
the signal so that the signal can then be expressed in the frequency domain. As a result,
each frequency peak evident in this form can be assumed to be associated with a particular
detected object. The distance of each detected object, denoted as Rx, can then be calculated
using the given frequency present in the IF signal, expressed in Equation (8).

Rx =
f IFc
2S

(8)

where f IF is the frequency of the detected object in the IF signal.
The velocity of a detected object can ultimately be obtained by analyzing the phase

difference between consecutive chirps corresponding to the same object. In the situation
where multiple objects are present at the same distance from the radar, the phase difference
of the FFT of the IF signal will have multiple objects encoded within it. As a result, a second
FFT should be performed, labeled as the Doppler-FFT, which will ultimately reveal peaks
of phase differences corresponding to the number of detected objects. The velocity of a
given object (Vx) revealed using a Doppler-FFT can then be evaluated with Equation (9).

Vx =
λωx

4πCt
(9)

where ωx is the phase difference of the detected object in the IF signal.
The last component of interest that can be derived from the reflected signal is the

horizontal angle, relative to radar, of the object that caused the signal reflection. This is
termed as the Angle of Arrival (AoA). The AoA can fundamentally be derived from the
phase change in a detected object’s peak in the Doppler-FFT or range-FFT. This phase
change is ultimately caused by a change in the distance of the detected object. Using
this observation, the AoA of an object can be determined by acknowledging that a single
object’s distance from two RX antennas will differentiate and therefore distinctly have a
phase difference. For two RX antennas, the AoA of a reflected signal (θx) can be expressed
as Equation (10). In an architecture where multiple RX antenna pairs are presented. The
final AoA can be derived by determining the average AoA result from all RX antenna pairs.

θx = sin−1(
λωx

2πd
) (10)

where d is the distance between the two RX antennas.
The ultimate outcome of this stage in an mmWave tracking system is to obtain the

necessary information to construct a two-dimensional plot that illustrates the reflection
points in the environment. Estimating the range, angle and velocity of each reflection point
is sufficient enough to construct a plot of this nature. The most common way to illustrate
this information is to plot it in a point cloud graph.

2.3. Association and Tracking

The association and tracking component of a mmWave tracking system should funda-
mentally consume the information that illustrates reflection points, deduced in Section 2.2
of this paper. Using this information, usually in point cloud format, the process illustrated
in Figure 5 highlights the typical stages involved in achieving a set of continuously tracked
objects from the obtained point cloud data.
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Figure 5. Generalized stages of association and tracking in a mmWave tracking architecture system.

The first processing stage illustrated in Figure 5, static noise removal, refers to a process
whereby any points in the point cloud data that are present in both frame Nx and Nx−1
are deemed as static noise and removed from frame Nx. This noise removal technique is
typical in current mmWave multi-object tracking systems. One key assumption that is
made in this noise removal attempt is that targets of interest must always be moving to
be tracked. Therefore, any targets that are mostly stationary, such as a person sitting at an
office desk, cannot reliably maintain a track under this assumption. This paper explores
advanced strategies in Section 3 that attempt to overcome this assumption when tracking
multiple-objects.

Proceeding to the second stage in Figure 5, although the static noise has been removed,
the data points present may not be noise free. Due to the multi-path theory, there will
likely be a number of data points present that are ghosts of the actual reflected objects,
otherwise known as false positives. As a result, an appropriate correlation and clustering
algorithm is usually employed to alleviate this challenge and gate relevant data objects. The
most successful clustering algorithm that is used in point cloud data is the density-based
spatial clustering of applications with noise (DBSCAN) algorithm, originally presented
in [9]. MmWave radar tracking systems predominately either use the DBSCAN algorithm
for clustering and association of data points or implement an alternate clustering algorithm
that is typically a variation of the original DBSCAN algorithm. The variant DBSCAN algo-
rithms presented usually outperform the original DBSCAN algorithm [10–13]. However,
before blindly adopting a variation of the DBSCAN algorithm for a claim of superiority,
an acknowledgment should be made of the differences between the dataset used to bench-
mark the variant DBSCAN algorithm and the intended dataset that the variant DBSCAN
algorithm will be applied to. An assessment of the differences should be made to determine
if the particular variations of the DBSCAN algorithm are impacted by the differences in
the datasets. Once the point cloud data points have been correlated and clustered together
to form a set of groups, a common strategy to decide the position of a holistic object is to
logically take the centroid of the respective cluster.

After guaranteeing reliable point cloud associations and clustering has been made to
collate the points associated with the various objects in scene, the next step is to persist
a track for each of these objects across a continuous set of frames. In the vast majority of
mmWave multi-object tracking systems, the tracking aspect in its simplest form is primarily
achieved through the use of a Kalman filter. Kalman filtering is a widely adopted approach
to efficiently provide tracking and estimations [14]. Many variations of Kalman filters have
been presented in the literature to ultimately optimize the performance and outcome of
tracking an object via mmWave radar. The research conducted by [15] demonstrates an
example where Kalman filtering was applied to successfully track multiple objects with
respect to a mmWave radar. For each object detected by the radar, an individual Kalman
filter is applied for tracking and estimation of the specific object. Each Kalman filter is then
run independently [15]. The authors of [15] highlight that the success of implementing a
Kalman filter to track and estimate the position of an object is highly dependent on the
clustering and data association techniques that have been employed for object detection.
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2.4. Sensing and Identification

The final component of a mmWave tracking system is any sensing and identification
strategies that might be employed in addition to the core tracking architecture. The desired
outcome of this component of the system is to ultimately perform a particular sensing
or identification task and associate the outcomes with the tracked objects. It should be
noted that this stage is not required in a system where the sole objective is to simply
perform multi-object tracking. Nevertheless, this stage has been included for discussion
in this paper as it serves an important role in the idealized unified tracking and sensing
framework, ultimately achieving more elaborate tracking profiles. Currently, there is no
typical/generalized way this component of a mmWave tracking system is achieved.

Sensing and identification components of mmWave tracking can be loosely coupled
with the ability to discontinuously track a particular object. Specific examples of this are
explored in Section 3 of this paper.

3. Advanced Technologies and Methodologies

In the previous section of this paper, a typical mmWave radar multi-object tracking
system and its components were explored and discussed. This section of the paper aims
to describe the state-of-the-art advancements in mmWave multi-object tracking and how
it contributes to the generalized multi-object mmWave tracking architecture explored in
Section 2. Figure 6 highlights the areas that are being explored in this section of the
paper in contrast to the typical system architecture presented in Figure 2. The system
architecture stages; radar data collection, position and velocity estimation, and gating are
all mature in the context of multi-object tracking. The areas which require most attention
for developing advanced methodologies is object detection, sensing and identification.
These areas specifically are receiving the most focus primarily due to the limitations that
are faced in the current typical multi-object tracking architectures.

Figure 6. Areas explored and discussed in Section 3 in contrast to the typical multi-object mmWave
tracking architecture block diagram presented in Figure 2.

For each of the below sub-sections, the methodologies presented will be compared and
contrasted with respect to the below criteria. The relevant advantages and disadvantages
for the methodologies discussed will be outlined for each criterion (Crit.). The following
details the criteria that will be used to assess the methodologies:

• Adaptability (Adap.): The ability to apply the methodology in a generalized form so
that it can contribute to advancing the system architecture presented in Figure 2.

• Performance (Perf.): The overall performance of the methodology with respect to its
suitability for real-time applications.
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• Accuracy (Accu.): A consideration regarding the accuracy metric of the techniques
presented in the specific methodology.

• Specificity (Spec.): The sensitivity of the methodology in regard to the particular
event/action being measured or characterized. This criterion provides an opportunity
to consider any event overlap that the methodology might have, such as false positives.

3.1. Object Detection Enhancements

One of the fundamental flaws in a typical mmWave tracking system is the reliance on
static noise filtering. In the context of radar imaging, as opposed to tracking, there have
been advancements towards adaptive background filtering. Recent adaptive background
filtering research in the mmWave domain can be seen presented by [16]. The authors
of [16] present a novel approach toward adaptive background noise suppression, that
remains computationally cost effective. The approach presented by [16] ultimately relies
on the ability to observe the operating background environment without any targets in
the field of view. This allows for the construction of a background image which in turn is
used to derive a background power map. The work presented by [16] demonstrates an
adaptive background filtering approach that can be used when imaging a single target with
mmWave. Although not practically tested, the principles that the authors of [16] rely on for
adaptive background subtraction are also present in the context of multi-object tracking
with mmWave. Therefore, this serves as an interesting approach towards reducing the
reliance on static noise filtering in the mmWave tracking domain.

The reliance on static noise filtering ultimately spawns challenges related to the reliable
tracking of a stationary object. As a result, a large focus on methodologies and strategies to
alleviate these challenges can be seen in the literature. The two overarching themes that
encompass the research direction for addressing these challenges are sensor fusion and
micro-Doppler feature analysis.

Sensor fusion, in the context of this paper, refers to the combination of data from
additional sensors in addition to a mmWave sensor. A common approach to this in the
literature is to fuse camera data with the data obtained from the mmWave sensor to
achieve a more coherent and comprehensive object detection algorithm, whilst alleviating
challenges associated with illumination in the vision domain. One of the primary challenges
with fusing camera and mmWave radar detections is that they are a heterogeneous pair of
sensors [17]. The plane in which the radar detections are aligned with is different to that
of the camera detection. Therefore, this can make associating the detections between the
two sensors quite difficult [17]. Research presented by [17] demonstrate a novel approach
to solving the association challenge. In the methodology presented in [17], the authors
define the concept of error bounds to assist with the data association and gating within a
fusion extended Kalman filter. The concept of error bounds provide a criteria to define the
behavior of the individual sensors before and after the sensor fusion [17].

In the fusion-extended Kalman filter presented in [17], the radar point cloud clusters
are formed using an approach similar to the typical architecture discussed in Section 2 of
this paper, with DBSCAN. Similarly, the bounding boxes on the image plane are initially
formed in isolation to the radar and then sent to the fusion-extended Kalman filter to
be associated and tracked with the radar clusters. The plane of the camera data points
is transformed from an image plane to a world plane using a homography estimation
method [17]. A warped bird’s eye view of the camera data points can then be estimated
using the world coordinates. The estimated warped bird’s eye view can then be compared
and associated with the radar point cloud data points [17]. In the fusion-extended Kalman
filter presented by [17], the error bounds are updated using data points from both of
the sensors (as opposed to independently) and the warped bird’s eye view of the image
plane is calculated for each sample point. As a result, the authors of [17] demonstrate
that although this yields a higher association accuracy a time synchronization challenge is
faced between the sensors. This challenge is resolved in the research by ensuring timeline
alignment between the sensors and a synchronization strategy is employed by comparing
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certain regions of the fusion-extended Kalman filter output with the error bounds [17]. The
experimental results presented by [17] appear to demonstrate a higher reliability in real-time
target detection and persisted tracks, compared to a radar alone. Another approach seen in
literature towards mmWave sensor fusion, is a track-to-track based association method. The
authors of [18] demonstrate an implementation of track-to-track based association between
a mmWave radar and a thermal camera. In the research presented by [18], it is assumed the
independent sensors are co-located, whereby the two sensors are orientated and located
is the same position. Under this operating condition, the targets in the field of view are
tracked independently by the mmWave sensor and thermal camera. The independent
tracks are then ultimately associated by solving a combinatorial cost minimization problem.
In the research presented by [18], the components involved in this problem are identified as:

• Estimated distance
• Projected horizontal component
• Track length

Exploiting micro-Doppler in mmWave radar systems is actively being sought as another
angle to devise methodologies that resolve the challenge of static object detection and
localization. Specifically in the context of human detection, bio-metric information, such
as heartbeat and breathing are being explored as potential features that are measurable
through micro-Doppler. A study performed by [19] demonstrates an algorithm designed
to localize multiple static humans using their individual breathing pattern. The research
performed by [19] highlight that the time of flight of a signal is minimally impacted by the
small movements of a breathing chest cavity. As a result, the sub-millimeter movements are
lost when performing static background removal between two consecutive frames, 12.5 ms
apart in the case of the experiment performed by [19]. To counter this loss of information,
the authors in [19] suggest subtracting the static background from a frame that is a few
seconds apart, 2.5 s in the case of the research performed by [19]. In doing this, the sub-
millimeter movements are ultimately exaggerated in comparison to a truly stationary object
and therefore are left intact when preforming a removal of static data points.

The authors of [19] make note that removing static background points from a frame
that is a few seconds apart does not work in for a non-stationary object, such as a person
walking. This is due to the principle that the movements appear exaggerated when
comparing to a frame a few seconds apart, so [19] notes that walking appears ‘smeared’ in
this regard. Based on this differing outcome with static and dynamic objects, the algorithm
presented in [19] employs independent different background removal strategies; one for
static object using a long window and one for dynamic objects using a short window. The
experimental results presented in [19] demonstrate a high accuracy of 95%. It should be
noted that the experiments performed by [19] does not appear to quantify the success of
both moving individuals and static individuals simultaneously within the scene. The radar
architecture used in the research presented by [19] is slightly different to the mmWave
tracking system that has been discussed in this paper. However, the research performed
by [19] illustrates the potential to use vital signs as a means of detecting a static object.
It would be of interest to assess the range potential of implementing a static localization
algorithm of this nature using a mmWave tracking system architecture.

The literature explored in this paper regarding vision sensor fusion and bio-metric
micro-Doppler feature analysis are viable approaches to enhance traditional object detection
techniques to track objects interchanging from a dynamic and static movement state.
Table 1 outlines the advantages and disadvantages of the two methodologies with respect
to the comparison criteria. Although individually both methodologies prove viable, it
would be interesting to consider a combination of both methodologies to compliment each
other. Specifically, incorporating a micro-Doppler feature analysis component to the vision
system could in turn remove the need of utilizing the universal background subtraction
algorithm [20] for identifying moving objects in the image. This could potentially be
considered as a three component sensor fusion approach, where camera data points, static
radar data points and dynamic radar points are fused.
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Table 1. A comparison of methodologies explored for the enhancement of object detection in a
mmWave tracking architecture.

Crit. mmWave and Vision Sensor Fusion Micro-Doppler Feature Analysis

Adap. X Low architecture assumptions.
X Unified sensor point cloud data.
× Unified plane projection overhead.

X Decoupled from architecture de-
pendencies.

× Specialized noise treatment.

Perf. X Suitability demonstrated in the
literature.

× Potential time synchronization
drift.

X No impact to typical multi-object
detection.

× Immature understanding on tech-
nique overhead.

Accu. X Azimuth angle accuracy improved.
X Multi-object track persistence im-

proved.
× Immature system understanding

regarding the compromise of a
single sensor (i.e., dark room).

X High for multiple dynamic objects.
X Uncompromised fixed multi-object

tracking.
× Immature understanding regard-

ing accuracy and range relation-
ship.

Spec. X All moving objects have a presence
in radar and vision that can be
correlated.

× Fixed objects of interest are not
typically distinguishable.

X Technique not constrained to
breathing.

× Immature understanding of si-
multaneous static and fixed multi-
object tracking.

3.2. Sensing Methodologies

Sensing is not typically considered a usual aspect that is present in an object tracking
system. However, it is a stream of research that has been investigated independently
and has the potential when integrated with a tracking system to enhance the tracking
systems sensitivity and reliability. An enhancement to the tracking system through sensing
could ultimately spawn through the additional extracted features that the sensing solution
provides, granting more data points that can be incorporated into the tracking estimation
and prediction. The advanced sensing methodologies that are explored in this paper can be
classified as either general activity recognition or specialized estimation methodologies.

General activity recognition can be considered as a class of sensing methodologies
that have an underlying objective of classifying a broad set of movements or activities that
a given object in the field of view might exhibit. One stream of research that dominates
this class of sensing methodologies is human activity recognition (HAR). Traditionally, a
radar based HAR system relied on machine learning techniques such as random forest
classifiers [21], dynamic time warping [22] and support vector machines (SVM) [23]. In
comparison to a deep learning based approach, these techniques are usually computation-
ally less taxing due to their lower complexity. However, relying solely on conventional
machine learning techniques for HAR contrastingly presents several limitations. A survey
conducted by the authors of [24] provides a thorough critical analysis over the evolution of
radar-based HAR. In [24], a conventional machine learning approach to HAR is considered
to make optimization and generalization of the HAR solution difficult. The authors of [24]
highlight three fundamental limitations of machine learning techniques with respect to
a HAR system. The first acknowledges the approach in which feature extraction takes
place, specifically a manual procedure based on heuristics and domain knowledge which is
ultimately subject to the human’s experience [24]. The second limitation identified relates
to the fact that manually selected features tend to also be accompanied by specific statistical
algorithms that are dependent on the trained dataset. As a result, when applying the
trained model to a new dataset the performance is typically not as good as the dataset that
was used to train the model. Lastly, the authors of [24] highlighted that the conventional
machine learning approaches used in a radar based HAR system primarily learn on discrete
static data. This poses a difference between the data that are used to train a model and the
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data that the model is subject to during real-time testing. The real-time data are principally
continuous and dynamic in nature. The survey conducted by [24] explores the potential
for deep learning to assist in alleviating these limitations in machine learning radar-based
HAR systems.

Although there are some limitations with using conventional machine learning ap-
proaches, it should also be acknowledged that there has been successful applications of
radar-based HAR using these techniques. The research presented in [25] identifies recent
work that attempts to classify three different walking/movement patterns:

• Slow walk
• Fast walk
• Slow walk with hands in pockets

The authors of [25] attempt to classify these walking patterns comparing the perfor-
mance between an approach using k-Nearest Neighbor (k-NN) and SVMs. The four system
designs explored in the work presented by [25] can be seen illustrated in Figure 7. In [25],
both the range-Doppler and Doppler-time data are incorporated into feature extraction. In
the research presented by [25], the impact each of the walking patterns has in the range-
Doppler and Doppler-time maps is illustrated in the form of a heat-map. It can be seen
in this illustration, that the change in walking speed (the difference between slow and
fast walking) results in a dramatic change in the range-Doppler and Doppler-time maps.
Whereas, maintaining a consistent walking speed and with hands in the pocket has less of
a notable difference.

Figure 7. Walking classification system designs explored in [25]; (a) Principal component analysis
combined with support vector machine classification; (b) Principal component analysis combined
with k-nearest neighbor classification; (c) t-distributed stochastic neighbor embedding combined with
support vector machine classification; (d) t-distributed stochastic neighbor embedding combined
with k-nearest neighbor classification.

In regard to extracting the features, the authors of [25] explore and compare two
potential approaches, using either Principle Component Analysis or t-distributed Stochastic
Neighbor Embedding. Both of which are non-supervised transform algorithms. The two
feature extraction methods are compared against each other whilst equally being applied
with the two aforementioned classification methods. The permutations of feature extraction
methods with classification algorithms explored are shown in Figure 7. The results obtained
from [25] for each of the explored system designs in Figure 7 demonstrate the capability of
classifying fast and slow walking with high accuracy. Using the feature extraction methods
and classification algorithms explored in [25], the authors note a 72% accuracy in classifying
slow walking with hand in the pocket.

Another piece of leading research in radar-base HAR is RadHAR presented in [26].
In [26], the authors explore a range of classification approaches, including both conventional
machine learning algorithms and deep learning based algorithms. The primary objective
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of the RadHAR system is to classify five human movement activities; walking, jumping,
jumping jacks, squats and boxing.

Unlike the research presented in [25], in [26] the data that are used for classification
originates from point cloud. The point cloud data are first voxelized to to ensure a uniform
frame size, despite the number of points, before feeding to the classification algorithm.
Using the voxelized point cloud data, an SVM, multi-layered perceptron (MLP), Long
Short-term Memory (LSTM) and convolution neural network (CNN) combined with LSTM
were trained and compared against each other.

The results of the research conducted in [26] demonstrate that the classification al-
gorithm with the highest accuracy, 90.47%, is that of a combined time-distributed CNN
and bi-directional LSTM. The authors of [26] hypothesis that the high accuracy of this ap-
proach can be attributed towards the fact that the time-distributed CNN learns the spatial
features of the point cloud data, whilst the bi-directional LSTM learns the time dependent
component of the activities being performed.

Another more recent piece of research, presented in [27], demonstrates a mmWave
sensing framework that is capable of recognizing gestures fundamentally using micro-
Doppler and AoA (both elevation and azimuth) data to form a set of feature maps. Features
are then ultimately extracted using an empirical feature extraction method and used to train
a MLP to classify gestures [27]. An important aspect to consider regarding the research
presented by the authors of [27], is that the approach presented is for a field of view where
only a single human performing gestures is present (i.e., not multi-object). This same
limitation can also be seen in a similar piece of research presented in [28]. The authors
of [28] demonstrate a mmWave system capable of performing 3D finger joint tracking
using the vibrations and distortions evident on the forearm as a consequence to finger
movements. However, as previously mentioned, this specialized estimation is also subject
to the challenge of operating in a multi-person environment. Despite this, the authors of [27]
have made their approach so that underlying encoded assumptions about the number of
people in the field of view has been abstracted from the core methodology to performing
gesture recognition. Instead, the field of view constraint has been isolated to being a data
formation challenge. The authors of [27] acknowledge that the range data have not been
taken into account in their presented approach, but would yield beneficial in extending
their design to handle multiple people simultaneously performing their own sequence of
gestures. Putting the specific classification task aside, the abstracted methodology presented
by the authors of [27] could serve as a framework to incorporating generalized activity
recognition into a mmWave multi-object tracking system, ultimately uplifting the tracking
profile maintained for an individual. As the authors of [27] did not have multi-object within
scope, extending the methodology to operate on each range bin, for satisfying multi-object
support, raises concerns around whether real-time processing is still feasible.

Specialized estimation, as opposed to general activity recognition, is a class of sensing
that ultimately has a primary focus on a single objective that can be measured. Measurement
of this nature of course should be considered as an estimation. This class of sensing has
overlap with features that can be used as a criteria for identifying a specific object. More
details on features with the potential to be used as an identification strategy are addressed
in Section 3.3 of this paper. The primary driver behind research in radar-based specialized
estimation methodologies originates from a human health perspective. The ability to
determine human vital signs passively is an area in which mmWave radar is being explored
as a viable solution. A study performed in [29] demonstrates a solution named ’mBeats’
which aims to implement a moving mmWave radar system that is capable of measuring
the heartbeat of an individual. The proposed ’mBeats’ system implements a three module
architecture. The first modules is a user tracking module, which the authors of [29] state
that the system utilizes a standard point cloud based tracking system, as illustrated in
Section 2 of this paper. The purpose of this module is to ultimately find the target in the
room. It should be noted that in [29] an assumption is made that there will only be one
target in the field of view. The second module is termed proposed in [29] is termed as the
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‘mmWave Servoing’ module. The purpose of this module is to optimize the angle in which
the target is situated from the mmWave radar to give the best heartbeat measurement. To
achieve this, the authors of [29] specify the ultimate goal of this module as obtaining peak
signal reflections for the targets lower limbs, since the mmWave radar is situated on a robot
at ground level. Using the Peak To Average value as a determinant for the reflected signal
strength, the authors define an observation variable which is incorporated by a feedback
Proportional-Derivative controller to ultimately orientate the radar in the direction that
yields the highest signal strength.

The last module is the heart rate estimation module, responsible for ultimately de-
termining the targets heart rate from a set of different poses. The poses consist of various
sitting and lying down positions. The authors of [29] acknowledge that heartbeats lie in the
frequency band of 0.8∼4 Hz , and therefore implement a biquad cascade infinite impulse
response (IIR) filter to eliminate unwanted frequencies and extract the heartbeat waveform.
A CNN is selected in [29] as the predictor due to the heartbeat detection problem being
considered as a regression problem. The authors state that a key challenge with using a
CNN for this problem is estimating the uncertainty of the result. Uncertainty in this prob-
lem is ultimate caused by measurement inaccuracies, sensor biases and noise, environment
changes, multipath and inadequate reflections [29]. To overcome this, the authors of [29]
cast the problem into a Bayesian model, defining the likelihood between the prediction and
ground truth (y) as a probability following a Gaussian distribution. This ultimately results
in a loss function as illustrated in Equation (11).

loss(x) =
‖y− ŷ‖2

2œ2 +
1
2

log σ2 (11)

where the CNN predicts a mean ŷ and variance σ2. Using this approach the authors
of [29] compare the outcome of their model with three other common signal processing
approaches (FFT, Peak Count (PK) and Auto-correlation (XCORR)) with accuracy as the
metric that is compared.

In the results presented in [29], it can be seen that the other approaches fail to maintain
an accuracy above 90% in all poses, whereas the CNN presented in [29] does maintain a
high accuracy for the selected poses. The authors acknowledge that in the current system
the target must maintain static whilst performing the heartbeat measurement and that
future work will be focused on measuring a moving object. It would also be interesting to
assess the viability and challenges of this approach in a multi-person scene.

The underlying theme of the sensing methodologies explored in this paper is that
independently they are successful in the goal they aim to achieve. However, there is a lack
of acknowledgment in the literature regarding the suitability of these methodologies in a
combined holistic tracking and sensing architecture. It would not only be interesting to
assess their suitability in such a system, but also how they may contribute to enhance the
sophistication and reliability of such a tracking system. Table 2 outlines the advantages
and disadvantages of the explored sensing methodologies, with respect to the comparison
criteria. It can be seen in this table that both methodologies explored fail to address the
challenges of operating in a multi-object environment. In order to achieve a tracking system
that completes a target profile with sensing characteristics, the challenge of sensing multiple
objects and associating the acquired information to a detected target must be solved.

Table 2. A comparison of sensing methodologies explored for the enhancement of tracking reliability
in a mmWave tracking architecture.

Crit. Generalized Activity Recognition Specialized Estimation

Adap. X Decoupled architecture impact.
× Uncertain tracking enhancement

reliability.

X Trusted point cloud processing
techniques.

× Uncertain feedback enhancement
reliability.
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Table 2. Cont.

Crit. Generalized Activity Recognition Specialized Estimation

Perf. X Algorithm real-time performance
proven.

× Uncertain system suitability.

X Real-time suitability has been
proven viable.

× Optimization overhead to accom-
modate.

Accu. X High pre-defined activity accuracy.
× Dependent on training environ-

ment.

X High due to the narrow focus.
× Highly coupled to the training

data.

Spec. X Pre-defined actions reliably classi-
fied.

× Uncertainty of multi-object suit-
ability.

× Simultaneous classification chal-
lenging.

X Optimized for estimating a single
action.

× One target is considered for estima-
tion.

× Immature literature in mmWave
field.

3.3. Identification Strategies

The development of identification methodologies is a natural direction of the evolution
for mmWave tracking systems. It can be considered a more unique type of specialized
estimation sensing but with the key focus on being able to reliably and uniquely correlate
the sensed information to a tracked object. There are a number of challenges that need
to be considered and overcome in identification approaches, such as the feasible range,
separation of multiple objects/people and generalization of the approach. This sections
aims to explore the leading identification methodologies of radar-based tracking systems.

Gait identification approaches rely on the different gait characteristics between individ-
uals. Gait based identification strategies are the most common passive based approach to
identifying people in a radar or WiFi based tracking system. They fundamentally leverage
that each person typically has a unique pattern in the way they walk, this pattern is most
often identified through a deep learning-based technique. Gait recognition can pose its
own challenges, such as inconsistencies and unpredictable upper limb movements that
influence the lower limb signal reflections. This interference can ultimately reduce the
reliability of obtaining a consistent lower limb gait pattern for a given individual. A recent
study performed in [30] attempts to overcome the challenges associated with upper limb
movement interference by narrowing the vertical field of view and focusing attention on
the finer grain movements of the lower limbs. The research presented in [30] proposes a
system that comprises of three phases:

1. Signal processing and feature extraction
2. Multi-user identification
3. CNN-based gait model training

In the first phase the authors of [30] construct a range-Doppler map following the
traditional methodology described in Section 2 of this paper. The stationary interference
in the range-Doppler map is then removed following a technique similar to the described
approach in Section 2.3 of this paper. The stationary reflections are subtracted from each
frame of the range-Doppler frequency responses. The authors of [30] observe that a
cumulative deviation of the range-Doppler data occurs due to the dynamic background
noises, which are not eliminated when subtracting the static interference. To overcome this,
a threshold-based high-pass filter is implemented with a threshold τ of 10 dBFS. This filter
is described in Equation (12).

R(i,j,k) =

{
R(i,j,k), R(i,j,k) ≥ τ,
0, R(i,j,k) < τ,

(12)
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where R(i,j,k) is the range-Doppler domain frequency response at the kth frame with range i
and velocity j.

The authors of [30] identify that the dominant velocity V̂i can be used to describe the
targets lower limb velocity in each frame. In [30], this is expressed as Equation (13).

V̂i =
∑ND

j=1

(
R̂(i,j,k)Vj

)
ND

, i ∈ [1, NR], j ∈ [1, ND]. (13)

where R̂(i,j,k) is the normalized frequency response, Vj is the velocity corresponding to the
frequency response R(i,j,k), NR and ND represent the number of range-FFT and Doppler-FFT
points respectively.

The authors of [30] illustrate the composition of these gait characteristics as a heat-map
corresponding to the actual gait captured with a camera. Using these extracted gait features,
the author of [30] identifies that multiple targets can be differentiated firstly by range and
secondly (if the range is the same) by leveraging distinct spatial positions. This is ultimately
done by projecting the point R(i,j,k) in the kth frame to a point R̂(i,j,k) in the two-dimensional
spatial Cartesian coordinate system. To differentiate the data points in the spatial Cartesian
coordinate system, Ref. [30] implements a K-means clustering algorithm. Each individual
gait feature can be generated as a range-Doppler map by negating the frequency responses
that were not correlated in the K-means clustering [30]. After differentiating the gait
features, the authors of [30] then identify a challenge regarding the segmentation of the
actual step. In [30], this is ultimately overcome by using an unsupervised learning technique
to detect the silhouette of the steps.

Finally, a CNN-based classifier in the image recognition domain is used to identify the
patterns associated with the gait feature maps. The classifier is assessed with multiple users
and varying steps to determine the overall accuracy of the system. Overall, the system
demonstrates a high accuracy that marginally decreases in accuracy as the number of users
increases but is ultimately corrected as the number of steps increases.

Another overarching class of identification strategies being explored are tagging based
approaches. This is not a passive approach unlike the others mentioned in this paper
and involves incorporating a tag on the object so that it can be uniquely identified. There
are two directions in which the literature focuses on in regards to identification of this
nature. The first is radio frequency identification (RFID). In a chipless based RFID system,
data must be encoded in the signal either by altering the time-domain, frequency-domain,
spatial-domain or a combination of two or more of the domains. An example of RFID
implemented as an identification strategy in mmWave can be seen in the ‘FerroTag’ research
presented in [31]. The ‘FerroTag’ system presented in [31] is a paper-based RFID system.
Although the usage of the FerroTag research is intended for inventory management, it
could potentially be adopted to as a tagging strategy for a tracking based system. FerroTag
is ultimately based on ferrofluidic ink, which is colloidal liquids that fundamentally contain
magnetic nanoparticles. The ferrofluidic ink can be printed onto surfaces which in turn
will embed frequency characteristics in the response of a signal. The shape, arrangement
and size of the printed ferrofluidic ink will ultimately influence the frequency tones that
are applied to the response signal. In order to identify and differentiate the different
signal characteristics caused by the chipless RFID surface, the solution presented by [31]
utilizes a random forest as a classifier to identify the corresponding tags present in the
field of view. The second approach to tagging as a means of identification is through
re-configurable reflective surfaces (RIS). To the best of our knowledge no system has been
presented in the literature that demonstrates a practical RIS solution for identification
purposes in a mmWave tracking system. Research regarding RIS with respect to mmWave
is predominantly in the communication domain. The challenges and opportunity to design
an RIS based identification system for a mmWave tracking system are yet to be detailed.

Shape profiling has been seen implemented in previous mmWave research to identify
an object by the properties of the objects shape. For example, if the object being tracked
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is a human, the height and curvature of the human body can influence the way in which
the mmWave signal is reflected [32]. The authors of [32] demonstrate how a human being
tracked and represented in point cloud form can be identified based on the shape profile of
their body. Using a fixed-size tracking window, the related points to the particular human
are voxelized to form an occupancy grid [32]. This is then ultimately sequenced through a
Long-short Term Memory network to classify the particular human [32]. This particular
identification method is abstracted from the tracking aspect of the process, therefore making
it suitable regardless if there are multiple objects being tracked. suitable for identifying
objects in an environment where multiple object tracking is taking place.

The research presented in [33] differs to that presented in [32] in the regard that the
tracking data are not used during the identification stage. Instead, the authors in [33]
propose a strategy where once the human has been tracked, the radar adjusts its transmit
and receive beams towards the tracked human. By doing so the granularity of the feature
set available from the human body is increased. In other words, more specific profiling can
be performed on the individual. The research presented in [33] demonstrates the ability to
characterize the human body by its outline, surface boundary and vital signs. Having this
granular feature set, and tailored profiling, provides a stronger ground to positively identify
an individual. However, this particular method does come at the cost of directing the beam
just for identification purposes. Additionally, the existing research presented in [33] does
not make any remarks regarding the suitability for this method in real-time applications.

The various identification strategies explored in this section of the paper each have
their own complexities involved in fundamentally incorporating into a tracking system.
Table 3 aims to assist in comparing the various identification methodologies, to ultimately
understand their suitability and limitations around implementing them in a tracking system.

Table 3. A comparison of identification methodologies explored for the enhancement of tracking
objects discontinuously in a mmWave tracking architecture.

Crit. Gait Tagging Shape Profile

Adap. X Low architecture
impact.

× Ability to correlate
to multiple tracks
unknown.

× Specific hardware
positioning.

X Loosley coupled to
tracking architec-
ture.

× Different data do-
main.

× Additional hard-
ware.

× Multi-object cor-
relation challenge.

X Potential to extend
on point cloud.

× Sampling concerns
with simultaneous
beam directing and
tracking.

Perf. X Proven real-time
viability.

× Compute overhead.

X Very minimal im-
pact.

X Pre-encoded data
absorbs impact.

× Untested multi-
object setting.

X Minimal overhead.
× Suitability un-

proven.

Accu. X High multi-object
accuracy.

× Scalability chal-
lenges.

X Very accurate.
× Immature under-

standing on range.

X No impact due to
multi-object.

× External dependen-
cies.

Spec. X Focused movement
considerations.

× Challenges with
wider field of view.

X Low risk of false
positives.

× Undefined chal-
lenges with multi-
object.

X Multi-objects inde-
pendently profiled.

× Immature under-
standing on envi-
ronmental impacts.
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4. Future Research Directions

Despite many advancements underway in achieving a unified mmWave tracking and
sensing architecture, there are still many challenges and limitations to be resolved. The fol-
lowing are suggestions for some of the key areas in which future research should be directed
to assist in the development of the limitations associated with such a unified system:

• Concurrent Tracking Enhancements: The number of people that can reliably be
concurrently tracked continues to be a challenge for a tracking system. It would be
of interest to explore potential areas that could provide a scalable approach to this
problem. Integrating sensing outcomes into the tracking estimation and prediction
filter could be an area that is worth exploring to assist with overcoming tracking
concurrency challenges.

• Coverage Area: The maximum range in which a solution is functional until can
impact the practicality of the solution. This is specifically true for systems that are
dependent of high signal resolution, therefore sacrificing range. The default approach
to this problem is to simply increase the transmitter power. However, in situations
where this might not be possible it would be beneficial to research novel approaches
that overcome signal range without increasing the transmitter power and minimally
impacting the resolution. It could prove beneficial to investigate the techniques being
employed using RIS in the communications domain for signal propagation and beam
steering as a potential to be smarter with obtaining a larger coverage area.

• Integrating Tracking and Sensing Systems: There are currently not many integrated
sensing and tracking mmWave systems present in the literature. The challenges and
limitations that come with doing so deserve more focus. Integrating systems of this
nature could prove fruitful in designing an enhanced tracking system capable of
discontinuous tracking and more robust predictions.

• Real-time Performance: As the techniques for advanced tracking systems evolve and
become more complex, their feasibility for real-time applications requires assessment.
This especially becomes true when incorporating sensing solutions reliant on deep
learning-based algorithms.

• Stationary Object Tracking: Lastly, in a pure tracking system a large fundamental
floor is the method in which static noise is removed from the signal response. The
traditional approach of subtracting signal responses that do not change between
frames immediately scarifies stationary objects that should not be considered as noise,
such as a person sitting. This challenge could be researched by either exploring more
sophisticated static noise removal techniques or by attempting to recover stationary
objects of interest after the removal of static signal responses.

• RNN Suitability In the literature there is an underlying theme of CNN models being
utilized and demonstrating the best performance. This is in contrary to the theoretical
better suitability of recurrent neural network (RNN) models for temporal based data.
A likely reason for their lack of use could be attributed toward the difficulty of training
the shared parameters across the layers. It would be interesting to look at introducing
an algorithm unfolding technique to address this potential issue by embedding domain
knowledge into the network itself.

5. Conclusions

This paper aimed to provide an overview and analysis into traditional, state-of-the-
art, and future methodologies for mmWave multi-object tracking. In the review of the
advanced methodologies it should be noted that many of the approaches explored have
only been implemented in an isolated setting. They demonstrate their potential and success
in achieving the particular purpose they were intended for. However, the challenges
and limitations involved in incorporating some of these advanced methodologies into a
real-time tracking system are yet to be further explored.
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Abbreviations
The following abbreviations are used in this manuscript:

AoA Angle of Arrival
CNN Convolutional Neural Network
DBSCAN Density-based Spatial Clustering of Applications with Noise
FFT Fast Fourier Transformation
FMCW Frequency-modulated Continuous-wave
HAR Human Activity Recognition
IF Intermediate Frequency
IIR Infinite Impulse Response
IR-UWB Impulse Radio Ultra-wide Band
k-NN K-Nearest Neighbor
LSTM Long Short Term Memory
MIMO Multiple-input Multiple-output
MLP Multi-layered Perceptron
mmwave Millimeter Wave
PK Peak Count
RFID Radio Frequency Identification
RIS Re-configurable Reflective Surfaces
RNN Recurrent Neural Network
RX Receive
SVM Support Vector Machines
TI Texas Instruments
TX Transmit
XCORR Auto-correlation
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