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Abstract The selection of a set of requirements between all the requirements
previously defined by customers is an important process, repeated at the begin-
ning of each development step when an incremental or agile software develop-
ment approach is adopted. The set of selected requirements will be developed
during the actual iteration. This selection problem can be reformulated as a
search problem, allowing its treatment with metaheuristic optimization tech-
niques. This paper studies how to apply Ant Colony Optimization algorithms
to select requirements. First, we describe this problem formally extending an
earlier version of the problem, and introduce a method based on Ant Colony
System to find a variety of efficient solutions. The performance achieved by the
Ant Colony System is compared with that of Greedy Randomized Adaptive
Search Procedure and Non-dominated Sorting Genetic Algorithm, by means
of computational experiments carried out on two instances of the problem
constructed from data provided by the experts.

Keywords Software requirements · Search based Software Engineering · Ant
colony optimization · Next release problem

1 Introduction

Software development organizations fail many times to deliver its products
within schedule and budget. Statistical studies, and CHAOS Reports (John-
son, 2003) published since 1994, reveal that, frequently, tasks related to re-
quirements lead software project to the disaster. As Kotonya and Sommerville
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(1998) suggest, one of the major problems we face when developing large and
complex software systems is the one related with requirements. The concept
of requirement, in its broadest sense, must be understood as a logical unit of
behavior that is specified by including functional and quality aspects; other
authors as Ruhe and Saliu (2005) use instead the concept of feature. Stakehold-
ers propose some desired functionalities that software managers must filter in
order to define the set of requirements to include in the final software product.

Usually, during the lifetime of a software product, we are faced with the
problem of selecting a subset of requirements from the whole set of candidate
requirements. Enhancements to include into the next software release cannot
be randomly selected since there are many factors involved. Within this sce-
nario, customers demand their own software enhancements, but all of them
cannot be included in the software product, mainly due to the existence lim-
ited resources (e.g. availability of man-month in a given software project). In
most cases, it is not feasible to develop all the new functionalities suggested.
Hence each new feature competes against each other to be included in the next
release.

This task of selecting a set of requirements, which until now only appeared
when defining new versions of widely distributed software products, becomes
important within the incremental approaches of software development, and
specially in the agile approaches. Agile methods promote a disciplined project
management process that encourages frequent inspection and adaption. These
software development methodologies are based on iterative development, ad-
vocating for frequent “releases” in short development cycles, called timeboxes,
in order to improve productivity and introduce checkpoints. Each iteration
works through a full cycle, generating a software release that has to be shown
to stakeholders. These approaches focus on the quick adaptation of software
to the changing realities.

Within this prospective, the challenge of Software Engineering consists on
defining specific techniques or methods that improve the way requirements
are selected. The problem of choosing a set of requirements fulfilling certain
criteria, such as minimal cost or maximal client satisfaction, is a good candi-
date for the application of metaheuristics. Specifically, this paper shows how
Ant Colony Optimization (ACO) systems can be applied to problems of re-
quirements selection. Our solution offers to developers and stakeholders a set
of possibilities satisfying several objectives, i.e. the Pareto front. The idea is
to help people to take a decision about which set of requirements has to be
included in the next release during the software development applying both,
agile or classical software development approaches. The proposed ACO sys-
tem is evaluated by means of a compared analysis with Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) (Deb, 2001; Deb et al, 2002) and Greedy
Randomized Adaptive Search Procedure (GRASP) (Feo and Resende, 1989;
Pitsoulis and Resende, 2003; Resende and Ribeiro, 2003); both adapted to the
problem of requirements selection.

The rest of the paper is organized in six sections. Section 2 summarizes
the basic Requirements Engineering concepts, focusing in requirement selec-
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tion process for the next software release, together with the description and
definition of the problem of selection of requirements to be included in the
next software release, know as Next Release Problem (NRP) (Bagnall et al,
2001). Section 3 describes the metaheuristic technique applied in this work,
Ant Colony Optimization. Specifically, we focus on its application in multi-
objective optimization problems. Section 4 is devoted to the study of how
multi-objective ACO can be used to find a set of non-dominated solutions to
NRP. In Section 5, the experimental evaluation is carried out by comparing
ACO with GRASP and NSGA-II approaches. The analysis of the results is
presented in Section 6. Section 7 presents related work. Finally, in Section 8
we give some conclusions and the future works that can extend this study.

2 Requirements Selection

Requirements related tasks are inherently difficult Software Engineering ac-
tivities. Descriptions of requirements are supposedly written in terms of the
domain, describing how this environment is going to be affected by the new
software product. In contrast, other software processes and artifacts are writ-
ten in terms of the internal software entities and properties (Cheng and Atlee,
2007).

The problem of selecting the subset of requirements among a whole set of
candidate requirements proposed by a group of customers is not a straightfor-
ward problem, since there are many factors involved. Customers, seeking their
own interest, demand the set of enhancements they consider important, but
not all customer needs can be satisfied. On the one hand, each requirement
means a cost in effort terms that the company must assume, but company
resources are limited. On the other hand, neither all the customers are equally
important for the company, nor the requirements are equally important for
the customers. Market factors can also drive this selection process; the com-
pany may be interested on satisfying the newest customers needs, or they may
consider desirable to guarantee that every customer sees fulfilled at least one
of their proposed requirements. Also, requirements show interactions that im-
pose a certain development order or either conflicts between them, limiting
the alternatives to be chosen.

During the software development process many interaction types between
two or more requirements can be identified. Karlsson et al (1997) were the
first in proposing a list of interaction types. Later, Carlshamre et al (2001)
propose a set of interaction types as result of an in-depth study of interactions
in distinct sets of requirements coming from different software development
projects. Although interaction types are semantically different, in practice they
can be grouped into:

– Implication or precedence. ri ⇒ rj . A requirement ri cannot be selected if
a requirement rj has not been implemented yet.

– Combination or coupling. ri ⊗ rj . A requirement ri cannot be included
separately from a requirement rj .
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– Exclusion. ri ⊕ rj . A requirement ri can not be included together with a
requirement rj .

– Revenue-based. The development of a requirement ri implies that some
others requirements will increase or decrease their value.

– Cost-based. The development of a requirement ri implies that some others
requirements will increase or decrease their implementation cost.

These interactions must be considered as constraints in the requirements
selection problem. So, two main goals are usually considered: maximize the
customers satisfaction and minimize the required software development effort
satisfying the given constraints. Therefore, optimization techniques can be
used to find optimal or near optimal solutions in a reasonable amount of time.
Our aim is to define the requirements selection problem as a science (Ruhe and
Saliu, 2005), formalizing the problem and applying computational algorithms
to generate good solutions.

2.1 Previous and Related Works

The Search-Based Software Engineering (SBSE) area is the research field which
proposes the application of search-based optimization algorithms to tackle
problems in Software Engineering (Harman and Jones, 2001; ?). In this section
we provide a comprehensive review of different approaches that can be found
in the literature to tackle with the requirements selection problem (an earlier
review can be found in del Sagrado et al (2010b)).

As a problem in which is necessary to evaluate multiple conflicting objec-
tives, its solution requires to find the best compromise between the different
objectives. In order to achieve this, we can proceed in two ways. The first
approach consists in transforming the multi-objective problem into a single
objective problem. To do that, we need to combine the different objectives
into the single one by means of an aggregation function (e.g. a weighted sum
or product). This is the approach chosen by Bagnall et al (2001), they for-
mulate the problem of selecting a subset of requirements (i.e. Next Release
Problem-NRP) having as goal meet the customer’s needs, minimizing devel-
opment effort and maximizing customers satisfaction and apply hill climbing,
greedy algorithms and simulated annealing. Later, Baker et al (2006) demon-
strate that these metaheuristics techniques can be applied to a real-world NRP
out-performing expert judgment. Greer and Ruhe (2004) study the generation
of feasible assignments of requirements to increments taking into account dif-
ferent stakeholders perspectives and resources constraints. The optimization
method they used is iterative and essentially based on a genetic algorithm.

With respect to the application of ACO to tackle the single-objective ver-
sion of NRP, the first approach can be found in the works of del Sagrado and
del Águila (2009) and del Sagrado et al (2010a) where an Ant Colony System
(ACS) is proposed. Jiang et al (2010) incorporate into ACO a local search for
improving the quality of solution found. Nontheless, all of these approaches
do not take into account the existence of interactions between requirements.
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The problem of requirements selection, including interactions between require-
ments, is introduced in the works of del Sagrado et al (2011) and de Souza
et al (2011) by adapting the ACS algorithm.

The second approach to multi-objective optimization builds a set with all
the solutions found that are not dominated by any other (this is known as the
set of efficient solutions or Pareto-optimal set). The decision maker will select
a solution from this set according to personal criteria. The works of Saliu and
Ruhe (2007), Zhang et al (2007), Finkelstein et al (2008, 2009) and Durillo
et al (2009), study the NRP problem from the multi-objective point of view,
either as an interplay between requirements and implementation constraints
(Saliu and Ruhe, 2007) or considering multiple objectives as cost-value (Zhang
et al, 2007) or different measures of fairness (Finkelstein et al, 2008, 2009), or
applying several algorithms based on genetic inspiration as NSGA-II, MOCell
and PAES (Durillo et al, 2009, 2011). However, to date, no ACO approach has
been applied to multi-objective NRP.

It is worth to note that having more than one valid solution, as in the
multi-objective approach, constitute a valuable aid for experts who must de-
cide what is the set of requirements that has to be considered in the next
software release. Requirements managers analyze these alternatives and their
data (e.g. number of customer covered, additional information about risky
requirements), before selecting a solution (i.e. the set of requirements to be
developed) according business strategies. Thus, it is considerably helpful, for
any software developer, to have these techniques available either embedded
in a CASE (Computer-Aided Software Engineering) tool (del Sagrado et al,
2012), or within a deccision support tool for release planning (Carlshamre,
2002; Momoh and Ruhe, 2006).

2.2 NRP Formulation

Let R = {r1, r2, . . . , rn} be the set of requirements that are still to be im-
plemented. These requirements represent enhancements to the current system
that are suggested by a set of m customers and are candidates to be included
in the next software release. Customers are not equally important. So, each
customer i will have an associated weight wi, which measures its importance.
Let W = {w1, w2, . . . , wm} be the set of customers weights.

Each requirement rj in R has an associated development cost ej , which
represents the effort needed in its development. Let E = {e1, e2, . . . , en} be
the set of requirements efforts. On many occasions, the same requirement is
suggested by several customers. However, its importance or priority may be
different for each customer. Thus, the importance that a requirement rj has
for customer i is given by a value vij . The higher the vij value, the higher is the
priority of the requirement rj for customer i. A zero value for vij represents
that customer i has not suggested requirement rj . All these importance values
vij can be arranged under the form of an m× n matrix.
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Fig. 1 Functional interactions represented as a graph G = (R, I,J,X).

The global satisfaction, sj , or the added value given by the inclusion of a
requirement rj in the next software release, is measured as a weighted sum of
its importance values for all the customers and can be formalized as:

sj =

m∑
i=1

wi ∗ vij , (1)

The set of requirements satisfaction computed in this way is denoted as
S = {s1, s2, . . . , sn}. Requirements interactions can be divided into two groups.
The first consists of the functional interactions: implication, combination and
exclusion. The second one includes those interactions that imply changes in the
amount of resources needed or the benefit related to each requirement: revenue-
based and cost-based. Functional interactions can be explicitly represented as
a graph G = (R, I,J,X) where:

– R (the set of requirements) is the set of nodes
– I = {(ri, rj) | ri ⇒ rj} each pair (ri, rj) ∈ I is an implication interaction

and will be represented as a directed link ri → rj
– J = {(ri, rj) | ri ⊕ rj} each pair (ri, rj) ∈ J is a combination interaction

and will be represented as a double directed link ri ↔ rj
– X = {(ri, rj) | ri ⊗ rj} each pair (ri, rj) ∈ X is an exclusion interaction

and will be represented as a crossed undirected link

For example, consider the set of requirements R = {r1, r2, . . . , r10} and the
following functional dependencies I = {(r1, r3), (r1, r6), (r2, r4), (r2, r5), (r4, r6),
(r5, r7), (r7, r8), (r7, r9), (r8, r10), (r9, r10)}, J = {(r3, r4)}, X = {(r4, r8)}. We
can represent all of these sets as the graph showed in Figure 1.
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The second group of interactions represents changes in satisfaction and
effort values of individual requirements. These two interaction types can be
modelled as a pair of n× n simetric diagonal matrices:

– ∆S where each element ∆sij of this matrix represents the increment or
decrement of sj when ri and rj are implemented in the same release,

– ∆E where each element ∆eij of this matrix represents the increment or
decrement of ej when ri and rj are implemented simultaneously,

in which the elements in the diagonal are equal to zero.
In order to define the next software release, we have to select a subset

of requirements R̂ included in R, which maximize satisfaction and minimize
development effort. The satisfaction and development effort of the next release
can be obtained, respectively, as:

sat(R̂) =
∑
j∈R̂

sj (2)

eff(R̂) =
∑
j∈R̂

ej (3)

where j is an abbreviation for requirement rj . For a given release there is
a cost bound B, that cannot be overrun. Under this set of circumstances the
requirements selection problem for the next software release can be formulated
as an optimization problem:

maximize sat(R̂)

minimize eff(R̂)
(4)

subject to the restriction
∑
j∈R̂ ej ≤ B due to the particular effort bound B

applied, where R̂ also fulfills functional requirements interactions. Thus, two
conflicting objectives, such as maximizing customer satisfaction and minimiz-
ing software development effort, are optimized at the same time within a given
software development effort bound. The solution to this problem consists of a
set of solutions known as Pareto-optimal set (Coello et al, 2007; Deb, 2001;
Srinivas and Deb, 1994).

2.3 Basic Instance of NRP

Bagnall et al (2001) defines a basic NRP as a NRP where no requirement has
any prerequisites. So, following Bagnall formulation, any NRP can be trans-
formed into a basic NRP simply by grouping together each requirement and its
ancestors in the graph of precedence interactions (i.e. requirements for which
there is a path in the graph ending in the requirement that is being consid-
ered). However, there are also other types of interactions besides implication
(i.e. combination, exclusion, revenue-based and cost-based interactions) that
also have to be taken into account when solving a NRP. Therefore,we are going
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to extend the work of Bagnall et al (2001), defining a process for transform-
ing a NRP into a basic NRP, before applying meta–heuristics optimization
techniques.

The process to transform a NRP into a basic NRP is made on three steps:

1. Each pair (ri, rj) ∈ J is transformed into a new requirement ri+j , with
si+j = si + sj and ei+j = ei + ej . This produces a new functional interac-
tions graph G′ = (R, I,J,X) in which J = ∅.

2. A pair (ri, rj) ∈ X requires the alternative deletion of each requirement
together with its descendants from G′ (i.e. requirements for which there is
a path in the graph starting in the requirement that is being considered),
resulting two new functional interactions graphs G′i and G′j . This process
is repeated from these new graphs until there are no exclusion interactions.

3. For each interactions graph G′i obtained in step 2, a basic NRP is builded
by grouping together implication interactions (i.e. each requirement and
its ancestors in the graph) r+

j = {rj} ∪ ancestors(rj).

Revenue-based and cost-based interactions are updated taking into account
these graphs and the values of the original NRP:

1. Each pair (ri, rj) ∈ J implies that, starting from ∆S′ = ∆S, ∆s′ik =
∆sik + ∆sjk and ∆s′ki = ∆s′ik, for i 6= k, and ∆s′ii = 0. After that, the
row and column associated to rj are deleted from ∆S′. The same process
applies to cost-based interactions. As result, we obtain new revenue-based,
∆S′, and cost-based, ∆E′, matrices.

2. A pair (ri, rj) ∈ X requires the alternative deletion of the rows and
columns associated to each requirement and its descendants in G′ from
∆S and ∆E. Thus, the deletion of the rows and columns associated to
{ri} ∪ descendants(ri) produces ∆S′i and ∆E′i, whereas that of {rj} ∪
descendants(rj) produces ∆S′j and ∆E′j . This process is repeated from

these new matrices and the graphs G′i and G′j until there are no exclusion
interactions.

3. For each r+
j in the basic NRP builded from an interactions graph G′i to-

gether with its pair of associated matrices ∆S′i and ∆E′i, we define revenue-
based, ∆S+, and cost-based, ∆E+, matrices as:

∆s+
ij =


∑

rk∈r
+
i
\r+
i
∩r+
j

rl∈r
+
j
\r+
i
∩r+
j

∆s′kl, if i 6= j,

0, if i = j.

(5)

∆e+
ij =


∑

rk∈r
+
i
\r+
i
∩r+
j

rl∈r
+
j
\r+
i
∩r+
j

∆e′kl, if i 6= j,

0, if i = j.

(6)

For example, if we consider the NRP depicted in Figure 1 as a functional
interactions graph, then during the first stage of the process, combination in-
teractions are erased and the graph shown in Figure 2 (a) is obtained. The
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a) Functional interactions graph G′ after eliminating combination interactions

b) Functional interactions graph G′
3+4 after deleting r3+4 and its descendants from G′

c) Functional interactions graph G′
8 after deleting r8 and its descendants from G′

Fig. 2 Transformation of a NRP into a basic NRP
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second stage takes this functional interactions graph and proceeds to elimi-
nate exclusion dependences. Thus, requirement r3+4 and its descendants are
deleted which produces the graph G′3+4 (see Figure 2(b)) and the elimination
of requirement r8 along with its descendants, produces the graph G′8 (see Fig-
ure 2(c)). Last two graphs contain only implication interactions and define the
basic NRP.

Once we get the set of functional interactions graphs, containing only im-
plication interactions, the transformation ends simply by grouping together
each requirement and its ancestors in each graph, obtaining several basic
NRPs. For example, if we consider the graph G′3+4 in Figure 2(b) we get
r+
1 = {r1}, r+

2 = {r2}, r+
5 = {r2, r5}, r+

7 = {r2, r5, r7}, r+
8 = {r2, r5, r7, r8},

r+
9 = {r2, r5, r7, r9} and r+

10 = {r2, r5, r7, r8, r9, r10} where r+
i denotes the set

of requirements {ri} ∪ ancestors(ri).
After executing these processes, we obtain a set of graphs, containing only

implication interactions that can be treated applying the Bagnall’s approach.
Observe that the presenece of exclusion interactions causes an alternative con-
sideration of requirements and the appearance of a greater number of inter-
actions graphs. This is due to the inner nature of exclusion. If there is an ex-
clusion interaction between two requirements, (ri, rj) ∈ X, by definition these
requirements are incompatible software features tnat can not be included in
the same software product at the same time. Requirements Engineering faces
this problem as a negotiation problem. Project developers must obtain and
agreement by the elimination of one of them (i.e. discarding one of the re-
quirements) or by generating two different software applications. For example,
consider the exclusive requirements ri: “all users should be able to search for
data about both products and customers” and rj : “only personnel with a high
security level should be able to search for customers classified as military re-
lated”. Each one of them leads to a different software product and we need to
perform different search processes defining different alternatives for the next
software release.

Note that a more restrictive special case arises when requirements are basic
and independent: for all ri ∈ R, r+

i = {ri}. Bagnall et al (2001) has shown
that NRP is an instance of 0/1 knapsack problem, which is NP-hard. This
result means that large instances of the problem cannot be solved by exact
optimization techniques in a polynomial time. Nonetheless, in this situation the
use of metaheuristics is suitable because they can find near-optimal solutions
to NRP spending a reasonable amount of time.

3 Multi-objective Ant Colony Optimization for the NRP

Ant Colony Optimization (ACO) has been applied to multi-objective optimiza-
tion problems (Iredi et al, 2001; Doerner et al, 2004; Häckel et al, 2008) using a
multi-colony strategy, extending the Ant Colony System (ACS) (Dorigo et al,
2006; Dorigo and Stützle, 2004). Iredi et al (2001) and Häckel et al (2008) pro-
pose a multi-colony method to solve multi-objective optimization problems
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when the objectives cannot be ordered by importance, in which each colony
searches for a solution in a different region of the Pareto-front. Whereas Do-
erner et al (2004) propose the use of a single colony in which each ant searches
in a different direction of the Pareto front, and apply it specifically to a portfo-
lio optimization problem. This last approach enables us to extend in a natural
way the ACS for NRP, described in (del Sagrado et al, 2010a, 2011), to the
multi-objective case by searching in different directions on the Pareto front.

In ACO algorithms, each ant builds its its solution from an initial node
(requirement) which is selected randomly. At each stage, an ant locates a set
of neighboring nodes to visit (these requirements must satisfy the restrictions
of the problem). Among all of them it selects one in a probabilistic way, tak-
ing into account the pheromone level and heuristic information. The level of
pheromone deposited in an arc from node ri to node rj , τij , is stored in a
matrix τ , whereas the heusirstic information about the problem is represented
as the value ηij and have to be defined based on the problem itself.

Boehm et al (2001) have proposed several metrics for software products.
These metrics help in the assessment of the quality of a software product
when its development has finished and also in the estimation of the effort of
a new software project. One such metrics is the productivity of development
teams, conceived as the number of developed units (thousands of lines of code,
function points) per unit of effort (man–months). Since we have to select the
a set of requirements, we should consider a metric of this type, measuring the
productivity in terms of the customers’ benefit. This concept has been applied
in the selection and triage of the requirements (Davis, 2003; Simmons, 2004).
In NRP we can define a productivity metric associated to a requirement rj ,
as, sj/ej which is the level of satisfaction obtained by the customers when
including this requirement in an increment based on the effort applied in its
development. Hence, we define:

ηij = ξ
sj
ej

(7)

where ξ is a normalization constant.
Let Rk ⊆ R be the partial solution to the problem built by ant k and

assume that the ant is located at node ri, then

Nk
i = {rj |rj /∈ Rk, eff (Rk) + ej ≤ B,

Rk ∪ {rj} fullfills functional interactions } (8)

represents the set of non visited neighbors nodes that can be reached by ant
k from node ri. That is, for ant k a node rj is visible from node ri if and
only if rj has not been previously visited, its inclusion in the partial solution
Rk does not exceed the fixed development effort bound B and does not break
functional interactions.

In the multi-objective ACO, there will be a pheromone matrix τg for each
one of the objectives, g ∈ O (for NRP the set of objectives is O = {s, e}, where
s represents satisfaction and e represents effort) and the solution constructed
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by an ant is based on a weighted combination of these pheromone matrices. The
weights λkg , that ant k assigns to the different objectives, measure the relative
importance of the optimization criteria and should be distributed uniformly
over the different regions of the Pareto front. For the NRP case, if the colony
has z ants, then the weights for users’ satisfaction and development effort used
by an ant k ∈ [0, z] are defined respectively as λks = k/(z − 1) and λke = 1−λks .
Note that weights are kept fixed over the ant’s lifetime (i.e. time expended by
the ant to build its solution).

In the ACS algorithm, each ant builds, in a progressive way, a solution
to the problem. During the construction process of the solution, ant k selects
from node ri the next node rj to visit applying a pseudorandom proportional
rule (Dorigo and Gambardella, 1997) that takes into account the weights λkg
(Doerner et al, 2004):

j =

argmaxu∈Nk
i

{[∑
g∈O

λkgτ
g
iu

]α
[ηiu]β

}
, if q ≤ q0,

u, otherwise.

(9)

where q is a random number uniformly distributed in [0, 1], q0 ∈ [0, 1] is a
parameter that determines a trade-off between exploitation (q ≤ q0) and ex-
ploration, and u ∈ Nk

i is a node randomly selected. An ant k, selects randomly
from node ri the next node rj to visit with a probability pkij given by (Doerner
et al, 2004):

pkij =



[∑
g∈O

λkgτ
g
ij

]α
[ηij ]

β

∑
h∈Nk

i

[∑
g∈O

λkgτ
g
ih

]α
[ηih]β

, if j ∈ Nk
i ,

0, otherwise.

(10)

where the parameters α and β reflect the relative influence of the pheromone
with respect to the heuristic information. For example, if α = 0 the nodes
with higher heuristic information values will have a higher probability of being
selected (the ACO algorithm will be close to a classical greedy algorithm). If
β = 0 the nodes with higher pheromone value will be preferred in order to
be selected. From these two examples, it is easy to deduce that is needed a
balance between heuristic information and pheromone level.

While building its solution each ant k in the colony updates pheromone
locally. If it chooses the transition from node ri to rj , then it has to update
the pheromone level of the corresponding arc for each objective g applying the
following rule:

τgij = (1− ϕ) ∗ τgij + ϕτ0 (11)

where ϕ ∈ [0, 1] is the pheromone decay coefficient and τ0 is the initial
pheromone value, which is defined as τ0 = 1/|R|. Each time an arc is vis-
ited, its pheromone level decreases making it less attractive for subsequent
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Fig. 3 Search process in ACS.

ants. Thus, this local update process encourages the exploration of other arcs
avoiding premature convergence.

Once all ants in the colony have built a solution, only the two ants that
have obtained the best solutions reinforce pheromone on the arcs that are part
of the best solutions. They update pheromone globally for each objective g ∈ O
and each arc, (i, j), included in the best solutions applying the following rule:

τgij = (1− ρ) ∗ τgij + ρ∆τgij (12)

where ρ ∈ [0, 1] is the pheromone evaporation rate and ∆τgij represents the
increase of pheromone with respect to objective g.

In the NRP case, we have two objectives, O = {s, e}, satisfaction and
effort, so ,for a given best solution R̂, we define two pheromone increments
(∆τ sij for satisfaction and ∆τeij for effort) as:

∆τsij =
1

sat(R̂)
(13)

∆τeij =
1

eff(R̂)
(14)

where sat(R̂) and eff(R̂) are the evaluations of the best solution (see Eqs.
( 2) and ( 3)) with respect to each objective.

For example, Figure 3(a) shows a fully connected directed graph for a
backlog with six requirements R = {r1, r2, r3, r4, r5, r6} with associated de-
velopment efforts and customers satisfaction sets, E = {3, 4, 2, 1, 4, 1}, S =
{1, 2, 3, 2, 5, 4}, respectively. Also, consider the set of functional dependencies
F = {r1 ⇒ r3, r1 ⇒ r5, r2 ⇒ r4, r2 ⇒ r5, r5 ⇒ r6, r3�r4, r4⊕r5} and that the
development effort bound B is set to a value of 11. Figures 3(b) to 3(d) depict
the steps followed by ant k during an iteration. Initially (see Figure 3(b)), the
ant chooses randomly a requirement from the set {r1, r2} that contains the
visible requirements (i.e. those verifying requirements interactions and whose
effort limit is lower than B). Suppose that it selects r2 as the initial node
and adds it to its solution, Rk = {r2}. Then the ant obtains the set of non
visited neighbors nodes from r2 is Nk

2 = {r1} and arcs reaching to r2 have
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been deleted because they could never be used. In this example, we are going
to assume that the ant only uses heuristic information in order to build its
solution Rk, so at each step it will choose the vertex with the highest µij value
from the set of non visited neighbors nodes. Now the ant adds r1 to its solution
Rk = {r2, r1} and searches for a new requirement to add from this node as it
is depicted in Figure 3(c). In this situation the ant’s set of neighbors nodes is
Nk

1 = {r3−r4, r5} and using only heuristic information the next node to travel
to is r3−r4 (note that this node is consequence of the combination interaction
r3 � r4. Finally, Figure 3(d) shows that once the ant has added r3 − r4 to its
solution, Rk = {r2, r1, r3, r4}, it has to stop because there are not any other
visible vertices due to the exclusion relationship r4 ⊕ r5.

4 Experimental Evaluation

In this section, we describe the aspects related with the design of the experi-
ments for making the performance evaluation of the multi-objective ACO algo-
rithm proposed. First, we present the data used in the experiments. Then, we
briefly describe other two metaheuristic algorithms used in the experiments.
Finally, we define the set of quality measures applied and the comparison
methodology we have followed.

4.1 Datasets

For testing the effectiveness of our proposal ACS we have used two datasets.
The first dataset is taken from Greer and Ruhe (2004). It has 20 requirements
and 5 customers. The development effort associated to each requirement and
the level of priority or value assigned by each customer to each requirement
are shown in Table 1. The customers’ weights are given in the 1 to 5 range,
following a uniform distribution (see first row in Table 2). These values (and
also those of the level of priority of each requirement) can be understood as
linguistic labels such as: without importance (1), less important (2), important
(3), very important (4), extremely important (5). Each requirements has an
associate effort estimate in term of score between 1 and 10. Also, we consider
that all requirements are independent. It is the same type of representation
that has been previously used by Leguizamon and Michalewicz (1999); Fi-
danova (2005); Shi (2006) to tackle the 0/1 knapsack problem. This special
case, denoted by Bagnall et al (2001) as basic NRP, allows us to reformulate
any other NRP problem by simply preprocessing requirements, it is shown
in Section 2. The main reason to use this dataset resides in its wide use in
the evaluation of other studies of distinct instances of NRP (Finkelstein et al,
2009; Zhang et al, 2007; Durillo et al, 2009) and, as far as we know, the lack
of other available real datasets due to the privacy policies followed by software
development companies. At the time of performing the experiments we have
set the development effort boundary as a percentage of the total development
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Table 1 Dataset 1, assignment of the priority level of each requirement, requirements de-
velopment effort and interactions

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20
c1 4 2 1 2 5 5 2 4 4 4 2 3 4 2 4 4 4 1 3 2
c2 4 4 2 2 4 5 1 4 4 5 2 3 2 4 4 2 3 2 3 1
c3 5 3 3 3 4 5 2 4 4 4 2 4 1 5 4 1 2 3 3 2
c4 4 5 2 3 3 4 2 4 2 3 5 2 3 2 4 3 5 4 3 2
c5 5 4 2 4 5 4 2 4 5 2 4 5 3 4 4 1 1 2 4 1
Eff. 1 4 2 3 4 7 10 2 1 3 2 5 8 2 1 4 10 4 8 4

r3 � r12 r11 � r13
r4 ⇒ r8 r4 ⇒ r17 r8 ⇒ r17 r9 ⇒ r3 r9 ⇒ r6

r9 ⇒ r12 r9 ⇒ r19 r11 ⇒ r19

Table 2 Customers relative importance

Customers’ weights c1 c2 c3 c4 c5
For Dataset 1 1 4 2 3 4
For Dataset 2 1 5 3 3 1

effort needed to include all the requirements in a software product. Then we
have considered the 30%, 50% and 70% of the total development effort, which
respectively translates into an effort bound of 25, 43 and 60 effort units in our
experiments.

The second dataset has been generated randomly with 100 requirement
and 5 customers, according to the NRP model (see Table 3). The relative im-
portance of the customers is given in the second row of Table 2. This dataset
was defined because in real agile software projects development, in the initial
timeboxes, we are faced with the problem of selecting requirements from a
wider set. Therefore, the number of requirements has been incremented from
20 to 100. The development effort values of each requirement are given in the
1 to 20 range. We had fixed 20 units (4 weeks) as the maximum development
effort for a requirement, considering the timebox limit defined in agile methods
(e.g. Scrum proposes iteration in the range 2 a 4 weeks). Related to the value,
when customers have to make an assignment of the benefit that will imply
the inclusion of a given requirement, they prefer to use a coarse grained scale
instead of one of finer granularity. Usually they simply place requirements in
one of three categories: inessential, desirable or mandatory (Wiegers, 2003;
Simmons, 2004). Due to this last fact, the customers values of level of priority
of requirements are in the range of 1 to 3. Following the same considerations
made on dataset 1, we have set the development effort boundary using the
same percentages (30%, 50% and 70%) of the total development effort needed
to include all the requirements in a software product, which respectively trans-
lates into an effort bound of 312, 519 and 726 effort units in our experiments.
So, we will test ACS using six basic instances of NRP.
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Table 3 Dataset 2, assignment of the priority level of each requirement, requirements de-
velopment effort and interactions

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25
c1 1 2 1 1 2 3 3 1 1 3 1 1 3 2 3 2 2 3 1 3 2 1 1 1 3
c2 3 2 1 2 1 2 1 2 2 1 2 3 3 2 1 3 2 3 3 1 3 3 3 2 3
c3 1 1 1 2 1 1 1 3 2 2 3 3 3 1 3 1 2 2 3 3 2 1 2 3 2
c4 3 2 2 1 3 1 3 2 3 2 3 2 1 3 2 3 2 1 3 3 1 1 1 2 3
c5 1 2 3 1 3 1 2 3 1 1 2 2 3 1 2 1 1 1 1 3 1 1 3 3 3
Eff 16 19 16 7 19 15 8 10 6 18 15 12 16 20 9 4 16 2 9 3 2 10 4 2 7

r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r46 r47 r48 r49 r50
c1 3 3 3 1 2 2 3 2 1 2 2 1 3 3 2 2 2 3 1 1 1 2 2 3 3
c2 1 2 2 3 3 1 3 2 2 1 2 3 2 3 3 3 3 1 1 3 2 2 2 1 3
c3 3 3 1 3 3 3 2 1 2 2 1 1 3 1 2 1 3 1 3 3 3 3 1 3 2
c4 3 2 1 1 1 1 2 2 2 3 2 2 3 1 1 3 1 1 3 1 2 1 1 3 2
c5 2 2 3 2 3 1 1 3 3 2 2 1 1 2 1 3 1 1 2 1 2 3 3 2 2
Eff 15 8 20 9 11 5 1 17 6 2 16 8 12 18 5 6 14 15 20 14 9 16 6 6 6

r51 r52 r53 r54 r55 r56 r57 r58 r59 r60 r61 r62 r63 r64 r65 r66 r67 r68 r69 r70 r71 r72 r73 r74 r75
c1 3 3 1 3 2 1 3 1 3 1 2 2 3 3 1 3 1 3 2 3 1 3 2 3 1
c2 3 3 1 2 2 3 3 2 1 1 1 3 2 3 1 2 1 2 3 1 1 3 1 3 2
c3 3 1 2 3 2 3 2 1 2 3 1 1 2 3 3 1 3 3 3 1 3 1 3 1 1
c4 2 1 3 2 1 3 3 1 2 3 2 2 3 3 3 1 2 1 2 1 2 3 3 2 2
c5 1 3 3 2 3 1 2 1 3 2 2 2 1 2 1 3 2 1 2 1 2 2 3 2 1
Eff 6 2 17 8 1 3 14 16 18 7 10 7 16 19 17 15 11 8 20 1 5 8 3 15 4

r76 r77 r78 r79 r80 r81 r82 r83 r84 r85 r86 r87 r88 r89 r90 r91 r92 r93 r94 r95 r96 r97 r98 r99 r100
c1 1 2 3 3 1 2 1 3 1 2 2 2 1 3 2 2 3 1 1 1 2 1 3 1 1
c2 1 3 3 1 2 1 2 1 2 2 1 3 2 2 2 3 2 2 3 2 2 1 3 1 1
c3 2 3 3 1 2 1 2 3 2 3 1 2 2 3 3 3 3 2 1 1 2 3 3 2 3
c4 2 1 3 3 1 3 1 2 2 2 1 1 1 3 1 1 3 3 1 2 1 2 3 1 3
c5 3 2 3 1 3 3 2 1 2 2 2 2 1 3 3 3 1 1 3 1 3 3 3 3 3
Eff 20 10 20 3 20 10 16 19 3 12 16 15 1 6 7 15 18 4 7 2 7 8 7 7 3

r21 � r22 r32 � r33 r46 � r47 r65 � r66
r2 ⇒ r24 r3 ⇒ r26 r3 ⇒ r27 r3 ⇒ r28 r3 ⇒ r29 r4 ⇒ r5 r6 ⇒ r7 r7 ⇒ r30 r10 ⇒ r32
r10 ⇒ r33 r14 ⇒ r32 r14 ⇒ r34 r14 ⇒ r37 r14 ⇒ r38 r16 ⇒ r39 r16 ⇒ r40 r17 ⇒ r43
r29 ⇒ r49 r29 ⇒ r50 r29 ⇒ r51 r30 ⇒ r52 r30 ⇒ r53 r31 ⇒ r55 r32 ⇒ r56 r32 ⇒ r57
r33 ⇒ r58 r36 ⇒ r61 r39 ⇒ r63 r40 ⇒ r64 r43 ⇒ r65 r46 ⇒ r68 r47 ⇒ r70 r55 ⇒ r79

r56 ⇒ r80 r57 ⇒ r80 r62 ⇒ r83 r62 ⇒ r84 r64 ⇒ r87

4.2 Metaheuristic techniques applied in experimentation

Many metaheuristic techniques have been applied to the requirement selection
problem, a review of them can be found at (del Sagrado et al, 2010b). We select
two algorithms against with our multi-objective ant colony system will be eval-
uated for solving the NRP: Greedy Randomized Adaptive Search Procedure
(GRASP) and Non-dominated Sorting Genetic Algorithm (NSGA-II).

The first one is a metaheuristic algorithm that generates a good approxi-
mation to the efficient set of solutions of a multi-objective combinatorial op-
timization problem. GRASP was first introduced by Feo and Resende (1989).
Survey papers on GRASP include Feo and Resende (1995), Pitsoulis and Re-
sende (2003), and Resende and Ribeiro (2003).

GRASP proceeds iteratively by first building a greedy randomized solution
and then improving it through a local search. The greedy randomized solution
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is built from a list of elements ranked by a greedy function by adding elements
to the problem’s solution set. The greedy function is in charge of measuring
the profit of including an element in the solution with respect to the cost of its
inclusion. In our approach, the greedy function used measures the quality of a
requirement based on users satisfaction with respect to the effort, (i.e. si/ei).
In the our case the greedy function used measures the quality of a requirement
ri based on users satisfaction with respect to the effort is the equation:

λo=s ∗ si + λo=e
ei

2 ∗ ei
(15)

where λo are the weights associated with each objective as defined. This
measure is a productivity metric that weighs the profit of including a require-
ment with respect to the resources involved in their development. The local
search acts, in an iterative way, trying to replace the current solution by a
better one located in its neighborhood. GRASP terminates when no better
solution can be found in the neighborhood.

The fast Elitist Non-dominated Sorting Genetic algorithm (NSGA-II) was
proposed by Deb et al (2002). The word elitist refers to the fact that only the
best individuals found so far are transferred to the next population. During
each generation, a population is constructed by combining the parent and the
child population. A fitness value is assigned to all non-dominated solutions of
the combined population according to its level of non-dominance. Thus, the
dominated solutions have a fitness value less than that of any non dominated
solution. During this process the fitness value should decrease to lead the search
towards non dominated solutions. Individuals represent the possible solutions,
that is, an individual is a set of requirements. Two fitness functions have been
implemented (one per objective), considering that the NSGA-II algorithm will
try to minimize each one. Each generation represents the evolution of the
population. The idea is that by means of crossover and mutation the new
children and mutated individuals have even better fitness values than the
original ones. Better individuals have a higher probability of stating at the
Pareto front, whose cardinality is limited by the population defined in the
execution. In the case of NRP, the crossover and mutation methods are more
specific and difficult than in other problems because we need to take into
account the resources bound in order to obtain new valid individuals (see
del Sagrado et al (2010a)). The works of Durillo et al (2011) and Zhang and
Harman (2010) show that NSGA-II can solve NRP offering a set of comparable
solutions with those obtained by other metaheuristics.

4.3 Performance measures

We have calculated the optimal Pareto front of the problem defined by the first
dataset, in order to compare it against those calculated by the metaheuristic
optimization techniques. However, when the number of requirements grows,
dataset 2, the obtaining of the optimal Pareto front is an intractable problem.
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So, our approach is to compare the results using several quality indicators,
giving an insight on the quality of the results achieved for all the executed
algorithms. Therefore, we use the following indicators with the purpose of
conducting a comparative measure of diversity and convergence of the solutions
obtained:

– The number of non dominated solutions found (#Solutions). Pareto fronts
with a higher number of non dominated solutions are preferred.

– The size of the space covered by the set on non-dominated solutions found
(Hypervolume) (Zitzler and Thiele, 1999). For a two dimensional problem,
for each solution i ∈ Q, a vector vi is built with respect to a reference
point W , and the solution i is considered as the diagonal corner of an
hypercube. Hypervolume is the volume occupied by the union of all of
these hypercubes:

HV = volume

 |Q|⋃
i=1

vi

 (16)

Pareto fronts whit higher hypervolume values are preferred.
– The extent of spread achieved among the obtained solutions (∆-Spread)

(Durillo et al, 2009).

∆(F ) =
df + dl +

∑n
i=1 |di − d̄|

df + dl + (n− 1) ∗ d̄
(17)

where di is the Euclidean distance between two consecutive solutions, d̄
is the average of these distances, df , dl are the Euclidean distances to the
extreme solutions of the optimal Pareto front, and n is the number of
solutions in the obtained Pareto front F . Pareto fronts with smaller spread
are preferred.

– A measure that evaluates the uniformity of the distribution of non-dominated
solutions found (Spacing) (Schott, 1995). If the problem has N objectives
and its Pareto front has n solutions, the spacing of F is defined as:

Spacing(F ) =

∑n
j=1

(∑N
i=1

(
1− |dij |

d̄i

)2
)1/2

n ∗N
(18)

where, d̄i is the mean value of the magnitude of the i− th objective in the
set F . and dij is the value of the i-th objective for the j-th solution in F .
Pareto fronts with higher spacing are preferred.

Pareto fronts with a higher number of non-dominated solutions, smaller
spread, higher spacing and higher hypervolume are preferred. The average
and standard deviation of all of these quality indicators are computed.
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Fig. 4 Kiviat graph comparing metaheuristic algorithms

4.4 Comparison Methodology

The comparison of the results is done in four steps:

1. For each dataset and each development effort bound, we have performed
one hundred consecutive executions of each of the metaheuristic search
techniques, using different parameters settings. We compute the average
and standard deviation of the number of solutions in the Pareto-front, of
the quality indicators, and of the execution time.

2. With these values at hand, we have analyzed each technique separately. We
make a numerical comparison of the different configurations of parameters
used in order to show their influence on the behavior of the algorithms,
selecting the parameters configuration that exhibits the best scores of the
five quality indicators.

3. Once the best parameter setting has been established for each one of the
algorithms (GRASP, NSGA-II and ACS), the average values of their indi-
cators are visually compared, using Kiviat graphs (see Figure 4). This step
allows us evaluate the goodness of our ACS proposal, comparing it against
the other two search methods used.

4. The Pareto fronts returned by each metaheuristic search techniques are
compared using the non-parametric significance Mann-Whitney U test,
which is a non-parametric statistical hypothesis test for assessing whether
one of two samples of independent observations tends to have larger values
than the other. We compare the satisfaction dimension.

5 Analysis of the Experimental Results

Tables 5, 6 and 7, included in the appendix,
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Fig. 5 Pareto fronts for dataset 1

Fig. 6 Pareto fronts for dataset 2

Appendix

Tables of this appendix collect the data related to the execution of the algo-
ritms.
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24 José del Sagrado et al.

Table 4 Best result for each algorithm and dataset

# Sols Hypervol ∆Spread Spacing Exec. Time (ms)
Dataset 1 30%
GRASP 11.37±1.47 5,851.00±277.82 0.64±0.09 0.36±0.03 362.80±10.84
NSGA−II 9.69±2.09 6,842.92±849.03 0.76±0.09 0.29±0.11 1,891.55±196.10
ACS 13.80±13.80 7,817.44±38.32 0.52±0.02 0.33±0.01 637.69±21.42
Dataset 1 50%
GRASP 17.65±2.22 14,508.20±265.88 0.73±0.07 0.35±0.03 1,208.25±29.15
NSGA−II 11.30±1.82 15,676.77±1,214.25 0.79±0.07 0.27±0.06 1,980.93±144.42
ACS 17.75±0.61 18,153.33±51.26 0.52±0.01 0.37±0.01 787.62±33.29
Dataset 1 70%
GRASP 20.97±2.16 24,837.24±297.55 0.68±0.06 0.34±0.03 1,678.75±41.20
NSGA−II 11.70±1.90 24,408.67±1,746.18 0.80±0.07 0.26±0.05 2,034.25±120.81
ACS 20.57±20.57 29,196.12±53.72 0.48±0.02 0.40±0.01 836.76±34.35
Dataset 2 30%
GRASP 62.74±4.97 119,395.37±826.79 0.69±0.05 0.39±0.02 29,141.69±638.77
NSGA−II 56.86±8.91 219,662.51±6,320.36 0.81±0.07 0.22±0.04 28,428.73±1,385.88
ACS 47.41±5.87 234,609.66±1,689.93 0.69±0.06 0.41±0.04 618,755.93±26,695.67
Dataset 2 50%
GRASP 81.39±5.85 419,804.19±1,617.48 0.74±0.04 0.31±0.02 120,585.52±4,053.31
NSGA−II 67.00±11.24 497,866.51±16,045.67 0.81±0.06 0.19±0.03 35,149.95±743.31
ACS 57.68±5.69 527,685.22±2,738.50 0.66±0.06 0.43±0.04 770,221.21±37,331.72
Dataset 2 70%
GRASP 130.88±5.89 762,924.13±1,822.50 0.71±0.03 0.28±0.02 336,762.35±13,095.81
NSGA−II 83.32±10.52 873,383.61±24,556.01 0.77±0.05 0.19±0.03 38,295.95±784.52
ACS 70.98±5.27 902,769.29±3,141.76 0.61±0.06 0.45±0.04 881,950.91±54,188.14
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Table 5 Results Greedy Randomized Adaptive Search Procedure (GRASP)

Parameters # Sols Hypervol ∆Spread Spacing Exec. Time
(iter, α) (ms)

Dataset 1 30%
(1000,0.9) 11.37±1.47 5,851.00±277.82 0.64±0.09 0.36±0.03 362.80±10.84
(1000,0.8) 11.67±1.60 5,239.29±337.86 0.71±0.09 0.40±0.03 356.41±11.28
(1000,0.5) 6.72±1.03 3,571.45±526.58 0.75±0.10 0.35±0.03 340.61±10.12
(1000,0.3) 6.00±0.00 1,487.00±0.00 0.65±0.00 0.31±0.00 339.06±11.66
(500,0.9) 10.26±1.60 5,386.75±318.31 0.65±0.09 0.38±0.03 183.77±10.46
(500,0.8) 11.12±1.48 4,764.96±407.39 0.72±0.09 0.40±0.03 180.64±11.42
(500,0.5) 6.56±1.00 3,125.67±471.71 0.82±0.07 0.35±0.04 169.54±9.28
(500,0.3) 6.00±0.00 1,487.00±0.00 0.65±0.00 0.31±0.00 169.99±9.75

Dataset 1 50%
(1000,0.9) 17.65±2.22 14,508.20±265.88 0.73±0.07 0.35±0.03 1,208.25±29.15
(1000,0.8) 17.33±2.04 13,730.69±365.03 0.77±0.06 0.40±0.03 1,202.66±24.38
(1000,0.5) 14.96±0.60 11,268.44±175.26 0.78±0.04 0.27±0.02 1,175.61±23.76
(1000,0.3) 14.00±0.00 9,847.00±0.00 0.80±0.00 0.23±0.00 1,162.34±23.35
(500,0.9) 16.99±2.10 13,932.90±368.64 0.74±0.07 0.35±0.03 605.58±22.47
(500,0.8) 16.66±2.01 13,275.39±477.28 0.77±0.07 0.40±0.03 599.04±19.03
(500,0.5) 14.64±0.63 11,122.17±184.16 0.79±0.03 0.26±0.02 584.37±16.30
(500,0.3) 14.00±0.00 9,847.00±0.00 0.80±0.00 0.23±0.00 580.63±18.71

Dataset 1 70%
(1000,0.3) 20.97±2.16 24,837.24±297.55 0.68±0.06 0.34±0.03 1,678.75±41.20
(1000,0.8) 19.67±1.71 23,897.72±309.97 0.74±0.05 0.38±0.03 1,531.68±38.51
(1000,0.5) 14.89±0.68 21,232.90±161.44 0.78±0.04 0.27±0.02 1,170.96±26.27
(1000,0.3) 14.00±0.00 19,826.00±0.00 0.80±0.00 0.23±0.00 1,160.77±24.36
(500,0.9) 20.26±2.18 24,473.66±377.05 0.69±0.06 0.34±0.03 839.84±31.48
(500,0.8) 19.48±1.59 23,413.63±387.34 0.75±0.05 0.37±0.03 764.94±29.40
(500,0.5) 14.70±0.63 21,074.26±162.06 0.80±0.04 0.26±0.02 588.96±18.68
(500,0.3) 14.00±0.00 19,826.00±0.00 0.80±0.00 0.23±0.00 584.50±17.64

Dataset 2 30%
(500,0.3) 53.99±3.78 111,783.21±296.19 0.55±0.05 0.40±0.02 15,715.18±1,619.54
(500,0.5) 56.21±4.79 117,227.38±871.86 0.65±0.05 0.38±0.03 15,291.71±1,240.43
(500,0.8) 48.99±4.88 126,148.96±1,824.04 0.65±0.05 0.34±0.04 15,436.13±1,112.42
(500,0.9) 46.32±3.87 128,336.00±1,770.28 0.64±0.05 0.33±0.03 14,674.33±235.43
(1000,0.3) 57.99±3.66 112,418.88±235.53 0.60±0.04 0.41±0.02 28,915.27±371.20
(1000,0.5) 62.74±4.97 119,395.37±826.79 0.69±0.05 0.39±0.02 29,141.69±638.77
(1000,0.8) 53.66±5.14 129,680.62±1,501.14 0.67±0.06 0.35±0.03 29,346.86±384.38
(1000,0.9) 52.47±5.23 132,182.64±1,924.53 0.66±0.05 0.34±0.03 29,526.05±363.79

Dataset 2 50%
(500,0.3) 71.05±4.20 402,416.59±1,039.90 0.77±0.03 0.41±0.02 59,385.89±1,531.46
(500,0.5) 69.32±5.01 407,057.50±1,531.07 0.74±0.04 0.40±0.03 61,738.85±4,761.45
(500,0.8) 73.32±5.54 415,226.09±1,785.76 0.74±0.04 0.31±0.03 63,504.13±3,792.53
(500,0.9) 67.99±5.32 420,263.92±2,183.74 0.74±0.04 0.32±0.03 61,463.12±1,935.45
(1000,0.3) 75.80±4.69 404,784.23±790.84 0.79±0.03 0.44±0.02 121,349.99±2,508.53
(1000,0.5) 74.82±4.50 410,221.09±1,464.63 0.74±0.03 0.41±0.02 122,381.05±3,872.40
(1000,0.8) 81.39±5.85 419,804.19±1,617.48 0.74±0.04 0.31±0.02 120,585.52±4,053.31
(1000,0.9) 75.81±5.81 425,642.47±1,894.97 0.74±0.05 0.32±0.03 118,335.71±2,000.27

Dataset 2 70%
(500,0.3) 120.51±5.59 745,387.59±781.13 0.74±0.03 0.34±0.02 164,035.28±8,251.63
(500,0.5) 117.43±5.67 750,964.34±1,601.37 0.71±0.03 0.32±0.02 165,807.50±7,222.89
(500,0.8) 118.35±7.19 758,626.65±2,045.66 0.71±0.03 0.28±0.02 173,550.47±14,891.71
(500,0.9) 109.35±6.57 763,586.43±2,015.47 0.70±0.03 0.28±0.02 168,849.21±9,234.50
(1000,0.3) 129.59±5.76 747,684.46±773.36 0.75±0.02 0.34±0.02 329,101.66±11,926.18
(1000,0.5) 128.50±6.49 754,667.97±1,647.21 0.72±0.02 0.32±0.02 337,569.40±21,378.16
(1000,0.8) 130.88±5.90 762,924.13±1,822.50 0.71±0.03 0.28±0.02 336,762.35±13,095.81
(1000,0.9) 120.14±7.27 769,613.34±2,064.60 0.70±0.03 0.29±0.02 324,604.49±13,244.30
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Table 6 Non-dominated Sorting Genetic Algorithm (NSGA-II)

Parameters # Sols Hypervol ∆Spread Spacing Exec. Time
(Pop, pmut, (ms)
pcross,Gen)

Dataset 1 30%
(20,.05,.9,500) 7.83±1.70 6,429.18±1,078.58 0.76±0.11 0.27±0.12 1,105.33±124.41
(20,.05,.9,500) 8.32±1.80 6,623.22±802.87 0.76±0.10 0.27±0.11 1,100.97±122.37
(40,.05,.9,250) 9.69±2.09 6,842.92±849.03 0.76±0.09 0.29±0.11 1,891.55±196.10
(40,.05,.8,250) 9.44±2.57 6,663.56±935.59 0.73±0.10 0.33±0.13 1,856.43±216.09

Dataset 1 50%
(20,.05,.9,500) 8.86±2.14 14,832.53±1,957.58 0.80±0.08 0.26±0.10 1,130.43±106.19
(20,.05,.8,500) 9.38±2.15 15,205.51±1,623.13 0.79±0.07 0.26±0.10 1,137.50±99.64
(20,.05,.9,250) 11.30±1.82 15,676.77±1,214.25 0.79±0.07 0.27±0.07 1,980.93±144.42
(20,.05,.8,250) 11.46±1.98 15,664.81±1,339.10 0.80±0.06 0.27±0.06 1,999.39±138.59

Dataset 1 70%
(20,.05,.9,500) 9.11±1.61 23,494.48±2,303.49 0.80±0.09 0.24±0.06 1,144.04±95.96
(20,.05,.8,500) 9.22±2.09 23,358.35±3,061.03 0.78±0.08 0.26±0.10 1,156.72±100.40
(40,.05,.9,250) 11.33±1.93 23,967.40±1,974.73 0.81±0.06 0.26±0.05 2,035.61±123.05
(40,.05,.8,250) 11.70±1.90 24,408.67±1,746.18 0.80±0.07 0.26±0.05 2,034.25±120.81

Dataset 2 30%
(125,.01,.9,80) 54.34±8.51 218,138.21±6,861.82 0.80±0.07 0.22±0.05 28,127.77±1,275.83
(125,.01,.8,80) 56.86±8.91 219,662.51±6,320.36 0.81±0.07 0.22±0.04 28,428.73±1,385.88
(100,.01,.9,100) 46.73±8.59 213,287.75±9,791.80 0.83±0.07 0.20±0.06 22,987.83±1,329.29
(100,.05,.8,100) 50.79±8.12 216,657.11±7,377.47 0.82±0.06 0.20±0.05 24,134.12±1,546.03

Dataset 2 50%
(125,.01,.9,80) 85.19±8.54 542,408.15±22,993.260.65±0.06 0.14±0.02 40,683.34±518.12
(125,.01,.9,80) 65.54±11.86 495,948.91±14,310.53 0.81±0.06 0.19±0.03 35,045.76±840.87
(125,.01,0.8,80)67.00±11.24497,866.51±16,045.670.81±0.06 0.19±0.03 35,149.95±743.31
(100,.01,.9,100) 53.26±10.04 483,773.06±19,331.55 0.85±0.07 0.17±0.04 28,453.78±708.03
(100,.05,.8,100) 57.30±9.89 488,446.02±19,717.84 0.83±0.06 0.17±0.04 28,620.55±843.44

Dataset 2 70%
(125,.01,.9,80) 80.43±10.04 868,208.57±24,183.01 0.77±0.05 0.18±0.03 38,716.48±1,681.94
(125,.01,.8,80) 83.32±10.53873,383.61±24,556.010.77±0.06 0.19±0.03 38,295.95±784.52
(100,.01,.9,100) 68.06±6.99 859,481.95±25,202.17 0.80±0.06 0.18±0.03 31,283.26±581.24
(100,.05,.8,100) 71.72±8.69 870,345.56±23,093.39 0.77±0.06 0.19±0.03 31,352.58±717.18
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Table 7 Ant Colony System (ACS). Iteration = 100 ρ = 0.01, q0 = 0.95

Parameters# Sols Hypervol ∆Spread Spacing Exec. Time
(Ants, α, β) (ms)

Dataset 1 30%

(10,0,1)13.80±0.51 7,817.44±38.32 0.52±0.020.33±0.01 637.69±21.42
(10,1,0) 12.56±1.00 6,326.28±375.84 0.52±0.08 0.34±0.02 533.57±23.97
(10,1,1) 13.66±0.59 7,801.76±54.74 0.52±0.03 0.33±0.01 641.09±21.85
(10,1,2) 13.66±0.61 7,805.39±49.87 0.52±0.03 0.33±0.01 639.10±17.79
(10,1,5) 13.69±0.61 7,806.74±50.69 0.52±0.03 0.33±0.01 744.67±23.54

Dataset 1 50%
(10,0,1) 17.65±0.56 18,144.53±55.00 0.52±0.02 0.37±0.01 789.03±34.51
(10,1,0) 15.73±1.22 14,951.09±603.70 0.57±0.05 0.37±0.02 761.86±34.02
(10,1,1) 17.60±0.60 18,143.78±56.05 0.52±0.02 0.37±0.01 788.59±27.80
(10,1,2)17.75±0.61 18,153.33±51.26 0.52±0.010.37±0.01 787.62±33.29
(10,1,5) 17.66±0.59 18,140.09±64.45 0.52±0.02 0.37±0.01 914.80±33.36

Dataset 1 70%
(10,0,1) 20.57±0.64 29,188.04±61.87 0.49±0.02 0.40±0.01 842.63±36.16
(10,1,0) 19.77±1.35 25,882.17±686.76 0.53±0.05 0.38±0.02 855.28±38.66
(10,1,1)20.57±0.62 29,196.12±53.72 0.48±0.020.40±0.01 836.76±34.35
(10,1,2) 20.53±0.74 29,195.16±55.44 0.48±0.020.40±0.01 837.62±31.57
(10,1,5) 20.50±0.73 29,176.01±79.45 0.49±0.02 0.40±0.01 969.39±44.37

Dataset 2 30%
(50,0,1)47.41±5.87 234,609.66±1,689.93 0.69±0.060.41±0.04 618,755.93±26,695.67
(50,1,0) 38.12±5.15 111,445.99±3,602.45 0.79±0.06 0.35±0.05 490,487.56±24,849.13
(50,1,1) 45.74±5.65 234,212.10±2,000.59 0.69±0.060.42±0.04 630,320.35±31,083.56
(50,1,2) 47.12±5.44 234,583.42±1,710.00 0.68±0.06 0.41±0.04 616,873.55±21,983.20
(50,1,5) 45.30±4.72 234,354.84±1,881.55 0.68±0.07 0.41±0.04 646,635.17±30,675.35

Dataset 2 50%
(50,0,1) 57.72±5.16 527,407.75±3,107.23 0.67±0.07 0.44±0.04 771,106.11±37,794.04
(50,1,0) 63.17±5.89 334,719.66±5,059.43 0.74±0.06 0.34±0.03 919,818.36±45,425.92
(50,1,1) 57.76±5.37 527,577.63±3,002.42 0.65±0.070.43±0.03 768,485.74±34,399.04
(50,1,2)57.68±5.69 527,685.22±2,738.50 0.66±0.06 0.43±0.04 770,221.21±37,331.73
(50,1,5) 57.38±5.01 527,682.14±2,663.33 0.66±0.06 0.43±0.03 812,531.72±47,958.66

Dataset 2 70%
(50,0,1) 70.92±5.78 902,040.57±4,206.39 0.64±0.05 0.45±0.03 908,792.96±56,879.39
(50,1,0) 84.45±6.95 674,078.31±6,146.74 0.72±0.04 0.34±0.03 1,227,042.34±75,250.72
(50,1,1) 70.05±4.89 902,380.79±3,655.72 0.63±0.06 0.44±0.03 914,333.94±63,482.50
(50,1,2)70.98±5.27 902,769.29±3,141.76 0.61±0.060.45±0.03 881,950.91±54,188.14
(50,1,5) 69.18±4.52 901,764.91±3,425.91 0.63±0.05 0.45±0.03 914,228.95±50,084.02
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Table 8 Mann-Whitney-Wilcoxon test for dataset 1

Optimal
U=145 n1=19 n2=14

ACS pvalue = 6.79 ∗ 10−1 ACS
U=134 n1=19 n2=18 U=88 n1=14 n2=12

NSGA-II pvalue = 4.36 ∗ 10−1 pvalue8.59 ∗ 10−1 NSGA-II
U=132.5 n1=19 n2=11 U=95 n1=14 n2= 11 U=79.5 n1=12 n2=11

GRASP pvalue = 2.33 ∗ 10−1 pvalue = 3.4 ∗ 10−1 pvalue = 4.13 ∗ 10−1

Results for the comparison of the Pareto-fronts obtained for dataset 1
with a development effort bound of the 30% of the total software development resources

Optimal
U=268.4 n1= 27 n2=18

ACS pvalue = 5.59 ∗ 10−1 ACS
U=249 n1=27 n2=16 U=145.5 n1=18 n2=16

NSGA-II pvalue = 4.19 ∗ 10−1 pvalue = 9.95 ∗ 10−1 NSGA-II
U=280 n1=27 n2=18 U=170.5 n1=18 n2=18 U=154 n1=16 n2=18

GRASP pvalue = 4.01 ∗ 10−1 pvalue = 7.90 ∗ 10−1 pvalue = 7.45 ∗ 10−1

Results for the comparison of the Pareto-fronts obtained for dataset 1
with a development effort bound of the 50% of the total software development resources

Optimal
U=391 n1=32 n2=21

ACS pvalue = 3.35 ∗ 10−1 ACS
U=319,5 n1=32 n2=16 U=180 n1=21 n2=16

NSGA-II pvalue = 3.25 ∗ 10−1 pvalue = 7.28 ∗ 10−1 NSGA-II
U=440 n1=32 n2=23 U=253.5 n1=23 n2=21 U=196.5 n1=23 n2=16

GRASP pvalue = 2.25 ∗ 10−1 pvalue = 7.79 ∗ 10−1 pvalue = 7.24 ∗ 10−1

Results for the comparison of the Pareto-fronts obtained for dataset 1
with a development effort bound of the 70% of the total software development resources

How explain the
test, When...
P < 0.001 The difference between the two samples is highly significant
P < 0.01 Two samples are significantly different
P < 0.05 The difference between the two samples is marginally significant
P >= 0.05 Two samples are not significantly different
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Table 9 Mann-Whitney-Wilcoxon test for dataset 2

ACS
U = 2560.5, n1 = 78, n2 = 57

NSGA-II pvalue = 1.29 ∗ 10−1 NSGA-II
U = 2505, n1 = 72, n2 = 57 U = 3792, n1 = 78, n2 = 72

GRASP pvalue = 2.94 ∗ 10−2 pvalue = 1.3 ∗ 10−4

Results for the Pareto-fronts obtained for dataset 2
with a development effort bound of 30%

ACS
U = 4122.5, n1 = 86, n2 = 76

NSGA-II pvalue = 3.6 ∗ 10−3 NSGA-II
U = 3953, n1 = 92, n2 = 76 U = 4089.5, n1 = 92, n2 = 86

GRASP pvalue = 1.42 ∗ 10−1 pvalue = 6.96 ∗ 10−1

Results for the Pareto-fronts obtained for dataset 2
with a development effort bound of 50%

ACS
U = 4965, n1 = 96, n2 = 79

NSGA-II pvalue = 3.48 ∗ 10−4 NSGA-II
U = 7060.5, n1 = 144, n2 = 79 U = 7063.5, n1 = 144, n2 = 96

GRASP pvalue = 2.62 ∗ 10−3 pvalue = 7.71 ∗ 10−1

Results for the Pareto-fronts obtained for dataset 2
with a development effort bound of 70%

When...
P < 0.001 The difference between the two samples is highly significant
P < 0.01 Two samples are significantly different
P < 0.05 The difference between the two samples is marginally significant
P >= 0.05 Two samples are not significantly different


