
Hindawi Publishing Corporation
�e Scienti�c World Journal
Volume 2013, Article ID 350934, 13 pages
http://dx.doi.org/10.1155/2013/350934

Research Article

Multi-Objective Approach for Energy-Aware Workflow
Scheduling in Cloud Computing Environments

Sonia Yassa,1,2 Rachid Chelouah,1 Hubert Kadima,1 and Bertrand Granado2

1 L@RIS Laboratory, EISTI, Avenue du Parc, 95011 Cergy-Pontoise, France
2ETIS Laboratory, CNRS UMR8051, University of Cergy-Pontoise, ENSEA, 6 Avenue du Ponceau, 95014 Cergy-Pontoise, France

Correspondence should be addressed to Sonia Yassa; sonia.yassa@eisti.eu

Received 6 August 2013; Accepted 12 September 2013

Academic Editors: S. H. Rubin and A. F. Zobaa

Copyright © 2013 Sonia Yassa et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We address the problem of scheduling work�ow applications on heterogeneous computing systems like cloud computing
infrastructures. In general, the cloud work�ow scheduling is a complex optimization problem which requires considering di
erent
criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in work�ow scheduling mainly
focuses on the optimization constrained by time or cost without paying attention to energy consumption.�emain contribution of
this study is to propose a new approach for multi-objective work�ow scheduling in clouds, and present the hybrid PSO algorithm
to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique
to minimize energy consumption. �is technique allows processors to operate in di
erent voltage supply levels by sacri�cing
clock frequencies. �is multiple voltage involves a compromise between the quality of schedules and energy. Simulation results
on synthetic and real-world scienti�c applications highlight the robust performance of the proposed approach.

1. Introduction

Cloud computing presents an interesting technology that
facilitates the execution of scienti�c and commercial applica-
tions. It provides, on demand, �exible and scalable services to
customers through a pay per use basis. It can usually provide
three kinds of services: IaaS (Infrastructure as a Service), PaaS
(Platform as a Service), and SaaS (So�ware as a Service).
�ese services are o
ered with di
erent service levels so as to
meet the needs of various customer groups. Although many
cloud services have a similar functionality (e.g., computing
services, storage services, network services, etc.), they di
er
from each other by non-functional qualities termed QoS
(Quality of Service) parameters, such as service time, service
cost, service availability, service energy consumption, service
utilization, and so forth.

�ese QoS parameters may be de�ned and proposed by
di
erent SLAs (Service Level Agreements). An SLA speci�es
the QoS requirements of negotiated resources, the minimum
expectations and limits that exist between consumers and
providers. Applying such an SLA represents a binding con-
tract. Lack of such agreements can lead applications to move

away from the cloud and will compromise the future growth
of cloud computing.

Several scienti�c applications such as those of bioinfor-
matics, chemistry and astronomy contain a great number of
tasks that have precedence constraints. �ey can be de�ned
by DAGs (Directed Acyclic Graph). �ese scienti�c work-
�ows typically involve complex data of di
erent sizes and long
term computer simulations. �ey need high computation
power and the availability of large infrastructures that grid
and more recently cloud computing environments provide
with di
erent QoS levels.

Due to the importance of work�ow applications, several
research projects have been conducted to develop work-
�ow management systems with scheduling algorithms. �e
projects: Condor Dagman [1], Gridbus toolkit [2], Iceni [3],
Pegasus [4], and so forth, are designed for grids, whereas
cloudbus toolkit [5], SwinDeW-C [6], VGrADS [7], and so
forth, are developed for clouds. �ese systems can be viewed
as a type of platform service facilitating the automation of
scienti�c and commercial applications on the grid and cloud
by masking their orchestrations and executions.

2 �e Scienti�c World Journal

In order to e
ectively schedule the tasks and data appli-
cations on these cloud environments, work�ow manage-
ment systems require more elaborated scheduling strategies
to meet QoS constraints and the precedence relationships
between work�ow tasks. �e study of work�ow scheduling
is becoming an important challenge in the area of cloud
computing.

�e work�ow scheduling in the cloud is a di�cult
problem. �is problem is even more di�cult when there are
several factors to be considered namely, (1) the various QoS
requirements of customers like service response time, service
cost, and so forth; (2) the heterogeneity, dynamicity and
elasticity of cloud services; (3) the various ways of combining
these services to execute work�ow tasks; (4) the transfer of
large volumes of data, and so forth. However, the work�ow
scheduling problem is seen as a combinatorial problem,
where it is impossible to �nd the globally optimal solution
by using simple algorithms or rules. It is well known as an
NP-complete problem [8] and depends on the problem size.

�e work�ow scheduling problem has been widely stud-
ied in many previous works [9–12]. Most of these works
have concentrated only on two QoS parameters namely,
the deadline and budget. In this paper, we extend these
works to handle multiple QoS requirements. We address the
QoS-based work�ow scheduling which aims to minimize
the cost and total time execution of user applications as
speci�ed in the SLA. Furthermore, the scheduler must also
be able to schedule work�ow tasks so as to maximize the
provider pro�ts by minimizing energy consumption while
preserving the users QoS preferences. We achieve this by
using an iterative method called Multi-objective Discrete
Particle SwarmOptimization (MODPSO) combinedwith the
Dynamic Voltage and Frequency Scaling (DVFS) technique.
�is last one allows a compromise between system perfor-
mance and energy consumption.

�e proposed approach is assessed by simulation runs
on a set of synthetic and real-world scienti�c applications.
Simulation results showed that this new multi-objective
algorithm signi�cantly improves the performance of related
approaches.

�e remainder of this paper is organized as follows.
Section 2 reviews several related works. Section 3 presents
the problemmodeling of theQoS basedwork�ow scheduling.
Section 4 describes in detail our scheduling heuristic called
DVFS-MODPSO. Section 5 shows an experimental evalu-
ation of our heuristic. Section 6 concludes the paper and
discusses some future works.

2. Related Work

�e work�ow scheduling problem in heterogeneous com-
puting systems is an NP-hard optimization problem [8],
meaning that the amount of computation needed to �nd
optimum solutions increases exponentially with the problem
size. Previous works have proposed many heuristic, and
meta-heuristic based approaches [13–16] to solve this prob-
lem. One of the most widely used heuristics for scheduling
work�ow application is the Heterogeneous Earliest Finish

Time (HEFT) algorithm developed by Topcuoglu et al. [17].
HEFT is a static scheduling algorithm that attempts to min-
imize execution time (makespan). It preserves the work�ow
precedence constraints and produces a good schedule length.

Most of these previous works have focused on mini-
mizing the work�ow execution time without considering
the users’ budget constraint. However, with the market-
oriented business model in cloud computing environments,
where users are billed for their consumption of resources,
several works that consider users’ budget and deadline have
been proposed [18–21]. In [22], a study indicating how
to schedule scienti�c work�ow applications with budget
and deadline constraints onto computational grids using
genetic algorithms is presented. Authors in [6] proposed
an improved cost-based scheduling algorithm for making
e�cient scheduling of tasks to available resources in cloud.
In [9], a particle swarm optimization (PSO) based heuristic is
used to minimize the execution cost of scheduling work�ow
applications to cloud resources.

Besides makespan and cost, energy consumption is
becoming more and more important in the cloud computing
environments. However, cloud providers must adopt mea-
sures not only to meet the user’ QoS requirements, but
also to ensure that their pro�t margin is not dramatically
reduced due to high energy consumptions. �e energy
e�ciency can con�ict with the other QoS requirements
(makespan, cost). Incorporating the energy consumption
into the work�ow scheduling adds another layer of complex-
ity. �erefore, recent works have concentrated on developing
energy-aware scheduling algorithms. �ey have examined
various techniques such as dynamic power management,
Dynamic Voltage and Frequency Scaling (DVFS) or resource
hibernation [23–26]. Authors in [27] presented an online
dynamic power management strategy with many power-
saving states. �ey proposed a min-min based energy-aware
scheduling algorithm to minimize energy consumption in
heterogeneous computing systems. In [26], a dynamic slack
allocation technique which tries to use idle (slack) time
slots of processors to lower supply voltage (frequency/speed)
is presented. �ese slack time slots occur, due to earlier
completion and/or dependencies of tasks. Several DVS-based
approaches for slack allocation have been proposed for both
independent [28–35], and precedence-constrained [36–42]
tasks. In [43], an energy-aware scheduling algorithm and
detailed discussion of slack time computation are presented.
�is scheduling algorithm reduces voltages during the com-
munication phases between parallel tasks on homogeneous
processors. In [44], an Energy Conscious Scheduling heuris-
tic (ECS) is proposed. �e heuristic is devised with relative
superiority as a novel objective function, which takes into
account energy andmakespan. ECS is used to improve the bi-
objective genetic algorithm proposed in [45]. �is latter has
been extended in [46] to a parallel model of their approach.

All of these presented works have focused on optimizing
either a single or two objectives but none of them consider the
relationships between several objectives, namely, the relation-
ship between energy, makespan and cost. �ey do not take
into account how each one of these criteria can a
ect others.
To deal with these misses, we propose a Multi-Objective

�e Scienti�c World Journal 3

Discrete Particle Swarm Optimization algorithm combined
with DVFS technique (DVFS-MODPSO) to optimize all
three objectives at the same time. Our new approach provides
a set of solutions named Pareto solutions (i.e. non-dominated
solutions) enabling the user to select the desired tradeo
.

To the best of our knowledge, none of the previ-
ous scheduling approaches deal with the three-dimensional
makespan/cost/energy optimization, when tackling the prob-
lem of scheduling work�ow applications on heterogeneous
computing environments such as the cloud computing ones,
which constitute our key novelties.

3. Problem Modeling

In this section, we describe our system model in a formal
way. Our ultimate goal is to distribute work�ow tasks among
cloud services so as to optimize both the users’ QoS criteria
and cloud providers’ pro�ts by saving energy consumption of
their services.�erefore, we �rst present the cloud computing
model. �en, we describe our work�ow model and the QoS
parameters we deal. We conclude this section by describing
the scheduling model formalized as a multi-objective opti-
mization problem we solve.

3.1. Cloud Computing Model. �e cloud computing system
used in this work is a set of resources o
ered by a cloud
provider to run client applications. Our cloud model is
inspired by the model described in [45]. We assume that the
cloud is hosted in data centers composed of heterogeneous
machines. �ese data centers deliver a variety of services
hosted on thousands of IT servers, which are made available
as subscription-based services in a pay-as-you-go model. In
our model, the cloud computing system consists of a set of� = {�1, �2, . . . , ��} heterogeneous processors which are
fully interconnected. �e processors have varied processing
capability delivered at di
erent processing prices (see ec of
Table 1). Each processor �� ∈ � is DVFS-enabled; that is, it
can operate with di
erent VSLs (Voltage Scaling Level, i.e.,
di
erent clock frequencies). For each processor �� ∈ �,
a set �� of V VSLs is randomly and uniformly distributed
among three di
erent sets of VSLs (Table 1). We consider that
processors consume energy during periods of inactivity; that
is, when a processor is idling, it is assumed that the lowest
voltage is supplied [44]. Because clock frequency transition
overheads usually take a negligible amount of time, these
overheads are not considered in this paper and the inclusion
of such an overheadwill have no bearing on the overall model
of the proposed study.

Additionally, each processor �� ∈ � has a set of links��� = {��, �1, ��, �2, . . . , ��, ��}, 1 ≤ 	 ≤
; where ��,� ∈ �+ is
the available bandwidth—measured in Mega bits per second
(Mbps)—in the link between processors �� and ��, with ��,� =1. We assume that a message can be transmitted from one
processor to another while a task is executed on the recipient
processor. Finally, communication between tasks executed on
the same processor is neglected. Table 1 shows DVFS levels,
Relative speeds (R.Speed) and execution costs (ec.) for three
processor classes (TURIONMT-34, OMAP, PENTIUMM).

3.2. Work�ow Application Model. We model a cloud work-
�ow application as a Directed Acyclic Graph (DAG), denoted
as �(�,
). �e set of nodes � = {�1, . . . , ��} represents
the tasks in the work�ow application, the set of arcs denotes
precedence constraints and the control/data dependencies
between tasks. An arc is in the form of ��� = (��, ��) ∈
,
where�� is called the parent task of��,�� is the child task of��,��� is the data produced by�� and consumed by��.We assume
that a child task cannot be executed until all of its parent tasks
have been completed. In a given task graph, a task with no
parent is referred as an entry task, and one without any child
is called an exit task. Since our algorithm involves only one
entry and one exit tasks, we add two dummy tasks �entry and�exit which have zero execution time to the beginning and
the end of the work�ow, respectively. �ese dummy tasks are
connected with zero-weight arcs to the actual entry and exit
tasks, respectively.

We assume that each task �� ∈ � has an associated
basic execution time which is an independent value for each
machine. We denote ���, the basic computation time of a
task �� on a compute resource �� at maximum speed and
voltage (i.e., it corresponds to Level 1 in Table 1). �e average
execution time of the task �� is de�ned as:

�� = �∑
�=1

���
 . (1)

Real computation time����� of the task �� on machine ��
using relative execution speed ��� is de�ned as:

����� = ������ . (2)

We also assume that every edge (��, ��) ∈
, is associated
with value tr��, representing the time needed to transfer data
from �� to ��. �e transfer time can be calculated according
to the bandwidth ��,� between the resources executing these
tasks (�� and �� resp.) as follows:

tr�� = �����,� . (3)

However, a communication time is only required when
two tasks are assigned to di
erent processors. �at is, the
communication time when tasks are assigned to the same
processor can be neglected, that is, 0.

In general the execution costs (ec) and transmission costs
(trc) are inversely proportional to the execution times and
transmission times respectively.

We de�ne pred (��) as the set of all predecessors of �� and
succ (��) as the set of all successors of ��. An ancestor of node�� is any node �� that is contained in pred (��), or any node�� that is also an ancestor of any node �� contained in pred(��).

�e Earliest Start Time and the Earliest Finish Time of a
task �� on a processor �� are represented as EST (��, ��) and
EFT (��, ��), respectively. EST (��) and EFT (��) represent the
earliest start and �nish times on any processor respectively.

4 �e Scienti�c World Journal

Table 1: Voltage Scaling Levels and relative speeds of processors.

VSL.

P1: TURIONMT-34 P2: OMAP P3: PENTIUMM

Volt. Freq. R. Speed Volt. Freq. R. Speed Volt. Freq. R. Speed

(V) (Ghz) (%) (V) (Ghz) (%) (V) (Ghz) (%)

1 1.2 1.8 100 1.35 0.6 100 1.48 1.4 100

2 1.15 1.6 88.88 1.27 0.55 91.66 1.44 1.2 96.76

3 1.1 1.4 77.77 1.2 0.5 83.33 1.31 1 88.14

4 1.05 1.2 66.66 1 0.25 41.66 1.18 0.8 79.51

5 1 1 55.555 0.9 0.13 20.83 0.96 0.6 64.42

6 0.9 0.8 44.44

Cost ec = 1.14 ec = 0.57 ec = 0.76

Table 2: Task execution times and priorities.

Task (��) �1 �2 �3 �� Priority (Pr(��))
1 14 16 9 13 108.000

2 13 19 18 16.67 77.000

3 11 13 19 14.33 80.000

4 13 8 17 12.67 80.000

5 12 13 10 11.67 69.000

6 13 16 9 12.67 63.333

7 07 15 11 11 42.667

8 5 11 14 10 35.667

9 18 12 20 16.67 44.333

10 21 7 16 14.67 14.667

�	V(
� ,��) is de�ned as the earliest time when processor ��
will be available to begin executing task ��. Hence,

�� (��, ��) = {�, if �� = �entry
max {�	V(
� ,��), �} , (4)

where, � = max
� ∈ pred (
�)(
��(��, ��) + tr��

�� (��, ��) = ��� +
�� (��, ��) . (5)

Note that the Actual Start Time and Actual Finish Time
of a task �� on a processor ��, denoted as AST (��, ��) and
AFT (��, ��) can be di
erent from its earliest start EST (��, ��)
and �nish EFT (��, ��) times, if the actual �nish time of
another task �� scheduled on the same processor is later than
its EST (��, ��) [44].

Figure 1 depicts a work�ow application with 10 tasks, and
the Table 2 provides its details (given in [17]). �e values
presented in the last column of the table represent the priority
of the tasks. �e priority of task �� represented by Pr(��) is
computed recursively by traversing the DAG upward starting
from the exit task �exit as follows (6):

Pr (��) = {�
exit , if �� = �exit�� + !, otherwise, (6)

where,! = max
� ∈ succ (
�){���� + Pr(��)}.

1

2 5 6

7 8

10

3 4

9

18
12 9 11

14

19 16 27
23 23 1513

13
11 17

Figure 1: An example of work�ow (given in [17]) with the task
numbers �� inside nodes and values of ��� function next to the
corresponding edges.

3.3. QoS Parameter Models

3.3.1. Energy Model. Among the main system-level energy-
saving techniques, Dynamic Voltage Scaling (DVS) operates
on a simple principle: decreases the supply voltage (and so the
clock frequency) to the CPU so as to consume less power.

In this work, we use a model of energy derived from the
power consumption model in digital complementary metal-
oxide semiconductor (CMOS) logic circuits [44]. Under the
dynamic power model, the processor power is dominated by
the dynamic power which is given by:

�dynamic = "#efV
2$, (7)

where" is the number of switches per clock cycle,#ef denotes
the e
ective charged capacitance, V is the supply voltage, and$ denotes the operational frequency. Equation (7) shows that
the supply voltage is the dominant factor; hence, its reduction
would be most in�uential to lower power consumption.

�e energy consumption of the execution of a work�ow
application used in this paper is de�ned as:

 = �∑
�=1
"#efV

2
� $���∗�

= �∑
�=1
%V2� $���∗� ,

(8)

�e Scienti�c World Journal 5

where % = "#ef is assumed constant for a given machine;
V�, $� are the voltage supply and frequency of the processor
on which task �� is executed, respectively, and ��∗� is the real
completion time of task �� on the scheduled processor. In the
idle time, the processor turns into sleep mode and thus the
voltage supply and relative frequency are at the lowest level.
So, the energy consumption during idle periods of processors
is de�ned as:

� = �∑
�=1

∑
idle��∈ IDLE�

%V2
min � $min � ���, (9)

where IDLE� is the set of idling slots on machine��, Vmin �($min �) is the lowest supply voltage (frequency)
on ��, and ��� is the amount of idling time for idle��.
�en the total energy
total utilized by the cloud system for
completion of the work�ow application can be de�ned as
follows:

total =

+
�. (10)

3.3.2. Time Model. �e completion time �total is the
makespan from the user submitting a work�ow until
receiving the results. It is de�ned as the actual �nish time
of the exit task. It is calculated in equation 11 and consists
of the work�ow execution time and network transmission
time. �e execution time depends on both the workload
and system performance. �e network transmission time
depends on both the network latency and the input data size

�total = maxAFT (�exit) . (11)

3.3.3. Cost Model. As result of the marketization characteris-
tic of current services, most cloud providers have set a price
for their services. �ey have �xed the price for transferring
basic data unit (e.g., per MB) between two services and the
price for processing basic time units (e.g., per hour).�e cost#total of running a cloud work�ow is de�ned in Formula (12).
It consists of processing cost #ex and data transfers cost #tr:

#total = #ex + #tr. (12)

�e processing cost for a given task�� depends on the real
completion time of �� on the scheduled processor (��∗�), and
the hourly price of this processor (ec�). �us, #ex is given by:

#ex = �∑
�=1
��∗� ∗ ec�. (13)

�e data transfer cost (#tr) is described as follows:

#tr = �∑
�=1

�∑
�=1
��� ∗ trc��, (14)

where ��� characterizes the output �le size from task�� to task��; and tr '�� represents the cost of communication from the
processor where �� is mapped to another processor where ��
is mapped.�e cost of communication is added to the overall
cost only when two tasks have data dependency between
them, (i.e, ��� > 0). For two or more tasks running on the
same processor, the transfer cost is neglected.

3.3.4. Scheduling Model. Given (1) A cloud provider that
o
ers a set � of
 heterogeneous processors and (2) a
user work�ow application composed of a set � of * tasks
that have to be executed on these processors. �e work�ow
scheduling problem is to construct a mapping - of tasks
to processors (without violating precedence constraints) that
minimizes the following con�icting objectives: makespan,
cost, and energy consumption as low as possible. �erefore
the work�ow scheduling problem can be formulated as a
mathematical optimization problem:

Makespan:Minimize �total (-)
Cost:Minimize #total (-)

Energy:Minimize
total (-) .
(15)

4. Workflow Scheduling Based on Discrete
Particle Swarm Optimization

�is section starts with a brief overview on multi-objective
combinatorial optimization and Particle swarm optimization
algorithm. A�erwards, our new Multi-Objective Discrete
SwarmOptimization combined with DVFS technique will be
presented.

4.1. Multi-Objective Optimization. A Multi-objective Opti-
mization Problem (MOP) with
 decision variables and *
objectives can be formally de�ned as:

Min (/ = $ (0) = [$1 (0) , . . . , $� (0)]) , (16)

where 0 = (01, . . . , 0�) ∈ 7 is an
-dimensional decision
vector, 7 is the search space, / = (/1, . . . , /�) ∈ 8 is the
objective vector and Y the objective-space.

In general MOP, there is no single optimal solution
with regards to all objectives. �is is also the case for
the multi-objective optimization problem addressed in this
paper. As given in (15), there are three con�icting objectives:
minimizing execution time, minimizing execution cost and
minimizing energy consumption. In such problems, the
desired solution is considered to be the set of potential
solutions which are all optimal in some objectives. �is set is
known as the Pareto optimal set.We provide some de�nitions
of the Pareto concepts used in MOP as follows: (without
loss of generality we suppose that the objectives are to be
minimized):

(i) Pareto dominance. For two decision vectors 01 and 02,
dominance (denoted by ≺) is de�ned as follows:

01 ≺ 02 ⇐⇒ ∀? $� (01) ≤ $� (02) ∧ ∃B$� (01) < $� (02) .
(17)

�e decision vector 01is said to dominate 02 if and
only if, 01 is as good as 02 considering all objectives
and 01 is strictly better than 02 in at least one
objective.

6 �e Scienti�c World Journal

(ii) Pareto optimally. A decision vector 01 is said to be
Pareto optimal if and only if

∄02 ∈ 7 : 02 ≺ 01. (18)

(iii) Pareto optimal set. �e Pareto optimal set �� is the set
of all Pareto optimal decision vectors.

�� = {01 ∈ 7, | ∄02 ∈ 7 : 02 ≺ 01} . (19)

(iv) Pareto optimal front.�ePareto optimal front�� is the
image of the Pareto optimal set in the objective space.

�� = {$ (0) = ($1 (0) , . . . , $� (0)) | 0 ∈ ��} . (20)

01 is said to be non-dominated regarding a given set

if 01 is not dominated by any decision vectors in the
set.

�epareto optimal decision vector cannot be enhanced in
any objective without causing degradation in at least another
objective. A decision vector is said to be Pareto optimal when
it is not dominated in the whole search space.

4.2. Particle Swarm Optimisation

4.2.1. �e Standard PSO. PSO is a population-based stochas-
tic optimization technique developed by Kennedy and Eber-
hart in 1995 [47]. It is inspired by the social behavior of insect
colonies, bird �ocks, �sh schools and other animal societies. It
is also related to evolutionary computation. PSOhas attracted
signi�cant attention from many researchers due to both its
simplicity of use and optimization via social behavior. In fact,
PSO has good performance, requires low computational cost.
It is e
ective and easy to implement as it uses numerical
encoding.

A particle in PSO is analogous to a �sh or bird moving
in the J-dimensional search space. All particles have �tness
values indicating their performances, which are problem
speci�c, and velocities which direct the �ight of particles.
Each particle position at any given time is in�uenced by both
its best position called �KL�M and the position of the best
particle in a problem space referred to as NKL�M. �erefore
particles tend to �y towards a better search area during
the search process. A particle status on the search space
is characterized by two elements, namely its velocity and
position, which are updated in every generation as follows:

��+1� = ���� + '1�1 (�KL�M� − 7��)
+ '2�2 (NKL�M − 7��) ,
7�+1� = 7�� + ��+1� ,

(21)

where ��+1� is the velocity of particle ? at iteration 	 + 1,��� is the velocity of particle ? at iteration 	, � is the inertia
weight, '1 and '2 are the acceleration coe�cients (cognitive
and social coe�cients), �1 and �2 are the random numbers

between 0 and 1,7�� is the current position of particle ? at the	th iteration, �KL�M� is the best previous position of the ?th
particle, NKL�M is the position of best particle in the swarm,

and7�+1� is the position of ?th particle at 	 + 1 iteration.
�e procedure for standard PSO is as follows:

(1) Initialize a population of particles with random posi-
tions and velocities in the search space.

(2) Evaluate the objective values of all particles, set �KL�M
of each particle equal to its current position, and setNKL�M equal to the position of the best initial particle.

(3) Update the velocity and the position of each particle
according to (21).

(4) Map the position of each particle in the solution space
and evaluate its �tness value according to the desired
optimization �tness function.

(5) For each particle, compare its current objective value
with its �KL�M value. If the current value is better, then
update �Best with the current position and objective
value.

(6) Determine the best particle of the current whole pop-
ulation with the best objective value. If the objective
value is better than that of NKL�M, then update NBest
with the current best particle.

(7) If the stopping criterion ismet, then output NKL�M and
its objective value; otherwise, go to Step (2).

�e original design of PSO is appropriate for �nding
solutions to continuous optimization problems. However, as
the work�ow scheduling discussed in this paper is both a
discrete andmulti objective problem in nature, we propose an
e
ective approach to address this problem by using a discrete
version of the Multi-Objective PSO (MODPSO) combined
with DVFS technique.�e key issues of our approach consist
of: (1) de�ning the position and velocity of the particles
based on the features of discrete variables of the work�ow
scheduling; (2) solving the multi-objective aspect of the
problem by modifying PSO so as to generate a set of non-
dominated solutions satisfying the di
erent objectives under
consideration instead of one solution.

4.2.2. Handling Work�ow Scheduling Using DVFS-MODPSO.
In general, a work�ow scheduling can be de�ned by a set
of triplets - = [⟨��, ��, ��⟩](? ∈ [1, *], B ∈ [1,
], 	 ∈[1, �(B)]), * is the number of work�ow tasks to be scheduled,
 is the number of processors available in the cloud environ-
ment and �(B) is the number of operating points (VSLs) of theBth processor.

For the sake of clarity, the variables and rules of DVFS-
MODPSO for solving work�ow scheduling can be depicted
as follows:

�e position of a particle represents a feasible solution
to the scheduling problem. It consists of a set of⟨task(��), service (��), VSl (��)⟩ triplets. Each triplet
means that a task (��) is assigned to a processor (��)
with a voltage scaling level (��). It also indicates

�e Scienti�c World Journal 7

that the position satis�es the precedence constraint
between tasks.

�e process of generating a newposition for a selected
particle in the swarm is depicted in the following
formulas:

��+1� = ��� ⊕ ((�1 ⊗ (�KL�M� ⊖ 7��))
⊕ (�2 ⊗ (NKL�M ⊖ 7��)))

(22)

7�+1� = 7�� ⊕ ��+1� . (23)

�e operator de�nitions are as follows:

(i) �e substract operator (⊖). the di
erence between
two particle positions, designated as 01 and 02, is
de�ned as a set of triplets in which each triplet⟨task, service,VSL⟩ shows whether the contents of
the corresponding elements in 01 are di
erent from
those of 02 or not. If so, that triplet gets its values
(service and VSL) from the position that has the
lowest value of theVSL. For those triplets that have the
same content in 01 and 02, their corresponding VSLs
are decreased. (Note that the scaling of VSL makes
�uctuations on the energy, makespan and cost).

(ii) �e multiply operator (⊗). the multiplication between
number and velocity is de�ned as a set of triplets,
where: a threshold � ∈ [0, 1] is de�ned, a
random number � is generated for each triplet⟨task, service,VSL⟩; compare � and �: when � ≥ �,
decrease the triplet VSL, otherwise, increase it. �is
operator adds the exploration ability to the algorithm.

(iii) �e add operator (⊕). the addition of two positions is
de�ned as the reservation of the dominated one.

�e Pseudocode 1 outlines the general steps of the DVFS-
MODPSO algorithm.

�e algorithm begins by initializing the positions and
velocities of particles. To obtain the position of a particle, the
VSL (voltage and frequency) of each resource is randomly
initialized �rstly then the HEFT algorithm is applied to
generate a feasible and e�cient solution minimizing the
makespan. �e process is repeated several times to initialize
the positions of all particles of the swarm. Initially, the
velocity� and the best position for each particle �KL�M are
attributed as the particle itself. �e algorithm maintains
an external archive EA to store non-dominated particles
found a�er the evaluation process (based on the pareto
dominance using the objectives mentioned in 3.3). A�er all
these initializations, in the main loop of the algorithm, the
new velocity and position of each particle are calculated
respectively a�er selecting the best overall position in the
external archive and eventually perform a mutation, then the
particle is evaluated and its corresponding �KL�M is updated.
�e external archive is updated a�er every iteration. Once
the termination condition is reached, the external archive
containing the Pareto front is returned as the result.

5. Experimental Evaluations

In this section, we describe the overall setup of our experi-
mentation e
ort and the results we have obtained from it to
validate the new proposed approach.

In our experiments, we simulate a synthetic work�ow
application described in [17] (see Figure 1) and two common
work�ow structures: parallel and hybrid structures.We chose
two well known real world applications, namely a neuro-
science work�ow [48] for our parallel application and a
protein annotation work�ow [49] developed by London e-
Science Centre for our hybrid work�ow application. Figure 2
shows their simpli�ed representations.�e number indicated
in the parentheses next to each node represents the length of
the task (the number of instructions to execute) in Millions
of Instructions (MI). �e input and output �les of each task
range from 10MB to 1024MB.

We have performed experiments on 3, 4, 5, 6 and 12
resources whose characteristics are shown in Table 1. We
choose the pricing model associated with Amazon EC2
(http://aws.amazon.com/ec2) for the processing costs of the
di
erent classes of resources, and the pricing model given by
Amazon CloudFront (http://aws.amazon.com/cloudfront/)
for the costs of transferring data unit between resources.

As for DVFS-MODPSO, the parameter settings are:
Swarm size, �VW
 = 50 particles and the maximum number
of iterations, � = 100.

We evaluated the performance of our proposed DVFS-
MODPSO on all the work�ow instances described previously.
Due to the lack of works considering both the heteroge-
neous con�guration of our cloud and the three QoS metrics
(makespan, cost, energy) at the same time, we compared
our results with those of the HEFT heuristic we have
implemented. HEFT is one of themost widely used heuristics
for DAGs in distributed heterogeneous computing systems
which optimize the makespan.

Figures 3, 4 and 5 show sample Pareto fronts obtained
with the DVFS-MODPSO and the solution computed by
HEFT for the synthetic work�ow, the hybrid work�ow and
the parallel work�ow, respectively.

As can be seen from these �gures, unlike the HEFT
algorithm which gives one solution, our proposed approach
provides a set of non dominated solutions. �ese results
illustrate the basic multi-objective de�nitions provided in
Section 4.1.

Now, for comparing these two approaches, and in order
to analyze the e
ectiveness of our proposition, in terms of
the values of makespan, cost and energy consumption, we
have been inspired by the methodology described in [43]
where we compare the solution provided by HEFT to only
one solution of the Pareto front set computed by our proposed
multi-objective DVFS-MODPSO.

�e evaluation process follows the next steps. For each
work�ow instance, we perform a �rst resolution usingHEFT
in order to get one solution �. A�er, a second resolution is
computed using our proposed approach to obtain a set EA of
Pareto solutions. Next, we select one solution �� from the set
EA of Pareto solutions. �is solution is the closest one to � in
the sense of Euclidean distance. Finally, a comparison is done
between � and ��.

8 �e Scienti�c World Journal

// Swarm initialization with HEFT
(1) For i = 1 to SNum (SNum is the size of particle swarm)

(a) For j = 1 to m (m the number of processors)
(i) Randomly initialize VSL(j) (randomly choose the voltage/frequency of processor from the set of its operating points).

(b) Initialize �[?] with HEFT heuristic (S is the swarm of particles)
(c) Initialize the velocity V of each particle� [?] = 0 (� [?])
(d) Initialize the Personal Best (pBest) of each particle:�KL�M[?] = �[?];
(e) Evaluate objectives of each particle:

Evaluate S[i]
(f) Initialize the Global Best particle (gBest) with the best one among the SNum particles:

gKL�M = Best particle found in �
(2) End For
(3) Add the nondominated solutions found in S into EA (EA is the External Archive storing the pareto front)
(4) Initialize the iteration number M = 0
(5) Repeat until M > � (� is the maximum number of iterations)

(a) For ? = 1 to SNum (swarm size)
(i) Randomly select the global best particle for S from the External Archive EA and store its position in gBest.
(ii) Calculate the new velocity �[?] according to (22)
(iii) Compute the new position of �[?] according to (23)
(iv) If (M < � ∗ PMUT) then (PMUT is the probability of mutation)

Perform mutation on �[?].
(v) Evaluate S[i]

(b) End For
(c) Update the personal best solution of each particle �[?]:

if � [?] ≼ �KL�M� [?] ∨ (� [?] ∼ �KL�M� [?])
�en �KL�M� [?] = � [?]

(d) Update the External Archive EA:
(i) Add all new non-dominated solution in S into EA
if � [?] ^ 0, ∀0 ∈
"�en
" =
" ∪ {� [?]}
(ii) Remove all particles dominated by �[?] in EA
" =
" − {/ ∈
" | / < �[?]}
(iii) If the archive is full then randomly select the article to be replaced from EA.

(6) Return the pareto front (the set of non-dominated solutions from S and EA)

Pseudocode 1: DVFS-MODPSO based work�ow scheduling.

�edi
erent results are displayed on Figures 6, 7, 8, and 9
and on Tables 3 and 4. �ey show the improvement achieved
by our proposed approach according to the structure of the
work�ow applications and the number of processors.

Table 3 and Figure 6 show that our proposed approach
improves on average the result obtained by HEFT for the
synthetic work�ow instance. �e makespan is reduced by
0.05%, the cost is reduced by 9.93% and the energy con-
sumption is reduced by 26.40%. Figure 6 shows detailed
improvements of the proposed approach according to the
number of processors.

Table 4 and Figure 7 illustrate the gain obtained by our
approach according to the kind of real world applications.
Table 4 also shows the detailed improvements when scaling
the number of processors. As can be seen, the QoS metrics
are improved over HEFT in average by 0.95% for the
makespan, 10.8% for cost and 8.12% for the energy con-
sumption when using the hybrid work�ow application, and
average improvements of 2.95% formakespan, 22.15% for cost
and 20.9% for energy consumption when using the parallel
work�ow.

�ese evaluations con�rm the results obtained from the
synthetic work�ow. �is means that by using our DVFS-
MODPSO, we are able to improve not only the cost and energy
but also themakespan onwhichHEFT algorithm is supposed
to provide good results. �ese results remain true for all kind
of work�ow applications.

In our experiments, we limited the number of resources
to 12, as we found that, for these kinds of work�ow
applications, some resources are not used at all. Figure 8
shows the resource loads when scheduling the synthetic
work�ow on 12 resources. Furthermore, even though the
number of resources increased, the total cost and total energy
consumption could not always decrease as illustrated in
Figure 9. From this �gure, we can see that the QoS metrics(1) �rstly decreases as the number of resources increases
until achieving the number 6. �is can be explained by the
fact that when increasing the number of resources, there
are fewer tasks executed in a resource, therefore, tasks can
extend their execution times and the resource have more of
chances to scale down their voltages and frequencies which
can be very e
ective in reducing total energy consumption.

�e Scienti�c World Journal 9

1 2 3 4

5

6 7

8 9 10

11

12

14

13

15

(300000) (600000) (600000) (900000)

(300000)

(150000) (150000)

(300000) (300000) (300000)

(600000)

(300000)

(150000)

(300000)

(600000)

SignalP COILS2 SEG PROSITE

TMHMM

Prospero

HMMer

PSI-BLAST
BLAST

IMPALA

PSI-PRED

3D-PSSM

Summary

Genome
summary

SCOP

(a)

1 3 5 7

9

11 1210

(400000) (400000) (400000) (400000)

(300000)

(500000) (500000) (500000)

So�mea

2 4 6 8

(600000) (600000) (600000) (600000)

Reslice

14 1513

(600000) (600000) (600000)

Convert

Reslice Reslice Reslice

Slicer Slicer

Convert Convert

Slicer

Align wapAlign wapAlign wapAlign wap

(b)

Figure 2: Parallel and Hybrid work�ows.

10 �e Scienti�c World Journal

75
80

85
90

95
100 80

90
100

110
120

130
140

20

60

100

140

180

220

E
n

er
g

y

DVFS-MODPSO

HEFT

Makespan

Cost

Figure 3: Obtained non-dominated solutions for the synthetic
work�ow.

E
n

er
g

y

DVFS-MODPSO
HEFT

Makespan

Cost
200 400 600 800 100012001400160018002000 400

800

1200

1600

2000

400
200

600
800

1000
1200
1400
1600
1800
2000

Figure 4: Obtained non-dominated solutions for the hybrid work-
�ow.

(2) A�er achieving 6 resources, the QoS metrics begin to
rise; the reason for this is that time executions are dominated
by interprocessors communications, hence decreasing the
opportunities for scaling down voltages and frequencies of
resources. Consequently, the threshold numbers of resources
that minimized the QoS metrics could be obtained.

6. Conclusion

In this paper, we propose a new algorithm called DVFS-
Multi-Objective Discrete Particle Swarm Optimization
(DVFS-MODPSO) for work�ow scheduling in distributed
environments such as cloud computing infrastructures. DV-
FS-MODPSO simultaneously optimizes several con�icting
objectives namely, the makespan, cost and energy in a
discrete space. It produces a set of non-dominated solutions,
thus providing more �exibility for users to assess their
preferences and select a schedule that meets their QoS

E
n

er
g

y

DVFS-MODPSO
HEFT

Makespan
Cost

400
200

600
800

1000
1200
1400
1600
1800

2400

2000
2200

450
500

550
600

650
700

750
1200

1400

1600

1800

2000

Figure 5: Obtained non-dominated solutions for the parallel work-
�ow.

0

10

20

30

40

50

3 4 5 6 12

Makespan

Cost

Energy

Figure 6: Gain over HEFT (%) according to the number of
processors.

requirements. Our approach exploits the heterogeneity
and the marketization of cloud resources in order to �nd
solutions that optimize makespan and cost. Furthermore, it
uses the Dynamic Voltage and Frequency Scaling (DVFS)
technique to reduce energy consumption.

We have evaluated our algorithm by simulating it with
both synthetic and real world scienti�c work�ow applications
having di
erent structures. �e results show that the pro-
posedDVFS-MODPSO is able to produce a set of good Pareto
optimal solutions. �e results also show that our approach
provides signi�cant improvement not only in terms of the

�e Scienti�c World Journal 11

0

5

10

15

20

25

Hybrid

Parallel

Makespan Cost Energy

Figure 7: Improvement according to real world applications.

R1
7%

R2
0%

R3
7%

R4
46%

R5
0%

R6
0%

R7
33%

R8
0%

R9
0%

R10
7%

R11
0%

R12
0%

Figure 8: Resource loads for synthetic work�ow.

Table 3: Improvement for synthetic work�ow.

Num. of proc.
Gain over He� (%)

Makespan Cost Energy

3 0 21.26 40.08

4 0.22 4.64 15.35

5 0 7.56 17.26

6 0.03 6.52 26.75

12 0 9.69 32.55

Average 0.05 9.93 26.40

cost and the energy consumption but also in term of the
makespan for which HEFT algorithm is supposed to give
better results.

Multi-objective optimization in cloud work�ow schedul-
ing is not a mature domain. Most of the existing works
attempt to minimize either the makespan or cost. However,
we plan to consider other objectives such as reliability,
security in addition to the energy consumption. We also

0

50

100

150

200

250

3 4 5 6 12

Makespan

Cost

Energy

Figure 9: QoS metrics evolutions according to resource numbers
for the synthetic work�ow.

Table 4: Improvement according to real world applications.

Appli. Num. of proc
Gain over He� (%)

Makespan Cost Energy

Hybrid

3 4.05 11.55 04.02

4 0.28 05.66 05.07

5 0.00 13.47 11.24

6 0.00 01.17 12.65

12 0.43 22.14 07.61

Average 0.95 10.80 08.12

Parallel

3 2.35 56.40 25.52

4 11.47 20.94 32.71

5 0.00 21.42 11.66

6 0.93 11.70 31.54

12 0.00 0.31 3.06

Average 2.95 22.15 20.9

intend to apply our algorithm in a real world cloud or
integrate it in existing cloud toolkits such as Cloudbus for
comparing with other algorithms.

References

[1] D. �ain, T. Tannenbaum, and M. Livny, Condor and the Grid.
Grid Computing: Making the Global Infrastructure a Reality,
John Wiley & Sons, Hoboken, NJ, USA, 2003.

[2] R. Buyya and S. Venugopal, “�e gridbus toolkit for service
oriented grid and utility computing: an overview and status
report,” in Proceedings of the 1st IEEE International Workshop
on Grid Economics and Business Models (GECON ’04), pp. 19–
36, IEEE CS, Seoul, Republic of Korea, April 2004.

[3] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darling-
ton, “Work�ow enactment in ICENI,” in Proceedings of the UK

12 �e Scienti�c World Journal

e-Science All Hands Meeting, pp. 894–900, IOP, Nottingham,
UK, September 2004.

[4] E. Deelman, J. Blythe, Y. Gil et al., “Pegasus: mapping scienti�c
work�ows onto the grid,” in Grid Computing: 2nd European
AcrossGrids Conference, AxGrids 2004, Nicosia, Cyprus, January
28–30, 2004, vol. 3165 of Lecture Notes in Computer Science, pp.
11–20, Springer, New York, NY, USA, 2004.

[5] R. Buyya, S. Pandey, and C. Vecchiola, “Cloudbus toolkit
for market-oriented cloud computing,” in Cloud Computing:
Proceedings of the 1st International Conference, CloudCom 2009,
Beijing, China, December 1–4, 2009, vol. 5931 of Lecture Notes
in Computer Science, pp. 24–44, Springer, New York, NY, USA,
2009.

[6] Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan, and H. Jin, “An
algorithm in SwinDeW-C for scheduling transaction-intensive
cost-constrained cloud work�ows,” in Proceedings of the 4th
IEEE International Conference on eScience (eScience ’08), pp.
374–375, Indianapolis, Ind, USA, December 2008.

[7] L. Ramakrishnan, C. Koelbel, Y. Kee et al., “VGrADS: enabling
e-Sciencework�ows on grids and cloudswith fault tolerance,” in
Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (SC ’09), November 2009.

[8] M. L. Pinedo, Scheduling: �eory, Algorithms and Systems,
Springer, Berlin, 2008.

[9] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling work�ow applica-
tions in cloud computing environments,” in Proceedings of the
24th IEEE International Conference on Advanced Information
Networking and Applications (AINA ’10), pp. 400–407, Perth,
Australia, April 2010.

[10] S. Abrishami and M. Naghibzadeh, “Deadline-constrained
work�ow scheduling in so�ware as a service cloud,” Scientia
Iranica, vol. 19, no. 3, pp. 680–689, 2012.

[11] S. Selvarani and G. S. Sadhasivam, “Improved cost-based algo-
rithm for task scheduling in cloud computing,” in Proceedings of
the IEEE International Conference on Computational Intelligence
and Computing Research (ICCIC ’10), pp. 1–5, Coimbatore,
India, December 2010.

[12] A. Verma and S. Kaushal, “Deadline and budget distribution
based cost-time optimization work�ow scheduling algorithm
for cloud,” inProceedings of the IJCA on International Conference
on Recent Advances and Future Trends in Information Technol-
ogy (iRAFIT ’12), iRAFIT(7), pp. 1–4, April 2012.

[13] R. C. Correa, A. Ferreira, and P. Rebreyend, “Integrating list
heuristics into genetic algorithms for multiprocessor schedul-
ing,” in Proceedings of the 8th IEEE Symposium on Parallel and
Distributed Processing (SPDP ’96), pp. 462–469, IEEEComputer
Society, Washington, DC, USA, October 1996.

[14] E. S. H. Hou, N. Ansari, and H. Ren, “Genetic algorithm for
multiprocessor scheduling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no. 2, pp. 113–120, 1994.

[15] M. Grajcar, “Genetic list scheduling algorithm for scheduling
and allocation on a loosely coupled heterogeneous multi-
processor system,” in Proceedings of the 36th Annual Design
Automation Conference (DAC ’99), pp. 280–285, ACM Press,
New York, NY, USA, June 1999.

[16] R. Sakellariou and H. Zhao, “A hybrid heuristic for DAG
scheduling on heterogeneous systems,” in Proceedings of the
13th Heterogeneous Computing Workshop, pp. 111–123, IEEE
Computer Society, Washington, DC, USA, 2004.

[17] H. Topcuoglu, S. Hariri, and M. Y. Wu, “Performance-e
ective
and low-complexity task scheduling for heterogeneous comput-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol.
13, no. 3, pp. 260–274, 2002.

[18] J. Yu and R. Buyya, “Work�ow scheduling algorithms for grid
computing,” in Metaheuristics for Scheduling in Distributed
Computing Environments, F. Xhafa and A. Abraham, Eds.,
Springer, Berlin, Germany, 2008.

[19] W.N. Chen and J. Zhang, “An ant colony optimization approach
to a grid work�ow scheduling problem with various QoS
requirements,” IEEE Transactions on Systems, Man and Cyber-
netics C, vol. 39, no. 1, pp. 29–43, 2009.

[20] X. Liu, J. Chen, Z. Wu, Z. Ni, D. Yuan, and Y. Yang, “Handling
recoverable temporal violations in scienti�c work�ow systems:
a work�ow rescheduling based strategy,” in Proceedings of the
10th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing (CCGrid ’10), pp. 534–537, Melbourne,
Australia, May 2010.

[21] X. Liu, Y. Yang, Y. Jiang, and J. Chen, “Preventing temporal
violations in scienti�c work�ows: where and how,” IEEE Trans-
actions on So
ware Engineering, vol. 37, no. 6, pp. 805–825, 2011.

[22] J. Yu and R. Buyya, “Scheduling scienti�c work�ow applications
with deadline and budget constraints using genetic algorithms,”
Scienti�c Programming, vol. 14, no. 3-4, pp. 217–230, 2006.

[23] L. Benini and G. Micheli, Dynamic Power Management: Design
Techniques and CAD Tools, Kluwer Academic, New York, NY,
USA, 1998.

[24] S. Irani, S. Shukla, and R. Gupta, “Online strategies for dynamic
power management in system with multiple power-saving
states,” ACM Transactions on Embedded Computing Systems,
vol. 2, no. 3, pp. 325–346, 2003.

[25] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, System-
Level Design Techniques for Energy-E�cient Embedded Systems,
Springer, New York, NY, USA, 2005.

[26] S. U. Khan and I. Ahmad, “A cooperative game theoretical
technique for joint optimization of energy consumption and
response time in computational grids,” IEEE Transactions on
Parallel and Distributed Systems, vol. 20, no. 3, pp. 346–360,
2009.

[27] Y. Li, Y. Liu, and D. Qian, “A heuristic energy-aware scheduling
algorithm for heterogeneous clusters,” in Proceedings of the 15th
International Conference on Parallel and Distributed Systems
(ICPADS ’09), pp. 407–413, Shenzhen, China, December 2009.

[28] L. K. Goh, B. Veeravalli, and S. Viswanathan, “Design of fast and
e�cient energy-aware gradient-based scheduling algorithms
heterogeneous embeddedmultiprocessor systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 20, no. 1, pp. 1–
12, 2009.

[29] F. Yao, A. Demers, and S. Shenker, “A scheduling model for
reduced CPU energy,” in Proceedings of the 36th IEEE Annual
Symposium on Foundations of Computer Science, pp. 374–382,
Milwaukee, Wis, USA, October 1995.

[30] Y. Shin and K. Choi, “Power conscious �xed priority scheduling
for hard real-time systems,” in Proceedings of the 36th Annual
Design Automation Conference (DAC ’99), pp. 134–139, New
Orleans, La, USA, June 1999.

[31] I. Hong, D. Kirovski, G. Qu,M. Potkonjak, andM. B. Srivastava,
“Power optimization of variable-voltage core-based systems,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, no. 12, pp. 1702–1714, 1999.

[32] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for
low-power embedded operating systems,” in Proceedings of the

�e Scienti�c World Journal 13

ACM Symposium on Operating Systems Principles, pp. 89–102,
October 2001.

[33] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” IEEE Transac-
tions on Computers, vol. 53, no. 5, pp. 584–600, 2004.

[34] J. Zhuo and C. Chakrabarti, “An e�cient dynamic task schedul-
ing algorithm for battery powered DVS systems,” in Proceedings
of the Asian South Paci�c Design Automation Conference, pp.
846–849, January 2005.

[35] R. Jejurikar and R. Gupta, “Dynamic slack reclamation with
procrastination scheduling in real-time embedded systems,” in
Proceedings of the 42nd Design Automation Conference (DAC
’05), pp. 111–116, June 2005.

[36] J. Luo andN. K. Jha, “Power-pro�le driven variable voltage scal-
ing for heterogeneous distributed real-time embedded systems,”
in Proceedings of the International Conference on VLSI Design,
pp. 369–375, January 2003.

[37] M. T. Schmitz and B. M. Al-Hashimi, “Considering power
variations of DVS processing elements for energy minimisation
in distributed systems,” in Proceedings of the International Sym-
posium on System Synthesis (ISSS ’01), pp. 250–255, Montreal,
Canada, October 2001.

[38] Y. Zhang, X. Hu, and D. Z. Chen, “Task scheduling and voltage
selection for energy minimization,” in Proceedings of the 39th
Annual Design Automation Conference (DAC ’02), pp. 183–188,
June 2002.

[39] D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with
dynamic voltage/speed adjustment using slack reclamation
in multiprocessor real-time systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 14, no. 7, pp. 686–700,
2003.

[40] D. Zhu, D. Mossé, and R. Melhem, “Power-aware scheduling
for AND/OR graphs in real-time systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 15, no. 9, pp. 849–864,
2004.

[41] J. Kang and S. Ranka, “DVS based energy minimization
algorithm for parallel machines,” in Proceedings of the IEEE
International Parallel and Distributed Processing Symposium
(IPDPS ’08), pp. 1–12, Miami, Fla, USA, April 2008.

[42] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de
Supinski, and M. Schulz, “Bounding energy consumption in
large-scale MPI programs,” in Proceedings of the ACM/IEEE
Conference on Supercomputing (SC ’07), ACM, November 2007.

[43] L. Wang, G. von Laszewski, J. Dayal, and F. Wang, “Towards
energy aware scheduling for precedence constrained parallel
tasks in a cluster with DVFS,” in Proceedings of the 10th
IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing (CCGrid ’10), pp. 368–377, May 2010.

[44] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling
for distributed computing systems under di
erent operating
conditions,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 8, pp. 1374–1381, 2011.

[45] M. Mezmaz, Y. C. Lee, N. Melab, E. Talbi, and A. Y. Zomaya,
“A bi-objective hybrid genetic algorithm to minimize energy
consumption and makespan for precedence-constrained appli-
cations using dynamic voltage scaling,” in Proceedings of the
IEEE Congress on Evolutionary Computation (CEC ’10), pp. 1–8,
Barcelona, Spain, July 2010.

[46] M. Mezmaz, N. Melab, Y. Kessaci et al., “A parallel bi-objective
hybrid metaheuristic for energy-aware scheduling for cloud
computing systems,” Journal of Parallel and Distributed Com-
puting, vol. 71, no. 11, pp. 1497–1508, 2011.

[47] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, vol. 4, pp. 1942–1948, Perth, Australia, December
1995.

[48] Y. Zhao, M. Wilde, I. Foster et al., “Grid middleware services
for virtual data discovery, composition, and integration,” in
Proceedings of the 2nd Workshop on Middleware for Grid
Computing (MGC ’04), pp. 57–62, Ontario, Canada, October
2004.

[49] A. O’Brien, S. Newhouse, and J. Darlington, “Mapping of
scienti�c work�ow within the e-protein project to distributed
resources,” inProceedings of theUK e-Science All HandsMeeting,
Nottingham, UK, September 2004.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

