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Abstract

We present a multi-objective Bayesian optimisation algorithm that allows the user
to express preference-order constraints on the objectives of the type “objective A
is more important than objective B”. These preferences are defined based on the
stability of the obtained solutions with respect to preferred objective functions.
Rather than attempting to find a representative subset of the complete Pareto front,
our algorithm selects those Pareto-optimal points that satisfy these constraints. We
formulate a new acquisition function based on expected improvement in dominated
hypervolume (EHI) to ensure that the subset of Pareto front satisfying the con-
straints is thoroughly explored. The hypervolume calculation is weighted by the
probability of a point satisfying the constraints from a gradient Gaussian Process
model. We demonstrate our algorithm on both synthetic and real-world problems.

1 Introduction

In many real world problems, practitioners are required to sequentially evaluate a noisy black-box and
expensive to evaluate function f with the goal of finding its optimum in some domain X. Bayesian
optimisation is a well-known algorithm for such problems. There are a variety of studies such as
hyperparameter tuning [27, 13, 12], expensive multi-objective optimisation for Robotics [2, 1], and
experimentation optimisation in product design such as short polymer fiber materials [16].

Multi-objective Bayesian optimisation involves at least two conflicting, black-box, and expensive to
evaluate objectives to be optimised simultaneously. Multi-objective optimisation usually assumes
that all objectives are equally important, and solutions are found by seeking the Pareto front in the
objective space [4, 5, 3]. However, in most cases, users can stipulate preferences over objectives. This
information will impart on the relative importance on sections of the Pareto front. Thus using this
information to preferentially sample the Pareto front will boost the efficiency of the optimiser, which
is particularly advantageous when the objective functions are expensive.

In this study, preferences over objectives are stipulated based on the stability of the solutions with
respect to a set of objective functions. As an example, there are scenarios when investment strategists
are looking for Pareto optimal investment strategies that prefer stable solutions for return (objective
1) but more diverse solutions with respect to risk (objective 2) as they can later decide their appetite
for risk. As can be inferred, the stability in one objective produces more diverse solutions for the
other objectives. We believe in many real-world problems our proposed method can be useful in order
to reduce the cost, and improve the safety of experimental design.

Whilst multi-objective Bayesian optimisation for sample efficient discovery of Pareto front is an
established research track [9, 18, 8, 15], limited work has examined the incorporation of preferences.
Recently, there has been a study [18] wherein given a user specified preferred region in objective space,
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Figure 1: (a) Local Pareto optimality for 2 objective example with 1D design space. Local optimality

implies
∂f0(x)

∂x
and

∂f1(x)
∂x

have opposite signs since the weighted sum of gradients of the objectives

with respect to x must be zero: sT ∂
∂x

f (x) = 0. In (b) we additionally require that ||∂f1(x)
∂x

|| >

||∂f0(x)
∂x

||, so perturbation of x will cause relatively more change in f1 than f0 - i.e. such solutions

are (relatively) stable in objective f0. (c) Shows the converse, namely ||∂f0(x)
∂x

|| > ||∂f1(x)
∂x

|| favoring
solutions that are (relatively) stable in objective f1 and diverse in f0.

the optimiser focuses its sampling to derive the Pareto front efficiently. However, such preferences
are based on the assumption of having an accurate prior knowledge about objective space and the
preferred region (generally a hyperbox) for Pareto front solutions. The main contribution of this study
is formulating the concept of preference-order constraints and incorporating that into a multi-objective
Bayesian optimisation framework to address the unavailability of prior knowledge and boosting the
performance of optimisation in such scenarios.

We are formulating the preference-order constraints through ordering of derivatives and incorporating
that into multi-objective optimisation using the geometry of the constraints space whilst needing
no prior information about the functions. Formally, we find a representative set of Pareto-optimal
solutions to the following multi-objective optimisation problem:

D⋆ ⊂ X⋆ = argmax
x∈X

f (x) (1)

subject to preference-order constraints - that is, assuming f = [f0, f1, . . . , fm], f0 is more important
(in terms of stability) than f1 and so on. Our algorithm aims to maximise the dominated hypervolume
of the solution in a way that the solutions that meet the constraints are given more weights.

To formalise the concept of preference-order constraints, we first note that a point is locally Pareto
optimal if any sufficiently small perturbation of a single design parameter of that point does not
simultaneously increase (or decrease) all objectives. Thus, equivalently, a point is locally Pareto
optimal if we can define a set of weight vectors such that, for each design parameter, the weighted sum
of gradients of the objectives with respect to that design parameter is zero (see Figure 1a). Therefore,
the weight vectors define the relative importance of each objective at that point. Figure 1b illustrates
this concept where the blue box defines the region of stability for the function f0. Since in this section
the magnitude of partial derivative for f0 is smaller compared to that of f1, the weights required to
satisfy Pareto optimality would need higher weight corresponding to the gradient of f0 compared to
that of f1 (see Figure 1b). Conversely, in Figure 1c, the red box highlights the section of the Pareto
front where solutions have high stability in f1. To obtain samples from this section of the Pareto front,
we need to make the weights corresponding to the gradient of f0 to be smaller to that of the f1.

Our solution is based on understanding the geometry of the constraints in the weight space. We show
that preference order constraints gives rise to a polyhedral proper cone in this space. We show that
for the pareto-optimality condition, it necessitates the gradients of the objectives at pareto-optimal
points to lie in a perpendicular cone to that polyhedral. We then quantify the posterior probability
that any point satisfies the preference-order constraints given a set of observations. We show how
these posterior probabilities may be incorporated into the EHI acquisition function [11] to steer the
Bayesian optimiser toward Pareto optimal points that satisfy the preference-order constraint and away
from those that do not.
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2 Notation

Sets are written A,B,C, . . . where R+ is the positive reals, R̄+ = R+ ∪ {0}, Z+ = {1, 2, . . .},
and Zn = {0, 1, . . . , n − 1}. |A| is the cardinality of the set A. Tuples (ordered sets) are denoted
A,B,C, . . .. Distributions are denoted A,B, C, . . .. column vectors are bold lower case a,b, c, . . ..
Matrices bold upper case A,B,C, . . .. Element i of vector a is ai, and element i, j of matrix A is
Ai,j (all indexed i, j = 0, 1, . . .). The transpose is denoted aT,AT. I is the identity matrix, 1 is a
vector of 1s, 0 is a vector of 0s, and ei is a vector e(i)j = δij , where δij is the Kronecker-Delta.

∇x = [ ∂
∂x0

∂
∂x1

. . . ∂
∂xn−1

]T, sgn(x) is the sign of x (where sgn(0) = 0), and the indicator function

is denoted as ✶(A).

3 Background

3.1 Gaussian Processes

Let X ⊂ Rn be compact. A Gaussian process [23] GP(µ,K) is a distribution on the function
space f : X → R defined by mean µ : X → R (assumed zero without loss of generality) and
kernel (covariance) K : X× X → R. If f(x) ∼ GP(0,K(x,x′)) then the posterior of f given D =
{(x(j), y(j)) ∈ Rn×R|y(j) = f(x(j))+ǫ, ǫ ∼ N (0, σ2), j ∈ ZN}, f(x)|D ∼ N (µD(x), σD(x,x

′)),
where:

µD (x) = kT (x)
(

K+ σ2I
)−1

y

σD (x,x′) = K (x,x′)− kT (x)
(

K+ σ2I
)−1

k (x′)
(2)

and y,k(x) ∈ R|D|, K ∈ R|D|×|D|, k(x)j = K(x,x(j)), Kjk = K(x(j),x(k)).

Since differentiation is a linear operation, the derivative of a Gaussian process is also a Gaussian
process [17, 22]. The posterior of ∇xf given D is ∇xf(x)|D ∼ N (µ′

D
(x),σ′

D
(x,x′)), where:

µ
′
D
(x) =

(

∇xk
T (x)

) (

K+ σ2I
)−1

y

σ
′
D
(x,x′) = ∇x∇

T
x′K (x,x′)−

(

∇xk
T (x)

)

(K+ σ2
i I)

−1
(

∇x′kT (x′)
)T

(3)

3.2 Multi-Objective Optimisation

A multi-objective optimisation problem has the form:

argmax
x∈X

f (x) (4)

where the components of f : X ⊂ Rn → Y ⊂ Rm represent the m distinct objectives fi : X → R.
X and Y are called design space and objective space, respectively. A Pareto-optimal solution is
a point x⋆ ∈ X for which it is not possible to find another solution x ∈ X such that fi(x) >
fi(x

⋆) for all objectives f0, f1, . . . fm−1. The set of all Pareto optimal solutions is the Pareto set
X⋆ = {x⋆ ∈ X| ∄x ∈ X : f (x) ≻ f (x⋆)} where y ≻ y′ (y dominates y′) means y 6= y′, yi ≥ y′i
∀i, and y � y′ means y ≻ y′ or y = y′.

Given observations D = {(x(j),y(j)) ∈ Rn × Rm|y(j) = f(x(j)) + ǫ, ǫi ∼ N (0, σ2
i )}

of f the dominant set D∗ = { (x∗,y∗) ∈ D| ∄ (x,y) ∈ D : y � y∗} is the most optimal sub-
set of D (in the Pareto sense). The “goodness” of D is often measured by the domi-
nated hypervolume (S-metric, [31, 10]) with respect to some reference point z ∈ Rm:

S (D) = S (D∗) =
∫

y≥z
1
(

∃y(i) ∈ D
∣

∣y(i) � y
)

dy. Thus our aim is to find the set D that max-

imises the hypervolume. Optimised algorithms exist for calculating hypervolume [29, 25], S(D),
which is typically calculated by sorting the dominant observations along each axis in objective space
to form a grid. Dominated hypervolume (with respect to z) is then the sum of the hypervolumes of
the dominated cells (ck) - i.e. S (D) =

∑

k vol (ck) .

3.3 Bayesian Multi-Objective Optimisation

In the multi-objective case one typically assumes that the components of f are draws from independent
Gaussian processes, i.e. fi(x) ∼ GP(0,K(i)(x,x

′)), and fi and fi′ are independent ∀i 6= i′. A
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popular acquisition function for multi-objective Bayesian optimisation is expected hypervolume
improvement (EHI). The EHI acquisition function is defined by:

at (x|D) = Ef(x)|D [S (D ∪ {(x, f (x))})− S (D)] (5)

[26, 30] and represents the expected change in the dominated hypervolume by the set of observations
based on the posterior Gaussian process.

4 Problem Formulation

Let f : X ⊂ Rn → Y ⊂ Rm be a vector of m independent draws fi ∼ GP(0,K(i)(x,x)) from zero-
mean Gaussian processes. Assume that f is expensive to evaluate. Our aim is to find a representative
set of Pareto-optimal solutions to the following multi-objective optimisation problem:

D⋆ ⊂ X⋆ = argmax
x∈XI⊂X

f (x) (6)

subject to preference-order constraints. Specifically, we want to explore only that subset of solutions
XI ⊂ X that place more importance on one objective fi0 than objective fi1 , and so on, as specified
by the (ordered) preference tuple I = (i0, i1, . . . iQ|{i0, i1, . . .} ⊂ Zm, ik 6= ik′∀k 6= k′), where
Q ∈ Zm is the number of defined preferences over objectives.

4.1 Preference-Order Constraints

Let x⋆ ∈ int(X)∩X⋆ be a Pareto-optimal point in the interior of X. Necessary (but not sufficient, local)
Pareto optimality conditions require that, for all sufficiently small δx ∈ Rn, f(x⋆ + δx) ⊁ f(x), or,

equivalently
(

δxT∇x

)

f (x⋆) /∈ Rm
+ . A necessary (again not sufficient) equivalent condition is that,

for each axis j ∈ Zn in design space, sufficiently small changes in xj do not cause all objectives to
simultaneously increase (and/or remain unchanged) or decrease (and/or remain unchanged). Failure of
this condition would indicate that simply changing design parameter xj could improve all objectives,
and hence that x⋆ was not in fact Pareto optimal. In summary, local Pareto optimality requires that
∀j ∈ Zn there exists s(j) ∈ R̄m

+\{0} such that:

sT(j)
∂

∂xj
f (x) = 0 (7)

It is important to note that this is not the same as the optimality conditions that may be derived from
linear scalarisation, as the optimality conditions that arrise from linear scalarisation additionally
require that s(0) = s(1) = . . . = s(n−1). Moreover (7) applies to all Pareto-optimal points, whereas
linear scalarisation optimisation conditions fail for Pareto points on non-convex regions [28].

Definition 1 (Preference-Order Constraints) Let I = (i0, i1, . . . iQ|{i0, i1, . . .} ⊂ Zm, ik 6=
ik′∀k 6= k′) be an (ordered) preference tuple. A vector x ∈ X satisfies the associated preference-order
constraint if ∃s(0), s(1), . . . , s(n−1) ∈ SI such that:

sT(j)
∂

∂xj
f (x) = 0 ∀j ∈ Zn

where SI ,
{

s ∈ R̄m
+\ {0}

∣

∣ si0 ≥ si1 ≥ si2 ≥ . . .
}

. Further we define XI to be the set of all
x ∈ X satisfying the preference-order constraint. Equivalently:

XI = {x ∈ X| ∂
∂xj

f (x) ∈ S⊥
I
∀j ∈ Zn}

where S⊥
I
,

{

x ∈ X| ∃s ∈ SI, sTx = 0
}

.

It is noteworthy to mention that (7) and Definition 1 are the key for calculating the compliance of
a recommended solution with the preference-order constraints. Having defined preference-order
constraints we then calculate the posterior probability that x ∈ XI, and showing how these posterior
probabilities may be incorporated into the EHI acquisition function to steer the Bayesian optimiser
toward Pareto optimal points that satisfy the preference-order constraint. Before proceeding, however,
it is necessary to briefly consider the geometry of SI and S⊥

I
.
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Figure 2: Illustration of S⊥
I
, SI and the vectors a(0),a(1) for a 2D case where I = (0, 1), so s0 > s1,

SI is a proper cone representing the preference-order constraints; S⊥
I

is the union of two sub-spaces.

v ∈ S⊥
I

implies a solution complying with preference-order constraints. b0 and b1 are the projection

of v over ã(0) and ã(1). In order to satisfy v ∈ S⊥
I

, it is necessary that ∃s ∈ SI s.t. vT s = 0 or

equivalently v = 0 or b0 = ãT(0)v and b1 = ãT(1)v have different signs.

4.2 The geometry of SI and S⊥
I

In the following we assume, w.l.o.g, that the preference-order constraints follows the order of indices
in objective functions (reorder, otherwise), and that there is at least one constraint.

We now define the preference-order constraints by assumption I = (0, 1, . . . , Q|Q ∈ Zm\{0}),
where Q > 0. This defines the sets SI and S⊥

I
, which in turn define the constraints that must be met

by the gradients of f(x) - either ∃s(0), s(1), . . . , s(n−1) ∈ SI such that sT(j)
∂

∂xj
f (x) = 0 ∀j ∈ Zn

or, equivalently
∂

∂xj
f (x) ∈ S⊥

I
∀j ∈ Zn. Next, Theorem 1 defines the representation of SI.

Theorem 1 Let I = (0, 1, . . . , Q|Q ∈ Zm\{0}) be an (ordered) preference tuple. Define SI as per
definition 1. Then SI is a polyhedral (finitely-generated) proper cone (excluding the origin) that may
be represented using either a polyhedral representation:

SI =
{

s ∈ Rm|aT(i)s ≥ 0∀i ∈ Zm

}

\ {0} (8)

or a generative representation:

SI =
{

∑

i∈Zm

ciã(i)
∣

∣ c ∈ R̄m
+

}

\ {0} (9)

where ∀i ∈ Zm:

a(i) =

{

1√
2
(ei − ei+1) if i ∈ ZQ

ei otherwise

ã(i) =

{ 1√
i+1

∑

l∈Zi+1

el if i ∈ ZQ+1

ei otherwise

and e0, e1, . . . , em−1 are the Euclidean basis of Rm.

Proof of Theorem 1 is available in the supplementary material. To test if a point satisfies this require-
ment we need to understand the geometry of the set SI. The Theorem 1 shows that SI∪{0} is a polyhe-
dral (finitely generated) proper cone, represented either in terms of half-space constraints (polyhedral
form) or as a positive span of extreme directions (generative representation). The geometrical intuition
for this is given in Figure 2 for a simple, 2-objective case with a single preference order constraint.
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Algorithm 1 Test if v ∈ S⊥
I

.

Input: Preference tuple I

Test vector v ∈ Rm.
Output: ✶(v ∈ S⊥

I
).

// Calculate 1(v ∈ S⊥
I
).

Let bj = ãT(j)v ∀j ∈ Zm.

if ∃i 6= k ∈ Zm : sgn(bi) 6= sgn(bk) return
TRUE

elseif b = 0 return TRUE

else return FALSE.

Algorithm 2 Preference-Order Constrained
Bayesian Optimisation (MOBO-PC).

Input: preference-order tuple I.
Observations D = {(x(i),y(i)) ∈ X× Y}.
for t = 0, 1, . . . , T − 1 do

Select the test point:
x = argmax

x∈X

aPEHI
t (x|Dt).

(aPEHI
t is evaluated using algorithm 4).

Perform Experiment y = f(x) + ǫ.
Update Dt+1 := Dt ∪ {(x,y)}.

end for

Algorithm 3 Calculate Pr(x ∈ XI|D).

Input: Observations D = {(x(i),y(i)) ∈
X× Y}.
Number of Monte Carlo samples R.
Test vector x ∈ X.
Output: Pr(x ∈ XI|D).
Let q = 0.
for k = 0, 1, . . . , R− 1 do

//Construct samples
v(0),v(1), . . . ,v(n−1) ∈ Rm.
Let v(j) = 0 ∀j ∈ Zn.
for i = 0, 1, . . . ,m− 1 do

Sample u ∼ N (µ′
Di(x),σ

′
Di(x,x))

(see (3)).
Let [v(0)i, v(1)i, . . . , v(n−1)i] := uT.

end for
//Test if v(j) ∈ S⊥

I
∀j ∈ Zn.

Let q := q +
∏

j∈Zn

✶(v(j) ∈ S⊥
I
) (see algo

rithm 1).
end for
Return q

R
.

Algorithm 4 Calculate aPEHI
t (x|D).

Input: Observations D = {(x(i),y(i)) ∈
X× Y}.

Number of Monte Carlo samples R̃.
Test vector x ∈ X.
Output: aPEHI

t (x|D).
Using algorithm 3, calculate:

sx = Pr (x ∈ XI|D)
s(j) = Pr

(

x(j) ∈ XI

∣

∣D
)

∀
(

x(j),y(j)

)

∈ D
Let q = 0.

for k = 0, 1, . . . , R̃− 1 do
Sample yi ∼ N (µDi(x), σDi(x))) ∀i ∈
Zm (see (2)).

Construct cells c0, c1, . . . from D∪
{(x,y)} by sorting along each axis in
objective space to form a grid.
Calculate:
q = q+

sx
∑

k:y�ỹck

vol (ck)
∏

j∈ZN :y(j)�ỹck

(

1− s(j)
)

end for
Return q/R̃.

The subsequent corollary allows us to construct a simple algorithm (algorithm 1) to test if a vector v

lies in the set S⊥
I

. We will use this algorithm to test if ∂
∂xj

f(x) ∈ S⊥
I
∀j ∈ Zn - that is, if x satisfies

the preference-order constraints. The proof of corollary 1 is available in the supplementary material.

Corollary 1 Let I = (0, 1, . . . , Q|Q ∈ Zm\{0}) be an (ordered) preference tuple. Define S⊥
I

as per

definition 1. Using the notation of Theorem 1, v ∈ S⊥
I

if and only if v = 0 or ∃i 6= k ∈ Zm such that

sgn(ãT(i)v) 6= sgn(ãT(k)v), where sgn(0) = 0.

5 Preference Constrained Bayesian Optimisation

In this section we do two things. First, we show how the Gaussian process models of the objectives
fi (and their derivatives) may be used to calculate the posterior probability that x ∈ XI defined
by I = (0, 1, . . . , Q|Q ∈ Zm\{0}). Second, we show how the EHI acquisition function may be
modified and calculated to incorporate these probabilities and hence only reward points that satisfy
the preference-order conditions. Finally, we give our algorithm using this acquisition function.

5.1 Calculating Posterior Probabilities

Given that fi ∼ GP(0,K(i)(x,x)) are draws from independent Gaussian processes, and
given observations D, we wish to calculate the posterior probability that x ∈ XI -
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i.e.: Pr (x ∈ XI|D) = Pr
(

∂
∂xj

f (x) ∈ S⊥
I
∀j ∈ Zn

)

. As fi ∼ GP(0,K(i)(x,x)) it follows that

∇xfi(x)|D ∼ Ni , N (µ′
Di(x),σ

′
Di(x,x

′)), as defined by (3). Hence:

Pr (x ∈ XI|D) = Pr









v(j) ∈ S⊥
I

∀j ∈ Zn

∣

∣

∣

∣

∣

∣

∣

∣









v(0)i
v(1)i

...
v(n−1)i









∼ Ni

∀i ∈ Zm









where v ∼ P (∇xf |D). We estimate it using Monte-Carlo [6] sampling as per algorithm 3.

5.2 Preference-Order Constrained Bayesian Optimisation Algorithm (MOBO-PC)

Our complete Bayesian optimisation algorithm with Preference-order constraints is given in algorithm
2. The acquisition function introduced in this algorithm gives higher importance to points satisfying
the preference-order constraints. Unlike standard EHI, we take expectation over both the expected
experimental outcomes fi(x) ∼ N (µDi(x), σDi(x,x)), ∀i ∈ Zm, and the probability that points
x(i) ∈ XI and x ∈ XI satisfy the preference-order constraints. We define our preference-based EHI
acquisition function as:

aPEHI
t (x|D) = E [SI (D ∪ {(x, f (x))})− SI (D)|D] (10)

where SI(D) is the hypervolume dominated by the observations (x,y) ∈ D satisfying the
preference-order constraints. The calculation of SI(D) is illustrated in the supplementary material.
The expectation of SI(D) given D is:

E [SI (D)|D] =
∑

k

vol (ck) Pr(∃ (x,y)∈D|y� ỹck ∧ . . .x ∈ XI) . . .

=
∑

k

vol (ck) (1−
∏

(x,y)∈D:y�ỹck

(1− Pr (x ∈ XI|D)))

where ỹck is the dominant corner of cell ck, vol(ck) is the hypervolume of cell ck, and the cells
ck are constructed by sorting D along each axis in objective space. The posterior probabilities
Pr(x ∈ XI|D) are calculated using algorithm 3. It follows that:

aPEHI
t (x|D) = Pr (x ∈ XI|D)E

[

∑

k:y�ỹck

vol (ck)
∏

j∈ZN :y(j)�ỹck

(

1− Pr
(

x(j) ∈ XI

∣

∣D
))

∣

∣

∣yi ∼ . . .

N (µDi (x) , σDi (x)) ∀i ∈ Zm

]

where the cells ck are constructed using the set D ∪ {(x,y)} by sorting along the axis in objective
space.We estimate this acquisition function using Monte-Carlo simulation shown in algorithm 4.

6 Experiments

We conduct a series of experiments to test the empirical performance of our proposed method
MOBO-PC and compare with other strategies. These experiments including synthetic data as well as
optimizing the hyper-parameters of a feed-forward neural network. For Gaussian process, we use
maximum likelihood estimation for setting hyperparameters [21].

6.1 Baselines

To the best of our knowledge there are no studies aiming to solve our proposed problem, however we
are using PESMO, SMSego, SUR, ParEGO and EHI [9, 20, 19, 14, 7] to confirm the validity of the
obtained Pareto front solutions. The obtained Pareto front must be in the ground-truth whilst also
satisfying the preference-order constraints. We compare our results with MOBO-RS [18] by suitably
specifying bounding boxes in the objective space that can replicate a preference-order constraint.

6.2 Synthetic Functions

We begin with a comparison on minimising synthetic function Schaffer function N. 1 with 2 conflicting
objectives f0, f1 and 1-dimensional input. (see [24]). Figure 3a shows the ground-truth Pareto front
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(d) Case 3, s0 > s1
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Figure 3: Finding Pareto front which comply with the preference-order constraint. Figure 3a shows
the full Pareto front solution (with no preferences). Figure 3b illustrates the Pareto front by assuming
stability of first objective f0 is similar to second objective f1. In Figure 3c, stability of f1 is preferred
over f0. Figure 3d shows more stable results for f0 than f1 (s0 > s1). Figure 3e and 3f shows the
results obtained by MOBO-RS and the corresponding bounding boxes. The gradient color of the
Pareto front points in Figure 3b-3d indicates their degree of compliance with the constraints.

for this function. To illustrate the behavior of our method, we impose distinct preferences. Three test
cases are designed to illustrate the effects of imposing preference-order constraints on the objective
functions for stability. Case (1): s0 ≈ s1, Case (2): s0 < s1 and Case (3): s0 > s1. For our method
it is only required to define the preference-order constraints, however for MOBO-RS, additional
information as a bounding box is obligatory. Figure 3b (case 1), shows the results of preference-order

constraints SI ,
{

s ∈ R̄m
+\ {0}

∣

∣ s0 ≈ s1
}

for our proposed method, where s0 represents the
importance of stability in minimising f0 and s1 is the importance of stability in minimising f1. Due to
same importance of both objectives, a balanced optimisation is expected. Higher weights are obtained
for the Pareto front points in the middle region with highest stability for both objectives. Figure
3c (case 2) is based on the preference-order of s0 < s1 that implies the importance of stability in
f1 is more than f0. The results show more stable Pareto points for f1 than f0. Figure 3d (case 3)
shows the results of s0 > s1 preference-order constraint. As expected, we see more number of stable
Pareto points for the important objective (i.e. f0 in this case). We defined two bounding boxes for
MOBO-RS approach which can represent the preference-order constraints in our approach (Figure
3e and 3f). There are infinite possible bounding boxes can serve as constraints on objectives in
such problems, consequently, the instability of results is expected across the various definitions of
bounding boxes. We believe our method can obtain more stable Pareto front solutions especially
when prior information is sparse. Also, having extra information as the weight (importance) of the
Pareto front points is another advantage.

Figure 4 illustrates a special test case in which s0 > s1 and s2 > s1, yet no preferences specified over
f2 and f0 while minimising Viennet function. The proposed complex preference-order constraint
does not form a proper cone as elaborated in Theorem 1. However, s0 > s1 independently constructs
a proper cone, likewise for s2 > s1. Figure 4a shows the results of processing these two independent
constraints separately, merging their results and finding the Pareto front. Figure 4b implies more
stable solutions for f0 comparing to f1. Figure 4c shows the Pareto front points comply with s2 > s1.
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Figure 4: Finding Pareto front points with partial constraints as specified by s0 > s1 and s2 > s1.
Figure 4a shows the 3D plot of the obtained Pareto front points satisfying preference-order constraints
with the color indicating the degree of compliance. Figure 4b illustrates the projection of Pareto
optimal points on f0 × f1 sub-space, and figure 4c shows the projection on f1 × f2 sub-space.
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Figure 5: Average Pareto fronts obtained by proposed method in comparison to other methods. This
experiment defines s1 > s0 i.e. stability of run time is more important than the error. For MOBO-RS,
[[0.02, 0], [0.03, 2]] is an additional information used as bounding box. The other methods do not
incorporate preferences. The results are shown for 100 evaluations of the objectives (left) and 200
evaluations of the objectives (right).

6.3 Finding a Fast and Accurate Neural Network

Next, we train a neural network with two objectives of minimising both prediction error and prediction
time, as per [9]. These are conflicting objectives because reducing the prediction error generally
involves larger networks and consequently longer testing time. We are using MNIST dataset and the
tuning parameters include number of hidden layers (x1 ∈ [1, 3]), the number of hidden units per layer
(x2 ∈ [50, 300]), the learning rate (x3 ∈ (0, 0.2]), amount of dropout (x4 ∈ [0.4, 0.8]), and the level
of l1 (x5 ∈ (0, 0.1]) and l2 (x6 ∈ (0, 0.1]) regularization. For this problem we assume stability of
f1(time) in minimising procedure is more important than the f0(error). For MOBO-RS method,
we selected [[0.02, 0], [0.03, 2]] bounding box to represent an accurate prior knowledge (see Figure
5). The results were averaged over 5 independent runs. Figure 5 illustrates that one can simply ask
for more stable solutions with respect to test time (without any prior knowledge) of a neural network
while optimising the hyperparameters. As all the solutions found with MOBO-PC are in range of
(0, 5) test time. In addition, it seems the proposed method finds more number of Pareto front solutions
in comparison with MOBO-RS.

7 Conclusion

In this paper we proposed a novel multi-objective Bayesian optimisation algorithm with preferences
over objectives. We define objective preferences in terms of stability and formulate a common
framework to focus on the sections of the Pareto front where preferred objectives are more stable, as
is required. We evaluate our method on both synthetic and real-world problems and show that the
obtained Pareto fronts comply with the preference-order constraints.
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