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Abstract
Additive manufacturing (AM) has an affinity with topology optimization to think of various designs with complex structures. 
Hence, this paper aims to optimize the design of a lattice-structured heat sink, which can be manufactured by AM. The design 
objectives are to maximize the thermal performance of convective heat transfer in natural convection simulated by computa-
tional fluid dynamics (CFD) and to minimize the material cost required for AM process at the same time. The lattice structure 
is represented as a node/edge system via graph theory with a moderate number of design variables. Bayesian optimization, 
which employs the non-dominated sorting genetic algorithm II and the Kriging surrogate model, is conducted to search for 
better designs with the minimum CFD cost. The present topology optimization successfully finds better lattice-structured heat 
sink designs than a reference fin-structured design regarding thermal performance and material cost. Also, several optimized 
lattice-structured designs outperform reference pin-fin-structured designs regarding thermal performance though the pin-fin 
structure is still advantageous for a material cost-oriented design. This paper also discusses the flow mechanism observed 
in the heat sink to explain how the optimized heat sink structure satisfies the competing design objectives simultaneously.

Keywords  Topology optimization · Multi-objective Bayesian optimization · Graph theory · Heat sink · Additive 
manufacturing

1  Introduction

In recent years, additive manufacturing (AM) using a three-
dimensional printer has attracted attention and has been 
utilized in various fields such as mechanical engineering, 
aerospace engineering, biomechanical medical engineering, 
and architecture (Gardan and Schneider 2015; Gao et al. 
2015). According to Pérez-Pérez et al. (2018), the main 
advantages of the additive fabrication concept used in AM 
are as follows. 

1.	 It is possible to develop and manufacture complex struc-
tures, which has been difficult or impossible by conven-
tional numerical control manufacturing such as cutting, 
drilling, and milling.

2.	 It is effective to save materials since they are not pro-
cessed by removal or deformation as in the conventional 
methods.

3.	 It is unnecessary to change the tools for modeling since 
the structure is modeled by hardening material powder 
(e.g., resin and metal) with a heat source.

4.	 It is easy and quick to start the process of modeling once 
the shape data is ready.

This paper wishes to take AM process’s advantages to design 
a heat sink, which transfers thermal energy from higher-tem-
perature devices (e.g., CPU and GPU) to lower-temperature 
fluid mediums (e.g., air and liquid coolant). An issue about 
heating is getting critical as CPU/GPU performance grows 
up (Garimella et al. 2008). The AM process is expected to 
sophisticate the heat sink structure design and keep up with 
further development in high-performance computing.

The AM process has an affinity with topology optimiza-
tion, which has been gaining popularity in the recent field 
of engineering design, as reviewed in Liu et al. (2018). 
Topology optimization optimizes material layout within a 
given design domain. It enables designers to think of various 
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structures to be employed for a new product, such that the 
topological features (e.g., continuity and connectivity) can 
be variant. Such structures can hardly be considered by 
classical sizing optimization and shape optimization due to 
insufficient degrees of variety.

Topology optimization needs to choose a method to 
describe material distribution �(�) where � is the position 
vector in the design domain. �(�) = 0 and �(�) = 1 corre-
spond to the absence and presence of material, respectively. 
Topology optimization began with the homogenization 
method (Bendsøe and Kikuchi 1988), which models material 
layouts with periodic microstructures. This method allows 
grayscale material ( 0 < 𝜒(�) < 1 ), which leads to a vague 
outline of the structure. Then, the homogenization method 
was subsequently refined into the density method (Bend-
søe 1989), which defines material density in the range of 
0 ≤ �(�) ≤ 1 while penalizing the intermediate values of 
�(�) to approach a black ( �(�) = 0 ) or white ( �(�) = 1 ) 
design. When introducing penalization, however, an unre-
alistic material layout with checkerboard patterns appears. 
Such patterns are commonly removed through regulari-
zation (Sigmund and Petersson 1998). For grayscale-free 
topology optimization, a level-set function method (Sethian 
and Wiegmann 2000) has been proposed. The level-set func-
tion defines the absence and presence of material as 𝜒(�) < 0 
and 𝜒(�) > 0 , respectively, and represents the outline of 
structure with the zero contour �(�) = 0.

In topology optimization, the material distribution �(�) 
is parameterized with n design variables � =

[

x1, x2,… , x
n

]

 . 
The density method discretizes the design domain into n 
elements, which are located at �(1), �(2),… , �(n) , and assigns 
material density to the ith element as the ith design vari-
able, i.e., xi = �(�(i)) ( i = 1, 2,… , n ). Similarly, the 
level-set method collocates n control points (located at 
�(1), �(2),… , �(n) ) in the design domain, and assigns the value 
of the level-set function to the ith control point as the ith 
design variable (i.e., xi = �(�(i)) ). The level-set function is 
then constructed in the whole design domain by interpolat-
ing the n control points. � are continuous variables in both 
methods to allow for gradient-based optimizers because a 
discrete problem is tough to solve. In addition, n should be 
huge for high-resolution topology representation, and thus 
topology optimization usually results in many-variable opti-
mization. Thus, a gradient-based optimizer, which is often 
assisted with adjoint-based sensitivity analysis, has been 
used for many-variable topology optimization. However, 
this optimizer tends to get stuck to a local optimal solution 
rather than the global optimal solution. In particular, the 
obtained optimal solution strongly depends on initial settings 
in a thermal-fluid problem where the solution is evaluated 
by solving nonlinear governing equations (Yaji et al. 2015).

Many works of literature studied the topology optimi-
zation of heat sink design. The design objective was to 

minimize the thermal compliance  (Alexandersen et  al. 
2014, 2016; Joo et al. 2017; Lohan et al. 2017), to maxi-
mize the total potential energy (Iga et al. 2009), to mini-
mize the thermal resistance (Dede et al. 2015; Haertel et al. 
2018), to minimize the temperature (Martínez-Maradiaga 
et al. 2019; Lundgren et al. 2019), etc. In this way, heat sink 
design was usually optimized in thermal performance (i.e., 
single-objective optimization). Besides, most of the works 
considered a volume constraint on the amount of material 
use (i.e., material cost) specified by practitioners. From the 
viewpoint of AM process, it is essential to study a trade-
off between the thermal performance and the material cost. 
The single-objective optimization explores a single optimal 
design corresponding to a different allowable volume, which 
means that a gradient-based optimizer needs to be run many 
times for the trade-off study while changing the allowable 
volume. Also, the allowable volume may not be determinis-
tic and may change depending on practitioners’ preference 
or AM machine capability.

Instead, for an efficient trade-off study, reducing the mate-
rial cost also needs to be considered as an additional design 
objective rather than a constraint. As in Joo et al. (2017), 
minimizing the thermal compliance sometimes reduces the 
material cost simultaneously; however, the thermal perfor-
mance and the material cost are the design objectives that 
usually compete with each other (i.e., multi-objective opti-
mization). The multi-objective optimization explores not 
single, but many optimal designs (so-called non-dominated 
solutions or Pareto-optimal solutions), which exist between 
competing design objectives and are helpful for the trade-
off study, without specifying any constraint limit. Dbouk 
(2017) presented a review of topology optimization meth-
ods to design optimal heat transfer systems. He claimed that 
topology optimization is not yet a robust numerical design 
technique for finding optimal designs of thermal systems; 
e.g., optimization algorithms and multi-objective functions 
libraries need to be studied still more. Besides, Alexandersen 
and Andreasen (2020) provided an overview of the litera-
ture for topology optimization in fluid-based problems to 
suggest a future perspective on more complex applications 
(e.g., transient and turbulent flow). Such applications will be 
highly nonlinear optimization problems and are not easy to 
solve using gradient-based optimizers, which have been con-
sidered promising to solve the conventional single-objective 
topology optimization problems.

Therefore, this paper aims to perform multi-objective 
topology optimization of a heat sink designed in natural con-
vection, which considers a balance between thermal perfor-
mance improvement and material cost reduction. A gradient-
free population-based optimizer, such as the non-dominated 
sorting genetic algorithm II (NSGA-II) (Deb et al. 2002), is 
employed for the present multi-objective optimization. The 
population-based optimizer explores the optimal solution 
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by evolving a population with many solutions, whereas the 
gradient-based optimizer mathematically explores the opti-
mal solution by starting from a single initial solution given 
by the user. Therefore, the population-based optimizer has 
the efficient capability to explore the set of non-dominated 
solutions at the same time though these solutions are not 
necessarily guaranteed global optimal due to the nature of 
random exploration. On the other hand, gradient-based opti-
mizers have already been applied to multi-objective topol-
ogy optimization in thermo-fluid problems. However, the 
gradient-based optimizers are almost limited to use with 
varying weights for density-method-based topology opti-
mization (Marck et al. 2012; Li et al. 2019; Dong and Liu 
2020) and with adaptive weights for level-set-method-based 
topology optimization (Sato et al. 2017). These gradient-
based optimizers are still restricted to convex Pareto-optimal 
fronts, while the population-based optimizer does not have 
such the restriction.

This paper also considers a lattice-structured heat sink 
parameterized with a moderate number of design variables 
(currently, n = 68 ) based on graph theory (Bender and Wil-
liamson 2010). This theory is similar to the ground struc-
ture method proposed by Dorn et al. (1964) for optimizing 
a truss layout with a variable truss cross-sectional area. This 
paper employs the graph theory to discretely structure the 
heat sink with a fixed truss cross-sectional area in a design 
domain. This paper also employs commercial software for 
computational fluid dynamics (CFD) simulation to evalu-
ate the thermal performance for convenience. Therefore, we 
cannot compute gradients based on an adjoint method due to 
the limitation of the commercial software and need to use a 
gradient-free population-based optimizer instead.

The population-based optimizer is often computation-
ally expensive because it needs to evaluate objective func-
tions for many solutions in a population. It is more criti-
cal in real-world design optimization where evaluation is 
computationally expensive even for one solution, such as 
in the present study that performs CFD. Hence, this paper 
employs a surrogate model to assist the NSGA-II for effi-
cient multi-objective topology optimization with a less 
computational cost. The surrogate model is constructed as 
a regression or interpolation function of the sample dataset, 
in which the true objective function is evaluated at several 
locations in the design variable space. The surrogate model 
can instantaneously estimate the objective function value at 
an arbitrary unsampled location in the design space. This 
study employs the Kriging surrogate model (Sacks et al. 
1989) based on Bayesian statistics because it is suitable for 
approximating multi-modal functions and quantifying the 
model uncertainty.

The organization of this paper is as follows. Section 2 
defines the optimization problem to design the lattice topol-
ogy of a heat sink. Then, Sect. 3 describes a numerical 

method to implement multi-objective Bayesian topology 
optimization. Section 4 shows and discusses optimized 
designs from a scientific point of view. Finally, Sect. 5 con-
cludes this paper.

2 � Optimization problem definition

2.1 � Design domain

One of the present reference designs is a commercially ver-
satile heat sink (named “21F50”) shown in Fig. 1. This is 
a fin-structured heat sink and conventionally manufactured 
by extrusion. The size is 21 mm height (15 mm fin + 6 mm 
base) × 50 mm width × 50 mm length. The upper fin part (15 
mm × 50 mm × 50 mm, shaded in red in Fig. 1a) is set as the 
design domain while the lower base part (6 mm × 50 mm × 
50 mm, shaded in violet in Fig. 1a) is fixed.

Besides, a pin-fin heat sink shown in Fig. 1b is another 
reference design. This design has the same height, width, 
and length as 21F50 and has 7 × 7 pins (diameter � = 2.6 
(mm)), consistent with the node/edge system via the graph 
theory employed in this paper explained in Sect. 2.3 later. 
The pin-fin heat sink is expected to perform better than 
21F50 in natural convection when placed flat.

2.2 � Topology representation

Figure 2 shows how to represent a lattice-structured heat 
sink to be optimized. The lattice is replaced with the edge 
network constructed with 3 × 7 × 7 = 147 nodes collocated 
with an 8.3 mm interval in the design domain, which are 
denoted by the black dots in Fig. 2a.

Considering that a heat sink is placed flat, which will be 
explained in Sect. 2.4, the design domain can be reduced 
to 1/8 (hatched in red in Fig. 2b) by considering flow sym-
metry. In the reduced design domain, 3 × 10 = 30 nodes 
are divided into two layers to be optimized separately: 
lower layer denoted by the green spheres and upper layer 
denoted by the blue circles in Fig. 2a. Each layer consists 

5050

2115

6

Fin Part (Design Domain)

Base Part (Fixed)

(a) 21F50 (b) Pin-fin (φ2.6)

Fig. 1   Reference designs
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of 2 × 10 = 20 nodes and, as denoted by the black lines 
in Fig. 2c, linking all these nodes constructs 20C2 = 190 
edges. However, most of the edges cannot be manufac-
tured in an AM process if they form an angle of higher 
than 45° with the build direction. Thus, 34 manufactur-
able edges (green lines in Fig. 2d) remains in each layer. 

Consequently, 34 × 2 = 68 edges are considered in the two 
layers in total.

Each edge is then replaced with a solid cylinder with a 
diameter � = 2.6 (mm). The lattice structure is obtained by 
cutting off the protruding cylinders from the design domain 
and attaching them to the base part, as shown in Fig. 2e.

Fig. 2   Representation of a 
lattice-structured heat sink. 
(Color figure online)
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(e) Resulting structure (full lattice)
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2.3 � Design variables via graph theory

As stated in Sect. 2.2, the lattice structure is represented 
with a node/edge system. Therefore, the present topology 
optimization parameterizes the node/edge system through 
graph theory (Bender and Williamson 2010). In general, 
this theory quantifies the presence or absence of each edge 
linking the jth and kth nodes using an adjacent matrix with 
the (j, k) entry ajk . Note that this is a symmetric matrix 
satisfying ajk = akj and the diagonal entries ajj do not rep-
resent edges. For the present lattice-structured heat sink, 
the adjacent matrix is sized 30 × 30 and contains 68 valid 
entries corresponding to manufacturable edges while the 
others correspond to non-manufacturable edges.

The present topology optimization treats each effective 
entry of the adjacent matrix as the ith design variable xi 
( i = 1, 2,… , 68 ). Each design variable is defined in the 
range of 0 ≤ xi ≤ 1 , such that the corresponding edge is 
absent if 0 ≤ xi ≤ 0.2 and present if 0.2 < xi ≤ 1 according 
to Yoshimura et al. (2019), who used the graph theory to 
optimize the groove structure of a flow micromixer. The 
present design variables need to be continuous for a sur-
rogate model used in Bayesian optimization. Another rea-
son to bias the cut-off of xi toward the lower value ( = 0.2) 
comes from our intention to consider design candidates 
as various as possible during the present optimization. 
A higher cut-off (e.g., > 0.5) is expected to increase the 
possibility of an empty lattice structure or a lattice-free 
structure, which is useless for design optimization. Con-
sequently, the present topology optimization considers 68 
design variables in total.

2.4 � Objective functions

2.4.1 � Thermal performance

The first objective function f1(�) to be considered here is to 
maximize a heat sink’s thermal performance in natural con-
vection. The total heat transfer rate at the interface between 
the heat sink and the surrounding air, Q, is the present quan-
tity of f1(�).

Q is evaluated by CFD simulation using commercial soft-
ware, ANSYS Fluent 2019 R1.2 (ANSYS, Inc 2018) with 
taking into account convective heat transfer on the surface 
of a heat sink. In this study, the radiative heat transfer is not 
considered. The steady-state incompressible Navier-Stokes 
equations (continuity, momentum conservation, and energy 
conservation) for the laminar air (density � = 1.225 (kg/m3 ), 
specific heat capacity cp = 1006.43 (J/kg K), thermal con-
ductivity k = 0.0242 (W/m K), viscosity � =1.7894 × 10−5 
(kg/m s)) with gravity |�| = 9.81 (m/s2 ) are given by Eqs. 1–3 
and solved in the simulation domain shown in Fig. 3.

where � is the velocity vector, p is the pressure, and T is 
the temperature to be calculated. In Eq. 2, the Boussinesq 
approximation is applied to the natural convection flow, with 
the thermal expansion coefficient � = 0.00333 (1/K) and 
the operating temperature T0 = 288.16 (K). The heat sink is 
made of an aluminum alloy, AlSi10Mg (density � = 2719 
(kg/m3 ), specific heat capacity cp = 871 (J/kg K), thermal 
conductivity k = 190.5 (W/m K)), which is a typical mate-
rial used for metal-based AM, and placed flat at the bot-
tom of the simulation domain. The temperature field in the 
solid heat sink is simulated by solving Eq. 3 with � = � . The 
numerical schemes chosen in Fluent are listed in Table 1.

The simulation domain is discretized into mesh grids with 
the minimum element size of 0.2 mm by the cut-cell method. 
It enables automatic mesh generation for any complex 

(1)∇ ⋅ � = 0,

(2)(� ⋅ ∇)� = −
1

�
∇p +

�

�
∇2� − �

(

T − T0
)

�,

(3)(� ⋅ ∇)T =
k

�cp
∇2T ,

Table 1   CFD numerical schemes

Pressure–velocity coupling Coupled, pseudo transient
Spatial discretization

Gradient Least squares cell based
Pressure Body force weighted
Momentum Second-order upwind
Energy Second-order upwind

g

Heating Wall
(323.15 K)

Insulating Wall

300

300

300
Ambient (298.15K)

Heat
Sink

Fig. 3   CFD simulation domain and the boundary conditions. (Color 
figure online)
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structure considered in topology optimization. Also, the 
mesh grids perfectly fit wall surfaces. Hence, the present 
CFD is expected to yield a reasonable solution satisfying 
the flow conservation laws.

Regarding the boundary conditions, the bottom surface 
of the heat sink (colored in red in Fig. 3) is heated at con-
stant temperature = 323.15 (K). The outer boundaries of 
the simulation domain (colored in blue in Fig. 3) are set as 
the thermally insulating wall (density � = 50 (kg/m3 ), spe-
cific heat capacity cp = 800 (J/kg K), thermal conductivity 
k = 0.09 (W/m K)), where convective heat transfer occurs 
between the interior (temperature Tin to be calculated here) 
and the exterior (ambient temperature Tex = 298.15 (K), heat 
transfer coefficient h = 5 (W/m2 K)) of the domain through 
Newton’s law of cooling as

where ∇
⟂
Tin stands for the temperature gradient in the direc-

tion normal to the insulating wall on the interior side. Ther-
mal conditions are coupled at the interface between the heat 
sink (solid) and the air (fluid).

The present CFD simulation is parallelized with 16 CPUs 
in the supercomputer system AFI-NITY owned by the Insti-
tute of Fluid Science, Tohoku University, Japan. It takes 
25–40 min to evaluate Q for each design.

2.4.2 � Material cost

The second objective function f2(�) is to minimize the heat 
sink’s material cost. This study considers the material vol-
ume occupying the design domain, V, as the cost measure. 
For more straightforward evaluation, the present topology 
optimization calculates the total length of the present edges 
(i.e., the green lines in Fig. 2d), L, instead of V during the 
optimization process. Note that L can be analytically evalu-
ated by neither CFD nor surrogate model (Sect. 3.2) as soon 
as the values of the design variables are determined. We 
confirm in Fig. 4 that L is almost linearly correlated with V 
though L is sometimes overestimated due to the overlap of 
the cylinders, which means that L can be substituted for V.

2.5 � Constraint function

Heat conduction must occur over the whole lattice structure. 
It means that, as illustrated in Fig. 5, all the present edges 
must be linked to the base part either directly or indirectly, 
i.e., there is no floating edge. Therefore, members that are 
not directly supported underneath are accepted if they are 
attached to bars that do reach the base plate. To ensure the 
connectivity, the present topology optimization defines the 
constraint function as g1(�) = 0 and g1(�) = 1 for feasible 

(4)−k∇
⟂
Tin = h

(

Tex − Tin
)

,

and infeasible solutions, respectively. The connectivity can 
be analytically checked by sweeping through all entries in 
the adjacent matrix.

3 � Bayesian optimization method

One of the present objective functions, f1(�) = Q , is evalu-
ated by expensive CFD simulation. Hence, Bayesian opti-
mization is performed by replacing the true function f1(�) 
with the estimate f̂1(�) that can be inexpensively calculated 
by the Kriging surrogate model. The flowchart of the pre-
sent optimization is shown in Fig. 6, and the details will be 
explained in the following sections.

3.1 � Generate initial samples

This step generates a dataset of N initial samples in the 
design variable space, each of which corresponds to a dif-
ferent combination of n design variables � =

[

x1, x2,… , x
n

]

 
(currently, a different lattice structure represented with 
n = 68 ). This study employs the Latin hypercube sam-
pling (LHS) (McKay et al. 1979), which generates samples 
orthogonal to each other in the design variable space to com-
prehend the whole design space even with a smaller sample 
size than the Monte Carlo sampling. Then, true objective 
functions are evaluated (currently, f1(�) = Q is evaluated by 
CFD) for each initial sample.

In the present topology optimization, 100 LHS points are 
generated in the design space, and 98 of them are available 
for the initial samples associated with the true f1(�) values 

9.50×10-6

1.00×10-5

1.05×10-5

1.10×10-5

1.15×10-5

1.20×10-5

1.25×10-5

1.30×10-5

 3.2  3.4  3.6  3.8  4  4.2  4.4

V
 [m

3 ]

L [m]

Fig. 4   Initial samples (which will also appear in Fig. 9) plotted in L 
vs. V 
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(i.e., N = 98 ), as a CFD solution does not converge for the 
remaining two samples.

3.2 � Construct the Kriging surrogate model

Using the initial samples, this step constructs a surrogate 
model that approximates an unknown objective function 
with a known algebraic function. The Kriging surrogate 
model (Sacks et al. 1989) employed here is a stochastic 

process that realizes N given samples as illustrated in 
Fig. 7. For an objective function f (�) to be maximized, the 
stochastic process yields the mean f̂ (�) and the standard 
deviation ŝ(�) to model the estimate of f (�) and the uncer-
tainty (i.e., error bar), respectively. Note that ŝ(�) = 0 at a 
sampled location. Model uncertainty ŝ(�) is not available in 
other surrogate models (e.g., polynomial regression, radial 
basis function (Powell 1987)) and is useful for efficient sur-
rogate-based global optimization, which will be explained 
in Sect. 3.3.

In the present topology optimization, only f1(�) = Q is 
replaced with the Kriging surrogate model during the opti-
mization process while f2(�) = L is analytically evaluated 
without the surrogate model.

3.3 � Explore non‑dominated solutions

This step explores non-dominated solutions on the surrogate 
model. Now the NSGA-II (Deb et al. 2002), which is the 
most prevalent genetic algorithm worldwide, is employed as 
the optimizer. The NSGA-II performs non-dominated sort-
ing and crowding distance sorting to search for the solutions 
that seem located close to and distributed widely over the 
true Pareto-optimal front in multi-objective optimization.

The NSGA-II is now assisted with the Kriging surro-
gate model as follows. For an objective function f (�) to be 
maximized, the Kriging surrogate model can calculate the 
expected improvement EI[f (�)] , which is illustrated in Fig. 7 
and defined as

where fref is a reference value, and F ∼ Norm[f̂ (�), ŝ2(�)] . 
EI[f (�)] indicates how much better a solution will get than 
the reference solution under the model uncertainty ŝ(�) . 
Instead of maximizing f (�) , therefore, maximizing EI[f (�)] 
is expected to lead to an optimal solution on the surrogate 
model. In addition, this solution is suitable as an additional 
sample, which will be explained in Sect. 3.5.

In the present optimization, the NSGA-II is executed 
with the population size of 200, the number of generations 
of 200, the mutation rate of 1/n (currently, n = 68 ), the 

(5)EI[f (�)] = ∫
∞

fref

(

F − fref
)

PDF(F)dF,

Fig. 5   Constraint on connectiv-
ity
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distribution index for crossover of 30, and the distribution 
index for mutation of 20. Assisted with the Kriging sur-
rogate model, the NSGA-II finds the non-dominated solu-
tions � that maximize EI[f1(�)] ( f1(�) = Q , and fref is set to 
Q evaluated for the reference design 21F50 (Fig. 1a)) and 
minimize f2(�) = L subject to g1(�) ≤ 0.

3.4 � Choose representative solutions

This step chooses several representatives from many non-
dominated solutions explored by the NSGA-II. First, the 
extreme (i.e., EI[f1(�)]-maximum and f2(�)-minimum) solu-
tions are chosen as depicted by the closed circles in Fig. 8a. 
In addition, this study performs K-means clustering (Jain 
et al. 1999) to choose K solutions, which correspond to the 
centroids of K clusters (the closed circles in Fig. 8b). The 
present topology optimization sets K = 3 , hence this step 
chooses at most K + 2 = 5 representatives.

3.5 � Generate and add new samples

For � corresponding to each representative solution, the 
true objective function f1(�) = Q is evaluated by CFD. 
The representative solutions associated with f1(�) are then 
used as new samples added to the current sample dataset 
(i.e., N ← N + K + 2 ). Finally, the optimization process 
goes back to the previous step to update the Kriging sur-
rogate model (Sect. 3.2), including the additional samples 
evaluated by new CFD simulations, and is iterated until the 
additional samples show convergence in the objective func-
tion space. Note that “update” corresponds to the outer loop 
for the Kriging surrogate model as written in Fig. 6, while 
“generation” corresponds to the inner loop for the NSGA-II 
optimization.

As mentioned above, optimization assisted with the 
Kriging surrogate model proceeds in a data-driven manner, 
which expects additional samples to reach global optima 

and improve the surrogate model accuracy at the same 
time. This data-driven optimization is often called Bayes-
ian optimization.

Regarding computational time, the present Bayesian opti-
mization takes around 3 h for Kriging surrogate model con-
struction + 5  min for NSGA-II optimization + 25–40 min 
for new sample generation every update. On the other hand, 
if CFD evaluates all solutions without the surrogate model, 
the NSGA-II optimization will take 100 h, even with 100% 
parallel processing. Thus, using the surrogate model can 
reduce the total computational time.

4 � Results and discussion

Figure 9 plots the samples generated through the present 
topology optimization in the objective function space. Here 
note that the vertical axis represents V instead of f2(�) = L . 
The green plots are the 98 initial samples generated by the 
LHS. The orange plots are 69 additional samples obtained by 
two-objective Bayesian optimization (maximizing EI[f1(�)] 
( f1(�) = Q ) and minimizing f2(�) = L ) through 15 updates 
(i.e., CFD is conducted for 98 + 69 = 167 samples in total 
in the two-objective Bayesian optimization). For compari-
son, single-objective Bayesian optimization (maximizing 
EI[f1(�)] only) is also performed, and 18 additional samples 
generated through 18 updates are plotted in blue (i.e., CFD 
is conducted for 98 + 18 = 116 samples in total in the single-
objective Bayesian optimization). Among all these samples, 
the non-dominated ones are marked with red dots. Moreo-
ver, several reference data, 21F50 (Fig. 1a), pin-fin ( �2.6 ) 
(Fig. 1b) and other variants with different pin diameters 
( �1.4 , �2.0 , �3.2 , �3.8 , and �4.4 ), and full lattice (Fig. 2e) 
are plotted.

In Fig. 9, the two-objective optimization can obtain bet-
ter additional samples than the initial samples in terms of 
both Q and V. For example, the sample with maximum Q, 
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Fig. 8   Representative non-dominated solutions
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which is labeled “11-005 (2-obj)” meaning the fifth sample 
generated at the eleventh update in the two-objective optimi-
zation, achieves 26% improvement in Q and 61% reduction 
in V compared to . The single-objective optimization leads 
to the Q-maximum solution, 14-001 (1-obj), which is rela-
tively comparable to 11-005 (2-obj) regarding Q but worse 
regarding V. It also indicates that the full lattice design is 
not worthy of being adopted as a heat sink due to the low 
thermal performance and high material cost.

Figure 9 also shows that the two-objective optimiza-
tion obtains the non-dominated set of the lattice-structured 
designs in a trade-off relationship between Q maximiza-
tion and V minimization. Another reference design, pin-fin 
( �2.6 ), is almost located in the non-dominated lattice-struc-
tured designs with the same edge diameter ( �2.6 ). The fam-
ily of pin-fin designs makes a balance between Q and V with 
different pin diameters in the range � = 1.4 – 3.8 (mm). Pin-
fin ( �3.8 ) is the best Q performer in this family; however, 
11-005 (2obj) still outperforms pin-fin ( �3.8 ) regarding Q 
by 8% while keeping the similar material cost V ≃ 6.0 × 10−6 
(m3 ). Comparing the Pareto-optimal fronts between the 
lattice-structured designs and the pin-fin designs indicates 
that, as written in Fig. 9, a lattice structure is advantageous 
for a performance-oriented heat sink design, while a pin-fin 
structure is advantageous for a cost-oriented design.

Besides, Fig. 10 shows the history of the hypervolume 
indicator (Zitzler and Thiele 1998) of the samples calculated 
every update in the current two-objective Bayesian optimi-
zation, where a zero hypervolume corresponds to 21F50 in 
the Q and V space. It indicates that 15 updates significantly 
increase the hypervolume and lead to convergence after 11 
updates; i.e., the present Bayesian optimization improves 
both Q and V of the heat sink designs simultaneously.

Next, this paper visualizes the structure and the flow 
fields for two reference designs: 21F50 and pin-fin ( �2.6 ) in 
Figs. 11 and 12, respectively, and three heat sinks designed 
by the two-objective optimization: 11-005 (2-obj), 11-004 
(2-obj), and 10-001 (2-obj) in Figs. 13, 14, and 15, respec-
tively.  These figures visualize the temperature fields with 
colored contours and the velocity fields with white arrows.

In 21F50 (Fig. 11), the surrounding cool air flows from 
two sides into the gaps between the fins. After the air is 
heated at the core of the heat sink, it flows out upward. The 
pin-fin ( �2.6 ) design (Fig. 12), on the other hand, can take 
the surrounding cool air from all four sides into the heat sink 
core. This design is more beneficial to improve the ther-
mal performance in natural convection compared to 21F50. 
Similarly, in the optimized designs (Figs. 13, 14, 15), the 
surrounding cool air flows from all four sides into the heat 
sink core due to the symmetric structure (Fig. 2b). It means 
that thermal performance is not affected by the orientation 
of a heat sink, i.e., the present optimized designs can keep 
the performance robust.

Comparison of the optimized designs (Figs.  13, 14, 
15) suggests the following common features in the lattice 
structures. 

1.	 In the lower layer (corresponding to the green shade in 
Fig. 2e), intakes exist at all the sides.

2.	 In the upper layer (corresponding to the blue shade in 
Fig. 2e), the lattice is dense around the core.

The intakes are essential for getting a sufficient amount of 
cool air from the surroundings into the heat sink core. The 
upward natural convection drives the flow at the core. The 
intakes are also favorable to reduce the lattice volume. With 
limited lattice volume, it is more effective to enhance heat 
transfer between the cool air and the heated lattice more 
locally around the core, where the cool air converges and 
passes. Note that, in 21F50 (Fig. 11), cool air cannot reach 
the core, which indicates that the heat sink does not work 
around the core. In addition, the optimized designs have a 
wider intake than the pin-fin ( �2.6 ) design (Fig. 12), i.e., 
this feature is the primary advantage of the present lattice-
structured design over the conventional pin-fin design to 
achieve better thermal performance in natural convection. 
Thus, considering the above features is essential to create a 
balanced design of a lattice-structured heat sink between the 
thermal performance and the material cost.
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lated every update (two-objective Bayesian optimization)
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5 � Conclusions

This paper developed a multi-objective Bayesian topology 
design optimization method to maximize the thermal per-
formance (total heat transfer rate) and minimize the mate-
rial cost (volume) of a lattice-structured heat sink, which 
can be manufactured by AM, in natural convection. The 
lattice structure was represented as a node/edge system via 
graph theory with a moderate number of design variables. 
The NSGA-II was employed as the present multi-objective 

global optimizer. Since the thermal performance needs 
to be evaluated by expensive CFD simulation, the Krig-
ing surrogate model was also employed together with the 
NSGA-II. The Kriging-surrogate-based optimization is use-
ful to explore non-dominated solutions under the model 
uncertainty with a less computational cost. The present 
multi-objective Bayesian optimization successfully found 
new lattice-structured heat sink designs better than the ref-
erence fin-structured design in terms of both the thermal 
performance and the material cost. The present optimization 

Fig. 11   Structure and flow fields (contours: temperature, arrows: velocity) of 21F50
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also indicated that the optimized lattice-structured designs 
outperform the reference pin-fin designs regarding thermal 
performance, which are conventionally considered effi-
cient in natural convection, though the pin-fin designs are 
still advantageous for material cost reduction. Moreover, 

as useful design knowledge, the present optimization 
suggested characteristic features in a lattice structure to 
improve the thermal performance traded with limited lat-
tice volume and revealed a characteristic flow mechanism 
to explain these features.

Fig. 12   Structure and flow fields (contours: temperature, arrows: velocity) of pin-fin ( �2.6)
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Fig. 13   Structure and flow fields (contours: temperature, arrows: velocity) of 11-005 (2-obj)
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Fig. 14   Structure and flow fields (contours: temperature, arrows: velocity) of 11-004 (2-obj)
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