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Abstract— Deep learning (DL) in remote sensing has nowadays
become an effective operative tool: it is largely used in applica-
tions, such as change detection, image restoration, segmentation,
detection, and classification. With reference to the synthetic
aperture radar (SAR) domain, the application of DL techniques is
not straightforward due to the nontrivial interpretation of SAR
images, especially caused by the presence of speckle. Several
DL solutions for SAR despeckling have been proposed in the
last few years. Most of these solutions focus on the definition of
different network architectures with similar cost functions, not
involving SAR image properties. In this article, a convolutional
neural network (CNN) with a multi-objective cost function taking
care of spatial and statistical properties of the SAR image
is proposed. This is achieved by the definition of a peculiar
loss function obtained by the weighted combination of three
different terms. Each of these terms is dedicated mainly to
one of the following SAR image characteristics: spatial details,
speckle statistical properties, and strong scatterers identification.
Their combination allows balancing these effects. Moreover,
a specifically designed architecture is proposed to effectively
extract distinctive features within the considered framework.
Experiments on simulated and real SAR images show the
accuracy of the proposed method compared with the state-of-art
despeckling algorithms, both from a quantitative and qualitative
point of view. The importance of considering such SAR properties
in the cost function is crucial for correct noise rejection and
details preservation in different underlined scenarios, such as
homogeneous, heterogeneous, and extremely heterogeneous.

Index Terms— Convolutional neural network (CNN), deep
learning (DL), despeckling, image restoration, statistical distrib-
ution, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) imaging system pro-

duces images affected by a multiplicative noise, called

speckle, creating a succession of strong and weak backscat-

terings. The presence of the speckle impairs the performance

of several tasks, such as detection, segmentation, and clas-

sification; indeed, a despeckling operation is crucial for the

interpretation of SAR images.
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The high number of studies and algorithms developed in the

last forty years testifies to the importance of this topic. Despite

the great understanding of the speckle and its characteristics,

despeckling is still an open issue far from being solved.

The first solutions work in the spatial domain, such

as [1]–[5] and [6], [7]: the first ones are based on a minimum-

mean-square error (MMSE), while the second ones propose a

maximum a posteriori (MAP) filter. These methods produce

intense smoothing for reducing speckle in homogeneous areas

that cannot be applied on the edges.

Since the early 1990s, despeckling techniques operating in

a transformed domain have been proposed [8]–[11]. Filters

based on such an approach often operate a homomorphic

transformation in order to work with additive noise. These

solutions embody strong spatial adaptability in order to better

preserve edges, which is a crucial issue in SAR despeckling.

A new research line in the despeckling domain has been

drawn by the nonlocal methods that have shown very effective

performances in preserving details while removing noise [12].

Such methods look for similar patches in the image and merge

them in order to produce target pixels. Usually, differently

from the previous solutions, statistics of the speckle and of

the SAR backscattering [13], [14] are taken into account for

the definition of patch similarity. Several algorithms have been

defined within the nonlocal paradigm, mainly by differentiat-

ing the choice of the similarity criterion or the merging func-

tion. For example, the nonlocal paradigm based on different

SAR similarity distances is applied by the methods proposed

in [15] and [16]. Whereas, a ratio-based metric is used in [17]

and [18]. Hybrid approaches arose, such as [19]–[21], that join

the nonlocal paradigm with the wavelet transform. A detailed

review of the aforementioned despeckling filters can be found

in [22] and [23].

In the last years, deep learning (DL) is showing great

performance in many natural image processing tasks, such as

classification, detection, segmentation, and not less denoising.

Indeed, also remote sensing community is starting to exploit

the potential of this approach, even if many difficulties arise

due to the difference between natural and remote sensed

images.

Recently, several DL solutions have been proposed for SAR

despeckling. Such methods are data-driven: differently from

the previous classical approaches, it is mandatory to have

a data set composed of many couples of noisy inputs and

noise-free images (references). Since for SAR despeckling,
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a noise-free reference is not available, the first issue for such

methods is the construction of simulated data set.

Mainly, DL despeckling algorithms rely on the simulation

of fully developed speckle multiplied to the grayscale version

of an optical image that, at the same time, serves as a clean

reference for the network. For the sake of simplicity, this

approach is referred to as synthetic approach in the following

of this article. Among them, we recall [24]–[28]. In [24],

a simple residual CNN composed of eight layers is proposed,

while a CNN with dilated convolution in order to increase the

receptive field and skip connections for avoiding vanishing

gradient is presented in [25]. In [26], the use of U-Net has

been proposed. In [27], the Mulog [29] framework combined

with an additive white Gaussian noise (AWGN) denoising

CNN is adapted for SAR. Later, in [28], the same method is

proposed trying to combine DL and the NL paradigm through

a postclassification of the filtered image.

Moreover, instead of using a synthetic approach, in other

techniques, such as [30] and [31], the multitemporal average

version of SAR acquisition serves as a reference. Always for

the sake of simplicity, this approach is referred to as multi-

temporal approach in the following of this article. Real data

have been also used for training a CNN as in [32] following

the Noise2Noise scheme [33]. In such a scheme, the network

learns to predict the clean image by using as input-reference

data two noisy images with the same underlying clean data

but different independent realizations of noise.

Most of these proposals focus only on the definition of the

architecture and use very similar cost functions, not taking

into account statistical properties of the SAR image and the

presence of strong scatterers, demanding their knowledge to

the features extraction from the training data. In [25] and [32],

the MSE is used as cost function. In [24] and [26], the MSE

is combined with a total variation regularization. A smoothed

L1 loss adapted to the speckle noise case has been considered

in [30]. The first attempt to include the first-order statistics

of the speckle was proposed in [34], whereas, in [31], a cost

function is used based on statistic similarity.

In this article, a CNN for SAR despeckling that takes

into account the statistical properties of the SAR image has

been proposed. The network is a 17 layers CNN with a skip

connection trained with the synthetic approach. Beyond the

proposed architecture, the main contribution is in the definition

of a multi-objective cost function given by a combination of

three terms, each designed for a precise goal. Indeed, each of

these terms takes care, respectively, of spatial details, statistical

properties, and strong scatterers identification.

The rest of this article is organized as follows. The

description of the method and related contribution is in

Section II. Experimental results and discussion are presented

in Section III. Conclusion is presented in Section IV. An abla-

tion study of the cost function has been carried out in the

Appendix.

II. METHODOLOGY

In this section, the proposed method is described: first, the

acquisition model and the statistics of the acquired SAR image

is presented; then, the definition of the data simulation process,

of the proposed architecture, and of the multi-objective cost

function are detailed. Finally, the contribution of this article is

highlighted.

A. Signal Statistical Description

The interpretation of the SAR image is challenging due to

the geometrical properties of the SAR imaging system and

to the presence of speckle. Indeed, speckle is a multiplicative

noise produced by interference among the backscatterings of

the objects inside a resolution cell of the sensor [35]. The

generic SAR image can be expressed as follows:
Y = X · N (1)

where Y is the SAR image, X is the noise-free image, and N

is the speckle.

The statistical distribution of the speckle is well known

under certain conditions. Three main cases can be considered:

homogeneous, heterogeneous, and extremely heterogeneous

areas. Homogeneous areas (such as fields, roads, and so on)

are characterized by the lack of dominant scatterers, and the

surface X can be considered stationary. This is the case of the

fully developed hypothesis for the speckle N, whose amplitude

follows the square root of Gamma distribution [14]:

pN (n, L) = 2L L

0(L)
n2L−1e−Ln2

n, L > 0 (2)

where L is the number of looks of the SAR image and 0(·) is

the Gamma function. This probability density function (pdf)

in case of single look becomes a Rayleigh distribution.

Heterogeneous (tree and forest) and extremely heteroge-

neous areas (urban) are characterized by objects with shape

and dimension that produce geometrical distortions and strong

backscattering (e.g., multiple bounces, layover, and shadow-

ing). In heterogeneous areas, the speckle can still be con-

sidered Gamma distributed, but the surface is not stationary

anymore. In an extremely heterogeneous area, the hypothesis

of distributed scatterers is not valid anymore due to the

presence of dominant ones. Indeed, the speckle does not follow

anymore the fully developed hypothesis [36].

The statistical distribution of SAR backscattering Y in

different scenarios is provided in [14], where the use of

the square root of generalized inverse Gaussian distribution

GA(α, γ, λ, L) as a general model for the amplitude return

of SAR backscattering is proposed. Frery et al. [14] prove

that the distribution of the SAR return of homogeneous (HO),

heterogeneous (H), and extremely heterogeneous (EH) areas

are a particular case of this distribution depending on the para-

meter subspace. An extension of this classification considering

several possible scenarios has been recently proposed in [37].

According to [14], in the subspace (α > 0, γ = 0,

λ > 0, L > 0), when α and λ tends to infinite, the distribution

tends to a square root gamma 01/2(L, L/β) as in (2) with β

being the estimation E[Y 2] of the second-order statistic. Such

distribution describes the return from HO areas.

Moreover, Frery et al. [14] have proved that the SAR

return Y in the H area follows the KA(α, λ, L) distribution.

This is the distribution the GA(α, γ, λ, L) tends to, when the

parameter subspace is always (α > 0, γ = 0, λ > 0, L > 0).
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Fig. 1. RGB samples of Merced Land Use data set.

Fig. 2. Simulation process, from left to right: noise-free reference, simulated
noise, and simulated SAR image.

For EH areas, the amplitude distribution of the SAR image

can be described according to G0
A(α, γ, L), that is the distri-

bution GA(α, γ, λ, L) tends to, when the parameter subspace

is (α < 0, γ > 0, λ = 0, L > 0).

B. Data Simulation

In this section, the data simulation process adopted for the

training of the proposed CNN-based despeckling algorithm is

illustrated.

Thousands of noise-free images from the optical UC Merced

Land Use data set [38] have been considered. This data set is

typically considered for classification purposes thanks to the

presence of hundreds of images belonging to different classes.

Samples of this data set are shown in Fig. 1.

The optical images have been converted from the RGB

domain to the grayscale one, obtaining the noise-free ref-

erences X . The speckle noise N has been generated under

the fully developed hypothesis in case of a single-look image

according to (2). The final noisy image Y has been obtained

by simply multiplying the noise-free image by the speckle,

as in Fig. 2.

Considering that the Merced Land Use data set is composed

of several scenarios (such as agricultural field, baseball dia-

monds, forest, residential areas, and so on), the simulation

process transforms all these data into noisy images whose

distribution belongs to the 01/2 distribution (HO areas) or

to KA distribution (H areas) that both are a particular case

of the generalized inverse Gaussian distribution. In Fig. 3,

the distributions of two samples of the data set are shown.

The magenta solid curve represents the distribution of a

simulated image taken from the “agricultural” class of the

data set. In this case, the surface X is almost homogeneous,

and the distribution of the resulting simulated Y fits the

01/2 (magenta dashed). At the same time, the black solid

curve represents the distribution of a simulated image taken

from the “forest” class. In this case, the texture X can-

not be considered homogeneous, but some fluctuation had

to be taken into account. Indeed, the distribution fits well

the KA curve. This process does not allow to simulate the

EH case, where the speckle is not fully developed mainly

Fig. 3. Comparison between two different samples of training data set:
agricultural sample (magenta solid) and forest (black solid). In dashed, the

theoretical 01/2 and KA distributions.

due to the presence of dominant scatterers and geometrical

distortions.

From the whole data set, 57 526 × 64 × 64 amplitude

patches for the training and 14 336×64×64 for the validation

have been extracted.

C. Network Architecture

The design of the proposed network architecture comes

from the results achieved in our previous works [34], [39],

where ten layers of CNNs with different cost functions were

proposed.

Starting from the result of [39], the proposed neural net-

work is composed of 17 convolutional layers. For each layer,

we consider rectified linear unit (ReLU) as activation function

[40], but for the last. In all the layers, batch normalization

[41] is performed except for the first and the last ones. In

addition, skip connections, which have shown great utility

in training deep networks [42], are introduced in the inner

layers.

Given the previous remarks, the output of layer k can be

expressed as

zk = fk(8k, zk−1) =
⎧

⎨

⎩

σ(wk ∗ Y + bk), k = 1

B N[σ(wk ∗ zk−1 +bk)] + α fk−3(8k−3, zk−4) 1<k < D

(wk ∗ zk−1 + bk ), k = D

(3)

where

α =
{

1, hk − 1i3 = 0

0, otherwise

with number of layers D = 17, and (wk, bk,8k, zk) the

weights, the bias, the set of parameters and the output of

layer k, respectively. B N stays for batch normalization and

σ(·) = max(0, ·) is the ReLU activation function. The opera-

tion hk − 1i3 is the reminder of the division (k − 1)/3.

Based on this network architecture, given a couple of

samples (Y, X), where Y is the noisy image and X acts as

a reference, the final estimated clean image is X̂ = zD .

For each layer, 64 features maps are extracted except for

the last one that has to fit the single-channel output. All the

convolutional kernel have dimension 3 × 3. In Fig. 4, a scheme

of the network is shown. The scheme of the residual block is

defined in Fig. 5.
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Fig. 4. Network architecture: all the layers have 64 features maps with a 3 × 3 convolutional kernel. The first layer (in orange) is followed by the ReLU
activation function. After, there is an alternation of the residual block (in light blue) and inner layers with ReLU and batch normalization (in purple), while
the last layer (in red) has neither activation function nor normalization. The cost function is a linear combination of three terms.

Fig. 5. Residual Block is composed of two Conv-BN-ReLU layers and a
skip connection that sums the input to the output of second layer.

D. Cost Function

In the proposed algorithm, the aim is to propose a cost

function that takes care of both spatial and statistical properties

of the SAR images. The defined multi-objective cost function

L is a linear combination of three terms, each of them

specifically dedicated to catch and to preserve information

from the SAR image. Specifically

L = L2 + λKLLKL + λ∇L∇ (4)

L2 = LMSE = kX̂ − Xk2 (5)

LKL = DKL(N̂ , Nteo) (6)

L∇ = k∇X − ∇ X̂k2. (7)

L2 is the MSE between the reference X and filtered image

X̂ ; LKL is the Kullback–Leibler divergence (DKL) between the

distribution of estimated noise N̂ = Y/X̂ and the theoretical

one Nteo, whose definition is provided in Section III-A; L∇ is

the MSE between the gradient of the reference X and gradient

of the filtered image X̂ .

Let us consider each of the three terms separately.

Naturally, the goal is to train the network to generate an

output as similar as possible to the reference. To this aim, the

L2 term directly compares the output X̂ with the reference X ,

and it is responsible for spatial reconstruction.

Despite the importance of reducing spatial distortion, taking

into account the properties of the noise within the despeckling

operation is crucial, as shown by different methods, such

as [17] and [18]. For this reason, the LKL term that takes

into account the statistical properties of the noise has been

introduced.

The LKL is the Kullback–Leibler divergence computed

between the pdf of the estimated ratio image (the ratio between

the SAR image and the estimated noise-free one) and the

theoretical fully developed speckle (in our case, a Rayleigh

distribution with parameter σ = 1/
√

2). The goal is to train

the network to produce an output whose ratio image follows

the statistical properties of the speckle.

The introduction of the L∇ term is twofold: improving the

edge preservation [43] and dealing with dominant scatterers in

real images. L∇ compares the gradients of X̂ with a gradient of

X . The gradient gives information on the edges but, obviously,

is not exactly an edge detector. It highlights transitions in

images and so tends to identify the presence of structures.

Therefore, if from one side, it trains the network in preserving

edges, on the other, it helps the network in identifying and

isolating strong scatterers.

In the Appendix, an ablation study on the effects of these

three terms has been proposed.

E. Identification of Not Fully Developed Areas

The presence of strong scatterers is challenging for all the

filters, and their filtering policy is still an open issue within

the despeckling community [35].

As reported in the literature, these points should be left

unfiltered or at least processed in a different way [44]. Some

methods, such as SAR-BM3D, NOLAND, and fast adaptive

nonlocal SAR despeckling (FANS), filter them by aggregation

of similar patches selected through a statistical approach; other

methods, such as [45], do not filter them at all.

These points are related to EH areas (usually urban), where,

as pointed out by Frery et al. [14] and Tison et al. [36], the

speckle is not fully developed anymore.

As reported in Section II-B, the only distribution not

included in the training is the one for the EH areas. However,

the defined cost function allows easy detection of such areas.

Indeed, if from one side the presence of LKL encourages the

filtering under the fully developed hypothesis, from the other

side, L∇ tends to preserve edges and to identify structures.

Their combination (together with L2) highlights the presence

of such points producing strong values on the ratio image.

As a matter of fact, on these points, the ratio image of an

ideal filter should not show a Rayleigh distribution. Thus, the

appearance of such points on the ratio image can be considered

as a positive issue. Actually, it allows identifying such points,

having a different statistical distribution from the trained one
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Fig. 6. Flowchart for the identification of not fully developed areas from the
ratio image.

(i.e., it allows to automatically identify points belonging to EH

areas).

The identification of such EH points is performed directly

from the ratio image produced by the proposed CNN. For this

goal, a combination of the ratio edge detector proposed in [4]

and a Kolmogorov–Smirnov test on the ratio image produced

by our algorithm is applied.

The former aims to highlight the edges and remaining

structures in the ratio image, the latter detects the area where

the predicted speckle is not fully developed by comparison

through a threshold at patch level of ratio image distribution

and the fully developed one. In Fig. 6, a flowchart of this

detection process is shown. The knowledge of those pixels

allows the final user to decide which filtering policy to be

adopted (left unfiltered, define a specific statistical-based filter,

using a multitemporal approach, and so on) [11].

F. Contribution

In this section, the contribution of the proposed method,

called multi-objective network (MONet) for SAR despeckling,

is described, and its innovative issues are highlighted. The

proposed MONet shares some points with image despeck-

ling CNN (IDCNN) [24], SAR-CNN [30], and SAR-dilated

residual network (DRN) [25]. Indeed, the proposed CNN

has 17 layers, such as SAR-CNN, and also skip connections

are added in the inner layers, like in SAR-DRN. Differently

from SAR-DRN, a deeper network has been preferred to dilate

convolutions. Deeper networks allow us to extract more fea-

tures and to add more abstractions, facilitating the exploitation

of the data and the network generalization. The depth has been

set experimentally: in [46], it has been proved that a deeper

network gives better results.

The main innovation consists in the definition of the cost

function: a combination of the L2 norm with other terms is

used for the reconstruction. While IDCNN combines the L2

with the total variation in order to provide smooth results,

in the proposal, the term L∇ for edges preservation and dom-

inant scatterers identification has been considered. Moreover,

a statistical term LKL for speckle properties preservation is

added in the combination that leads to the whole cost function.

In Table I, the differences among the aforementioned methods

are summarized.

III. EXPERIMENTAL RESULTS

In order to validate the method, experiments have been

carried out on both simulated and real data. Both quantitative

analysis, based on performance indexes, and qualitatively

analysis, based on visual inspection, have been conducted.

TABLE I

MAIN DIFFERENCES AMONG COMPARED DL METHODS

For comparison, two different families of despeckling algo-

rithms have been considered: nonlocal and DL-based ones.

In particular, NL algorithms have been addressed since they

are often considered in the literature as a benchmark for

evaluating achievable performances. Between the available

NL algorithms, we considered FANS [21], SAR-BM3D [19],

and NOLAND [18], while the DL-based algorithms have

been considered in order to compare the performances of the

proposed algorithm with methods sharing the same philosophy.

In particular, ID-CNN and SAR-DRN as DL methods have

been used.

For each NL method, the parameters have been set accord-

ingly to those suggested in the relative articles. While given

that the DL solutions are data-driven, in order to have a fair

comparison, the CNN-based solutions have been retrained on

our same data set following the description in the relative

articles.

For this reason, we did not compare with the solution

based on the multitemporal approach [30]–[32], because a fair

comparison is not possible using training on simulated data.

Moreover, for the rest of DL articles, the code or traning data

set are not publicly available.

The proposed network is trained with mini batch

of 128 samples, using the Adam optimizer [47] with para-

meter β1 = 0.9 and β2 = 0.99. The learning rate is

set to η = 0.0001 for the first 87 epochs, and after the

training is refined for the other 35 epochs with a learn-

ing rate scaled by 10. The lambdas parameter for the cost

function has been empirically set for balancing their effects:

λKL = 104 and λ∇ = 1. The framework used for the

implementation is Theano, running on Python. Both training

and testing have been carried out on a GeForce GTX 1080Ti

GPU with 11 GB of memory. The code of the proposed

method is available in https://github.com/sergiovitale/MONet-

SAR-Despceckling-CNN-Theano-implementation.

A. Metrics

For numerical evaluation both reference and no-reference

metrics have been considered. As reference metrics, the struc-

tural similarity (SSIM) index, the MSE, and the signal-to-

noise ratio (SNR) have been used for evaluating results on

the simulated data set, where a reference is available.

1) SSIM measures the similarity between X̂ and X from a

perceptual point of view. The ideal filter would produce

SSIM = 1.

2) MSE measures the average similarity between X̂ and X .

The ideal value is zero.

3) SNR measures the SNR and gives us information about

the capability of noise suppression. The higher SNR, the

better the filter.
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Regarding no-reference metrics, the equivalent number of

looks (ENL), the M-index, the Haralick homogeneity δh,

the residual ENL r
ÊNL

, the mean of the ratio µN , and the

Kullback–Leibler divergence DKL are considered.

1) ENL is an indicator of noise suppression in homo-

geneous areas. Once a homogeneous area has been

selected, the ENL computes the ratio between the

squared power of the mean and the variance of the

filtered image (both in intensity format)

ENL = E[X̂2]2

Var(X̂2)
. (8)

Higher is the ENL, the greater is the noise suppression.

2) M-index [48] is a combination of three factors δh, r
ÊNL

,

and rµ:

a) δh is based on the Haralick homogeneity texture

[49] and it is the distance between the homogeneity

h0 of ratio image compared with the homogeneity

hg of the random permuted the ratio image itself.

It is compute as δh = ((|h0 − hg |)/h0), with

hz =
∑

i

∑

j

1

1 + (i − j)2
· pz(i, j) (9)

where pz(i, j) is the gray scale level co-occurrence

matrix of the ratio image z at an arbitrary position.

δh computes a sort of correlation of the ratio image

and give us information of remaining structures

that should not be present after an ideal filtering.

The ideal filter will produce δh = 0.

b) r
ÊNL

is the residual ENL and once n homogeneous

patches are selected the ENL computed on ratio

and SAR image are compared

r
ÊNL

= 1

n

n
�

i=1

|ÊNLnoisy(i) − ÊNLratio(i)|
ÊNLnoisy(i)

. (10)

The ideal filter will produce r
ÊNL

equal to 0.

c) rµ is the function of the mean ratio µN computed

on the same patches selected for the r
ÊNL

rµ = 1

n

n∑

i=1

|1 − µN (i)|. (11)

The ideal filter will produce rµ equal to zero.

The ideal filter will produce an M-index equal to zero.

3) The DKL computes the distance between the statisti-

cal distribution of the ratio image with the theoretical

Rayleigh distribution

DKL(N̂ , Nteo) =
∑

i

P
N̂
(i)log2

(
P

N̂
(i)

PNteo (i)

)
(12)

where P
N̂

is the pdf of the predicted speckle and PNteo

is the pdf of the theoretical noise. Under the fully

developed hypothesis, an ideal filter will produce a

DKL = 0

Clearly, other indexes could have been adopted and consid-

ered. We focus on these ones since they are largely and

commonly adopted by the community.

TABLE II

NUMERICAL ASSESSMENT ON SIMULATED DATA SET: THE VALUE ARE

AVERAGED ON THE WHOLE SIMULATED TESTING DATA SET

COMPOSED OF 100 IMAGES

B. Simulated Results

For the simulation, 100 single-look amplitude images of size

256 × 256 have been selected. These belong to five classes

(20 for each class) of the Merced Land Use data set not used

during the training phase. In Table II, the numerical evaluation

for reference metrics and ENL, averaged on the whole data set,

is shown. The best solution is expressed in bold, the second

best is underlined.

Regarding the reference metrics SSIM, SNR, and MSE,

it is evident that DL solutions outperform the other given

that they are trained on a data set with the same proper-

ties as the testing one. The proposed MONet outperforms

all the DL and NL methods. The best NL solution on

simulated experiments is SAR-BM3D. Regarding the ENL,

FANS performs largely better than the others, followed by

the MONet.

Numerical assessment is not enough, and visual inspection

is essential for understanding the performance of a filter.

Four different images with different textures are shown in

Fig. 7 for qualitative analysis. Together with the noisy images

(first column), the noise-free reference images are reported.

Columns from 3 to 8 show the filtering results of the different

considered approaches.

Among the NL methods, FANS is over smoothed, los-

ing many spatial details, but with good edge preserva-

tion. NOLAND and SAR-BM3D are very close to each

other with good detail preservation, but both of them pro-

duce some artifacts on homogeneous areas that impair the

edges preservation. Among the CNN methods, MONet shows

the best performance on spatial details and edges preser-

vation. IDCNN and SAR-DRN are very close to each

other, with the former producing a filtered image still a

bit noisy and the latter producing some distortions on the

edges.

In general, the proposed solution seems to produce the most

similar image to the reference, showing very good noise sup-

pression without losing details and good edges preservation.

Regarding the computational efficiency, the processing time

is clearly related to the number of parameters the network

is composed of. Being our network deeper compared with

the others, it allows extracting more representative features,

resulting in a better generalization at the cost of higher

computational time. Anyway, the algorithm guarantees a fast

processing time: for example, a 3000 × 3000 is processed in

approximately 4 s.
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Fig. 7. Results on a subset of the simulated images, from left to right: simulated noisy image, noise-free reference, MONet, SAR-DRN, ID-CNN, SARBM3D,
NOLAND, and FANS.

Fig. 8. Results on CSK image: scene under test in the top row; details of the image in the second row; and corresponding ratio image in the third row.

C. Result on Real-SAR Images

In this section, we show the results of the proposed

algorithm on real-SAR data. Four different test cases have

been considered using images acquired by different sensors

[COSMO-SkyMed (CSK), TerraSAR-X, RADARSAT2, and

Sentinel-1), working bands (X and C), acquisition modalities

(strip map and interferometric wide swath), resolutions (three

and five meters), and polarization (HH and VH). These have

been done in order to show the independence of the achievable

results with respect to the considered data sets.

In Figs. 8–11, the noisy images (first column) and the results

on the considered algorithms (columns 2–7) are shown. In the

first row, the results of the whole image are shown. In the

second row, the results on a particular patch of the whole

image are presented. The corresponding ratio images are in the

third row. Because of the lack of a reference, it is difficult to

find a metric that can fairly evaluate the filters given they rely

on certain mathematical assumptions for the speckle that is not

sure are confirmed in the real-SAR image under test. For this

reason, the evaluation of filtering performance mostly relies

on visual inspection, considering the ability to suppress noise

while preserving objects in the scene. To this aim, also the

ratio images produced by each method are shown. As noticed

in the simulated results, FANS has good edges preservation

but produces oversmoothed results on homogeneous areas.
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Fig. 9. Results on RADARSAT2 image: scene under test in the top row; details of the image in the second row; and corresponding ratio image in the third
row.

Fig. 10. Results on TSX image: scene under test in the top row; details of the image in the second row; and corresponding ratio image in the third row.

NOLAND better preserves spatial details than FANS, but it

is still smooth. SAR-BM3D has the best edges and objects

preservation among the NL filters, but the noise is still present

on the filtered images. In general, the DL solutions try to more

suppress the noise compared with the NL approaches. MONet

shows a good tradeoff between noise suppression and edges

preservation: in homogeneous areas, noise is removed without

losing many spatial details. Moreover, at the same time, the

edges are quite well preserved. Similar considerations can be

done for SAR-DRN and IDCNN, but both of them produces

some artifacts: the former introduces a vertical texture in

all the images and produces disturbed edges, generating less

clean images; the latter has good edges preservation but less

suppresses the noise with respect the other two and produce

some black spots.

These considerations can be appreciated on the details and

on the relative ratio images shown in Figs. 8–11.

For example, in the COSMO-SkyMed image of Fig. 8, the

boundaries of the road are retained quite well from MONet,

and homogeneous areas are reach of spatial details not deleted

by the noise removal.

These spatial details barely appear in the NL approaches

(except for SAR-BM3D), while edges are well defined.

Moving to the ratio image, it must be recalled that an

ideal filter should produce an uncorrelated ratio image: more

correlation and more structures are visible in the ratio, worse



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VITALE et al.: MULTI-OBJECTIVE CNN-BASED ALGORITHM FOR SAR DESPECKLING 9

Fig. 11. Results on Sentinel-1 image: scene under test in the top row; details of the image in the second row; and corresponding ratio image in the third
row.

is the filtering effect. From the ratio images, the road is more

visible for SAR-DRN respects the others: meaning it is heavily

filtered and not well preserved. The ratio images of IDCNN

and MONet are very similar to each other with some emergent

structure for the former. The NOLAND ratio image looks

almost uncorrelated, but it is characterized by a large granular-

ity typical of generalized smoothness. Contrary, SAR-BM3D

has a ratio image with a very tiny granularity typical of good

object preservation but also of not perfect noise suppression.

From the FANS ratio image, it is easily observable a different

behavior of the filter in different areas: large granularity

on homogeneous areas proving its oversmoothing effect and

very tiny granularity in correspondence of not homogeneous

areas.

The same behavior can be appreciated on the RADARSAT2

image in Fig. 9. Even if some structures are more high-

lighted in the ratio image for MONet, it is still going to

have better edges preservation than other methods, except for

SAR-BM3D and FANS. At the same time, these two solutions

still present their limitation: the presence of residual noise for

SAR-BM3D and oversmoothing for FANS. In Fig. 10, the

results for the TerrraSAR-X (TSX) image are shown. This

image is very challenging for all the solutions, but generally,

the previous considerations are still valid. SAR-BM3D is still

noisy, FANS tends to oversmooth, and NOLAND has good

detail preservation. The results of MONet and SAR-DRN are

similar, while ID-CNN produces many artifacts. Observing the

ratio images, the proposed solution produces less structure

compared with other DL methods, meaning better preserva-

tion of details. It can be noted, in correspondence of urban

structures, the appearance of textures within the proposed solu-

tions. Such effect can be expected due to invalid fully devel-

oped hypotheses for such areas (i.e., extremely heterogeneous

areas). This point will be better discussed and analyzed in

Section II-E.

Fig. 12. Zoomed-in detail of blue, magenta, red, and orange boxes of Figs. 8–
11 from CSK, RADARSAT2, TSX, and Sentinel-1 data sets, respectively.

The results on Sentinel-1 image are shown in Fig. 11. The

NL solutions have good edge preservation and generally good

noise suppression. SAR-DRN and MONet have similar per-

formance, while ID-CNN suffers on the points characterized

by low amplitude value.
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In order to better spot the aforementioned differences among

the DL methods, the zooms of the details highlighted in the

blue, magenta, red, and yellow square boxes of Figs. 8–11 for

the correspondent CSK, RADARSAT2, TSX, and Sentinel-1

data sets are shown in Fig. 12.

For CSK and RADARSAT2 details, MONet has better edges

preservation, SAR-DRN shows smoothness and a vertical

texture, ID-CNN is a bit more noisy and presents some black

artifacts.

Regarding the zoom of TSX, it can be noted how the pro-

posed MONet tends to enforce smoothness on homogeneous

areas but, at the same time, preserves edges with slightly

better quality compared with SAR-DRN. Indeed, the path

inside the zoom is better-retained with respect to IDCNN

and SAR-DRN.

The performance of the filters is quite similar to the detail

of Sentinel-1, where ID-CNN always shows some black spots.

In the end, the proposed MONet shows edge preservation

comparable with NL approaches but with better noise suppres-

sion resulting in very good objects and details preservation.

Compared with SAR-DRN and IDCNN, it seems that the

depth of the network combined with the use of the defined

cost function helps in suppressing the noise and, at the same

time, keeping intact some details, such as edges and small

object.

In addition to visual comparison, the numerical assessment

for each site under test has been carried out. The M-index

is considered, from which the Haralick homogeneity δh, the

residual ENL r
ÊNL

, and the mean of the ratio µN has been

extracted. Moreover, the DKL between the pdf of the predicted

speckle and the Rayleigh distribution has been reported.

Regarding the M-index, NOLAND always has the best

value, followed by MONet, except for the TSX image, where

the second best is FANS. In order to interpret these results, the

three factors δh, r
ÊNL

, and µN , whose M-index is a combina-

tion, have been extracted. Lower is δh, less is the remaining

structure, and higher is the detail preservation during the noise

suppression. Lower is r
ÊNL

, the ENLs computed on the ratio

image are closer to the ENLs computed to the noisy, meaning

better statistical preservation of the noise. MONet always

shows the best or the second best value for δh, confirming

a better details preservation w.r.t other methods. Indeed, the

other methods produce more artifacts, and the ratio images

highlight more structures. The reverse is the situation for the

performance on the r
ÊNL

: MONet is always surpassed by

NOLAND and FANS.

In general, from Tables III–V, we can see that DL methods

outperform NL methods on δh, but the situation is reverted on

r
ÊNL

. This can be explained by the fact that DL methods are

trained under the fully developed hypothesis that is not correct

everywhere inside the images, and therefore, the statistical

r
ÊNL

highlights this characteristic.

Moreover, together with the r
ÊNL

, the mean value of the

ratio images µN has been extracted. The ideal filter should pro-

duce a mean ratio equal to one. Except for the RADARSAT2,

where the proposed solution reaches the lowest performance,

in the CSK and TSX, it reaches the best and second-best

TABLE III

NUMERICAL ASSESSMENT CSK

TABLE IV

NUMERICAL ASSESSMENT RADARSAT2

TABLE V

NUMERICAL ASSESSMENT TSX—TEHRAN

TABLE VI

NUMERICAL ASSESSMENT SENTINEL-1

performance, respectively, confirming a good quality filtering

process.

For considering the ability in noise suppression, the ENL

on homogeneous areas for each image under test has been

computed. The selected areas are highlighted in the green

boxes, and the corresponding ENL of the noisy images are

shown in Tables III–VI. In general, the ENL performance is

very close to all the methods, except for FANS that strongly

outperforms the others. This can be explained by the over-

smooth behavior of FANS with respect to the other solutions.

Regarding the DKL, we can see that NOLAND always has
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Fig. 13. Result of the detection process on CSK data set, from left to right:
SAR image; ratio image produced by MONet; and detection result.

Fig. 14. Comparison between the distributions of two different areas of SAR
image (solid) with the theoretical ones (dashed): black solid curve represents
the distribution of extremely heterogeneous detected points on SAR image

(SAR-EH); the black dashed curve is the theoretical G0
A
(−0.5, 0.145, 1);

magenta solid curve represents the distribution of a heterogeneous area of
SAR image (SAR-H); and magenta dashed is the theoretical KA(2, 7.5, 1).

the best performance. This thanks to the fact that DKL is

included in the similarity research process. Proposed MONet

has the second-best performance on CSK and on TSX, while

on RADARSAT2, it reaches the third one. Naturally, the DKL

results are affected by the presence of not homogeneous areas,

and therefore, they are rather general. It is worth to notice

that among the DL methods, MONet always has the best DKL

index. This means that using a statistical term as LKL gives

the network added useful statistical information that cannot be

acquired only by the data.

D. Identification of Not Fully Developed Areas: Validation

It is worth to notice that our network is trained under

the fully developed hypothesis, and the use of L∇ aims in

preserving objects, details, and strong scatterers, where that

hypothesis is not valid anymore. These points strongly appear

in the ratio images produced by the proposed method. As

described in Section II-E, an identification step allows isolating

such points leaving the user the possibility to decide the

filtering policy.

The validation of this procedure is performed in the follow-

ing only on the CSK data set; however, similar results can be

achieved using the other data sets. In Fig. 13, the detection map

of not fully developed points are shown for CSK. In Fig. 14,

it is shown how the detected points on the SAR image (SAR

Extremely Heterogeneous points, SAR-EH) generate a pdf

(solid magenta curve) that well fits the theoretical distribution

of G0
A(α, γ, L) (dashed magenta) of [14] as the distribution

that better describes such areas. The parameters are empirically

estimated as (α = −0.5, γ = 0.145, and λ = 0, L = 1).

At the same time, we estimated the distribution of the SAR

image in the remaining points (SAR Heterogeneous points,

SAR-H): this fits the KA(α, λ, L) distribution, meaning that

all the remaining part of the image belongs to heterogeneous

areas. The parameters are empirically set as (α = 2, γ =
0, λ = 7.5, and L = 1).

Fig. 15. Comparison of the detection of strong scatterers between the
proposed MONet, SAR-DRN, and ID-CNN. In the top noisy and ratio images
are shown. In the bottom, the relative detection.

This confirms the fact that our CNN is able to detect the

points belonging to the extremely heterogeneous areas directly

from the ratio image. Naturally, this issue is in common with

all the CNN that use training data simulated under the fully

developed hypothesis. Therefore, this procedure could also be

extended to other methods, such as ID-CNN and SAR-DRN.

In Fig. 15, a patch of CSK is shown with relative detection for

the DL methods. First of all, it is important to note the different

behavior of three CNNs on strong scatterers: MONet try to

isolate the objects by preserving the edges and at the same time

produce a strong structure in the ratio; contrary SAR-DRN try

to less filter these elements, but some distortion are visible both

in the filtered image and in the ratio. ID-CNN produces many

artifacts not only in correspondence of the scatterers but also

in its neighborhood.

By visually inspecting the amplitude image and the detec-

tion results, it is evident that many point scatterers are not

correctly identified by SAR-DRN, much false identification is

present in ID-CNN, while the MONet seems the most reliable.

IV. CONCLUSION

In this article, a CNN for SAR despeckling trained on sim-

ulated data has been proposed. The nonlinearity introduced by

the 17 layers is crucial for feature extraction, while skip con-

nections are used for avoiding the vanishing gradient problem.

Beyond the proposed architecture, the main focus is dedicated

to the definition of a multi-objective cost function composed

of three terms: L2, LKL, and L∇ . The combination of these

three terms allows the preservation of spatial details, statistical

properties, edges, and identification of strong scatterers. An

ablation study proves how the combination is crucial for taking

care of these aspects simultaneously. Experimental validation,

both on simulated and real data, shows the advantages of

including these SAR image properties in the cost function.

The performance on simulated images shows an improve-

ment with respect to the state-of-the-art, mainly on edges

and details preservation. This is also confirmed in real-SAR

images, where the results present good noise rejection, edges

preservation, and absence of artifacts. This means more clear

filtered images with well-retained edges and objects.
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TABLE VII

NUMERICAL ASSESSMENT ON SIMULATED DATA SET FOR DIFFERENT

COST FUNCTIONS: THE VALUE ARE AVERAGED ON THE WHOLE SIMU-
LATED TESTING DATA SET COMPOSED OF 100 IMAGES. FROM TOP

TO BOTTOM: NETWORK TRAINED WITH L2 , Lkl , L∇ , AND L

Fig. 16. Details for the different cost function.

Moving to real data, MONet based on the fully developed

hypothesis and a cascade of convolutions cannot directly han-

dle the point scatterers, but differently from other CNN-based

solutions (such as SAR-DRN and ID-CNN), it is able to

identify them. Hence, the knowledge of those pixels allows

the final user to decide how to process them (left unfiltered,

define a specific statistical-based filter, using a multitemporal

approach, and so on).

Being a DL-based method, once the network training is

performed, the computational time is limited. Further works

will address the possibility of adapting the filter to multilook,

multitemporal, and multichannel SAR images.

APPENDIX

ON THE IMPACT OF THE COST FUNCTION

In this section, an ablation study has been carried out in

order to assess the impact of the defined cost function. The

cost function is given by a combination of the terms in (4).

In order to compare the performance and the impact of these

three terms, the same architecture is trained on the same data

set with a cost function composed once only of the L2 = L2

term, once of the combination Lkl = L2 + λklLKL, and

once with the combination L∇ = L2 + λ∇L∇ . These solu-

tions are compared with the proposed method. In Table VII,

we summarize the numerical assessment on the same testing

data set of Section III-B. The results are almost the same for

each solution like there is no difference in introducing such

terms in the cost function. It seems that L2 is enough for the

despeckling. However, these are average metrics that do not

take into account the details that make the difference between

one solution and another. Moving to real data, things largely

change.

In Fig. 16, a detail for each data set CSK, RADARSAT2,

and TSX are shown. It can be noted how important the impact

of the cost function is. Starting from L2 that tries to preserve

spatial details, the use of the KL divergence in Lkl helps

in filtering the homogeneous areas, but we lose information

on strong scatterers producing a soothing effect. In addition,

the L∇ tries to preserve edges but does not consider the

speckle properties and tends to create strange artifacts in

the neighborhood of the strong scatterers. The proposed cost

function L is able to balance all these effects and to give the

best compromise. The use of L allows the filter the image

balancing at the same time the statistical properties of the

noise and the details preservation.
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