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Multi-objective Compositions for Collision-Free Connectivity

Maintenance in Teams of Mobile Robots *

Li Wang, Aaron D. Ames, and Magnus Egerstedt†

Abstract— Compositional barrier functions are proposed in
this paper to systematically compose multiple objectives for
teams of mobile robots. The objectives are first encoded as bar-
rier functions, and then composed using AND and OR logical
operators. The advantage of this approach is that compositional
barrier functions can provably guarantee the simultaneous
satisfaction of all composed objectives. The compositional bar-
rier functions are applied to the example of ensuring collision
avoidance and static/dynamical graph connectivity of teams of
mobile robots. The resulting composite safety and connectivity
barrier certificates are verified experimentally on a team of
four mobile robots.

I. INTRODUCTION

Multi-robot coordination strategies are often designed to

achieve team level collective goals, such as covering areas,

forming specified shapes, search and surveillance, see e.g.

[5], [11], [4], [12]. As the number of robots and the com-

plexity of the task increases, it becomes increasingly difficult

to design one single controller that simultaneously achieves

multiple objectives, e.g., forming shapes, collision avoidance

and connectivity maintenance. Therefore, there is a need to

devise a formal approach that can provably compose multiple

objectives for the teams of robots.

Multi-objective controls for multi-agent systems have been

extensively studied. The recentered barrier function was used

to unify the go-to-goal behavior, collision avoidance, and

proximity maintenance [14]; however, it was specifically

constructed for go-to-goal task and thus can not be extended

to complex situations easily. Research in [21] tried to achieve

multiple objectives, e.g., approaching a target position, avoid-

ing collisions, and keeping the goal within field of view, by

designing cascaded filters which remove control commands

that violate the objectives or constraints; but this method

comes with no provable guarantees. [26] studied connectivity

preserving flocking, and simultaneously achieved alignment,

cohesion, separation, and connectivity, which is again a

task-specific solution. To enable provably correct and more

general objective compositions, the non-negotiable objec-

tives, e.g., collision avoidance and connectivity maintenance,

are encoded with compositional barrier functions in this

paper. Barrier functions, which were explored in various
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applications such as robotics [6], safety verification [19], and

adaptive cruise control [1], can be used to provably ensure

the forward invariance of desired sets [16], [20], [24]. Earlier

works on safety barrier certificates for multi-robot system

[3], [23] encoded multiple objectives by assembling multiple

barrier functions. The agents are safe if they satisfy the

safety barrier certificates, while the existence of a common

solution to multiple barrier functions becomes unclear when

the number of objectives increases. This motivates our work

of composing multiple barrier functions into a single barrier

function, so that the solutions to ensure multiple objectives

always exist.

In this paper, compositional barrier functions are applied to

provably ensure collision avoidance and graph connectivity

for the coordination control of teams of mobile robots. This is

motivated by the fact that many of the multi-agent strategies,

such as consensus, flocking, and formation control, implicitly

assumes collision avoidance, communication graph connec-

tivity, or both [25]. These safety and connectivity objectives

are often ensured by some secondary controllers, which take

over and modify the higher level control command when

violations occur. Typical methods used in these secondary

controllers are artificial potential functions [15], behavior

based approaches [2], and edge energy functions [7]. How-

ever, when the team of robots are either too concentrated

or too scattered, the avoidance behavior becomes dominant

with the robots spending most of the time avoiding collisions

or losses of connectivity, and the higher level objectives

can not be achieved [17]. The idea pursued in this paper

is to design a secondary controller, utilizing compositional

barrier functions, which is minimally invasive to the higher

level controller, i.e., the avoidance behavior only takes place

when collisions or losses of connectivity are truly imminent.

Similar collision avoidance strategies were explored in [3],

[23], [22].

The main contributions of this paper are twofold. Firstly,

compositional barrier functions are introduced to enable

more general compositions of multiple non-negotiable objec-

tives with provable guarantees. Methods to compose multiple

objectives through AND and OR logical operators are devel-

oped, and conditions on which objectives are composable

are provided. Secondly, composite safety and connectivity

barrier certificates are synthesized with compositional barrier

functions, which provably guarantees collision avoidance and

connectivity for teams of mobile robots that perform general

coordination tasks.

The rest of this paper is organized as follows. Section II

briefly revisits the control barrier function, and extends it
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to the piecewise smooth case, which is essential to enable

the barrier function composition in Section III. The composi-

tional barrier functions are then used to synthesize the safety

and connectivity barrier certificates, which ensure collision

avoidance and connectivity maintenance for teams of mobile

robots, in Section IV. The resulting safety and connectivity

barrier certificates are implemented experimentally on a team

of four Khepera III robots in Section V. Conclusions and

discussion of future work are the topics of Section VI.

II. PIECEWISE SMOOTH CONTROL BARRIER FUNCTIONS

Control barrier functions are a class of Lyapunov-like

functions, which can provably guarantee the forward in-

variance of desired sets without explicitly computing the

system’s forward reachable sets. This paper follows the

idea of a type of barrier functions similar to [1], [24],

which expands the admissible control space and enables

less restrictive controls. In order to encode more general

objectives, we will introduce methods to compose barrier

functions with AND and OR logical operators in Section III.

After composition, these originally smooth barrier functions

might become piecewise smooth. Therefore, this section will

set the stage for multi-objective composition by constructing

Piecewise Barrier Functions (PBF).

Some useful mathematical definitions and tools, i.e.,

PCr−functions and B-derivative, for dealing with piecewise

smooth functions are first revisited.

Definition 2.1: A continuous function f : D →Rm defined

on an open set D ⊆ Rn is a PCr−function, r ≥ 1, if there

exists an open neighborhood V ⊆D and a finite collection of

Cr functions { f1, f2, ..., fk} at ∀x0 ∈ D , such that the index

set I(x0) = {i | f (x0) = fi(x0),∀x ∈V} is non-empty.

Note that a PCr−function can be viewed as a con-

tinuous selection of a finite number of Cr functions

on D . The summation, product, superposition, pointwise

maximum or minimum operations on PCr−functions still

generate PCr−functions [18]. PCr−functions have the

favourable properties of locally Lipschitz continuous and B-

differentiable [18].

Definition 2.2: A locally Lipschitz function f : D → Rm

defined on an open set D ⊆Rn is B-differentiable at x0 ∈D ,

if its B-derivative f ′(x0; ·) : Rn → Rm at x0 is well defined,

i.e. the limit

f ′(x0;q) = lim
a→0+

f (x0 + aq)− f (x0)

a
, (1)

in any direction q ∈Rn exists.

For the generality of discussion, consider a dynamical

system in control affine form

ẋ = f (x)+ g(x)u, (2)

where x ∈ Rn,u ∈ Rm, f and g are locally Lipschitz. (2) is

assumed to be forward complete, i.e., solutions x(t) are well

defined ∀t ≥ 0.

Let a set C ⊆ D be defined such that

C = {x ∈ Rn | B(x)> 0},
C

C = {x ∈ Rn | B(x) = 0},
(3)

where the PCr−function B : D → R is constructed to be

positive in C and zero outside of C . This construction of

C and B(x) enables easy compositions of multiple barrier

functions, which will become clear in Section III.

Definition 2.3: Given a dynamical system defined in (2)

and a set C ⊆D defined in (3), the PCr−function B : D →R
is a Piecewise Barrier Function (PBF) if there exists a class

K function α such that

sup
u∈U

[−B′(x;− f (x)− g(x)u)+α (B(x))]≥ 0, (4)

for all x ∈ C .

Note that B′(x;− f (x)−g(x)u) is the B-derivative of B(x)
at x in the direction of − f (x)−g(x)u. When B(x) is smooth,

it is equivalent to say

−B′(x;− f (x)− g(x)u) = L f B(x)+LgB(x)u,

where the Lie derivative formulation comes from

Ḃ(x) =
∂B(x)

∂x
( f (x)+ g(x)u) = L f B(x)+LgB(x)u.

The B-derivative can be calculated for PCr−functions in

a straight forward fashion. Let {b1(x),b2(x), ...,bk(x)} be

the set of selection functions for B(x), then the B-derivative

of B(x) along the direction q is a continuous selection of

{∇ b1(x)q, ∇ b2(x)q, ..., ∇ bk(x)q}. The B-derivative of B(x)
can be determined by selecting the correct directional deriva-

tive from this selection set at x.

With the definition of PBFs, the admissible control space

for the control system is

K(x) = {u∈U | −B′(x;− f (x)−g(x)u)+α (B(x))≥ 0} (5)

Theorem 2.1: Given a set C ⊆ D defined by (3) with

the associated PBF B : D → R, any Lipschitz continuous

controller u(x) ∈ K(x) for the dynamical system (2) render

C forward invariant.

Proof: If the controller satisfies u(x) ∈ K(x), then

−B′(x;− f (x)−g(x)u)≥−α (B(x)). Apply the chain rule for

B-derivative [10], it can be shown that

∂−B(x(t)) = −(B◦ x)′(t;−1)

= −B′(x(t);x′(t;−1))

= −B′(x(t);− f (x)− g(x)u),

where ∂−B(x(t)) = lima→t−
B(x(t))−B(x(a))

t−a
is the left time

derivative of B(x(t)). Therefore, ∂−B(x(t))≥−α (B(x)).
Consider the differential equation ż(t) = −α (z(t)) with

z(t0) = B(x(t0))> 0, its solution is given by

z(t) = σ(z(t0), t),

due to Lemma 4.4 of [8], where σ is a class K L function.

With the Comparison Lemma [8]1, we can get

B(x(t))≥ σ(z(t0), t).

Using the properties of class K L function, it can be shown

that B(x(t))> 0,∀t ≥ 0. Thus C is forward invariant.

To sum up, we can get set invariance properties similar to

[1], [24] using PBFs.

1Comparison Lemma also works for functions with left or right differen-
tiability. The proof is similar to [8], and thus omitted here.



III. COMPOSITION OF MULTIPLE OBJECTIVES

In this section, we will use PBFs developed in Section

II to compose multiple non-negotiable objectives with AND

and OR logical operators. Each objective is encoded as a set.

The objective is satisfied as long as the states of the system

stay within the desired set. Define Ci ⊆ D , i = 1,2, similar

to (3),

Ci = {x ∈ Rn | Bi(x)> 0},
C

C
i = {x ∈ Rn | Bi(x) = 0},

(6)

Let B∪ = B1 +B2 and B∩ = B1B2,

E = {x ∈ Rn | B∪(x)> 0},
F = {x ∈ Rn | B∩(x)> 0}. (7)

Lemma 3.1: Given Ci, i = 1,2 defined in (6), E and F

defined in (7), E = C1 ∪C2 and F = C1 ∩C2.

Proof: Pick any elements x1 ∈ E , x2 ∈ F , we have

B∪(x1) = B1(x1)+B2(x1)> 0, (8)

B∩(x2) = B1(x2)B2(x2)> 0. (9)

From the definition (6), B1(x) and B2(x) are always non-

negative. Thus, (8) implies B1(x1) > 0 or B2(x1) > 0, i.e.

x1 ∈ C1 ∪C2. (9) implies B1(x2) > 0 and B2(x2) > 0, i.e.

x2 ∈ C1 ∩C2. This means E ⊆ C1 ∪C2 and F ⊆ C1 ∩C2.

Conversely, we can show that C1 ∪C2 ⊆ E and C1 ∩C2 ⊆
F . This completes the proof.

With this result, we can compose two objectives into one

set using AND or OR logical operators. The existence of a

negation operator is not clear in the current problem setup.

Note that Lemma 3.1 shows that B∪ and B∩ are precise PBFs

to encode AND or OR logical operators, which allows us to

have truly minimal invasive avoidance behaviors in Section

IV-B.

Next, we will present the result to formally ensure OR

logical operator for two objectives using PBFs.

Theorem 3.2: Given Ci, i = 1,2, defined in (6), E defined

in (7), and a valid PBF B∪ on E , then any Lipschitz

continuous controller u(x)∈ K∪(x) for the dynamical system

(2) render C1 ∪C2 forward invariant, where

K∪(x) = {u ∈U | −B′
∪(x;− f (x)− g(x)u)+α (B∪(x))≥ 0}.

Proof: B∪ is the summation of two PCr−functions, thus

still a PCr−function [18]. The B-derivative for B∪ is well-

defined at ∀x ∈ E . Since B1(x) and B2(x) are always non-

negative, B∪ is also non-negative, i.e., B∪ > 0 in E , B∪ = 0

outside of E .

When u(x)∈K∪(x), we have ∂−B∪x(t)≥−α (B∪x). Apply

Theorem 2.1, E is forward invariant. Use Lemma 3.1, we can

get C1 ∪C2 is also forward invariant.

Note that Bi, i = 1,2 are valid PBFs does not imply B∪ is a

valid PBF. We still need to check if B∪ is a valid PBF before

applying Theorem 3.2, which means

sup
u∈U

[−B′
∪(x;− f (x)− g(x)u)+α (B∪(x))]≥ 0,

for all x ∈ C1 ∪ C2. This condition guarantees that the

admissible control space is strictly non-empty.

An easier but more restrictive condition to check for the

composibility is

sup
u∈U

min
i=1,2

[−B′
i(x;− f (x)− g(x)u)+α (Bi(x))]≥ 0,

for all x ∈ C1 ∪C2, which means there is always a common

u to satisfy both PBF constraints.

The result for ensuring AND logical operator for two

objectives using PBFs can be derived similarly.

Theorem 3.3: Given Ci, i = 1,2, defined in (6), F defined

in (7), and a valid PBF B∩ on F , then any Lipschitz

continuous controller u(x)∈ K∩(x) for the dynamical system

(2) render C1 ∩C2 forward invariant, where

K∩(x) = {u ∈U | −B′
∩(x;− f (x)− g(x)u)+α (B∩(x))≥ 0}.

The proof of this theorem is similar to Theorem 3.2.

Up until now, we have a provably correct method for

composing multiple objectives. Conditions have also been

provided to check whether the objectives are composable

using the AND or OR logical operators. Next, the com-

positional barrier functions will be applied to safety and

connectivity maintenance for teams of mobile robots.

IV. COLLISION AVOIDANCE AND CONNECTIVITY

MAINTENANCE FOR TEAMS OF MOBILE ROBOTS

The design of control algorithms for teams of mobile

robots often involves simultaneous fulfilment of multiple

objectives, e.g., keeping certain formation, covering areas,

avoiding collision, and maintaining connectivity. It is often-

times a challenging task to synthesize a single controller that

achieves all these objectives. In this section, we will use

the compositional barrier functions to provably ensure safety

(in terms of collision avoidance) and connectivity of teams

of mobile robots, while achieving higher level collective

behaviors.

A. Composite Safety and Connectivity Barrier Certificates

Let M = {1,2, ...,N} be the index set of a team of N

mobile robots. The mobile robot i ∈ M is modelled with

double integrator dynamics given by
[

ṗi

v̇i

]

=

[

0 I2×2

0 0

][

pi

vi

]

+

[

0

I2×2

]

ui, (10)

where pi ∈ R2, vi ∈ R2, and ui ∈ R2 represent the current

position, velocity and acceleration control input of robot

i. The ensemble position, velocity, and acceleration of the

team of mobile robots are p ∈ R2N , v ∈ R2N , and u ∈ R2N .

x = (p,v) is denoted as the ensemble state of the multi-

robot system. The velocity and acceleration of the robot i

are bounded by ‖vi‖ ≤ β , and ‖ui‖ ≤ α .

In order to use the composite barrier function to ensure

safety and connectivity of the team of mobile robots, a

mathematical representation of safety and connectivity is

formulated first. Two robots i and j need to always keep a



safety distance Ds away from each other to avoid collision,

meanwhile stay within a connectivity distance Dc of each

other to communicate.

Considering the worst case scenario that the maximum

braking force of the robots are applied to avoid collision,

a pairwise safety constraint between robots i and j can be

written as

hi j(x) = 2

√

α (‖∆pi j‖−Ds)+
∆pT

i j

‖∆pi j‖
∆vi j > 0.

The detailed derivation of this pairwise safety constraint can

be found in [3]. A pairwise safe set Ci j and a PBF candidate

Bi j(x) are defined as

Ci j = {x | Bi j(x)> 0}, (11)

Bi j(x) = max{hi j(x),0},

In order to ensure the safety of the team of mobile

robots, it is important to guarantee that all pairwise collisions

between the robots are prevented. Therefore the safe set

C for the team of mobile robots can be written as the

intersection of all pairwise safe sets.

C =
⋂

j∈M

j>i

Ci j, (12)

With the safe set C , we will formally define what is safe

for the team of mobile robots.

Definition 4.1: The team of N mobile robots with dynamics

given in (10) is safe, if the ensemble state x stays in the set

C for all time t ≥ 0.

Let G = (V,E) be the required connectivity graph, where

V = {1,2, ...,N} is the set of N mobile robots, E is the

required edge set. The presence of a required edge (i, j)
indicates that robots i and j should always stay within a

connectivity distance of Dc.

Similarly, a pairwise connectivity constraint can be de-

veloped by considering the worst case scenario, i.e., the

maximum acceleration is applied to avoid exceeding the con-

nectivity distance Dc. The pairwise connectivity constraint is

given as

h̄i j(x) = 2

√

α (Dc −‖∆pi j‖)−
∆pT

i j

‖∆pi j‖
∆vi j > 0.

The corresponding pairwise connectivity set C̄i j and PBF

candidate are

C̄i j = {x | B̄i j(x)> 0}, (13)

B̄i j(x) = max{h̄i j(x),0}.

In order for the team of mobile robots to stay connected,

it is necessary to maintain all required edges. Therefore, the

connectivity set C̄ for the team of mobile robots can be

written as

C̄ =
⋂

(i, j)∈E

C̄i j. (14)

With the connectivity set, we can formally define when

the team of mobile robots is connected.

Definition 4.2: Given a required connectivity graph G , the

team of N mobile robots with dynamics given in (10) is

connected, if the ensemble state x stays in the set C̄ for all

time t ≥ 0.

In order for the team of mobile robots to stay safe and

connected, the ensemble state x shall stay within

T =
⋂

i, j∈M

j>i

Ci j

⋂

(i, j)∈E

C̄i j, (15)

for all time t ≥ 0. Since T is the intersection of multiple

sets, the compositional barrier function developed in section

II can be used to ensure the forward invariance of T . The

composite PBF for safety and connectivity maintenance is

proposed to be

B(x) = ∏
i, j∈M

j>i

Bi j(x) ∏
(i, j)∈E

B̄i j(x). (16)

Before using this composite PBF, we need to check whether

B(x) is a valid PBF, which is ensured by the following

lemma.

Lemma 4.1: The composite barrier function candidate

B(x) defined in (16) is a valid PBF, i.e.,

sup
u∈U

[−B′(x;− f (x)− g(x)u)+α (B(x))]≥ 0, (17)

for all x ∈ T .

Proof: The composite barrier function candidate B(x)
defined on T is a Cr function. Thus it is equivalent to show

that

sup
u∈U

[L f B(x)+LgB(x)u+α (B(x))]≥ 0, (18)

Note that B(x),Bi j(x) and B̄i j(x) are all positive in T . Take

the logarithm of B(x) and differentiate using the chain rule,

we get

ln(B(x)) = ∑
i, j∈M

j>i

ln(Bi j)+ ∑
(i, j)∈E

ln(B̄i j),

Ḃ

B
= ∑

i, j∈M

j>i

Ḃi j

Bi j

+ ∑
(i, j)∈E

˙̄Bi j

B̄i j

.

Thus the Lie Derivative along g direction is

LgB

B
u = ∑

i, j∈M

j>i

LgBi j

Bi j

u+ ∑
(i, j)∈E

LgB̄i j

B̄i j

u,

= ∑
i, j∈M

j>i

∆pi j

Bi j‖∆pi j‖
∆ui j − ∑

(i, j)∈E

∆pi j

B̄i j‖∆pi j‖
∆ui j,

= ∑
(i, j)∈E

B̄i j −Bi j

Bi jB̄i j

∆pi j

‖∆pi j‖
∆ui j + ∑

(i, j)/∈E

∆pi j

Bi j‖∆pi j‖
∆ui j,

= ∑
i∈M

[

∑
j|(i, j)∈E

B̄i j −Bi j

Bi jB̄i j

∆pi j

‖∆pi j‖
+ ∑

j|(i, j)/∈E

∆pi j

Bi j‖∆pi j‖

]

ui.



When L f B = 0, we have

∑
j|(i, j)∈E

B̄i j −Bi j

Bi jB̄i j‖∆pi j‖
∆pi j + ∑

j|(i, j)/∈E

∆pi j

Bi j‖∆pi j‖
= 0,∀i ∈ M.

(19)

Define a diagonal weight matrix W = diag(ωi j) ∈
R

N(N−1)
2 × N(N−1)

2 for a complete graph, i.e., all vertexes are

connected to each other, where

ωi j =







B̄i j−Bi j

Bi jB̄i j‖∆pi j‖ , if (i, j) ∈ E,

1
Bi j‖∆pi j‖ , if (i, j) /∈ E,

Let W 1/2 = diag(
√ωi j), note ωi j can be negative, in which

case W 1/2 contains imaginary elements. Denote D = [Di j] ∈
RN× N(N−1)

2 as the incidence matrix for a complete graph with

random orientations,

Di j =

{

1 , if vertex i is the tail of edge j,

−1 , if vertex i is the tail of edge j.

Then (19) can be written as

DWDT [p1,p2, ...,pN ]
T = 0,

which implies W 1/2DT [p1,p2, ...,pN ]
T = 0.

If ∃ωi j 6= 0, then pi = p j. This is impossible, because

agents i and j can’t be on top of each other in Ci j. Therefore,

in almost all cases, we have LgB 6= 0. A control action u can

always be found that shows (18) is satisfied.

If ∄ωi j 6= 0, i.e., all weights ωi j are zero, then the required

connectivity graph is a complete graph and B̄i j = Bi j,∀i 6= j.

It can be shown that L f B is non-negative in this case. There-

fore, in this trivial case, we have LgB = 0,L f B >−α (B) for

any class K function α . Any control action u can validate

that (18) is satisfied.

To sum up, the composite safety and connectivity barrier

function B(x) satisfies (18) ∀x ∈T , and is thus a valid PBF.

Lemma 4.1 also implies that the admissible control space,

KT (x) = {u ∈U | L f B(x)+LgB(x)u+α (B(x)) ≥ 0}, (20)

is always non-empty. With this result, we will present the

main theorem of this paper.

Theorem 4.2: Given any required connectivity graph G =
(V,E), a PBF B(x) defined in (16), any Lipschitz continuous

controller u(x) ∈ KT (x) for the dynamical system (10) guar-

antees that the team of mobile robots are safe and connected.

Proof: Lemma 4.1 ensures that B(x) is a valid PBF

defined for the set T in (15). Thus when u(x) ∈ KT (x),
T is forward invariant from Theorem 2.1, i.e., B(x) >
0,∀t > 0. From definitions (11), (13), and (16), all PBFs

are constructed to be non-negative. Therefore,

Bi j > 0, ∀i, j ∈ M , j > i, ∀t > 0,

B̄i j > 0, ∀(i, j) ∈ E, ∀t > 0.

Both C and C̄ are forward invariant. C encodes that all

agents do not collide with each other, while C̄ encodes

that all connectivity requirements specified by the graph G

are satisfied, i.e., the team of mobile robots are safe and

connected.

Theorem 4.2 ensures that the team of mobile robots re-

mains safe and connected as long as the controller u(x) stays

within the admissible control space KT (x). Up until now, we

have a strategy to formally ensure safety and connectivity

of the team of mobile robots. Next, an optimization based

controller will be presented to inject higher level goals, e.g.,

visiting waypoints, form certain shapes, and covering area,

into the controller design.

B. Minimally Invasive Optimization based Controller

Designing a single controller for a multi-robot system that

achieves certain goals while ensuring safety and connec-

tivity might render the problem untraceable. An alternative

approach is to design a nominal controller û that assumes

safety and connectivity, and then correct the controller in a

minimally invasive way when it violates safety or connec-

tivity. This is achieved by running the following QP-based

controller,

u∗ = argmin
u

J(u) =
N

∑
i=1

‖ui − ûi‖2

s.t. L f B(x)+LgB(x)u+α (B(x))≥ 0,

‖ui‖∞ ≤ αi, ∀i ∈ M .

(21)

The control barrier constraint (21) is also referred to as the

composite safety and connectivity barrier certificates. This

QP-based controller allows the nominal controller to execute

as long as it satisfies the composite safety and connectivity

barrier certificates. When violations of safety or connectivity

are imminent, the nominal controller will be modified with

a minimal possible impact in the least-squares sense. By

running this QP-based controller, the higher level objectives

specified by the nominal controller are unified with the safety

and connectivity requirements encoded by the safety and

connectivity barrier certificates.

C. Maintaining Dynamical Connectivity Graphs

Due to the dynamically changing environment and robot

states, it would sometimes be favourable to allow the robots

to switch between different connectivity graphs [9]. Mo-

tivated by the need of maintaining dynamically changing

connectivity graphs, composite safety and connectivity bar-

rier certificates are proposed to ensure safety and dynamical

connectivity of the team of mobile robots.

Let G̃ = {G1,G2, ...,GM} denote the set of all allow-

able connectivity graphs, where Gi = (V,Ei), i ∈ P , P =
{1,2, ...,M} is the index set of G̃ . To stay connected, the

team of mobile robots needs to satisfy at least one of

these allowable connectivity graphs. The set that encodes

the dynamical connectivity graph requirement is

C̃ =
⋃

k∈P

⋂

(i, j)∈Ek

C̄i j (22)



Definition 4.3: Given a set of allowable connectivity

graphs G̃ , the team of N mobile robots with dynamics given

in (10) is dynamically connected, if the ensemble state x

stays in the set C̃ for all time t ≥ 0.

In order for the team of mobile robots to stay both safe

and dynamically connected, the ensemble state x shall stay

in

T̃ =









⋂

i, j∈M

j>i

Ci j













⋃

k∈P

⋂

(i, j)∈Ek

C̄i j



 , (23)

for all time t ≥ 0. Safety and dynamical connectivity guar-

antees similar to Theorem 4.2 can be achieved by using a

composite PBF introduced in Section III,

B̃(x) =





 ∏
i, j∈M

j>i

Bi j(x)







(

∑
k∈P

∏
(i, j)∈Ek

B̄i j(x)

)

. (24)

It can be shown that B̃(x) is a valid PBF on T̃ using the

same techniques like Lemma 4.1, i.e., the admissible control

space

K
T̃
(x) = {u ∈U | L f B̃(x)+LgB̃(x)u+α (B̃(x))≥ 0}, (25)

is always non-empty.

Theorem 4.3: Given a set of allowable connectivity

graphs G̃ = {G1,G2, ...,GM}, a PBF B̃(x) defined in (24),

any Lipschitz continuous controller u(x) ∈ K
T̃
(x) for the

dynamical system (10) guarantees that the team of mobile

robots are safe and dynamically connected.

The proof of this theorem is similar to Lemma 4.1, Theorem

3.2, and Theorem 4.2.

V. ROBOTIC IMPLEMENTATIONS

The composite safety and connectivity barrier certificates

were tested on a team of four Khepera robots. The real-

time positions of the robots are tracked by the Optitrack

Motion Capture System. The mutli-robot communications

and controls are executed on the Robot Operating System

(ROS).

The nominal controller was designed as a waypoint con-

troller, which used a go-to-goal behavior to visit the specified

waypoints without considering safety and connectivity. As

illustrated in Fig. 1, each robot needs to visit three waypoints

sequencially. Those waypoints are intentionally designed to

make robots collide at multiple places.

A. Composite Safety Barrier Certificates

In the first experiment, the composite safety barrier certifi-

cates were wrapped around the nominal waypoint controller

using the QP-based strategy (21). The composite PBF was

formulated as

B = B12B13B14B23B24B34,

so that all possible pairwise collisions are avoided. No

connectivity constraints were considered in this experiment.
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Fig. 1: Planned waypoints for four robot agents. Ri stands

for robot i, where i = 1,2,3,4. The lines represent the

nominal trajectories of the robots if they execute the nominal

waypoint controller.

As shown in Fig. 2, all the inter-robot distances are always

larger than the safety distance Ds, i.e., no collision happened

during the experiment. Fig. 4 are snapshots taken by an

overhead camera and plotted robot trajectories. All robots

successfully visited the specified waypoints without colliding

into each other. Note that without the connectivity con-

straints, the mobile robot team sometimes got disconnected

during the experiment, e.g., the team split into two parts in

4a.

0 5 10 15 20 25 30 35 40

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ta
n

c
e

(m
)

D12

D13

D14

D23

D24

D34

Ds

Dc

Fig. 2: Evolution of the inter-robot distances during the

experiment. Di j represents the distance between robot i

and robot j. Ds = 0.15m and Dc = 0.6 are the safety and

connectivity distance. Di j > Ds implies that robots i and j

did not collide.

B. Composite Safety and Connectivity Barrier Certificates

During the second experiment, the composite safety and

connectivity barrier certificates were wrapped around the

waypoint controller using the QP-based strategy (21). The

composite PBF is designed as

B = B12B13B14B23B24B34B̄23(B̄12 + B̄13)(B̄24 + B̄34),
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Fig. 3: Evolution of the inter-robot distances during the

experiment. Di j represents the distance between robot i

and robot j. Ds = 0.15m and Dc = 0.6 are the safety and

connectivity distance. Di j > Ds implies that robots i and j

do not collide. Di j < Dc implies that robots i and j are in

connectivity range.

which encodes that: 1) there should be no inter-robot colli-

sions; 2) robot 2 and 3 should always be connected; 3) robot

1 should be connected to robot 2 or 3; 4) robot 4 should be

connected to robot 2 or 3.

As shown in Fig. 3, the inter-robot distances were always

larger than Ds, i.e., the team of mobile robots did not collide

with each other during the experiment. At the same time,

all the connectivity constraints were satisfied, i.e., 1) D23

was always smaller than Dc; 2) min{D12,D13} was always

smaller than Dc; 2) min{D24,D34} was always smaller than

Dc. The team of mobile robots satisfied all the safety

and connectivity requirements specified by the safety and

connectivity barrier certificates.

The snapshots during the experiment in Fig. 5 illustrated

that the robots visited all specified waypoints except the last

one. This is because the last set of waypoints violated the

connectivity constraints, i.e., robot 1 can’t reach its waypoint

without breaking its connectivity to robot 2 and 3. This

experiment also indicates that not all higher level objectives

are compatible with the safety and connectivity constraints.

VI. CONCLUSION AND FUTURE WORK

This paper presented a systematic way to compose mul-

tiple objectives using the compositional barrier functions.

AND and OR logical operators were designed to provably

compose multiple non-negotiable objectives, with condi-

tions for composibility provided. The composite safety and

connectivity barrier certificates were synthesized using the

compositional barrier functions to formally ensure safety and

connectivity for teams of mobile robots. The resulting barrier

certificates were then combined with the general higher level

objectives using an optimization-based controller. Robotic

experimental implementations validated the effectiveness of

the proposed method.

(a) Agents at 10.0s
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(b) Agents at 23.0s
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(c) Agents at 36.0s
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Fig. 4: Experiement of four mobile robots executing way-

point controller regulated by safety barrier certificates. Pic-

tures on the left are taken by an overhead camera. The star,

square, cross and triangular markers representing waypoints

are projected onto the ground. A straght line connecting

two robots were projected onto the ground if the two robots

are closer than Dc = 0.6m. Figures on the left visualize the

trajectories, current poisitions and current velocities of the

robots. A video of the experiment can be found online [13].



(a) Agents at 8.0s
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(b) Agents at 25.0s
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(c) Agents at 42.5s
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Fig. 5: Experiment of four mobile robots executing way-

point controllers regulated by safety and connectivity barrier

certificates. The safety and connectivity distances are Ds =
0.15m and Dc = 0.6m. The lines representing inter-robot

connectivity are projected onto the ground using a projector.
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