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Abstract

This paper formulates face labeling as a conditional ran-

dom field with unary and pairwise classifiers. We develop

a novel multi-objective learning method that optimizes a

single unified deep convolutional network with two distinct

non-structured loss functions: one encoding the unary label

likelihoods and the other encoding the pairwise label de-

pendencies. Moreover, we regularize the network by using

a nonparametric prior as new input channels in addition to

the RGB image, and show that significant performance im-

provements can be achieved with a much smaller network

size. Experiments on both the LFW and Helen datasets

demonstrate state-of-the-art results of the proposed algo-

rithm, and accurate labeling results on challenging images

can be obtained by the proposed algorithm for real-world

applications.

1. Introduction

Deep convolutional neural networks (CNNs) have been

applied to image labeling and parsing problems [7, 4, 3, 13,

21]. As powerful end-to-end nonlinear classifiers, CNNs

generate more discriminative representations compared to

traditional methods based on hand-crafted features. Con-

ditional random fields (CRFs) are another important class

of image labeling models [14, 5, 6, 2] that carry out struc-

tured prediction by considering label dependencies and al-

low flexible use of pre-trained image features. We are con-

cerned with combining CNNs and CRFs for image labeling

by exploiting rich features from CNNs and structured out-

put from CRFs [17, 23]. Considering a typical CRF energy

function with unary and pairwise terms, a straightforward

combination is to add CRF based structured losses on top

of CNNs. Learning CNNs with structured loss, however,

requires MAP inference of all the samples during training

cycles. On one hand, it significantly increases computa-

tional cost while restricting the training flexibility. On the

other hand, the direct combination of CNNs and CRFs with

structured loss may not guarantee convergence.

This paper presents a novel learning method by decom-

posing the structured loss into two distinct, non-structured

losses: softmax loss for the unary term and logistic loss

(a) input (b) unary (c) edge (d) label

Figure 1. Face labeling on the LFW [10] and Helen [1] (a) input

images (b) pixel-wise label likelihoods (c) semantic edge maps

(d) face labeling results. Our algorithm first generates pixel-wise

label likelihoods and semantic edge maps, which are combined in

a CRF energy function to generate face labels. The images in (b)

are soft labels (probabilistic outputs) and images in (d) are hard

labels (excluding hair) which are shown in different colors. While

the pixel-wise maps alone are effective for labeling, the use of edge

maps further facilitates delineating the details, especially near the

class boundaries.

for the pairwise term. The training process is carried out

through a multi-objective optimization, which minimizes

the losses of unary and pairwise terms respectively through

a unified convolutional network. Weight sharing is en-

forced between them so that the network is strengthened by

learning from both objectives. Compared to structured loss

CNNs, our method has two advantages. First, the training

process is as efficient as existing CNNs with non-structured

losses. Second, by converting the pairwise term into a lo-

gistic loss (edge versus non-edge), semantic image bound-

aries are learned for effective labeling. Our model is trained

on patches for flexibility. During the test stage, by making

some simple adjustments, we can apply our patch model

directly to a full image without patch cropping for efficient

pixel-wise label prediction. We apply the proposed learning

algorithm to a practical problem, face labeling that assigns

every pixel a facial component label, e.g. skin, nose, eyes

and mouth. Two examples are shown in Figure 1. Com-

pared to facial landmarks, face labeling provides a better

intermediate representation for many face analysis, synthe-

sis and editing tasks.

Faces are highly structured visual patterns. For image

labeling, we integrate a global facial prior into our learn-
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ing model. The global facial prior is estimated by transfer-

ring labeling masks from exemplars through landmark de-

tection [20]. Unlike existing methods [20, 26, 12] that use

this nonparametric prior at the inference stage, our method

uses it as additional input channels, other than raw RGB

image intensities, to train a CNN. We show that this non-

parametric prior significantly reduces the size of CNN in

terms of both parameters and connections. In other words,

it provides strong regularizations for CNN training to facil-

itate lightweight architectures.

The proposed face labeling algorithm is evaluated on two

challenging benchmark datasets with 3 classes (LFW) [9]

and 11 classes (Helen) [20]. Experimental results show

that our algorithm performs favorably against state-of-the-

art methods. We also present hair parsing results that can

be generated simultaneously from the unified framework,

which is more challenging and rarely addressed by existing

methods.

The contributions of this paper are summarized as fol-

lows:

• a multi-objective convolutional learning method is de-

veloped for image labeling problems by decompos-

ing the structured loss of CRFs into two distinct, non-

structured losses, and optimizing a single unified CNN

model with weight sharing;

• a nonparametric facial prior is introduced to CNN

training that significantly reduces the network size;

• an efficient testing method is proposed to ensure fast,

full-size labeling.

2. Related Work and Problem Context

Face labeling. To parse an input face image into semantic

regions, e.g. eyes, nose and mouth for further processing,

numerous methods have been developed that define a set of

landmarks along face contours and facial components [25].

However, there are several issues with such facial land-

mark based representations. First, they are sensitive to pose,

shape, illumination variations and occlusions. Second, there

are usually no landmarks defined in the forehead and hair

regions that are also important for applications such as face

and hair editing [20].

Face labeling instead provides a more robust representa-

tion by assigning a semantic label to every pixel of a face

image. Recently, several face labeling algorithms have been

proposed based on CRFs [24, 10], deep learning [13] and

exemplars [20]. Warrell and Prince [24] use a family of

multinomial priors to model facial structures and a CRF for

labeling facial components. In [10], Kae et al. model the

face shape prior with a restricted Boltzmann machine and

combine it with a CRF for labeling with 3 classes (back-

ground, face and hair). Unlike our approach, these two

methods train classifiers based on hand-crafted image fea-

tures as the unary terms of CRFs. Luo et al. [13] propose

a deep learning based hierarchical face parsing method by

combining several separately trained models, in which only

facial components are labeled. In [20], Smith et al. develop

a method to parse facial components and skin by transfer-

ring labeling masks from aligned exemplars. Compared

to existing approaches, we propose an end-to-end unified

model that generates complete labeling of facial compo-

nents, skin and hair in a single pipeline.

Combining CNNs with graphical models. Our multi-

object convolutional learning method is related to recent

works [4, 15, 17, 23, 17, 23] that combine CNNs with

graphical models for structured prediction problems. Fara-

bet et al. [4] combine multiscale CNNs with a region tree

structure for scene parsing. Specifically, they train CNNs

in an unsupervised layer-wise manner from multiple scales.

The learned multiscale image features are then used to

train region-wise classifiers for label prediction in a pre-

constructed segmentation tree. This is a typical two-step

approach that sequentially trains a CNN and a graphical

model.

Other than sequential combination, joint training of

CNNs and graphical models have been reported in several

papers [15, 17, 23]. Ranftl et al. [17] combines a varia-

tional energy model with CNNs for foreground/background

image segmentation. The variational model used in [17]

can be considered as a regularization of CRF labeling mod-

els. Three CNNs for unary, vertical pairwise and horizontal

pairwise terms are trained separately without weight shar-

ing. This method requires more memory during the testing

stage and is more computationally expensive. In contrast,

our method trains a single CNN with two distinct losses

(one for unary and the other for pairwise) through multi-

objective optimization. The learned model is thus light-

weight and fast to evaluate. The joint training approach has

also been applied to human pose estimation. In [23], a CNN

model is used to train part detectors (unary) and part like-

lihood maps are then combined with image input to train

pairwise spatial models between parts. Although using a

single CNN, it still requires two-step training while our al-

gorithm generates unary and pairwise terms simultaneously.

We note that the above-mentioned approaches have not been

applied to face labeling problems, especially combined with

a nonparametric prior.

3. Multi-Objective Convolutional Learning

We formulate the problem of labeling a face image X

as a CRF model P (Y|X) = 1
Z
exp(−E(Y,X)) where Z

is the partition function and Y is a set of random variables

yi ∈ Y defined on every pixel i. Each variable yi takes

a value from a set of labels {ℓ = 1, 2, ..,K}. To con-

sider the label dependencies, we introduce a 4-connected

graph (V, E) where each node represents one pixel i ∈ V
and edges represent the connections between any two ad-
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Figure 2. Proposed CNN classifier with sliding window based inputs.

jacent pixels i, j ∈ E . Therefore, the CRF model can be

expressed as a energy function E(Y,X) with two data-

dependent terms:

E(Y,X) =
∑

i∈V

Eu(yi,xi)+λ
∑

(i,j)∈V

Eb(yi, yj ,xij). (1)

The unary term Eu(yi,xi) measures the assignment cost of

variable yi based on the image patch xi centered at the pixel

i and the pairwise term V (yi, yj ,xij) encodes the consis-

tency cost of adjacent variables yi, yj given their overlap-

ping patch xij . In addition, λ is the mixing constant. We

introduce a multi-class classifier Pu(yi = ℓ|xi, ωu) to ex-

press the label assignment cost for the unary term,

Eu(yi,xi, ωu) = − logPu(yi = ℓ|xi, ωu). (2)

To measure the consistency of two adjacent pixels i, j in the

pairwise term, we introduce a new label zij = 1, if yi 6= yj
and zij = 0, otherwise. Thus the pairwise term is defined

by the output of a binary classifier Pb(zij = 1|xij , ωu),

Eb(yi, yj ,xij , ωb) = − logPb(zij = 1|xij , ωb). (3)

In this work, we use CNNs with 9 layers for both unary and

pairwise classifiers as they provide end-to-end predictions

without using hand-crafted features.

Learning CNN parameters ωu and ωb jointly with the

CRF model is difficult as the process needs to explore not

only the combinatorial labeling space but also the large pa-

rameter space. To avoid this problem, an obvious approach

is to train two independent CNNs for the unary and pairwise

terms, respectively. We note that both CNNs are based on

local image patches and should share very similar features

in the lower layers [19]. In addition, the potentially large set

of parameters from two CNNs may cause overfitting prob-

lems. In this paper, we propose to learn a single unified

CNN for both unary and pairwise classifiers. By sharing

all the features within a single CNN, the two classifiers are

able to enjoy better generalization ability and higher com-

putational efficiency.

We define two distinct loss functions for unary and pair-

wise classifiers, respectively. We denote the parameters of

the shared CNN network by ω, and the feature response

extracted from the topmost intermediate layer of CNN by

hi = h(xi, ω). Thus, the output of the unary classifier is

given by a softmax function,

Pu(yi = ℓ|hi, ωu) =
exp((ωℓ

u)
⊤hi)

∑K

ℓ=1 exp((ω
ℓ
u)

⊤hi)
, (4)

where ωℓ
u represents the parameters for the ℓ-th class. Ac-

cordingly, the softmax loss for unary term is

Lu(yi,xi, ω, ωu) = − logPu(yi = ℓ|hi, ωu). (5)

On the other hand, the output of pairwise classifier is given

by a logistic function,

Pb(zij = 1|hi, ωb) =
1

1 + exp(−ω⊤
b hi))

, (6)

and accordingly, the logistic loss for pairwise term is

Lb(zij ,xij , ω, ωb) = − logPb(zij = 1|hi, ωb). (7)

Based on these two loss functions (4) and (6), we train

the unified CNN through multi-objective optimization,

min
ω

{Ou(ω, ωu), Ob(ω, ωb)},
{

Ou(ω, ωu) = E(
∑

i∈V
Lu(yi,xi, ω, ωu)) + Ψ(ω, ωu)

Ob(ω, ωb) = E(
∑

i,j∈E
Lb(zij ,xij , ω, ωb)) + Φ(ω, ωb)

(8)

where Ou(ω, ωu) is the expected loss E(·) for the unary

classifier and Ob(ω, ωb) is the expected loss for the bi-

nary classifier over all the training samples. In addition,

Ψ(ω, ωu) and Φ(ω, ωb) are regularization terms. The net-

work is updated through combining gradients of both the

softmax and logistic loss functions for backpropagation.

This multi-objective CNN has two main advantages:

First, the convolutional network generates expressive repre-

sentations at lower levels (layers that are close to the input

3



end) that can be utilized for both unary and pairwise model

regressions. Second, the unified network can be learned by

backpropagating errors from both outputs jointly such that

the network can learn features that are highly adaptive to

both objectives. The shared model also alleviates overfit-

ting problems and reduces the overall model size such that

both training and testing can be carried out efficiently.

3.1. CNN Architecture

Since CNNs usually operate on a patch level centered at

each pixel, the labeling pipeline is based on a sliding win-

dow input [18, 23] with overlapping patches, as shown in

Figure 2. We propose an architecture similar but deeper [19]

than that of [11], with 7 convolutional and 2 fully connected

layers. The inputs are 72 × 72 single scale patches which

are passed to two top consecutive convolutional units with

a filter of 5× 5, where each convolutional layer is followed

by one max pooling layer with a downsampling stride of

2. Following that is another stack of small convolutional

units with a receptive field of 3 × 3 and no pooling layer.

All the layers are equipped with a rectification (ReLU) non-

linearity and a local response normalization (LRN) layer.

3.2. Nonparametric Prior

We introduce a nonparametric prior as global regulariza-

tion for face labeling, which is estimated by transferring la-

bel masks from exemplars. Given a test image, five facial

keypoints on eyes, nose tip and two mouth corners are de-

tected using the method in [22]. We construct a shape sub-

space based on principal component analysis from ground

truth facial keypoints in the exemplar set. Thus, the facial

keypoints of the test image are used to find a set of exem-

plar images with most similar shapes on that subspace. For

any pair of test-exemplar images, corresponding keypoints

are used to estimate similarity transformation parameters

so that the ground truth label masks of exemplars can be

aligned with the test image for nonparametric shape prior.

Our nonparametric prior is simply the average of all the

aligned ground truth label masks. The generated nonpara-

metric prior is then used as an additional input channel for

training the CNN. A typical labeling improvement using

this prior is shown on the right side of Figure 3. The CNN

trained on image patches incorrectly labels the face on the

upper right image according to its local content while the

CNN trained on both prior and image patches is able to re-

ject the false label assignments. Moreover, the prior input

introduces regularization to the CNN so that the training

could converge faster. We will also show that using this

prior leads to significant reduction of the network size with-

out degrading performance.

3.3. Adaptive Inference

Submodular energy function. In the testing stage, the

labeling process involves evaluating the learned CNN for

Figure 3. An nonparametric prior is proposed based on label trans-

fer, as shown on the left. A typical labeling improvement is shown

on the right. The CNN trained on image patches without exem-

plars incorrectly labels the face on the upper left part according to

its local content while the CNN trained on both prior and image

patches is able to reject the false label assignments.

both unary and pairwise terms and CRF inference. Figure 2

demonstrate the inference pipeline. Given pixel-wise label

likelihood maps for the unary term Eu(yi) and edge map for

the pairwise term Eb(yi, yj), we convert the original energy

function to a submodular one so that the GraphCut algo-

rithm can be used for efficient inference,

minE(Y) =
∑

i∈V

Eu(yi) +
∑

i,j∈V

Eb(yi, yj)I(yi 6= yj),

(9)

where I(·) is the indicator function.

Adapting the patch CNN to the full image. To generate

pixel-wise label likelihood maps efficiently, we make some

adjustments for the CNN trained on patches. Our CNN ar-

chitecture consists of more layers but has a smaller filter

size, compared to that in [11]. Thus, we have a consider-

ate size of overall receptive field and more nonlinearity of

the decision function, without increasing the number of pa-

rameters. Specifically, we use fewer pooling layers (only

in the first two convolutional units) to preserve more spa-

tial information from the input image. In the training stage,

we sample a group of patches centered with randomly se-

lected pixels for each training image. The network is super-

vised through the corresponding labels y and z respectively

for unary and pairwise training, and updated by mini-batch

gradient descent.

Since convolutional operations share computations be-

tween overlapped patches, the sliding-window pipeline for

each pixel of a test image is computationally redundant. We

propose to use an efficient patch-training and image-testing

strategy introduced in [18] by replacing the fully connected

(FC) layers with equivalent convolutional layers, and set-

ting the filter size as 1 × 1 (See Figure 2). We then apply

the fully-convolutional model directly to a test image. Note

that a test image is proper padded to ensure that every pixel

corresponded “window” can be covered in order to generate

the exactly equivalent result. Both labeling and edge prob-

ability maps can be generated by one full image forward
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Figure 4. Generating a twice upsampled output map. The original
image in (a) is shifted with additional 3 versions (b-d) along the

x- and y-axis, with a step of 1. The high-resolution labeling is

obtained by interlacing them in the way shown on the right, with a

2× 2 block. The upsampled map layouts are shown on the right.

propagation, which is much faster than applying the model

thousand times to sliding windows.

One problem with the proposed full image testing ap-

proach is that the size of the output maps is smaller than

that of the original image due to the downsampling strides

in the max pooling layers. Most existing approaches up-

sample the low-resolution map to the image size [4]. We

propose to obtain the original-sized output maps by forward

propagating a group of input images, generated by shifting

the original input image with one or more pixels (depend-

ing on the zooming factor) on the x and y axis, as described

in [16]. The way of generating an upsampled output map

with a zooming factor of 2 is illustrated in Figure 4. In

this work (two pooling layers with downsampling stride of

2), 4 × 4 times of forward propagations from shifted input

images generate an upsampled output map with a zooming

factor of 4 in a similar way. Since the size of the maps may

still be inconsistent with that of the original image due to

the border effect of convolutional operation, the final output

map can be obtained by rescaling them to the exact input

image size. Note that 16 passes of forward propagation is

still much faster than applying the convolutional network to

patches at each pixel of an image.

4. Experimental Results

We evaluate the proposed algorithm on two different

benchmark datasets with different face labeling tasks. We

show that it applies to both tasks and performs favourably

against state-of-the-art methods with the same framework

and experimental settings. Specifically, we demonstrate that

both the multi-objective approach and the nonparametric

prior improve the performance in all aspects compared to

a per-pixel CNN classifier. We validate that the nonpara-

metric prior introduces regularization to the network by re-

ducing the number of network parameters and connections.

4.1. Datasets and Settings

Datasets. We use the LFW [10] dataset which has been

used by recent methods for face labeling [24, 13]. However,

the image subsets that were used for training and testing

by these two methods are not available to the public. Kae

et al. [10] report their 3-classes face labeling results on a

released subset of LFW. For fair comparisons, we choose to

conduct our first labeling experiment on the same subset of

images, named LFW part labels database (LFW-PL), with

the same evaluation criteria.

The LFW-PL set contains 2927 face images of 250×250
pixels acquired in unconstrained environments. All of them

are manually annotated with skin, hair and background la-

bels using superpixels. This dataset is divided into a training

set with 1500 images, a testing set with 927 images, and a

validation set with 500 images. The validation set is used

to generate the nonparametric prior for each training and

testing image, as described in Section 3.

We use the HELEN [1, 20] dataset containing face labels

with 11 classes for the second set of experiments. It is com-

posed of 2330 face images of 400× 400 pixels with labeled

facial components generated through manually-annotated

contours along eyes, eyebrows, nose, lips and jawline. The

hair region, not considered in the labeling categories in [20],

is annotated through a matting algorithm. The dataset is

also divided into a training set (corresponding to the exem-

plar set in [20]) with 2000 images, a testing set with 100
images, and a validation set (corresponding to the tuning

set in [20]) with 300 images.

Network Configurations. Similar network configura-

tions are applied to the LFW-PL and Helen datasets for face

labeling. As mentioned in the Section 3.1, we use a single-

scale patch input with a size of 72 × 72 pixels in order to

keep a proper receptive field. Compared to a multi-scale in-

put [4, 23], the single-scale configuration is easy to adapt

from patch-based training to image-based testing. The re-

leased images in the LFW-PL dataset are coarsely aligned

using the congealing alignment method [10]. We align the

images of the HELEN dataset to a canonical position by de-

tecting five facial keypoints using [22], and computing the

similarity transformation using least squares minimization.

To adapt to the receptive field to the input patch size, we

further resize the images and evaluate them with a size of

250× 250 pixels.

The CNN training procedure is carried out using mini-

batch gradient descent with the momentum, weight decay,

dropout ratio, and batch size are set to 0.9, 5 × 10−4, 0.5,

and 50, respectively. All are kept unchanged throughout the

training procedures. The learning rate is initially set to 10−3

and is manually decreased by a factor of 10 when the loss

on the validation set starts fluctuating.

We use CNNs without pairwise and nonparametric prior

as a baseline evaluation, denoted as S-CNNs. We evaluate

our multi-objective approach with respect to: (a) unary term

(MO-unary) with a softmax probabilistic output; (b) infer-

ence results from both unary and pairwise terms through

GraphCut, denoted as MO-GC. We denote a suffix of “with

prior” for the approaches with the nonparametric prior.

Sampling. In the training stage, patch sampling is gener-

ally based on a random criterion. However, the number of
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(a) image (b) no prior (c) prior (d) no prior (e) prior

Figure 5. Comparison for usage of nonparametric prior. (a) test

images; (b) labeling results generated by MO-GC; (c) labeling re-

sults generated by MO-GC with nonparametric prior. (d) semantic

edge generated by MO-GC; (e) semantic edge generated by MO-

GC with nonparametric prior. Best viewed in color.

Table 1. Overall per-pixel accuracy on the LFW-PL dataset with

channel numbers of two FC layers setting as 4096 and 1024. The

F-measure of skin (F-skin), hair (F-hair) and background (F-bg)

are also presented.

(%) accuracy F-skin F-hair F-bg
S-CNNs 92.92 90.07 73.73 95.18

MO-unary 93.45 91.45 78.03 95.84
MO-GC 93.77 91.95 79.06 96.03

S-CNNs with prior 94.25 92.79 77.18 96.63
MO-unary with prior 94.94 93.64 79.95 97.02
MO-GC with prior 95.12 93.93 80.70 97.10

Table 2. Overall accuracy on LFW-PL with comparison to [10].

Note that the evaluation of GLOC is based on a superpixel-wise

accuracy, and ours are based on a per-pixel evaluation.
(%) GLOC (SP) MO-unary MO-GC

accuracy 94.95 95.03 95.24
error reduction 25.41 26.59 29.69

patches from rare classes may be insufficient for training

an effective network. This is particularly obvious with se-

mantic edges and some facial components such as eyes and

lips, which take a relatively small portion of pixels. There-

fore, we apply a two-stage training procedure with different

sampling approaches. We first train the convolutional net-

work by keeping a certain ratio of the number of patches

between one or more rare classes and the others, so that

a sufficient number of samples can be drawn for the rare

classes. We then apply the globally random sampling on the

second stage for fine-tuning to ensure the network adapts to

the natural distributions of classes.

4.2. LFWPL

We first show results on face labeling of skin, hair and

background. In this task, the classes are relatively bal-

anced in the number of pixels, and we randomly sample 12

batches from each training image. We additionally sample

12 batches with the ratio of non-edge and edge setting to 1.2
(this step is removed in the fine-tuning stage). We also ran-

domly generate affine transformations as augmentation over

patches [4] to one random batch. This is easy to apply to a

patch-based training approach, and is particularly effective

for increasing the variation of training samples, especially

when the number of training images is small.

In table 1, we test a series of approaches with the chan-

nel numbers of the two FC layers as 4096 and 1024, and

evaluate the results with respect to per-pixel accuracy and

F-measure of each class. The first 3 rows show the ap-

proaches without nonparametric prior input, while the lower

3 rows are those using it. Overall, the nonparametric prior

significantly improves the results when compared with all

corresponding approaches. We specifically compare the

labeling and semantic edge results in terms of the non-

parametric prior in Figue 5. By comparison between net-

works with (shown in (c) and (e)) and without (shown in

(c) and (e)) the nonparametric prior, we observe that the

labeling is improved in case of blurry hair region (Fig-

ure 5(a)), blurry face (Figure 5(b)), multiple person (Fig-

ure 5(c)) and moustache (Figure 5(c)), through introducing

the prior. Moreover, the proposed multi-objective approach

(beginning with MO) generally outperform the CNN clas-

sifiers (S-CNNs and S-CNNs with prior). The inference

step can further improve the performance for all tested ap-

proaches.

Another major improvement of the multi-objective ap-

proach can be observed from the comparison between S-

CNNs and MO-unary, as shown in the row 1 vs.2 and 4

vs.5 in Table 1. While both of them are evaluated from the

labeling probabilities, the MO-unary network contains an

additional output that learns the semantic edges. Namely,

even if two networks are trained under the same conditions

(network configurations, nonparametric prior, etc.), the one

with a supervised semantic edge learning generates results

in more expressive representations by back-propagating in-

formation of class boundaries.

Network regularization. By introducing a nonparamet-

ric prior as an additional input, the network size can be sig-

nificantly reduced without degrading the performance. We

use different settings of the FC layers as they usually take

a large portion of weights and connections in a deep CNN

architecture. The combination of channel numbers regard-

ing to two FC layers is denoted by a ∗ b, where a and b are

neural numbers for the first and the second FC layer, respec-

tively. Four network configurations, as listed in Table 3, are

applied for evaluation of different model sizes, as shown in

Figure 6.

With nonparametric prior (colored with green and pur-

ple), the performance of the smaller networks (e.g. 1024 ∗
1024 and 1024 ∗ 512) is comparatively similar to that of the

6



(a) accuracy (b) F-skin (c) F-hair (d) F-bg

Figure 6. We show the network regularization by introducing the proposed nonparametric prior as an additional input. Four FC settings

associated with Table 3 are used to control the size of the network, as shown in the X-axes.

(a) image (b) pairwise (c) unary (d) GC (e) ground truth

Figure 7. Face labeling results and semantic edge maps from

LFW-PL dataset. (a) test images; (b) pairwise term output; (c)

unary term output; (d) labeling result by GraphCut inference, de-

noted as GC; (e) ground truth. Best viewed in color.

Table 3. Four settings of channel numbers for the two FC layers,

and their corresponding model size in MB.

FC 4096* 4096* 2048* 1024* 1024*

a ∗ b 4096 1024 1024 1024 512

size (MB) 163 119 65 38 36

large-size networks (e.g. 4096 ∗ 4096 and 4096 ∗ 1024).

With the inference step (MO-GC with prior), the network

of 1024 ∗ 1024 achieves the highest overall accuracy, while

the network of 1024 ∗ 512 achieves the highest F-score for

the class of skin. On the contrary (colored with blue and

dark red), the networks without nonparametric prior gener-

ally have a worse performance when decreasing the model

size. For the networks less than 119 MB (4096 ∗ 1024), the

per-pixel accuracies are no higher than 93%.

Comparison to GLOC. We compare the results with

GLOC [10] by following their evaluation of overall accu-

racy and error reduction with respect to a standard CRF with

features in Huang et al. [8], as shown in Table 2. We apply

the setting of FCs with 1024 ∗ 1024 which achieves the best

performance. Note that a major difference compare to [10]

is that it applies a superpixel-wise accuracy since it is a su-

perpixel based method, while we use a per-pixel accuracy

evaluation since our approach outputs a per-pixel labeling

map. For GLOC, the per-pixel evaluations may be slightly

different, which however is not reported in the paper.

We illustrate for several images the unary and pairwise

output maps, as well as the inference results in Figue 7. Be-

side an accurate probability output, as shown in Figure 7(c),

our approach also generates clear and accurate semantic

edges in Figure 7(b), which are useful for many vision ap-

plications but have not been addressed in prior face labeling

approaches. Through inference addressed in Section 3.3,

our final labeling results are quite promising and are able to

handle many challenge cases, such as multiple persons (first

row) and occlusion (second row).

Figure 7(e) show the ground truth labeling for selected

examples, we notice that the superpixel labeling proposed

by [10] does not generate accurate annotations. Obvious

disconnections along class boundaries are shown in the last

two rows. On one hand, it introduces noises to the super-

vised CNN training, on the other hand, the superpixel-wise

evaluation in [10] does not reveal the real accuracy. For in-

stance, our results in Figure 7(d) contains a certain number

of incorrect label assignments evaluated on the ground truth

in Figure 7(e). However, they are visually even better than

the ground truth, particularly along the class boundaries.

4.3. HELEN

We also show results on labeling of HELEN with two

eyes, two eyebrows, nose, upper and lower lips, inner

mouth, facial skin and hair. Unlike LFW-PL, some fa-

cial components are rare classes (e.g. eyes, lips, etc.) and

therefore the two-stage sampling strategy proposed in Sec-

tion 3.3 is applied. Instead of sampling the first 12 batches

in a random way as in LFW-PL, we propose to firstly sep-

arate the labels as foreground (containing all facial compo-

nents, skin and hair) and background. We then sample the

first 11 batches randomly from foreground and the remain-

ing one from background. In this way, the foreground is suf-

ficiently trained in the first stage, and a natural foreground

7



Figure 8. Face labeling on the HELEN [1]. We visualize the proposed labeling results, shown in the second row, for the 11 classes network

containing hair labeling. The ground truth is shown on the third row. For facial components and skin, we show a labeling map generated

by the inference step. For hair, we visualize the probability output (with values ranging from 0 to 1) from the unary term to show a visually

natural results. Best viewed in color.

Table 4. Evaluations on HELEN. We use float numbers instead of percentages to keep consistent on the numerical percision with [20].

For comparison, eyes, brow and mouth all are computed by combining related categories, and the “overall” denotes all facial components

excluding facial skin.

methods eyes brows nose in mouth upper lip lower lip mouth all facial skin overall

Smith et.al 0.785 0.722 0.922 0.713 0.651 0.700 0.857 0.882 0.804

Ours, 11 classes 0.768 0.713 0.909 0.808 0.623 0.694 0.841 0.910 0.847

Ours, 10 classes 0.768 0.734 0.912 0.824 0.601 0.684 0.849 0.912 0.854

label distribution can be preserved. We repeat the same

edge sampling and jitter generation strategy with LFW-PL.

Specifically we train two models for HELEN: For the first

model, we train a 11-class unified convolutional network,

with the multi-objective approach with nonparametric prior

as additional input. Therefore, we show that the hair label-

ing can be generated along with other facial labels, which

is not addressed in prior work. For the second model, we

merge the ground truth hair label with the background to

train a 10-classes network using the same approach. In this

way, a fair comparison with the work of [20] can be ob-

tained. The FC layers are fixed to 4096 ∗ 1024.

Based on the same subset of images with same evalua-

tion criteria, we simply report the results of [20]. In Table 4,

a large variation in F-measure with respect to each facial

component can be seen between [20] and the proposed ap-

proaches. While [20] bases the work on exemplar transfer,

and obtains better results on relatively rare facial classes,

such as eyes, nose and mouth, we outperform it in facial

skin and the overall components. Specifically, we achieve

an overall F-measure of 0.854, which is a noticeable im-

provement over the work of [20].

Table 4 shows that the labeling of hair regions, which is

challenging and seldom addressed in existing facial com-

ponent labeling methods, can be successfully generated to-

gether with other facial components by the proposed algo-

rithm in a unified model. With hair labeling, this proposed

method still performs well in overall facial components

against the state-of-the-art method on the HELEN dataset.

We notice in Figure 8 that the proposed approach generates

accurate labeling results on each facial component (second

row) compared to the ground truth (third row). Specifically,

it generates visually pleasant labeling results in some chal-

lenging cases (even for human beings), as shown in the sixth

and seventh column.

5. Conclusion

We propose a deep convolutional network that jointly

models pixel-wise likelihoods and label dependencies

through a multi-objective learning method. We introduce

a nonparametric prior, combining it with the RGB image

together as input to the network, and show that it provides a

strong regularization to the network, so that a much smaller

model can still achieve a competitive performance. Experi-

ments on face labeling tasks validate that the proposed ap-

proach significantly improves the labeling performance and

generates visually pleasant labeling results.
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