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Abstract 

Recently, deep generative models have revealed itself as a promising way of performing de novo molecule design. 

However, previous research has focused mainly on generating SMILES strings instead of molecular graphs. Although 

available, current graph generative models are are often too general and computationally expensive. In this work, a 

new de novo molecular design framework is proposed based on a type of sequential graph generators that do not 

use atom level recurrent units. Compared with previous graph generative models, the proposed method is much 

more tuned for molecule generation and has been scaled up to cover significantly larger molecules in the ChEMBL 

database. It is shown that the graph-based model outperforms SMILES based models in a variety of metrics, especially 

in the rate of valid outputs. For the application of drug design tasks, conditional graph generative model is employed. 

This method offers highe flexibility and is suitable for generation based on multiple objectives. The results have dem-

onstrated that this approach can be effectively applied to solve several drug design problems, including the genera-

tion of compounds containing a given scaffold, compounds with specific drug-likeness and synthetic accessibility 

requirements, as well as dual inhibitors against JNK3 and GSK-3β.
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Background
The ultimate goal of drug design is the discovery of new 

chemical entities with desirable pharmacological proper-

ties. Achieving this goal requires medicinal chemists to 

explore the chemical space for new molecules, which is 

proved to be extremely difficult, mainly due to the size 

and complexity of the chemical space. It is estimated that 

there are around 1060−10
100 synthetically available mol-

ecules [1]. Meanwhile, the space of chemical compounds 

exhibits a discontinues structure, making searching diffi-

cult to perform [2].

De novo molecular design aims at assisting this pro-

cesses with computer-based methods. Early works have 

developed various algorithms to produce new molecular 

structures, such as atom based elongation or fragment 

based combination [3, 4]. Those algorithms are often 

coupled with global optimization techniques such as ant 

colony optimization [5, 6], genetic algorithms [7, 8] or 

particle swam optimization [9] for the generation of mol-

ecules with desired properties.

Recent developments in deep learning [10] have shed 

new light on the area of de novo molecule generation. 

Previous works have shown that deep generative models 

are very effective in modeling the SMILES representation 

of molecules using recurrent neural networks (RNN), an 

architecture that has been extensively applied to tasks 

related sequential data [11]. Segler et  al. [12] applied 

SMILES language model (LM) on the task of generating 

focused molecule libraries by fine-tuning the trained net-

work with a smaller set of molecules with desirable prop-

erties. Olivecrona et al. [13] used a GRU [14] based LM 

trained on the ChEMBL [15] dataset to generate SMILES 

string. The mode is then fine-tuned using reinforcement 

learning for the generation of molecules with specific 

requirements. Popova et al. [16] proposed to integrate the 

generative and predictive network together in the genera-

tion phase. Beside language model, Gómez–Bombarelli 

et  al. [13] used variational autoencoder (VAE) [17] to 

generate drug-like compounds from ZINC database [18]. 
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This work aimed at obtaining a bi-directional mapping 

between molecule space and a continuous latent space so 

that operations on molecules can be achieved by manipu-

lating the latent representation. Blaschke et al. [19] com-

pared different architectures for VAE and applied it to 

the task of designing active compounds against DRD2.

The researches described above demonstrated the 

effectiveness of SMILES based model regarding molecule 

generation. However, producing valid SMILES strings 

requires the model to learn rules that are irrelevant to 

molecular structures, such as the SMILES grammar and 

atom ordering, which increases the burden of the model 

and makes the SMILES string a less preferable repre-

sentation compared with molecular graphs. Research 

in deep learning has recently enabled the direct genera-

tion of molecular graphs. Johnson et al. [20] proposed a 

sequential generation approach for graphs. Though their 

implementation is mainly for reasoning tasks, this frame-

work is potentially applicable to molecule generation. A 

more recent method [21] was proposed for generating 

the entire graph all at once. This model has been success-

fully applied to the generation of small molecular graphs. 

The implementation that is most similar to ours is by the 

recent work by Li et al. [22] using a sequential decoding 

scheme similar to that by Johnson et al. Decoding invari-

ance is introduced by sampling different atom ordering 

from a predefined distribution. This method has been 

applied to the generation of molecules with less than 20 

heavy atoms from ChEMBL dataset. Though inspiring, 

the methods discussed above have a few common prob-

lems. First of all, the generators proposed are relatively 

general. This design allows those techniques to be applied 

to various scenarios but requires further optimization for 

application in molecule generation. Secondly, many of 

those models suffer from scalability issue, which restricts 

the application to molecules with small sizes.

In this work, we propose a graph-based generator 

that is more suited for molecules. The model is scaled to 

cover compounds containing up to 50 heavy atoms in the 

ChEMBL dataset. Results show the graph-based model 

proposed is able to outperform SMILES based methods in a 

variety metrics, including the rate of valid outputs, KL and 

JS divergence of molecular properties, as well as NLL loss. 

A conditional version of the model is employed to solve 

various drug design related tasks with multiple objectives, 

and results have demonstrated promising performance.

Methods
Molecular graph

Molecular graph is a way of representating the structural 

information of molecules using graphs ( G = (V ,E) ). 

Atoms and bonds in the molecule are viewed as graph 

nodes ( v ∈ V  ) and edges ( e ∈ E ). Each node is labeled 

with its corresponding atom type, while each edge is 

labeled with its corresponding bond type. We refer the 

set of all atom types and bond types as A and B respec-

tively. In this work, the atom type is specified using three 

variables: the atomic symbol (or equally the atomic num-

ber), the number of explicit hydrogens attached, and the 

number of formal charges. For example, the nitrogen 

atom in pyrrole can be represented as the triple (“N”, 1, 

0). The set of all atom types (A) is extracted from mol-

ecules in the ChEMBL dataset (see Additional file 1: Sup-

plementary Text 1), and contains 33 members in total. 

For bonds, we only consider the following four bond 

types: single, double, triple and aromatic. A visualized 

demonstration of molecular graph is given in Fig. 1.
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Fig. 1 Cimetidine and its graph based representation. In the graph 

based generative models, molecules (see a) are represented as 

graphs G = (V , E) (see b), where atoms are bonds are viewed as 

nodes and edges respectively. Atom types are specified by three 

parameters: the atomic symbol (or equally the atomic number), the 

number of explicit hydrogens attached, and the number of formal 

charges (see c). For bond types, only single, double, triple and 

aromatic bonds are considered in this work (see d)
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Graph generative model

We now consider the deep generative models that can 

directly output molecular graphs. In this work, we mainly 

focus on sequential graph generators, which build graph 

by iteratively refining its intermediate structure. The pro-

cess starts from the empty graph G0 = (∅, ∅) . At step i, 

a graph transition ti is selected from the set of all avail-

able transition actions T (Gi) based on the generation 

history (G0, . . . ,Gi) . The selection is done by sampling 

ti from a probability distribution ti ∼ pθ (ti|Gi, . . . ,G0) , 

which is parametrized by a deep network. Then, ti is per-

formed on Gi to get the graph structure for the next step 

Gi+1 = ti(Gi) . At the final step n, termination operation 

t
∗ is performed and the model outputs G = Gn as the 

final result.

The entire process is illustrated in Fig.  2. We call the 

mapping T, which determines all available graph tran-

sitions at each step, a decoding scheme. The sequence 

r = ((G0, t0), (G1, t1), . . . , (Gn, tn)) is called a decoding 

route of G, and the distribution pθ (ti|Gi, . . . ,G0) is called 

a decoding policy.

Previous graph generative models are usually too gen-

eral and less optimized for the generation of molecular 

graphs. Here we offer the following optimizations:

1. A much simpler decoding scheme T is used to 

decrease the number of steps required for genera-

tion.

2. No atom level recurrent unit is used in the decoding 

policy. Instead, we explored two other options: (1) 

parametrizing the decoding policy as a Markov pro-

cess and (2) using only molecule level recurrent unit. 

Those modifications helps to increase the scalability 

of the model.

3. During the calculation of log-likelihood loss, we sam-

ple r from a parametrized distribution qα(r|G) . The 

parameter α controls the degree of randomness of qα , 

offering higher flexibility for the model.

The following three sections are devoted to the detailed 

discussions of the optimizations above.

Decoding scheme

The transitions in T (Gi) given the intermediate state Gi is 

restricted to the following four types:

1. Initialization At the beginning of the generation, the 

only allowed transition is to add the first atom to the 

empty graph G0.

Fig. 2 A schematic representation of molecule generation process. Starting with the empty graph G0 , initialization is performed to add the first 

atom. At each step, a graph transition (append, connect or terminate) is sampled and performed on the intermediate molecule structure. The 

probability for sampling each transition is given by pθ (t|Gi , . . . ,G0) , which is parametrized using deep neural network. Finally, termination operation 

is performed to end the generation
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2. Append This action adds a new atom to Gi and con-

nect it to an existing atom with a new bond.

3. Connect This action connects two existing atoms 

v1, v2 ∈ Vi with a new bond. For simplicity, we only 

allow connections to start from the latest appended 

atom v∗ , which means that v1 = v
∗.

4. Termination ( t∗ ) End the generation process.

The entire process is shown in Fig. 2, and a more detailed 

illustration is provided in Additional file 2: Figure S1 and 

S2. In theory, T(G) should not contain actions that violate 

the chemical validity of molecules. However, in order to 

test the ability for the model to learn those constraints, 

we do not explicity exclude those actions from T(G) dur-

ing training.

Note that compared with the implementation in [22], 

the action of adding new atom and the action of connect-

ing it to the molecule is merged into a single “append” 

step. This helps to reduce the number of steps during 

generation. It is easy to show that the number of steps 

required for generating graph G = (V ,E) equals exactly 

to |E| + 2 , which is generally much smaller than the 

length of the corresponding SMILES string (as shown in 

Additional file 2: Figure S3).

Decoding policy

During generation, the decoding policy pθ need to spec-

ify the probability value for each graph transition in 

T (Gi) . More specifically, pθ need to output the following 

probability values:

1. pAv  for each v ∈ Vi A matrix with size |A| × |B| , whose 

element (pv)ab represents the probability of append-

ing a new atom of type a ∈ A to atom v with a new 

bond of type b ∈ B.

2. pCv  for each v ∈ Vi A vector with size |B|, whose ele-

ment (pCv )b represents the probability of connecting 

the latest added atom v∗ with v using a new bond of 

type b ∈ B.

3. p∗ A scalar value indicating the probability of termi-

nating the generation.

A visualized depiction of pAv  , pCv  and p∗ is shown in Fig. 2. 

The decoding policy pθ is parameterized using neu-

ral network. At each step, the network accepts the the 

decoding history (G0, . . . ,Gi) as input and calculates the 

probability values ( pAv  , pCv  , p∗ ) as output. In this work, 

we explored two novel graph generation architectures, 

namely MolMP and MolRNN. Unlike the methods pro-

posed in [20, 22], the two architectures do not involve 

atom level recurrency, which helps to increase the scal-

ability of the model.

MolMP

MolMP models graph generation as a Markov process, 

where the transition of Gi only depends on the current 

state of the graph, not on the history (Fig.  3a). This 

means that pθ (t|Gi, . . . ,G0) = pθ (t|Gi) . Since this type 

of architecture does not include any recurrent units, it 

will be less expensive compared with RNN based mod-

els. Moreover, the computation at different steps can be 

easily parallelized during training. The detailed archi-

tecture of MolMP is given as follows:

1. An initial atom embedding h0v is first generated for 

each atom v: 

(1)h
0
v = Embedding

θ
(v)

a b

Fig. 3 The two type of graph generative architectures explored in this work: a MolMP: this architecture treats graph generation as a Markov 

process, in which the transition of Gi only depends on the current state of the graph, not on the history. b MolRNN: this architecture adds a single 

molecule level recurrent unit to MolMP
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h
0
v is determined based on the following information: 

(1) the atom type of v and (2) whether v is the latest 

appended atom. The dimension of h0v is set to 16.

2. h0v is passed to a sequence of L graph convolutional 

layers: 

where l = 1, . . . , L . Except the first layer, each con-

volutional layer GraphConvlθ adopts a “BN-ReLU-

Conv” structure as suggested in [23]. The detailed 

architecture of graph convolution is described in 

“Graph Convolution”. We use six convolution layers 

in this work ( L = 6 ), each with 32, 64, 128, 128, 256, 

256 output units.

 The outputs from all graph convolutional lay-

ers are then concatenated together, followed by batch 

normalization and ReLU: 

3. h
skip
v  is passed to the fully connected network MLP

FC

θ
 

to obtain the final atom level representation hv . 

MLP
FC

θ
 consists of two linear layers, with 256 and 512 

output units each. Batch normalization and ReLU are 

applied after each layer.

4. Average pooling is applied at graph level to obtain 

the molecule representation hGi
 : 

5. The probability value for each action is produced by 

first calculate the unnormalized values ( ̂pAv  , p̂Cv  and 

p̂∗ ) as follows: 

Those values are then normalized to get the final 

result: 

 where P =
∑

vab(p̂
A
v )ab +

∑
vb(p̂

C
v )b + p̂∗

 MLPθ is a two layer fully connected network with 

hidden size 128 and output size |A| × |B| + |B| . This 

output is then split into the matrix p̂Av  of size |A| × |B| 

(2)h
l
v = GraphConvlθ (h

l−1
v ,Gi)

(3)h
skip
v = relu

(

bn(Concat(h1v , . . . ,h
L
v ))

)

(4)hv = MLPFC
θ

(h
skip
v )

(5)hGi = AvgPool([hv]v∈Vi)

(6)

[

p̂Av , p̂
C
v

]

= MLPθ (hv ,hGi
)

(7)p̂∗
= MLP

∗
θ
(hGi

)

(8)pAv = p̂Av /P

(9)pCv = p̂Cv /P

(10)p∗
= p̂∗/P

and the vector p̂Cv  of length |B|. MLP
∗ is a one layer 

fully connected network. Both MLPθ and MLP
∗ uses 

exponential activiaton in the output layer.

The architecture of the entire network is shown in 

Fig. 4.

MolRNN

The second architecture adds a single molecule level 

recurrent unit to MolMP, as shown in Fig. 3. We refer 

Fig. 4 Network architecture for MolMP. This figure shows the detailed 

model architecture for MolMP. MolRNN adopts a structure highly 

similar to that of MolMP, except the inclusion of a molecule level 

recurrent unit
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to this method as MolRNN. The model architecture is 

specified as follows:

1. First of all, the model generates the atom level 

( hv , v ∈ Vi ) and molecule level ( hGi
 ) representation 

for the graph state Gi . This part of the network uses 

the same architecture as that in MolMP.

2. Given hv and hGi
 , the hidden state of the molecule 

level recurrent unit ( hRNN
i

 ) is updated as: 

where hv∗ is the representation of the latest appended 

atom v∗ . The recurrent network RNNθ is employed 

using three GRU layers with a hidden size of 512.

3. The probability values pAv  , pCv  , p∗ are calculated in the 

same manner as MolMP by replacing hGi
 in Eqs.  6 

and 7 with hRNN

i+1
.

The overall architecture of MolRNN is highly similar to 

that of MolMP. However, it is found that the molecule 

level recurrent unit in MolRNN provides significant 

improvements to the model performance (see “Model 

performance and sample quality”), while inducing little 

extra computational cost compared with MolMP.

Graph convolution

In this work, we rely on graph convolutional network 

(GCN) [24] to extract information from intermediate 

graph states Gi . Each graph convolutional layer adopts 

the “BN-ReLU-Conv” structure as described before. In 

terms of the convolution part, the architecture is struc-

tured as follows:

where hlv is the output representation of atom v at layer l, 

and hl−1
v  is the input representation. N bond

b
(v) is the set of 

all atoms directly connected to atom v with bond of type 

b, and N
path

d (v) is the set of all atoms whose distance to 

atom v equals to d. D represents the receptive field size, 

which is set to 3 in this work. W l , �l

b
 and �l

d
 are weight 

parameters of layer l.

In brief, the output representation of atom v at each 

layer l ( hlv ) is calculated according to the following 

information:

(11)h
RNN
i+1 = RNNθ (h

RNN
i

,hv∗,hGi
)

(12)

h
l
v = W

l
h
l−1

v

+

∑

b∈B

�l
b

∑

u∈Nbond
b (v)

h
l−1

u

+

∑

1<d≤D

�l
d

∑

u∈N
path
d (v)

h
l−1

u

1. The input representation of v ( hl−1
v

),

2. Information of local neighbors, which is given by ∑
b∈B

�l

b

∑
u∈N

bond

b
(v)

h
l−1
u  . Note that this part of 

information is conditioned on the bond type b 

between v and its neighborhood atom u.

3. Information of remote neighbors, given by ∑
1<d≤D �l

d

∑
u∈N

path
d (v)

h
l−1
u  . This part of informa-

tion is conditioned on the distance d between v and 

its remote neighbor u.

The architecture is illustrated in Fig. 5.

 Our implementation of graph convolution is similar to 

the edge conditioned convolution by Simonovsky et  al. 

[25], except that we directly include the information of 

remote neighbors of v in order to achieve a larger recep-

tive field with fewer layers.

Likelihood function

To train the generative model, we need to maximize the 

log-likelihood pθ (G) for the training samples. However, 

for the step-wise generative models discussed above, the 

likelihood is only tractable for a given decoding route 

r = ((G0, t0), (G1, t1), . . . , (Gn, tn)):

While the marginal likelihood can be computed as:

where R(G) is the set of all possible decoding route for 

G. The marginal likelihood function is intractable for 

most molecules encountered in drug design. One way 

to resolve this problem is to use importance sampling as 

proposed in [22]:

where q(r|G) is a predefined distribution on R(G). Both 

the deterministic and the fully randomized q(r|G) were 

explored in the previous work [22]. However, a more 

desirable solution would lie in somewhere between deter-

ministic decoding and fully randomized decoding. In this 

work, instead of sample from the distribution q(r|G), we 

sample r from distribution qα(r|G) that is parameterized 

by 0 ≤ α ≤ 1 . qα(r|G) is designed such that the decod-

ing will largely follow depth first decoding with canonical 

(13)log pθ (G, r) =

n∑

i=0

log pθ (ti|Gi, . . . ,G0)

(14)
log pθ (G) = log

∑

r∈R(G)

pθ (G, r)

(15)log pθ (G) = logEr∼q(r|G)

[

pθ (G, r)

q(r|G)

]
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ordering, but at each step, there is a small possibility 

1 − α that the model will make a random mistake. In this 

way, the parameter α measures can be used to control 

the randomness of the distribution qα . The algorithm is 

shown in Additional file 1: Supplementary Text 4.

For α = 1 , the distribution falls back to the deterministic 

decoding. The parameter α is treated as a hyperparam-

eter which is optimized for model performance. We tried 

α ∈ {1.0, 0.8, 0.6} on both MolMP and MolRNN.

(16)

log pθ (G) = logEr∼qα(r|G)

[

pθ (G, r)

qα(r|G)

]

≥ log
1

k

k
∑

i=1

pθ (G, ri)

qα(ri|G)

Conditional generative model

Most molecule design tasks require to produce com-

pounds satisfying certain criteria, such as being syntheti-

cally available or having a high affinity for a certain target. 

Previous researches have developed various methods to 

achieve objective directed molecule generation. Segler 

et al. [12] used transfer learning in the design of focused 

compound libraries. Olivecrona et  al. [13] applied rein-

forcement learning (RL) in the objective based chemi-

cal design and have reported promising performance in 

various tasks. Guimaraes et  al. [26] proposed ORGAN, 

which combines SeqGAN with an domain-specific objec-

tive term, and showed that ORGAN is effective in the 

optimization of different molecular properties. Neil et al. 

[27] created a benchmark analysis of various RL based 

method in different tasks of molecule design. In this 

work, we explored another way to achieve requirement 

Fig. 5 Architecture of graph convolutional layer. At each layer, the output representation for atom v is given by: (1) the input representation of v 

from previous layers, (2) information of local neighbors and (3) information of distant neighbors
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based molecule design using conditional generative 

model. We first convert the given requirement to the 

numerial representation called conditional code ( c ), and 

the generative model is then modified to be conditioned 

on c . For graph generative model, this means that the 

decoding policy is now pθ (ti|Gi, . . . ,G0, c) (see Fig.  6). 

Compared with previous approaches by Olivecrona et al. 

and Guimaraes et al., conditional generative model does 

not require reinforcement learning, and provides the fol-

lowing flexibilities:

1. The conditional code can incorporate both discrete 

and continuous objectives, and can easily scale to 

multiple objective.

2. When changing the generation objective, previous 

methods usually require the model to be retained 

on the new condition. But for conditional generative 

models, this can be achieve simply by changing the 

conditional code input c.

Both graph based and SMILES based conditional gen-

erators are implemented in this work. For graph based 

model, the graph convolution is modified to include c as 

input:

Simply state, c is included in the graph convoludion 

architecture by adding an additional term � l
c to the 

unconditional implementation in Eq.  12. For SMILELS 

based model, the conditional code is included by concat-

enating it with the input at each step: x′

i
= Concat(xi, c) . 

where xi is the one-hot representation of the SMILES 

charactor input at step i.

Conditional models have already been used by the 

previous work [21] for molecule generation, but was 

restricted to simple properties such as the number of 

heavy atoms as conditional codes. Also, the method have 

not yet applied to multi-objective molecule generation. 

Here, we apply this method to other more complexed 

drug design tasks, including scaffold-based generation, 

property-based generation and the design of dual inhibi-

tor of JNK3 and GSK-3β (see  6). The best performing 

graph and SMILES based generator (see “Model perfor-

mance and sample quality”) are implemented in condi-

tionalized version and applied to those tasks.

Scaffold‑based generation

The concept of molecular scaffold has long been of 

significant importance in medicinal chemistry [28]. 

Though various definitions are available, the most widely 

accepted definition is given by Bemis and Murcko [29], 

who proposed derive the scaffold of a given molecule 

by removing all side chain atoms. Studies have found 

various scaffolds that have privileged characteristics in 

terms of the activity of certain target [30–32]. Once such 

(17)

h
l
v = W

l
h
l−1

v

+

∑

b∈B

�l
b

∑

u∈Nbond
b (v)

h
l−1

u

+

∑

1<d≤D

�l
d

∑

u∈N
path
d (v)

h
l−1

u + � l
c

a

b

c

d

Fig. 6 Conditonal generative models: a For the generation of 

molecules based on a given requriement, the requriement (query) 

is first converted to the numerical representation called conditoinal 

code, the generative model is then modified to be conditioned 

on the conditonal code. b Scaffold based molecule generation: 

The model is required to generate molecules based on a given 

scaffold. This requriement is first converted to the conditional code 

called scaffold fingerprint. Then the molecule containing the query 

scaffold is generated based on the fingerprint. c Generation based 

on drug-likeness and synthetic accessibility: Drug-likeness and 

synthetic accessibility are first quantized using QED and SAscore. 

Then model then generates molecules based on the two properties. 

d Designing of dual inhibitors of JNK3 and GSK-3β : the generation 

process is based on the bioactivity fingerprint containing the activity 

requirement of each target
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privileged structure is found, a related task is to produce 

compound libraries containing such scaffolds for subse-

quent screening.

Here, conditional graph generative model is applied 

to generate compounds containing scaffold s, which is 

drawn from the pre-defined scaffold set S = {si}
NS

i=1
 . The 

set S is extracted from the list of approved drugs in Drug-

Bank [33]. Two types of structures are extracted from 

the molecules to construct S: (1) the Bemis–Murcko 

scaffolds, and (2) ring assemblies. Ring assemblies are 

included in S since we found that including extra struc-

tural information beside Bemis–Murcko scaffolds helps 

to improve the conditional generation performance. 

Detailed scaffold extraction workflow is shown in Addi-

tional file 1: Supplementary Text 2. For each molecule G, 

the conditional code c = (c1, c2, . . . , cNS
) is set to be the 

binary vector such that ci = 1 if G contains si as substruc-

ture, and ci = 0 otherwise. We refer c as the scaffold fin-

gerprint of G, as it can in fact be viewed as a substructure 

fingerprint based on scaffold set S. To generate molecule 

containing substructure s ∈ S , the fingerprint cs for s is 

used as conditional code. The output should contain two 

type of molecules:

1. Molecules containing s as its Bemis–Murcko scaf-

fold.

2. Molecules whose Bemis–Murcko scaffold contains s 

but does not reside inside S.

The procedure is better demonstrated in Fig. 7.

 Using this method, detailed control can be performed on 

the scaffold of the output structure.

Generation based on synthetic accessibility 

and drug‑likeness

Drug-likeness and synthetic accessibility are two prop-

erties that have significant importance in the develop-

ment of novel drug candidate. Drug-likeness measures 

the consistency of a given compound with the currently 

known drugs in terms of the structural or physical prop-

erties, and is frequently used to filter out obvious non-

drug like compounds in the early phase of screening [34, 

35]. Synthetic accessibility is also an important property 

for de novo drug design since subsequent experimental 

validation requires synthesis of the given compound [36]. 

In this task, the model is required to generate molecules 

according to a given level of drug-likeness and synthetic 

accessibility. The drug-likeness is measured using the 

Quantitative Estimate of Drug-likeness (QED) [37], and 

synthetic accessibility is evaluated using the SA score 

[36]. The conditional code c is defined as c = (QED, SA) , 

where the QED and SA score is all calculated using 

RDKit [38].

In practice, instead of specifying a single value of 

QED and SA score, we often use intervals to express the 

requirements for desired output molecules. This means 

that we are required to sample molecules from the dis-

tribution pθ (G|c ∈ C) , where the generation requirement 

Fig. 7 Workflow for scaffold based molecule generation. Scaffold set S is first extracted from compounds in DrugBank. The conditional code c is 

set to be the substructure fingerprint based on S. Training is performed with the training samples labeled with cG . After training, scaffold based 

generation is performed using the fingerprint cs of the query scaffold s ∈ S
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is described as a set C instead of a single point c . Here, 

we samples from pθ (G|c ∈ C) by first drawing c from 

p(c|c ∈ C) , and then drawing G from pθ (G|c) . Sam-

pling from p(c|c ∈ C) can be achieved by first sample c 

from p(c) using molecules from the test set, then filter c 

according to the requirement c ∈ C.

Designing dual inhibitor against JNK3 and GSK‑3β

With the ability to model multiple requirements at once, 

conditional generative models can be used to design 

compounds with specific activity profiles for multiple tar-

gets. Here, we consider the task of designing dual inhibi-

tors against both c-Jun N-terminal kinase 3 (JNK3) and 

glycogen synthase kinase-3 beta (GSK-3β ). Both of the 

two targets are serine/threonine (S/T) kinases, and have 

shown to be related to the pathogenesis of various types 

of diseases [39, 40]. Notably, both JNK3 and GSK-3β are 

shown to be potential target in the treatment of Alzhei-

mer’s disease (AD). Jointly inhibiting JNK3 and GSK-3β 

may provide potential benefit for the treatment of AD.

The conditional code is set to be c = (cJNK3, cGSK−3β) , 

where cJNK3 , cGSK−3β are binary values indicating 

whether the compound is active against JNK3 and GSK-

3β . For compounds in the ChEMBL dataset, cJNK3 and 

cGSK−3β are labeled using a separately trained predictor. 

Random forest (RF) classifier, which has been demon-

strated to provide good performance for kinase activity 

prediction [41], is used as the predictor for GSK-3β and 

JNK3 activity. Here, we use ECFP6 [42] as the descriptor. 

The predictive model is trained using activity data from 

ExCAPE-DB [43], which is an integrated database with 

activity values from ChEMBL and PubChem [44]. Work-

flow for data extraction and predictor training is provided 

in Additional file 1: Supplementary Text 3. It is found that 

there is only 1.2% of molecules in ChEMBL that is pre-

dicted to be active against JNK3 or GSK-3β . This imbal-

ance results in low enrichment rate during conditioned 

generation. For better result, the model is first trained 

under the unconditioned setting, and then fine-tuned 

based on the 1.2% molecules mentioned above.

Training details

The graph generative models are trained using the 

ChEMBL dataset. The data processing workflow largely 

follows Olivecrona et  al. [13], as described in Addi-

tional file 1: Supplementary Text 1. MXNet [45] is used 

to implement the networks, and Adam optimizer [46] 

is used for network training. An initial learning rate 

of 0.001 is used together with a decay rate of 0.001 for 

every 100 iterations. Other parameters of the optimizer 

are set to be the default values suggested in [46] (that is, 

β1 = 0.9, β2 = 0.999 and ǫ = 10
−8 ). The training lasts 

for 5 epochs, and the size of each mini-batch is set to 200 

during the training.

During training, the decoding route is drawn from the 

distribution qα(r|G) . We tried three α values: 1.0, 0.8 and 

0.6, as discussed previously. For α = 1.0 , k is set to 1 and 

the training can be performed on a single Nvidia GeForce 

GTX 1080Ti GPU for both MolMP and MolRNN. The 

training lasts for 14h for MolMP and 16h for MolRNN. 

For α = 0.8 and α = 0.6 , k is set to 5 and the training is 

performed synchronously on 4 GPUs. The training lasts 

for 30h for MolMP and 35h for MolRNN.

For scaffold based and property based generation tasks, 

the conditonal graph generator is trained using the same 

setting as unconditional model. For the generation of 

GSK-3β and JNK3 inhibitors, the model is first trained 

using the full dataset, and the fine tuned on the subset 

that is predicted to be active against GSK-3β or JNK3. 

The fine-tuning uses a learning rate of 0.0001 and a decay 

rate of 0.002 for every 100 iterations. The fine-tuning 

lasts for 10 epochs, and takes 1h to finish.

In theory, the hyperparameters for the models men-

tioned above, including the training condition (batch size, 

learning rate, decay rate, β1 , β2 ), model architectures(the 

number of convolutional layers, the hidden size in each 

layer) as well as α , should be optimized to achieve the 

best performance. However, due to the computational 

cost of both MolMP and MolRNN, we are unable to 

systematically optimize the hyperparameters. A throu-

gout discussion is only given for α , which determines 

the degree of randomness of qα . No optimization is per-

formed on model architecture except fitting it into the 

memory.

Comparison with SMILES based methods

The proposed graph-based model is compared with sev-

eral SMILES based models. Two type of methods, vari-

ational autoencoder (VAE) and language model (LM), 

are considered in this comparison. The implementa-

tion of SMILES VAE follows Gómez-Bombarelli et  al. 

[2]. The encoder contains three 1D convolutional layers, 

with 9, 9, 10 filters and 9, 9, 11 kernels each, and a fully 

connected layer with 435 hidden units. The model uses 

196 latent variables and a decoder with three GRU lay-

ers with 488 hidden units. VAE for sequential data faces 

from the issue of “optimization challenge” [47, 48]. While 

the original implementation uses KL-annealing to tackle 

this problem, we follow the method provided by Kingma 

et al. [49] by controlling the level of free bits. This offers 

higher flexibility and stability compared with KL-anneal-

ing. We restrict the minimal level of free bits to 0.03 for 

each latent variable.
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For LM, two types recurrent units are adopted. The first 

type uses GRU, and includes two architectures: the first 

architecture (SMILES GRU1) consists of three GRU lay-

ers with 512 hidden units each, and the second (SMILES 

GRU2), uses a wider GRU architecture with 1024 units, 

following the implementation by Olivecrona et  al. [13]. 

Beside GRU, we also included a LSTM based SMILES 

language model following Segler et al. [12]. This architec-

ture uses three LSTM layers, each with 1024 units.

Comparison with reinforcement learning (RL) based 

methods

We also compared the performance of conditional gen-

erative model with three RL based method. The first 

method, which is proposed by Olivecrona et  al., maxi-

mizes following objective during model optimization:

where p(x) is the Prior network pre-trained using 

ChEMBL dataset, and q(x) is the Agent network for task-

specific molecule generation. SMILES GRU2 is used as 

the architecture for Prior and Agent.

This method is refered to as “REINVENT” [13]. We 

also include the following two baselines in the compari-

son. The first is a non-regularized RL method with the 

following objective:

We refer to this method as “Naive RL”. The second 

method includes a prior term in addition to 19:

We refer to this method as “RL + Prior”.

Evaluation metrics

Several metrics have been employed to evaluate the per-

formance of generative models:

Sample validity

To test whether the generative models are capable of pro-

ducing chemically correct outputs, 300,000 structures are 

generated for each model, and subsequently evalulated by 

RDKit for the rate of valid outputs. We also evaluate the 

ability of each model to produce novel structures. This is 

done by accessing the rate of generated compounds that 

do not occure inside the training set.

DKL and DJS for molecular properties

A good molecule generator should correctly model the 

distribution of important molecular properties. There-

fore, the distribution of molecular weight (MW), log-par-

tition coefficient (LogP) and QED between the generated 

dataset ( pg ) and the test set ( pdata ) is compared for each 

(18)G(x) = −[log p(x) + σS(x) − log qθ (x)]2

(19)G(x) = σS(x)

(20)G(x) = σS(x) + log p(x)

method using Kullback–Leibler divergence ( DKL ) and 

Jensen–Shannon divergence(DJS):

DKL and DJS are widely used in deep generated models 

for both training [17, 50] and evaluation [51]. Here, the 

two values are determined using kernel density method 

implemented in SciPy [52]. We used a gaussian kernel 

with bandwidth selected based on Scott’s Rule [53].

Performance metrics ( Rc , Kcc′ and EORc ) for task specific 

molecule design

For discrete conditional codes c , let Mc be the set con-

taining molecules sampled from distribution pθ (G|c) . 

Mc is obtained by first sampling molecule graphs con-

ditioned on c and then removing invalid molecules. The 

size of |Mc| is set to 1000. Let Ncc′ be the set of molecules 

in Mc that satisfy the condition c′ ( c′ may be different 

from c ). The ratio Kcc′ is defined as:

The matrix Kcc′ can be used to evaluate the ability of the 

model to control the output based on conditional code 

c . When c = c
′ , this value gives the rate of correctly gen-

erated outputs, denoted by Rc . High quality conditional 

models should have a high value of Rc and low values of 

Kcc′ for c �= c
′ . In paractice, we find that the value of Kcc′ 

for scaffold and property based generation is significantly 

samller than Rc and have relatively low influence on the 

model’s performance. Therefore, the result of Kcc′ is 

omitted for scaffold and property based task, and is only 

reported for the task of kinase inhibitor design.

Let R0
c be the rate of molecules in the training data that 

satisfy condition c . The enrichment over random EORc is 

defined as:

The definition is similar to that used in previous work 

[12], except that in their implementation R0
c is calculated 

using the generated samples from the unconditioned 

model pθ (G) . For continuous codes, a subset C of the 

conditional code space is used to describe the generation 

(21)DKL(pg ||pdata) =

∫
R

pg (x) log
pg (x)

pdata(x)
dx

(22)

DJS(pg ||pdata) =
1

2
DKL

(

pg ||
pg + pdata

2

)

+
1

2
DKL

(

pdata||
pg + pdata

2

)

(23)Kcc′ =
|Ncc′ |

|Mc|

(24)EORc =

Rc

R0
c
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requirements. MC is sampled from pθ (G|c ∈ C) , and val-

ues for KCC ′ , RC and EORC can be calculated in a similar 

manner.

Rate of reproduced active compounds

For target based generation tasks, the rate of reproduced 

molecules is also reported following previous works [12, 

13]. Take JNK3 as an example. During the evaluation, 

two sets of outputs are generated using two conditions: 

JNK3(+), GSK-3β (−) and JNK3(+), GSK-3β(+). The two 

set of outputs are denoted Mc1
and Mc2

respectively. Here, 

the size of |Mc1
| and |Mc2

| are both set to 50,000. Let T 

be the set containing the active molecules within the test 

set of JNK3. The rate of reproduced molecules (reprod) is 

calculated as:

For GSK-3β , the calculation can be done in a similar 

manner.

Sample diversity

For a good objective based molecule generator, the out-

puts are not only required to satisfy the given condition 

c , but also required to be structurally diverse. Benhenda 

[54] have suggested that the diversity of the model out-

puts should be consistent with the natural diversity of 

molecules satisfying the c . Also, Benhenda proposed 

to use the following statistics to evaluate the structural 

diversity of a given set of compounds:

where M is the set of sampled molecules, and Td(x, y) is 

the Tanimoto-distance between the two molecules x and 

y. Td(x, y) is defined using the Tanimoto-similarity Ts : 

Td(x, y) = 1 − Ts(x, y) . This metric is called the internal 

diversity of the molecule set M.

For each condition c , the natural diversity I0c  is first 

calculated using molecules in ChEMBL. The diversity of 

conditional outputs Ic is then calculated for each model. 

Note that when calculating I0c  and Ic , we only include 

molecules that satisfy the condition c . Finally, the value 

|Ic − I
0
c | is compared among different models for their 

ability to reconstruct the natural compound diversity.

Results and discussion
Model performance and sample quality

Several randomly generated samples by MolRNN are 

grouped by molecular weight and shown in Fig.  8a–c. 

The qauntitative comparison between SMILES based and 

(25)reprod =
|(Mc1

∪ Mc2
) ∩ T |

|T |

(26)I(M) =
1

|M|2

∑

(x,y)∈M×M

Td(x, y)

graph based models (MolMP and MolRNN) has been 

performed, and the results are summarized in Tables  1 

and 2. We first analysed the model performance in terms 

of the rate of valid outputs and the rate of valid and novel 

outputs. It can be seen from the results that both Mol-

RNN and MolMP outperform all SMILES based meth-

ods. It is also noted that changing α from 1.0 to 0.8 can 

significantly increase the rate of valid outputs for both 

MolMP and MolRNN. Further decreasing α produces 

only marginal effect. The high validity of output struc-

tures by graph-based model is not surprising as the gen-

eration of SMILES poses much stricter rules to the output 

compared with the generation of molecular graphs.

Figure 8d, e summarize respectively the common mis-

takes made by SMILES-based and graph-based model 

during generation. Results in Fig. 8d show that the most 

common cause of invalid output for SMILES based mod-

els is grammar mistakes, such as unclosed parentheses 

or unpaired ring numberings. But for the graph-based 

model, the majority of invalid output is caused by bro-

ken aromaticity, as demonstrated in Fig. 8f. This is likely 

a result of stepwise decoding pattern of graph-based 

models, as the decoder can only see part of the aromatic 

structure during generation, while the determination of 

aromaticity requires the information of the entire ring. 

It is also observed that mistakes related to atom valance 

are relatively minor, meaning that those rules are easy to 

learn using graph convolution.

Graph-based methods also have the advantage of giv-

ing highly interpretable outputs compared with SMILES. 

This means that a large portion of invalid outputs can be 

easily corrected if necessary. For example, broken aro-

maticity can be restored by literately refining the num-

ber explicit hydrogens of aromatic atoms, and unclosed 

aromatic rings can be corrected simply by connecting the 

two ends using a new aromatic bond. Though possible, 

those corrections may introduce additional bias to the 

output samples depending on the implementation, thus 

not adopted in the subsequent tasks.

Next, we investigate the ability for the generators to 

learn the distribution of molecular properties, as dem-

onstrated in Table  2. Results have shown that MolRNN 

gives the best performance in DKL and DJS for molecu-

lar weight (MW) and QED, while SMILES GRU2 gives 

the best performance for LogP. For MolMP, although it 

is able to outperform SMILES GRU1 in the rate of valid 

outputs, it fails to give better performance in DKL and 

DJS . This observation suggest that the molecule level 

recurrent unit in MolRNN can significantly imporved the 

ability for the model to learn information about the data 

distribution.

When it comes to the influence of α to DKL and DJS , it 

is found that changing α from 1.0 to 0.8 can significantly 
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improve the perforamnce of MolMP and MolRNN for 

all molecular properties. Further decreasing α to 0.6 

will have different effect for MolMP and MolRNN. For 

MolMP, this will hurt the overall performance of DKL 

and DJS , while for MolRNN, this will inprove the per-

formance for molecular weight, but will significantly 

decrease the performance of LogP. Overall, α = 0.8 will 

be a better choise for MolMP, and α = 0.6 will be more 

suited for MolRNN.

Generally, MolRNN have showed significant advan-

tages among all generative mdoels considered. In the sub-

sequent evaluation of conditonal generative models, the 

best performing graph based model (MolRNN) and the 

best performing SMILES based model (SMILES GRU2) 

are implemented as conditonal models and are compared 

among all tasks.

a

b

c

d

e

f

Fig. 8 A visualized demonstration of model outputs. a–c. Output samples by MolRNN. Results are grouped by molecular weight (a MW < 300, b 

300 ≤ MW < 500, c MW ≥ 500); d, e Common mistakes made by SMILES based model and graph based model respectively; f Examples of broken 

aromaticity occurred during graph generation

Table 1 Comparison between  SMILES based and  graph-

based generators in output validity

Results are reported as Mean ± SD . The best performance in each metric is 

highlighted in italics face. Also, for each metric, paired t-test is carried out for 

the difference between the best and second performing methods (*** for 

p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05 ). Multiple models are highlighted if 

the difference is not significant

Model % valid % novel % valid and novel

SMILES VAE 0.804 ± 0.016 0.986 ± 0.000 0.793 ± 0.016

SMILES GRU1 0.886 ± 0.002 0.984 ± 0.000 0.872 ± 0.002

SMILES GRU2 0.932 ± 0.002 0.965 ± 0.001 0.899 ± 0.002

SMILES LSTM 0.935 ± 0.006 0.975 ± 0.001 0.912 ± 0.006

MolMP ( α = 1.0) 0.952 ± 0.002 0.98 ± 0.001 0.933 ± 0.001

MolMP ( α = 0.8) 0.962 ± 0.002 0.984 ± 0.001 0.946 ± 0.001

MolMP ( α = 0.6) 0.963 ± 0.001 0.988 ± 0.001** 0.951 ± 0.001

MolRNN ( α = 1.0) 0.967 ± 0.001 0.959 ± 0.000 0.928 ± 0.001

MolRNN ( α = 0.8) 0.970 ± 0.001 0.976 ± 0.001 0.947 ± 0.001

MolRNN ( α = 0.6) 0.970 ± 0.001 0.985 ± 0.000 0.955 ± 0.001***
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Scaffold‑based generation

In the first task, conditional generative models are 

trained to produce molecules based on given scaf-

folds. To illustrate the result, scaffold 1, extracted from 

the antihypertensive drug Candesartan (see Fig. 9a), is 

used as an example, along with several related scaffolds 

(scaffold 2–4) derived from scaffold 1 (Fig. 9a). Condi-

tional codes c are constructed for each type of scaffold, 

and output structures are produced according to the 

corresponding code.

Results for both the SMILES based and graph based 

conditional generator are given in Table 3. In terms of 

output validity, graph based model is able to produce a 

higher fraction of valid outputs for scaffolds 1–4, com-

pared with SMILES based methods, which is similar to 

the results of unconditional models

In terms of the rate of correctly generated outputs 

( Rc ), although the models are unable to achieve 100% 

correctness, the Rc results are significantly higher 

than R0
c , offering high enrichment rate over random. 

Both graph based and SMILES based model are able 

to achieve EORc > 1000 for scaffold 1–3 as well as 

EORc > 100 for scaffold 4, showing promising abil-

ity for the model to produce enriched output accord-

ing to the given scaffold query. By comparing the result 

of Rc between the two type of architectures, it is found 

that graph based model have a higher performance for 

scaffold 3, while SMILES based method have a higher 

performance for scaffold 2. The two model have similar 

performance for scaffold 1 and scaffold 4.

The structural diversity of the output samples is 

also evaluated for each model. Both graph based and 

SMILES based methods have resulted in a slightly lower 

output diversity Ic compared with the natural diversity 

I
0
c  . For scaffold 2, the graph based method have better 

performance compared with SMILES based method, 

while for scaffold 4, the SMILES based methods yields 

better result. For scaffold 1 and 3, the difference is not 

significant between graph based and SMILES based 

method.

A comparison between conditional generative model 

and RL based approach is performed, using scaffold 

4 as example. We set σ = 20 , and formulate the score 

function Sc(x) as follows:

The result is summarized in Table 4. It is easily observed 

that all RL based approaches, including Naive RL, 

RL  +  Prior and REINVENT, are capable of achieving 

near perfect result on Rc . However, in terms of output 

diversity, the RL based methods yields worse perfor-

mance compared with conditional generative models. 

Among them, Naive RL result in the lowest output diver-

sity of 0.468, followed by the RL +  Prior, whose output 

diversity is 0.55. REINVENT results in a much higher 

output diversity of 0.750, but is still lower than that of 

conditional generative models.

The results above shows that conditional generators 

and RL based methods have opposite performance on 

Rc and Ic . This is mainly caused by the fact that the two 

methods actually operate on different objectives. The 

former, which is trained under maximum likelihood esti-

mation (MLE), optimizes DKL(p(x|c)||qθ ) (the proof is 

given in Additional file 1: Supplementary Text 5). During 

training, conditional generative model are encouraged to 

cover all modes in the data distribution, but are not pun-

ish for malicious modes, and therefore result in lower Rc.

(27)Sc(x) =

{

1, if x is valid and satisfies c

0, otherwise

Table 2 Comparison between SMILES based and graph-based generators in DKL(×10
−3 ) and DJS(×10

−3)

Results are reported as Mean ± SD . The best performance in each metric is highlighted in italics face. Paired t-tests are carried out for the difference between the best 

and second performing methods (*** for p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05 ). Multiple models are highlighted if the difference is not significant

Model MW LogP QED

DKL DJS DKL DJS DKL DJS

SMILES VAE 13.5 ± 0.6 3.6 ± 0.2 3.9 ± 0.4 0.9 ± 0.1 2.6 ± 0.4 0.6 ± 0.1

SMILES GRU1 8.6 ± 0.4 2.3 ± 0.1 3.1 ± 0.3 0.7 ± 0.0 1.5 ± 0.3 0.3 ± 0.1

SMILES GRU2 7.8 ± 0:3 2:0 ± 0.1 1.4 ± 0.2 0.3 ± 0.0 2.2 ± 0.3 0.5 ± 0.1

SMILES LSTM 6.5 ± 0.7 1.8 ± 0.2 3.4 ± 1.2 0.8 ± 0.3 1.9 ± 1.3 0.4 ± 0.3

MolMP ( α = 1.0) 11.5 ± 1.3 3.4 ± 0.4 7.0 ± 1.8 1.7 ± 0.4 5.3 ± 1.2 1.3 ± 0.3

MolMP ( α = 0.8) 8.3 ± 1.6 2.4 ± 0.5 4.3 ± 1.2 0.9 ± 0.2 2.7 ± 0.8 0.6 ± 0.2

MolMP ( α = 0.6) 8.4 ± 1.0 2.4 ± 0.3 5.0 ± 1.3 1.1 ± 0.4 3.0 ± 0.9 0.7 ± 0.2

MolRNN ( α = 1.0) 5.0 ± 0.6 1.4 ± 0.2 2.8 ± 0.5 0.7 ± 0.1 2.0 ± 0.6 0.5 ± 0.1

MolRNN ( α = 0.8) 4.1 ± 0.7 1.1 ± 0.2 1.6 ± 0.3 0.3 ± 0.1 1.0 ± 0.2 0.2 ± 0.0

MolRNN ( α = 0.6) 3.3 ± 0.2* 0.9 ± 0.1** 3.0 ± 0.4 0.5 ± 0.1 1.1 ± 0.4 0.2 ± 0.1
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a

b

Fig. 9 Results of scaffold based generation. a Candesartan and the extracted scaffolds (scaffold 1–4); b Output samples based on scaffold 1–4 
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The RL based approach, however, optimizes a com-

pletely different objective. It can be proved that 

maximizing Eq.  18 is equivalent to minimizing the 

reviersed KL divergence DKL(qθ ||p(x|c)) . In fact, if the 

score σS(x) is formulated as log p(c|x) , which is the log-

likelihood for the molecule x to satisfy the requirement 

c , we can obtain the following relationship between 

G(x) ans DKL:

The derivation is given in Additional file 1: Supplemen-

tary Text 6. This objective will force the model to com-

ply with the given condition c , but may result in potential 

mode collapse, and therefore lower output diversity. In 

short, conditonal generative model and RL based meth-

ods each emphasizes different aspect of the molecule dis-

tribution, and future research may explore the possibility 

to combine those methods.

Several generated samples by graph based model are 

given for each scaffold in Fig. 9b. Recall that the outputs 

given scaffold s should contain two type of molecules: 

(1) molecules with s as its Bemis–Murcko scaffold and 

(2) molecule whose Bemis–Murcko scaffold contains s 

but does not reside inside S. Both types are observed 

for scaffold 1–4 as shown in Fig. 9b. By further inves-

tigating the generated samples, it is observed that the 

(28)∇θDKL(qθ ||p(x|c)) = −Ex∼qθ
[∇θG(x)]

model seems to have learnt about the side chains char-

acteristics each scaffold. For example, samples gener-

ated from scaffold 1–3 usually have their substitutions 

occur at restricted positions, and frequently contains 

a long aliphatic side chain. Interestingly, this actu-

ally reflects the structural activity relationship (SAR) 

for angiotensin II (Ang II) receptor antagonists [55]. 

In fact, scaffold 1–3 have long been treated as a privi-

leged structure against Ang II receptors [28], and as a 

result, molecules with scaffold 1–3 are largely biased to 

those who matches the SAR rules for the target. When 

trained with the biased dataset, the model can memo-

rize the underlying structural activity relationship as a 

byproduct of scaffold based learning. This characteris-

tic is beneficial for the generation of libraries contain-

ing specified privileged structures.

Generation based on drug‑likeness and synthetic 

accessibility

In this task, the generative model is used to produce 

molecules according to the requirement on drug-

likeness and synthetic accessibility. The conditional 

code is specified as c = (QED, SA) . In the first experi-

ments, the models are required to generate molecules 

based on the following requirements expressed as sub-

sets of conditional code space: C1 = (0.84, 1) × (0, 1.9) , 

C2 = (0, 0.27) × (0, 2.5) , C3 = (0.84, 1) × (3.4,+∞) and 

C4 = (0, 0.27) × (4.8,+∞).

The values are determined from the distribution of 

QED and SA in ChEMBL dataset (see Fig.  10a) using 

the 90 and 10% quantile. The conditions are illustrated 

in Fig.  10d. The four sets represent four classes of mol-

ecules respectively and the first class C1 , which contains 

structures with high drug-likeness and high synthetic 

accessibility, defines the set of compounds that are most 

important for drug design.

Quantitative evaluations of graph based and SMILES 

based models are demonstrated in Table 5. Again, under 

Table 3 Performance of graph based and SMILES based model on scaffold diversification tasks

Results are reported as Mean ± SD . The best performance in each metric is highlighted in italics face. Paired t-tests are carried out for the difference between the 

graph and SMILES based method (*** for p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05)

Condition ( c) R0 I0 Model % valid Rc EORc Diversity ( Ic)

scaffold 1 7.9 × 10
−5 0.46 Graph 0.931 ± 0.008 0.86 ± 0.03 10865 0.45 ± 0.01

SMILES 0.924 ± 0.005 0.87 ± 0.01 10976 0.46 ± 0.01

scaffold 2 1.1 × 10
−4 0.50 Graph 0.900 ± 0.016 0.77 ± 0.04 6972 0.47 ± 0.02*

SMILES 0.896 ± 0:011 0.84 ± 0.01* 7607 0.44 ± 0.01

scaffold 3 7.9 × 10
−5 0.56 Graph 0.940 ± 0.019* 0.56 ± 0.08** 7086 0.60 ± 0.02

SMILES 0.898 ± 0.024 0.37 ± 0.07 4623 0.59 ± 0.03

scaffold 4 5.8 × 10
−3 0.82 Graph 0.982 ± 0.001*** 0.88 ± 0.01 151 0.815 ± 0.001

SMILES 0.969 ± 0.002 0.88 ± 0.00 151 0.819 ± 0.00***

Table 4 The comparison between  condtional generative 

models RL based models in  the  task of  generating 

molecules containing scaffold 4 

Results are reported as Mean ± SD

The best performance in each metric is highlighted in italics face

Model % valid Rc EORc Diversity ( Ic)

REINVENT 0.998 ± 0.000 1.000 ± 0.000 172 0.75 ± 0.01

Naive RL 0.984 ± 0.015 0.999 ± 0.001 172 0.48 ± 0.08

RL + Prior 0.999 ± 0.001 1.000 ± 0.000 172 0.55 ± 0.09

Graph 0.982 ± 0.001 0.88 ± 0.01 151 0.815 ± 0.001

SMILES 0.969 ± 0.002 0.88 ± 0.00 151 0.819 ± 0.000
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all conditions ( C1 ∼ C4 ), the graph based model is able 

to outperform SMILES based model on the rate of valid 

outputs. The difference is most significant for condi-

tions specifying low synthetic accessibility (that is, high 

SAscore, which is given by C3 and C4 ). This observation 

suggests that SMILES based model have difficulty in gen-

erating complex structures while maintaining the struc-

tural validity.

The graph based model also provides better perfor-

mance in terms of RC and EORC as shown in Table  5. 

It is noted that both graph and SMILES based models 

result in comparatively low RC and EORC on condition 

C3 , which corresponds to molecules with high drug-

likeness and low synthetic accessibility. However, this 

result is relatively easy to understand. Since the defini-

tion of drug-likeness contains the requriement for high 

synthetic accessibility, therefore finding molecules with 

high QED score and high SAscore is in itself a difficult 

task. For other conditions, the RC results for both mod-

els varies from 50 to 70%. Those values are lower com-

pared with scaffold based task, but nonetheless showing 

enrichments for all conditions over the distribution 

from ChEMBL. The diversity of generated samples are 

also reported.Different from the performance in %valid 

and Rc , SMILES based method is able to produce out-

puts with slighly higher diversity compared with graph 

based method. The different is statistically significant 

for tasks C1 and C3.

We compared conditional generative model with RL 

based methods using C1 as example. Similar to “Scaf-

fold-Based Generation”, we set σ to 20, and use the dis-

crete score function SC(x) defined in Eq. 27. The results 

are summarized in Table  6. Overall, the performance 

of RL based methods are similar to that in the scaffold-

based task. All RL methods are able to achieve high 

level of Rc , but with lower output diversity.

For a visualized demonstration, the distributions of 

QED and SA score for the output samples from graph 

based generator are shown in Fig. 11. Random samples 

are also chosen for each class and are visualization in 

Fig.  12. The structural features for the output samples 

are mostly consistent with the predefined conditions, 

with small and simple molecules for C1 and highly com-

plex molecules for C4.

a b

Fig. 10 Location of C1 ∼ C4 and c1 ∼ c4 . a Distribution of QED and SAscore in the ChEMBL dataset; b Location of input conditions ( C1 ∼ C4 and 

c1 ∼ c4)

Table 5 Performance of graph based and SMILES based model on property based generation tasks

Results are reported as Mean ± SD . The best performance in each metric is highlighted in italics face. Paired t-tests are carried out for the difference between the 

graph and SMILES based method (*** for p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05)

Condition (C) R0 I0 Model % valid RC EORC Diversity ( Ic)

C1 0.009 0.810 Graph 0.997 ± 0.000*** 0.55 ± 0.01*** 61 0.798 ± 0.002

SMILES 0.995 ± 0.001 0.51 ± 0.00 57 0.806 ± 0.000***

C2 0.012 0.850 Graph 0.970 ± 0.002*** 0.55 ± 0.01** 46 0.841 ± 0.001

SMILES 0.944 ± 0.001 0.52 ± 0.00 43 0.841 ± 0.001

C3 0.011 0.868 Graph 0.957 ± 0.001*** 0.35 ± 0.01** 32 0.864 ± 0.001

SMILES 0.894 ± 0.007 0.31 ± 0.00 28 0.866 ± 0.001**

C4 0.008 0.867 Graph 0.929 ± 0.003*** 0.73 ± 0.01** 91 0.863 ± 0.001

SMILES 0.613 ± 0.015 0.66 ± 0.00 82 0.863 ± 0.000
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Note that conditional models also support genera-

tion based on a given point of QED and SAscore. This 

is demonstrated visually using graph based conditional 

model. Now, the molecule generation process is condi-

tioned on a single points of conditional code c . Here, 

we use four different conditions as specified as follows: 

c1 = (0.84, 1.9) , c2 = (0.27, 2.5) , c3 = (0.84, 3.8) and 

c4 = (0.27, 4.8) . Those conditons are also demonstrated 

in Fig. 10.

The distributions of QED and SAscore for the output 

molecules by graph based model are shown in Fig. 10e–h. 

Results show that, although the requirement is specified 

using a single value of QED and SAscore, the distribution 

of the two properties for output samples are relatively 

dispersed. This result is not surprising since the QED 

and SAscore score are relatively abstract descriptions of 

structural features of molecules, and a small modification 

of molecule structure may lead to significant changes in 

QED and SA scores. Nonetheless, it can be found that 

the generated samples are enriched around the corre-

sponding code c . It is also observed that the distribution 

of SAscore is more concentrated than that of QED. This 

is probably because that SAscore is direct measurement 

of molecular graph complexity, which may be easier to 

model for the graph based generator. In contrast, QED is 

a more abstract descriptor related to various molecular 

properties.

Generating dual inhibitors for JNK3 and GSK‑3β

In this task, the models are used to generate dual inhibi-

tor for JNK3 and GSK-3β . A predictive model is first used 

to label the conditional code for ChEMBL dataset, and 

the conditional graph generator is trained on the labeled 

training set. The two predictors yield good results in 

Fig. 11 Distribution of QED and SAscore for generated results: the upper row indicates distribution of QED and SAscore of molecules generated 

under conditions C1 , C2 , C3 and C4 . The conditions C1 ∼ C4 are shown as intervals represented by error bar. The lower row indicates distribution of 

QED and SAscore of molecules generated using single point conditions ( c1 , c2 , c3 and c4 ). The conditions c1 ∼ c4 are represented as dots in the plot
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general, with AUC =  0.983 for JNK3 and AUC =  0.984 

for GSK-3β . The ROC curves for the two models are 

show in Additional file 2: Figure S4.

Results for both the SMILES based and graph based 

conditional generator are given in Table  7. In terms 

of output validity, graph based model outperforms 

SMILES based model in generating GSK-3β selective 

and JNK3 selective compounds, but for the generation 

of dual inhibitors, SMILES based model achieves better 

performance. In terms of Rc and EORc , SMILES based 

model is able to obtain better performance in generat-

ing dual inhibitors and selective inhibitors against GSK-

3β , while the graph based model performs better in the 

task of generating JNK3 selective inhibitors.The Kcc′ 

matrices for graph based and SMILES based model are 

shown in Table  8. For both graph based and SMILES 

based model, it is noted that when generating com-

pounds that is active to both JNK3 and GSK-3β , there is 

a significant amount of outputs falling into the category 

Table 6 The comparison between  condtional generative 

models RL based models in  the  task of  generating 

molecules satisfying condition C1 (that is, QED > 0.84 

and SA score < 1.9)

Results are reported as Mean ± SD

The best performance in each metric is highlighted in italics face

Model % valid Rc EORc Diversity ( Ic)

REINVENT 0.999 ± 0.001 0.986 ± 0.004 110 0.73 ± 0.07

Naive RL 0.993 ± 0.006 0.948 ± 0.052 105 0.64 ± 0.05

RL + Prior 1.000 ± 0.000 0.999 ± 0.000 111 0.44 ± 0.16

Graph 0.929 ± 0.003 0.73 ± 0.01 91 0.863 ± 0.001

SMILES 0.613 ± 0.015 0.66 ± 0.00 82 0.863 ± 0.000

a b

c d

Fig. 12 Samples generated under the four predefined conditions on drug-likeness and synthetic accessibility score
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of GSK-3β positive and JNK3 negative. Nonetheless, in 

terms of the enrichment over random EORc , the two 

models are able to achieve high performance for all 

selectivity combinations. Note that selective inhibitors 

for GSK-3β are relatively enriched in ChEMBL data-

base, according to the result of the predictor. In com-

parison, the selective inhibitors against JNK3 and the 

dual inhibitor for both JNK3 and GSK-3β are much 

rarer. However, the model is still able to achieve sig-

nificant enrichment for the two types of selectivity. The 

result shows potential application for target combina-

tions that have low data enrichment rate.

Similar to previous tasks, a comparison with RL based 

methods is performed. Here, we mainly focus on the 

task to generate joint inhibitors to JNK3 and GSK-3β . In 

terms of the design of score function, we have employed 

Sc(x) similar to that used in previous tasks (Eq. 27). The 

value of σ is set to 20 for Sd . The results are summarized 

in Table 9. Note that result for RL + Prior is omited, since 

in this task, we found that it tends to collapse quickly to a 

single molecule that could not provide meaningful result. 

The performance of Naive RL and REINVENT is simi-

lar to that reported in previous sections. Both RL based 

methods achieves high value of Rc , but have much lower 

output diversity.

To better demonstrate the structural distribution of 

the generated samples, visualization based on t-SNE [56]

is performed using the ECFP6 fingerprint. The gener-

ated samples under different selectivity specifications and 

molecules in the test set for each target are projected into 

two-dimensional embeddings and are shown in Fig. 13a–

d. According to the result, it is shown that the conditional 

generator tends to produce molecules near the test set 

samples, which is consistent with observations based on 

other methods [12]. It is also observed that molecules 

generated under different selectivity condition occupy 

distinct region of chemical space.

Table 7 Performance of graph based and SMILES based model on inhibitor generation, results are reported as Mean ± SD

The best performance in each metric is highlighted in italics face. Paired t-tests are carried out for the difference between the graph and SMILES based method (*** for 

p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05)

Condition ( c) R0 I0 Model % valid Rc EORc Diversity

GSK-3β(+) 0.0008 0.806 Graph 0.939 ± 0.007 0.53 ± 0.01 666 0.783 ± 0.006

JNK3(+) SMILES 0.959 ± 0.003** 0.56 ± 0.01*** 697 0.784 ± 0.003

GSK-3β(+) 0.01 0.860 Graph 0.932 ± 0.007 0.42 ± 0.01 42 0.851 ± 0.001

JNK3(−) SMILES 0.928 ± 0.003* 0.47 ± 0.01*** 47 0.854 ± 0.001**

GSK-3β(−) 0.0008 0.829 Graph 0.955 ± 0.003** 0.61 ± 0.00*** 759 0.814 ± 0.002

JNK3(+) SMILES 0.944 ± 0.003 0.56 ± 0.01 698 0.821 ± 0.001***

Table 8 The Kcc′ matrix for kinase inhibitor generation task, the diagnal elements Kcc = Rc are omitted since they have 

been reported in Table 7

Results are reported as Mean ± SD . The best performance in each metric is highlighted in italics face.Paired t-tests are carried out for the difference between the graph 

and SMILES based method (*** for p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05)

Condition ( c) Model Results(c′)

GSK‑3β(+),
JNK3(+)

GSK‑3β(+),
JNK3(−)

GSK‑3β(−),
JNK3(+)

GSK-3β(+) Graph – 0.178 ± 0.007 0.018 ± 0.001

JNK3(+) SMILES – 0.167 ± 0.010* 0.063 ± 0.006

GSK-3β(+) Graph 0.034 ± 0.001*** – 0.003 ± 0.000***

JNK3(−) SMILES 0.082 ± 0.007 – 0.023 ± 0.002

GSK-3β(−) Graph 0.024 ± 0.004*** 0.022 ± 0.002*** –

JNK3(+) SMILES 0.083 ± 0.007 0.057 ± 0.002 –

Table 9 The comparison between  condtional generative 

models RL based models in  the  task of  generating dual 

inhibitors against GSK-3β and JNK3

Results are reported as Mean ± SD

The best performance in each metric is highlighted in italics face

Model % valid Rc EORc Diversity ( Ic)

REINVENT 0.999 ± 0.001 0.996 ± 0.005 1245 0.3 ± 0.2

Naive RL 0.987 ± 0.007 0.969 ± 0.022 1211 0.4 ± 0.1

Graph 0.955 ± 0.003 0.61 ± 0.00 759 0.814 ± 0.002

SMILES 0.944 ± 0.003 0.56 ± 0.01 698 0.821 ± 0.001
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For each selectivity condition, several molecules 

are sampled using the model and are demonstrated in 

Fig.  14a–c. By investigating the generated structures in 

detail, it can be observed that the model tends to gen-

erate samples containing well-established scaffold for 

the corresponding target. For JNK3, structures such as 

diaminopurines [57] and triazolones [58], which have 

been frequently used in the design of JNK inhibitors, 

show high occurrence in the generated samples. The 

observation is the same for GSK-3β , with example like 

2,3-bis-arylmaleimides, a class of widely studied inhibi-

tors of GSK-3 [59]. On the other hand, aminopyrimidines 

are frequently shown in the outputs of all selectivity con-

ditions, but they are more enriched in generated dual 

inhibitors. Those observations show good interpretability 

of the outputs, and indicate that the structural features of 

generated samples are in line with the existing knowledge 

about the two targets.

Finally, we report the percentage of reproduced sam-

ples from the test set for each target. From the result, 

10.3% of molecules are reproduced for JNK3 and, 6.0% 

of molecules are reproduced for GSK-3β . Note that mol-

ecules in the test sets for each targets have been excluded 

from the ChEMBL training set in this task, which means 

that the method is capable of generating molecules that 

have been confirmed to be positive, without seeing them 

in the training set of predictive model and conditional 

generative model.

Several recovered actives are shown in Fig.  14d–e. 

Those molecules show relatively high diversity in 

Test Set (GSK-3β)

Generated: GSK-3β(+), JNK3(-)

Test Set (GSK-3β)

Generated: GSK-3β(+), JNK3(+)

Test Set (JNK3)

Generated: GSK-3β(-), JNK3(+)

Test Set (JNK3)

Generated: GSK-3β(+), JNK3(+)

a b

c d

Fig. 13 Visualizing the distribution of generated samples for each target. The figure shows the t-SNE visualization of: a molecules form test set of 

GSK-3β and samples conditioned on JNK3(−), GSK-3β(+), b molecules from test set of GSK-3β and samples conditioned on JNK3(+), GSK-3β(+). c 

Molecules from test set of JNK3 and samples conditioned on JNK3(+), GSK-3β(−), d molecules from test set of JNK3 and samples conditioned on 

JNK3(+), GSK-3β(+)
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structure, indicating that the model does not collapse to 

a subgroup of active compounds. A quantitative evalu-

ation is performed using the internal diversity, and the 

result shows that the recovered GSK-3β inhibitors have 

a internal diversity of 0.819, while the recovered JNK3 

inhibitors have a internal diversity of 0.761. Those values, 

although slighly lower, are relatively close to the diversity 

of test set molecules, which are 0.867 for GSK-3β and 

0.852 for JNK3.

Conclusions
In this work, a new framework for de novo molecular 

design is proposed based on graph generative model and 

is applied to solve different drug design problems. The 

graph generator is designed to be more fitted to the tasks 

of molecule generation using a simple decoding scheme 

and a graph convolutional architecture that is less com-

putationally expensive. Furthermore, a more flexible way 

of introducing decoding invariance is also suggested. The 

a

b

c

d e

Fig. 14 Samples conditioned on different selectivity conditions. a–c Generated samples under different condition of selectivity (a for dual 

inhibitors, b for GSK-3β selective inhibitors, and c for JNK3 selective inhibitors); d, e Some recovered actives of JNK3 and GSK-3β respectively. a 

Generated dual inhibitors. b Generated GSK-3β selective inhibiors. c Generated JNK3 selective inhibiors. d Recovered JNK3 inhibitors. e Recovered 

GSK-3β inhibitors
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method is trained using molecules in ChEMBL dataset 

and has demonstrated better performance compared 

with SMILES based methods, especially in terms of the 

rate of valid outputs.

To generate molecules with specific requirements, we 

propose to use conditional generative model, which offers 

high flexibility and do not require reinforcement learn-

ing. The model is applied to solve problems that is highly 

related to drug design, such as generating molecules 

based on a given scaffold, generating molecules with good 

drug-likeness and synthetic accessibility and the genera-

tion of molecules with specific profile against multiple 

targets. Results have showed that the conditional genera-

tive model can effectively produce enriched outputs based 

on the given requirements. A comparison with RL based 

method is performed, and results shows that although 

conditional generative model yields lower output accu-

racy, but it is capable of achieving higher output diversity.

This work can be extended in various aspects. First of 

all, the models used in this work completely ignores the 

stereochemistry information for molecules. In fact, stere-

ochemistry is extremely important in the process of drug 

development, and introducing this information helps to 

improve the applicability of existing models. Secondly, for 

the target based generation, it will be much more help-

ful to jointly train the generator and the decoder, utilizing 

strategies such as semi-supervised learning [60, 61]. Finally, 

besides the three tasks experimented in this work, condi-

tional graph generator can be used in many other scenarios. 

To summarize, the graph generative architecture proposed 

in this work gives promising result in various drug design 

tasks, and it is worthwhile to explore other potential appli-

cations using this method.
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