
Li et al. J Cheminform (2018) 10:33

https://doi.org/10.1186/s13321-018-0287-6

RESEARCH ARTICLE

Multi-objective de novo drug design
with conditional graph generative model
Yibo Li, Liangren Zhang* and Zhenming Liu*

Abstract

Recently, deep generative models have revealed itself as a promising way of performing de novo molecule design.

However, previous research has focused mainly on generating SMILES strings instead of molecular graphs. Although

available, current graph generative models are are often too general and computationally expensive. In this work, a

new de novo molecular design framework is proposed based on a type of sequential graph generators that do not

use atom level recurrent units. Compared with previous graph generative models, the proposed method is much

more tuned for molecule generation and has been scaled up to cover significantly larger molecules in the ChEMBL

database. It is shown that the graph-based model outperforms SMILES based models in a variety of metrics, especially

in the rate of valid outputs. For the application of drug design tasks, conditional graph generative model is employed.

This method offers highe flexibility and is suitable for generation based on multiple objectives. The results have dem-

onstrated that this approach can be effectively applied to solve several drug design problems, including the genera-

tion of compounds containing a given scaffold, compounds with specific drug-likeness and synthetic accessibility

requirements, as well as dual inhibitors against JNK3 and GSK-3β.

Keywords: Deep learning, De novo drug design, Graph generative model

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The ultimate goal of drug design is the discovery of new

chemical entities with desirable pharmacological proper-

ties. Achieving this goal requires medicinal chemists to

explore the chemical space for new molecules, which is

proved to be extremely difficult, mainly due to the size

and complexity of the chemical space. It is estimated that

there are around 1060−10
100 synthetically available mol-

ecules [1]. Meanwhile, the space of chemical compounds

exhibits a discontinues structure, making searching diffi-

cult to perform [2].

De novo molecular design aims at assisting this pro-

cesses with computer-based methods. Early works have

developed various algorithms to produce new molecular

structures, such as atom based elongation or fragment

based combination [3, 4]. Those algorithms are often

coupled with global optimization techniques such as ant

colony optimization [5, 6], genetic algorithms [7, 8] or

particle swam optimization [9] for the generation of mol-

ecules with desired properties.

Recent developments in deep learning [10] have shed

new light on the area of de novo molecule generation.

Previous works have shown that deep generative models

are very effective in modeling the SMILES representation

of molecules using recurrent neural networks (RNN), an

architecture that has been extensively applied to tasks

related sequential data [11]. Segler et al. [12] applied

SMILES language model (LM) on the task of generating

focused molecule libraries by fine-tuning the trained net-

work with a smaller set of molecules with desirable prop-

erties. Olivecrona et al. [13] used a GRU [14] based LM

trained on the ChEMBL [15] dataset to generate SMILES

string. The mode is then fine-tuned using reinforcement

learning for the generation of molecules with specific

requirements. Popova et al. [16] proposed to integrate the

generative and predictive network together in the genera-

tion phase. Beside language model, Gómez–Bombarelli

et al. [13] used variational autoencoder (VAE) [17] to

generate drug-like compounds from ZINC database [18].

Open Access

*Correspondence: liangren@bjmu.edu.cn; zmliu@bjmu.edu.cn

State Key Laboratory of Natural and Biomimetic Drugs, School

of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian

District, Beijing 100191, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-018-0287-6&domain=pdf

Page 2 of 24Li et al. J Cheminform (2018) 10:33

This work aimed at obtaining a bi-directional mapping

between molecule space and a continuous latent space so

that operations on molecules can be achieved by manipu-

lating the latent representation. Blaschke et al. [19] com-

pared different architectures for VAE and applied it to

the task of designing active compounds against DRD2.

The researches described above demonstrated the

effectiveness of SMILES based model regarding molecule

generation. However, producing valid SMILES strings

requires the model to learn rules that are irrelevant to

molecular structures, such as the SMILES grammar and

atom ordering, which increases the burden of the model

and makes the SMILES string a less preferable repre-

sentation compared with molecular graphs. Research

in deep learning has recently enabled the direct genera-

tion of molecular graphs. Johnson et al. [20] proposed a

sequential generation approach for graphs. Though their

implementation is mainly for reasoning tasks, this frame-

work is potentially applicable to molecule generation. A

more recent method [21] was proposed for generating

the entire graph all at once. This model has been success-

fully applied to the generation of small molecular graphs.

The implementation that is most similar to ours is by the

recent work by Li et al. [22] using a sequential decoding

scheme similar to that by Johnson et al. Decoding invari-

ance is introduced by sampling different atom ordering

from a predefined distribution. This method has been

applied to the generation of molecules with less than 20

heavy atoms from ChEMBL dataset. Though inspiring,

the methods discussed above have a few common prob-

lems. First of all, the generators proposed are relatively

general. This design allows those techniques to be applied

to various scenarios but requires further optimization for

application in molecule generation. Secondly, many of

those models suffer from scalability issue, which restricts

the application to molecules with small sizes.

In this work, we propose a graph-based generator

that is more suited for molecules. The model is scaled to

cover compounds containing up to 50 heavy atoms in the

ChEMBL dataset. Results show the graph-based model

proposed is able to outperform SMILES based methods in a

variety metrics, including the rate of valid outputs, KL and

JS divergence of molecular properties, as well as NLL loss.

A conditional version of the model is employed to solve

various drug design related tasks with multiple objectives,

and results have demonstrated promising performance.

Methods
Molecular graph

Molecular graph is a way of representating the structural

information of molecules using graphs (G = (V ,E)).

Atoms and bonds in the molecule are viewed as graph

nodes (v ∈ V) and edges (e ∈ E). Each node is labeled

with its corresponding atom type, while each edge is

labeled with its corresponding bond type. We refer the

set of all atom types and bond types as A and B respec-

tively. In this work, the atom type is specified using three

variables: the atomic symbol (or equally the atomic num-

ber), the number of explicit hydrogens attached, and the

number of formal charges. For example, the nitrogen

atom in pyrrole can be represented as the triple (“N”, 1,

0). The set of all atom types (A) is extracted from mol-

ecules in the ChEMBL dataset (see Additional file 1: Sup-

plementary Text 1), and contains 33 members in total.

For bonds, we only consider the following four bond

types: single, double, triple and aromatic. A visualized

demonstration of molecular graph is given in Fig. 1.

HN

N
S

H
N

H
N

N
C

N
a Cimetidine:

b Molecular graph:

c Atom (node) types:

Atomic

symbol

Number of

explicit hydrogens

Number of

formal charges

C 0 0

N 0 0

N 1 0

S 0 0

d Bond (edge) types:

Bond type

SINGLE

DOUBLE

TRIPLE

AROMATIC

Fig. 1 Cimetidine and its graph based representation. In the graph

based generative models, molecules (see a) are represented as

graphs G = (V , E) (see b), where atoms are bonds are viewed as

nodes and edges respectively. Atom types are specified by three

parameters: the atomic symbol (or equally the atomic number), the

number of explicit hydrogens attached, and the number of formal

charges (see c). For bond types, only single, double, triple and

aromatic bonds are considered in this work (see d)

Page 3 of 24Li et al. J Cheminform (2018) 10:33

Graph generative model

We now consider the deep generative models that can

directly output molecular graphs. In this work, we mainly

focus on sequential graph generators, which build graph

by iteratively refining its intermediate structure. The pro-

cess starts from the empty graph G0 = (∅, ∅) . At step i,

a graph transition ti is selected from the set of all avail-

able transition actions T (Gi) based on the generation

history (G0, . . . ,Gi) . The selection is done by sampling

ti from a probability distribution ti ∼ pθ (ti|Gi, . . . ,G0) ,

which is parametrized by a deep network. Then, ti is per-

formed on Gi to get the graph structure for the next step

Gi+1 = ti(Gi) . At the final step n, termination operation

t
∗ is performed and the model outputs G = Gn as the

final result.

The entire process is illustrated in Fig. 2. We call the

mapping T, which determines all available graph tran-

sitions at each step, a decoding scheme. The sequence

r = ((G0, t0), (G1, t1), . . . , (Gn, tn)) is called a decoding

route of G, and the distribution pθ (ti|Gi, . . . ,G0) is called

a decoding policy.

Previous graph generative models are usually too gen-

eral and less optimized for the generation of molecular

graphs. Here we offer the following optimizations:

1. A much simpler decoding scheme T is used to

decrease the number of steps required for genera-

tion.

2. No atom level recurrent unit is used in the decoding

policy. Instead, we explored two other options: (1)

parametrizing the decoding policy as a Markov pro-

cess and (2) using only molecule level recurrent unit.

Those modifications helps to increase the scalability

of the model.

3. During the calculation of log-likelihood loss, we sam-

ple r from a parametrized distribution qα(r|G) . The

parameter α controls the degree of randomness of qα ,

offering higher flexibility for the model.

The following three sections are devoted to the detailed

discussions of the optimizations above.

Decoding scheme

The transitions in T (Gi) given the intermediate state Gi is

restricted to the following four types:

1. Initialization At the beginning of the generation, the

only allowed transition is to add the first atom to the

empty graph G0.

Fig. 2 A schematic representation of molecule generation process. Starting with the empty graph G0 , initialization is performed to add the first

atom. At each step, a graph transition (append, connect or terminate) is sampled and performed on the intermediate molecule structure. The

probability for sampling each transition is given by pθ (t|Gi , . . . ,G0) , which is parametrized using deep neural network. Finally, termination operation

is performed to end the generation

Page 4 of 24Li et al. J Cheminform (2018) 10:33

2. Append This action adds a new atom to Gi and con-

nect it to an existing atom with a new bond.

3. Connect This action connects two existing atoms

v1, v2 ∈ Vi with a new bond. For simplicity, we only

allow connections to start from the latest appended

atom v∗ , which means that v1 = v
∗.

4. Termination (t∗) End the generation process.

The entire process is shown in Fig. 2, and a more detailed

illustration is provided in Additional file 2: Figure S1 and

S2. In theory, T(G) should not contain actions that violate

the chemical validity of molecules. However, in order to

test the ability for the model to learn those constraints,

we do not explicity exclude those actions from T(G) dur-

ing training.

Note that compared with the implementation in [22],

the action of adding new atom and the action of connect-

ing it to the molecule is merged into a single “append”

step. This helps to reduce the number of steps during

generation. It is easy to show that the number of steps

required for generating graph G = (V ,E) equals exactly

to |E| + 2 , which is generally much smaller than the

length of the corresponding SMILES string (as shown in

Additional file 2: Figure S3).

Decoding policy

During generation, the decoding policy pθ need to spec-

ify the probability value for each graph transition in

T (Gi) . More specifically, pθ need to output the following

probability values:

1. pAv for each v ∈ Vi A matrix with size |A| × |B| , whose

element (pv)ab represents the probability of append-

ing a new atom of type a ∈ A to atom v with a new

bond of type b ∈ B.

2. pCv for each v ∈ Vi A vector with size |B|, whose ele-

ment (pCv)b represents the probability of connecting

the latest added atom v∗ with v using a new bond of

type b ∈ B.

3. p∗ A scalar value indicating the probability of termi-

nating the generation.

A visualized depiction of pAv , pCv and p∗ is shown in Fig. 2.

The decoding policy pθ is parameterized using neu-

ral network. At each step, the network accepts the the

decoding history (G0, . . . ,Gi) as input and calculates the

probability values (pAv , pCv , p∗) as output. In this work,

we explored two novel graph generation architectures,

namely MolMP and MolRNN. Unlike the methods pro-

posed in [20, 22], the two architectures do not involve

atom level recurrency, which helps to increase the scal-

ability of the model.

MolMP

MolMP models graph generation as a Markov process,

where the transition of Gi only depends on the current

state of the graph, not on the history (Fig. 3a). This

means that pθ (t|Gi, . . . ,G0) = pθ (t|Gi) . Since this type

of architecture does not include any recurrent units, it

will be less expensive compared with RNN based mod-

els. Moreover, the computation at different steps can be

easily parallelized during training. The detailed archi-

tecture of MolMP is given as follows:

1. An initial atom embedding h0v is first generated for

each atom v:

(1)h
0
v = Embedding

θ
(v)

a b

Fig. 3 The two type of graph generative architectures explored in this work: a MolMP: this architecture treats graph generation as a Markov

process, in which the transition of Gi only depends on the current state of the graph, not on the history. b MolRNN: this architecture adds a single

molecule level recurrent unit to MolMP

Page 5 of 24Li et al. J Cheminform (2018) 10:33

h
0
v is determined based on the following information:

(1) the atom type of v and (2) whether v is the latest

appended atom. The dimension of h0v is set to 16.

2. h0v is passed to a sequence of L graph convolutional

layers:

where l = 1, . . . , L . Except the first layer, each con-

volutional layer GraphConvlθ adopts a “BN-ReLU-

Conv” structure as suggested in [23]. The detailed

architecture of graph convolution is described in

“Graph Convolution”. We use six convolution layers

in this work (L = 6), each with 32, 64, 128, 128, 256,

256 output units.

 The outputs from all graph convolutional lay-

ers are then concatenated together, followed by batch

normalization and ReLU:

3. h
skip
v is passed to the fully connected network MLP

FC

θ

to obtain the final atom level representation hv .

MLP
FC

θ
 consists of two linear layers, with 256 and 512

output units each. Batch normalization and ReLU are

applied after each layer.

4. Average pooling is applied at graph level to obtain

the molecule representation hGi
 :

5. The probability value for each action is produced by

first calculate the unnormalized values (̂pAv , p̂Cv and

p̂∗) as follows:

Those values are then normalized to get the final

result:

 where P =
∑

vab(p̂
A
v)ab +

∑
vb(p̂

C
v)b + p̂∗

 MLPθ is a two layer fully connected network with

hidden size 128 and output size |A| × |B| + |B| . This

output is then split into the matrix p̂Av of size |A| × |B|

(2)h
l
v = GraphConvlθ (h

l−1
v ,Gi)

(3)h
skip
v = relu

(

bn(Concat(h1v , . . . ,h
L
v))

)

(4)hv = MLPFC
θ

(h
skip
v)

(5)hGi = AvgPool([hv]v∈Vi)

(6)

[

p̂Av , p̂
C
v

]

= MLPθ (hv ,hGi
)

(7)p̂∗
= MLP

∗
θ
(hGi

)

(8)pAv = p̂Av /P

(9)pCv = p̂Cv /P

(10)p∗
= p̂∗/P

and the vector p̂Cv of length |B|. MLP
∗ is a one layer

fully connected network. Both MLPθ and MLP
∗ uses

exponential activiaton in the output layer.

The architecture of the entire network is shown in

Fig. 4.

MolRNN

The second architecture adds a single molecule level

recurrent unit to MolMP, as shown in Fig. 3. We refer

Fig. 4 Network architecture for MolMP. This figure shows the detailed

model architecture for MolMP. MolRNN adopts a structure highly

similar to that of MolMP, except the inclusion of a molecule level

recurrent unit

Page 6 of 24Li et al. J Cheminform (2018) 10:33

to this method as MolRNN. The model architecture is

specified as follows:

1. First of all, the model generates the atom level

(hv , v ∈ Vi) and molecule level (hGi
) representation

for the graph state Gi . This part of the network uses

the same architecture as that in MolMP.

2. Given hv and hGi
 , the hidden state of the molecule

level recurrent unit (hRNN
i

) is updated as:

where hv∗ is the representation of the latest appended

atom v∗ . The recurrent network RNNθ is employed

using three GRU layers with a hidden size of 512.

3. The probability values pAv , pCv , p∗ are calculated in the

same manner as MolMP by replacing hGi
 in Eqs. 6

and 7 with hRNN

i+1
.

The overall architecture of MolRNN is highly similar to

that of MolMP. However, it is found that the molecule

level recurrent unit in MolRNN provides significant

improvements to the model performance (see “Model

performance and sample quality”), while inducing little

extra computational cost compared with MolMP.

Graph convolution

In this work, we rely on graph convolutional network

(GCN) [24] to extract information from intermediate

graph states Gi . Each graph convolutional layer adopts

the “BN-ReLU-Conv” structure as described before. In

terms of the convolution part, the architecture is struc-

tured as follows:

where hlv is the output representation of atom v at layer l,

and hl−1
v is the input representation. N bond

b
(v) is the set of

all atoms directly connected to atom v with bond of type

b, and N
path

d (v) is the set of all atoms whose distance to

atom v equals to d. D represents the receptive field size,

which is set to 3 in this work. W l , �l

b
 and �l

d
 are weight

parameters of layer l.

In brief, the output representation of atom v at each

layer l (hlv) is calculated according to the following

information:

(11)h
RNN
i+1 = RNNθ (h

RNN
i

,hv∗,hGi
)

(12)

h
l
v = W

l
h
l−1

v

+

∑

b∈B

�l
b

∑

u∈Nbond
b (v)

h
l−1

u

+

∑

1<d≤D

�l
d

∑

u∈N
path
d (v)

h
l−1

u

1. The input representation of v (hl−1
v

),

2. Information of local neighbors, which is given by ∑
b∈B

�l

b

∑
u∈N

bond

b
(v)

h
l−1
u . Note that this part of

information is conditioned on the bond type b

between v and its neighborhood atom u.

3. Information of remote neighbors, given by ∑
1<d≤D �l

d

∑
u∈N

path
d (v)

h
l−1
u . This part of informa-

tion is conditioned on the distance d between v and

its remote neighbor u.

The architecture is illustrated in Fig. 5.

 Our implementation of graph convolution is similar to

the edge conditioned convolution by Simonovsky et al.

[25], except that we directly include the information of

remote neighbors of v in order to achieve a larger recep-

tive field with fewer layers.

Likelihood function

To train the generative model, we need to maximize the

log-likelihood pθ (G) for the training samples. However,

for the step-wise generative models discussed above, the

likelihood is only tractable for a given decoding route

r = ((G0, t0), (G1, t1), . . . , (Gn, tn)):

While the marginal likelihood can be computed as:

where R(G) is the set of all possible decoding route for

G. The marginal likelihood function is intractable for

most molecules encountered in drug design. One way

to resolve this problem is to use importance sampling as

proposed in [22]:

where q(r|G) is a predefined distribution on R(G). Both

the deterministic and the fully randomized q(r|G) were

explored in the previous work [22]. However, a more

desirable solution would lie in somewhere between deter-

ministic decoding and fully randomized decoding. In this

work, instead of sample from the distribution q(r|G), we

sample r from distribution qα(r|G) that is parameterized

by 0 ≤ α ≤ 1 . qα(r|G) is designed such that the decod-

ing will largely follow depth first decoding with canonical

(13)log pθ (G, r) =

n∑

i=0

log pθ (ti|Gi, . . . ,G0)

(14)
log pθ (G) = log

∑

r∈R(G)

pθ (G, r)

(15)log pθ (G) = logEr∼q(r|G)

[

pθ (G, r)

q(r|G)

]

Page 7 of 24Li et al. J Cheminform (2018) 10:33

ordering, but at each step, there is a small possibility

1 − α that the model will make a random mistake. In this

way, the parameter α measures can be used to control

the randomness of the distribution qα . The algorithm is

shown in Additional file 1: Supplementary Text 4.

For α = 1 , the distribution falls back to the deterministic

decoding. The parameter α is treated as a hyperparam-

eter which is optimized for model performance. We tried

α ∈ {1.0, 0.8, 0.6} on both MolMP and MolRNN.

(16)

log pθ (G) = logEr∼qα(r|G)

[

pθ (G, r)

qα(r|G)

]

≥ log
1

k

k
∑

i=1

pθ (G, ri)

qα(ri|G)

Conditional generative model

Most molecule design tasks require to produce com-

pounds satisfying certain criteria, such as being syntheti-

cally available or having a high affinity for a certain target.

Previous researches have developed various methods to

achieve objective directed molecule generation. Segler

et al. [12] used transfer learning in the design of focused

compound libraries. Olivecrona et al. [13] applied rein-

forcement learning (RL) in the objective based chemi-

cal design and have reported promising performance in

various tasks. Guimaraes et al. [26] proposed ORGAN,

which combines SeqGAN with an domain-specific objec-

tive term, and showed that ORGAN is effective in the

optimization of different molecular properties. Neil et al.

[27] created a benchmark analysis of various RL based

method in different tasks of molecule design. In this

work, we explored another way to achieve requirement

Fig. 5 Architecture of graph convolutional layer. At each layer, the output representation for atom v is given by: (1) the input representation of v

from previous layers, (2) information of local neighbors and (3) information of distant neighbors

Page 8 of 24Li et al. J Cheminform (2018) 10:33

based molecule design using conditional generative

model. We first convert the given requirement to the

numerial representation called conditional code (c), and

the generative model is then modified to be conditioned

on c . For graph generative model, this means that the

decoding policy is now pθ (ti|Gi, . . . ,G0, c) (see Fig. 6).

Compared with previous approaches by Olivecrona et al.

and Guimaraes et al., conditional generative model does

not require reinforcement learning, and provides the fol-

lowing flexibilities:

1. The conditional code can incorporate both discrete

and continuous objectives, and can easily scale to

multiple objective.

2. When changing the generation objective, previous

methods usually require the model to be retained

on the new condition. But for conditional generative

models, this can be achieve simply by changing the

conditional code input c.

Both graph based and SMILES based conditional gen-

erators are implemented in this work. For graph based

model, the graph convolution is modified to include c as

input:

Simply state, c is included in the graph convoludion

architecture by adding an additional term � l
c to the

unconditional implementation in Eq. 12. For SMILELS

based model, the conditional code is included by concat-

enating it with the input at each step: x′

i
= Concat(xi, c) .

where xi is the one-hot representation of the SMILES

charactor input at step i.

Conditional models have already been used by the

previous work [21] for molecule generation, but was

restricted to simple properties such as the number of

heavy atoms as conditional codes. Also, the method have

not yet applied to multi-objective molecule generation.

Here, we apply this method to other more complexed

drug design tasks, including scaffold-based generation,

property-based generation and the design of dual inhibi-

tor of JNK3 and GSK-3β (see 6). The best performing

graph and SMILES based generator (see “Model perfor-

mance and sample quality”) are implemented in condi-

tionalized version and applied to those tasks.

Scaffold‑based generation

The concept of molecular scaffold has long been of

significant importance in medicinal chemistry [28].

Though various definitions are available, the most widely

accepted definition is given by Bemis and Murcko [29],

who proposed derive the scaffold of a given molecule

by removing all side chain atoms. Studies have found

various scaffolds that have privileged characteristics in

terms of the activity of certain target [30–32]. Once such

(17)

h
l
v = W

l
h
l−1

v

+

∑

b∈B

�l
b

∑

u∈Nbond
b (v)

h
l−1

u

+

∑

1<d≤D

�l
d

∑

u∈N
path
d (v)

h
l−1

u + � l
c

a

b

c

d

Fig. 6 Conditonal generative models: a For the generation of

molecules based on a given requriement, the requriement (query)

is first converted to the numerical representation called conditoinal

code, the generative model is then modified to be conditioned

on the conditonal code. b Scaffold based molecule generation:

The model is required to generate molecules based on a given

scaffold. This requriement is first converted to the conditional code

called scaffold fingerprint. Then the molecule containing the query

scaffold is generated based on the fingerprint. c Generation based

on drug-likeness and synthetic accessibility: Drug-likeness and

synthetic accessibility are first quantized using QED and SAscore.

Then model then generates molecules based on the two properties.

d Designing of dual inhibitors of JNK3 and GSK-3β : the generation

process is based on the bioactivity fingerprint containing the activity

requirement of each target

Page 9 of 24Li et al. J Cheminform (2018) 10:33

privileged structure is found, a related task is to produce

compound libraries containing such scaffolds for subse-

quent screening.

Here, conditional graph generative model is applied

to generate compounds containing scaffold s, which is

drawn from the pre-defined scaffold set S = {si}
NS

i=1
 . The

set S is extracted from the list of approved drugs in Drug-

Bank [33]. Two types of structures are extracted from

the molecules to construct S: (1) the Bemis–Murcko

scaffolds, and (2) ring assemblies. Ring assemblies are

included in S since we found that including extra struc-

tural information beside Bemis–Murcko scaffolds helps

to improve the conditional generation performance.

Detailed scaffold extraction workflow is shown in Addi-

tional file 1: Supplementary Text 2. For each molecule G,

the conditional code c = (c1, c2, . . . , cNS
) is set to be the

binary vector such that ci = 1 if G contains si as substruc-

ture, and ci = 0 otherwise. We refer c as the scaffold fin-

gerprint of G, as it can in fact be viewed as a substructure

fingerprint based on scaffold set S. To generate molecule

containing substructure s ∈ S , the fingerprint cs for s is

used as conditional code. The output should contain two

type of molecules:

1. Molecules containing s as its Bemis–Murcko scaf-

fold.

2. Molecules whose Bemis–Murcko scaffold contains s

but does not reside inside S.

The procedure is better demonstrated in Fig. 7.

 Using this method, detailed control can be performed on

the scaffold of the output structure.

Generation based on synthetic accessibility

and drug‑likeness

Drug-likeness and synthetic accessibility are two prop-

erties that have significant importance in the develop-

ment of novel drug candidate. Drug-likeness measures

the consistency of a given compound with the currently

known drugs in terms of the structural or physical prop-

erties, and is frequently used to filter out obvious non-

drug like compounds in the early phase of screening [34,

35]. Synthetic accessibility is also an important property

for de novo drug design since subsequent experimental

validation requires synthesis of the given compound [36].

In this task, the model is required to generate molecules

according to a given level of drug-likeness and synthetic

accessibility. The drug-likeness is measured using the

Quantitative Estimate of Drug-likeness (QED) [37], and

synthetic accessibility is evaluated using the SA score

[36]. The conditional code c is defined as c = (QED, SA) ,

where the QED and SA score is all calculated using

RDKit [38].

In practice, instead of specifying a single value of

QED and SA score, we often use intervals to express the

requirements for desired output molecules. This means

that we are required to sample molecules from the dis-

tribution pθ (G|c ∈ C) , where the generation requirement

Fig. 7 Workflow for scaffold based molecule generation. Scaffold set S is first extracted from compounds in DrugBank. The conditional code c is

set to be the substructure fingerprint based on S. Training is performed with the training samples labeled with cG . After training, scaffold based

generation is performed using the fingerprint cs of the query scaffold s ∈ S

Page 10 of 24Li et al. J Cheminform (2018) 10:33

is described as a set C instead of a single point c . Here,

we samples from pθ (G|c ∈ C) by first drawing c from

p(c|c ∈ C) , and then drawing G from pθ (G|c) . Sam-

pling from p(c|c ∈ C) can be achieved by first sample c

from p(c) using molecules from the test set, then filter c

according to the requirement c ∈ C.

Designing dual inhibitor against JNK3 and GSK‑3β

With the ability to model multiple requirements at once,

conditional generative models can be used to design

compounds with specific activity profiles for multiple tar-

gets. Here, we consider the task of designing dual inhibi-

tors against both c-Jun N-terminal kinase 3 (JNK3) and

glycogen synthase kinase-3 beta (GSK-3β). Both of the

two targets are serine/threonine (S/T) kinases, and have

shown to be related to the pathogenesis of various types

of diseases [39, 40]. Notably, both JNK3 and GSK-3β are

shown to be potential target in the treatment of Alzhei-

mer’s disease (AD). Jointly inhibiting JNK3 and GSK-3β

may provide potential benefit for the treatment of AD.

The conditional code is set to be c = (cJNK3, cGSK−3β) ,

where cJNK3 , cGSK−3β are binary values indicating

whether the compound is active against JNK3 and GSK-

3β . For compounds in the ChEMBL dataset, cJNK3 and

cGSK−3β are labeled using a separately trained predictor.

Random forest (RF) classifier, which has been demon-

strated to provide good performance for kinase activity

prediction [41], is used as the predictor for GSK-3β and

JNK3 activity. Here, we use ECFP6 [42] as the descriptor.

The predictive model is trained using activity data from

ExCAPE-DB [43], which is an integrated database with

activity values from ChEMBL and PubChem [44]. Work-

flow for data extraction and predictor training is provided

in Additional file 1: Supplementary Text 3. It is found that

there is only 1.2% of molecules in ChEMBL that is pre-

dicted to be active against JNK3 or GSK-3β . This imbal-

ance results in low enrichment rate during conditioned

generation. For better result, the model is first trained

under the unconditioned setting, and then fine-tuned

based on the 1.2% molecules mentioned above.

Training details

The graph generative models are trained using the

ChEMBL dataset. The data processing workflow largely

follows Olivecrona et al. [13], as described in Addi-

tional file 1: Supplementary Text 1. MXNet [45] is used

to implement the networks, and Adam optimizer [46]

is used for network training. An initial learning rate

of 0.001 is used together with a decay rate of 0.001 for

every 100 iterations. Other parameters of the optimizer

are set to be the default values suggested in [46] (that is,

β1 = 0.9, β2 = 0.999 and ǫ = 10
−8). The training lasts

for 5 epochs, and the size of each mini-batch is set to 200

during the training.

During training, the decoding route is drawn from the

distribution qα(r|G) . We tried three α values: 1.0, 0.8 and

0.6, as discussed previously. For α = 1.0 , k is set to 1 and

the training can be performed on a single Nvidia GeForce

GTX 1080Ti GPU for both MolMP and MolRNN. The

training lasts for 14h for MolMP and 16h for MolRNN.

For α = 0.8 and α = 0.6 , k is set to 5 and the training is

performed synchronously on 4 GPUs. The training lasts

for 30h for MolMP and 35h for MolRNN.

For scaffold based and property based generation tasks,

the conditonal graph generator is trained using the same

setting as unconditional model. For the generation of

GSK-3β and JNK3 inhibitors, the model is first trained

using the full dataset, and the fine tuned on the subset

that is predicted to be active against GSK-3β or JNK3.

The fine-tuning uses a learning rate of 0.0001 and a decay

rate of 0.002 for every 100 iterations. The fine-tuning

lasts for 10 epochs, and takes 1h to finish.

In theory, the hyperparameters for the models men-

tioned above, including the training condition (batch size,

learning rate, decay rate, β1 , β2), model architectures(the

number of convolutional layers, the hidden size in each

layer) as well as α , should be optimized to achieve the

best performance. However, due to the computational

cost of both MolMP and MolRNN, we are unable to

systematically optimize the hyperparameters. A throu-

gout discussion is only given for α , which determines

the degree of randomness of qα . No optimization is per-

formed on model architecture except fitting it into the

memory.

Comparison with SMILES based methods

The proposed graph-based model is compared with sev-

eral SMILES based models. Two type of methods, vari-

ational autoencoder (VAE) and language model (LM),

are considered in this comparison. The implementa-

tion of SMILES VAE follows Gómez-Bombarelli et al.

[2]. The encoder contains three 1D convolutional layers,

with 9, 9, 10 filters and 9, 9, 11 kernels each, and a fully

connected layer with 435 hidden units. The model uses

196 latent variables and a decoder with three GRU lay-

ers with 488 hidden units. VAE for sequential data faces

from the issue of “optimization challenge” [47, 48]. While

the original implementation uses KL-annealing to tackle

this problem, we follow the method provided by Kingma

et al. [49] by controlling the level of free bits. This offers

higher flexibility and stability compared with KL-anneal-

ing. We restrict the minimal level of free bits to 0.03 for

each latent variable.

Page 11 of 24Li et al. J Cheminform (2018) 10:33

For LM, two types recurrent units are adopted. The first

type uses GRU, and includes two architectures: the first

architecture (SMILES GRU1) consists of three GRU lay-

ers with 512 hidden units each, and the second (SMILES

GRU2), uses a wider GRU architecture with 1024 units,

following the implementation by Olivecrona et al. [13].

Beside GRU, we also included a LSTM based SMILES

language model following Segler et al. [12]. This architec-

ture uses three LSTM layers, each with 1024 units.

Comparison with reinforcement learning (RL) based

methods

We also compared the performance of conditional gen-

erative model with three RL based method. The first

method, which is proposed by Olivecrona et al., maxi-

mizes following objective during model optimization:

where p(x) is the Prior network pre-trained using

ChEMBL dataset, and q(x) is the Agent network for task-

specific molecule generation. SMILES GRU2 is used as

the architecture for Prior and Agent.

This method is refered to as “REINVENT” [13]. We

also include the following two baselines in the compari-

son. The first is a non-regularized RL method with the

following objective:

We refer to this method as “Naive RL”. The second

method includes a prior term in addition to 19:

We refer to this method as “RL + Prior”.

Evaluation metrics

Several metrics have been employed to evaluate the per-

formance of generative models:

Sample validity

To test whether the generative models are capable of pro-

ducing chemically correct outputs, 300,000 structures are

generated for each model, and subsequently evalulated by

RDKit for the rate of valid outputs. We also evaluate the

ability of each model to produce novel structures. This is

done by accessing the rate of generated compounds that

do not occure inside the training set.

DKL and DJS for molecular properties

A good molecule generator should correctly model the

distribution of important molecular properties. There-

fore, the distribution of molecular weight (MW), log-par-

tition coefficient (LogP) and QED between the generated

dataset (pg) and the test set (pdata) is compared for each

(18)G(x) = −[log p(x) + σS(x) − log qθ (x)]2

(19)G(x) = σS(x)

(20)G(x) = σS(x) + log p(x)

method using Kullback–Leibler divergence (DKL) and

Jensen–Shannon divergence(DJS):

DKL and DJS are widely used in deep generated models

for both training [17, 50] and evaluation [51]. Here, the

two values are determined using kernel density method

implemented in SciPy [52]. We used a gaussian kernel

with bandwidth selected based on Scott’s Rule [53].

Performance metrics (Rc , Kcc′ and EORc) for task specific

molecule design

For discrete conditional codes c , let Mc be the set con-

taining molecules sampled from distribution pθ (G|c) .

Mc is obtained by first sampling molecule graphs con-

ditioned on c and then removing invalid molecules. The

size of |Mc| is set to 1000. Let Ncc′ be the set of molecules

in Mc that satisfy the condition c′ (c′ may be different

from c). The ratio Kcc′ is defined as:

The matrix Kcc′ can be used to evaluate the ability of the

model to control the output based on conditional code

c . When c = c
′ , this value gives the rate of correctly gen-

erated outputs, denoted by Rc . High quality conditional

models should have a high value of Rc and low values of

Kcc′ for c �= c
′ . In paractice, we find that the value of Kcc′

for scaffold and property based generation is significantly

samller than Rc and have relatively low influence on the

model’s performance. Therefore, the result of Kcc′ is

omitted for scaffold and property based task, and is only

reported for the task of kinase inhibitor design.

Let R0
c be the rate of molecules in the training data that

satisfy condition c . The enrichment over random EORc is

defined as:

The definition is similar to that used in previous work

[12], except that in their implementation R0
c is calculated

using the generated samples from the unconditioned

model pθ (G) . For continuous codes, a subset C of the

conditional code space is used to describe the generation

(21)DKL(pg ||pdata) =

∫
R

pg (x) log
pg (x)

pdata(x)
dx

(22)

DJS(pg ||pdata) =
1

2
DKL

(

pg ||
pg + pdata

2

)

+
1

2
DKL

(

pdata||
pg + pdata

2

)

(23)Kcc′ =
|Ncc′ |

|Mc|

(24)EORc =

Rc

R0
c

Page 12 of 24Li et al. J Cheminform (2018) 10:33

requirements. MC is sampled from pθ (G|c ∈ C) , and val-

ues for KCC ′ , RC and EORC can be calculated in a similar

manner.

Rate of reproduced active compounds

For target based generation tasks, the rate of reproduced

molecules is also reported following previous works [12,

13]. Take JNK3 as an example. During the evaluation,

two sets of outputs are generated using two conditions:

JNK3(+), GSK-3β (−) and JNK3(+), GSK-3β(+). The two

set of outputs are denoted Mc1
and Mc2

respectively. Here,

the size of |Mc1
| and |Mc2

| are both set to 50,000. Let T

be the set containing the active molecules within the test

set of JNK3. The rate of reproduced molecules (reprod) is

calculated as:

For GSK-3β , the calculation can be done in a similar

manner.

Sample diversity

For a good objective based molecule generator, the out-

puts are not only required to satisfy the given condition

c , but also required to be structurally diverse. Benhenda

[54] have suggested that the diversity of the model out-

puts should be consistent with the natural diversity of

molecules satisfying the c . Also, Benhenda proposed

to use the following statistics to evaluate the structural

diversity of a given set of compounds:

where M is the set of sampled molecules, and Td(x, y) is

the Tanimoto-distance between the two molecules x and

y. Td(x, y) is defined using the Tanimoto-similarity Ts :

Td(x, y) = 1 − Ts(x, y) . This metric is called the internal

diversity of the molecule set M.

For each condition c , the natural diversity I0c is first

calculated using molecules in ChEMBL. The diversity of

conditional outputs Ic is then calculated for each model.

Note that when calculating I0c and Ic , we only include

molecules that satisfy the condition c . Finally, the value

|Ic − I
0
c | is compared among different models for their

ability to reconstruct the natural compound diversity.

Results and discussion
Model performance and sample quality

Several randomly generated samples by MolRNN are

grouped by molecular weight and shown in Fig. 8a–c.

The qauntitative comparison between SMILES based and

(25)reprod =
|(Mc1

∪ Mc2
) ∩ T |

|T |

(26)I(M) =
1

|M|2

∑

(x,y)∈M×M

Td(x, y)

graph based models (MolMP and MolRNN) has been

performed, and the results are summarized in Tables 1

and 2. We first analysed the model performance in terms

of the rate of valid outputs and the rate of valid and novel

outputs. It can be seen from the results that both Mol-

RNN and MolMP outperform all SMILES based meth-

ods. It is also noted that changing α from 1.0 to 0.8 can

significantly increase the rate of valid outputs for both

MolMP and MolRNN. Further decreasing α produces

only marginal effect. The high validity of output struc-

tures by graph-based model is not surprising as the gen-

eration of SMILES poses much stricter rules to the output

compared with the generation of molecular graphs.

Figure 8d, e summarize respectively the common mis-

takes made by SMILES-based and graph-based model

during generation. Results in Fig. 8d show that the most

common cause of invalid output for SMILES based mod-

els is grammar mistakes, such as unclosed parentheses

or unpaired ring numberings. But for the graph-based

model, the majority of invalid output is caused by bro-

ken aromaticity, as demonstrated in Fig. 8f. This is likely

a result of stepwise decoding pattern of graph-based

models, as the decoder can only see part of the aromatic

structure during generation, while the determination of

aromaticity requires the information of the entire ring.

It is also observed that mistakes related to atom valance

are relatively minor, meaning that those rules are easy to

learn using graph convolution.

Graph-based methods also have the advantage of giv-

ing highly interpretable outputs compared with SMILES.

This means that a large portion of invalid outputs can be

easily corrected if necessary. For example, broken aro-

maticity can be restored by literately refining the num-

ber explicit hydrogens of aromatic atoms, and unclosed

aromatic rings can be corrected simply by connecting the

two ends using a new aromatic bond. Though possible,

those corrections may introduce additional bias to the

output samples depending on the implementation, thus

not adopted in the subsequent tasks.

Next, we investigate the ability for the generators to

learn the distribution of molecular properties, as dem-

onstrated in Table 2. Results have shown that MolRNN

gives the best performance in DKL and DJS for molecu-

lar weight (MW) and QED, while SMILES GRU2 gives

the best performance for LogP. For MolMP, although it

is able to outperform SMILES GRU1 in the rate of valid

outputs, it fails to give better performance in DKL and

DJS . This observation suggest that the molecule level

recurrent unit in MolRNN can significantly imporved the

ability for the model to learn information about the data

distribution.

When it comes to the influence of α to DKL and DJS , it

is found that changing α from 1.0 to 0.8 can significantly

Page 13 of 24Li et al. J Cheminform (2018) 10:33

improve the perforamnce of MolMP and MolRNN for

all molecular properties. Further decreasing α to 0.6

will have different effect for MolMP and MolRNN. For

MolMP, this will hurt the overall performance of DKL

and DJS , while for MolRNN, this will inprove the per-

formance for molecular weight, but will significantly

decrease the performance of LogP. Overall, α = 0.8 will

be a better choise for MolMP, and α = 0.6 will be more

suited for MolRNN.

Generally, MolRNN have showed significant advan-

tages among all generative mdoels considered. In the sub-

sequent evaluation of conditonal generative models, the

best performing graph based model (MolRNN) and the

best performing SMILES based model (SMILES GRU2)

are implemented as conditonal models and are compared

among all tasks.

a

b

c

d

e

f

Fig. 8 A visualized demonstration of model outputs. a–c. Output samples by MolRNN. Results are grouped by molecular weight (a MW < 300, b

300 ≤ MW < 500, c MW ≥ 500); d, e Common mistakes made by SMILES based model and graph based model respectively; f Examples of broken

aromaticity occurred during graph generation

Table 1 Comparison between SMILES based and graph-

based generators in output validity

Results are reported as Mean ± SD . The best performance in each metric is

highlighted in italics face. Also, for each metric, paired t-test is carried out for

the difference between the best and second performing methods (*** for

p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05). Multiple models are highlighted if

the difference is not significant

Model % valid % novel % valid and novel

SMILES VAE 0.804 ± 0.016 0.986 ± 0.000 0.793 ± 0.016

SMILES GRU1 0.886 ± 0.002 0.984 ± 0.000 0.872 ± 0.002

SMILES GRU2 0.932 ± 0.002 0.965 ± 0.001 0.899 ± 0.002

SMILES LSTM 0.935 ± 0.006 0.975 ± 0.001 0.912 ± 0.006

MolMP (α = 1.0) 0.952 ± 0.002 0.98 ± 0.001 0.933 ± 0.001

MolMP (α = 0.8) 0.962 ± 0.002 0.984 ± 0.001 0.946 ± 0.001

MolMP (α = 0.6) 0.963 ± 0.001 0.988 ± 0.001** 0.951 ± 0.001

MolRNN (α = 1.0) 0.967 ± 0.001 0.959 ± 0.000 0.928 ± 0.001

MolRNN (α = 0.8) 0.970 ± 0.001 0.976 ± 0.001 0.947 ± 0.001

MolRNN (α = 0.6) 0.970 ± 0.001 0.985 ± 0.000 0.955 ± 0.001***

Page 14 of 24Li et al. J Cheminform (2018) 10:33

Scaffold‑based generation

In the first task, conditional generative models are

trained to produce molecules based on given scaf-

folds. To illustrate the result, scaffold 1, extracted from

the antihypertensive drug Candesartan (see Fig. 9a), is

used as an example, along with several related scaffolds

(scaffold 2–4) derived from scaffold 1 (Fig. 9a). Condi-

tional codes c are constructed for each type of scaffold,

and output structures are produced according to the

corresponding code.

Results for both the SMILES based and graph based

conditional generator are given in Table 3. In terms of

output validity, graph based model is able to produce a

higher fraction of valid outputs for scaffolds 1–4, com-

pared with SMILES based methods, which is similar to

the results of unconditional models

In terms of the rate of correctly generated outputs

(Rc), although the models are unable to achieve 100%

correctness, the Rc results are significantly higher

than R0
c , offering high enrichment rate over random.

Both graph based and SMILES based model are able

to achieve EORc > 1000 for scaffold 1–3 as well as

EORc > 100 for scaffold 4, showing promising abil-

ity for the model to produce enriched output accord-

ing to the given scaffold query. By comparing the result

of Rc between the two type of architectures, it is found

that graph based model have a higher performance for

scaffold 3, while SMILES based method have a higher

performance for scaffold 2. The two model have similar

performance for scaffold 1 and scaffold 4.

The structural diversity of the output samples is

also evaluated for each model. Both graph based and

SMILES based methods have resulted in a slightly lower

output diversity Ic compared with the natural diversity

I
0
c . For scaffold 2, the graph based method have better

performance compared with SMILES based method,

while for scaffold 4, the SMILES based methods yields

better result. For scaffold 1 and 3, the difference is not

significant between graph based and SMILES based

method.

A comparison between conditional generative model

and RL based approach is performed, using scaffold

4 as example. We set σ = 20 , and formulate the score

function Sc(x) as follows:

The result is summarized in Table 4. It is easily observed

that all RL based approaches, including Naive RL,

RL + Prior and REINVENT, are capable of achieving

near perfect result on Rc . However, in terms of output

diversity, the RL based methods yields worse perfor-

mance compared with conditional generative models.

Among them, Naive RL result in the lowest output diver-

sity of 0.468, followed by the RL + Prior, whose output

diversity is 0.55. REINVENT results in a much higher

output diversity of 0.750, but is still lower than that of

conditional generative models.

The results above shows that conditional generators

and RL based methods have opposite performance on

Rc and Ic . This is mainly caused by the fact that the two

methods actually operate on different objectives. The

former, which is trained under maximum likelihood esti-

mation (MLE), optimizes DKL(p(x|c)||qθ) (the proof is

given in Additional file 1: Supplementary Text 5). During

training, conditional generative model are encouraged to

cover all modes in the data distribution, but are not pun-

ish for malicious modes, and therefore result in lower Rc.

(27)Sc(x) =

{

1, if x is valid and satisfies c

0, otherwise

Table 2 Comparison between SMILES based and graph-based generators in DKL(×10
−3) and DJS(×10

−3)

Results are reported as Mean ± SD . The best performance in each metric is highlighted in italics face. Paired t-tests are carried out for the difference between the best

and second performing methods (*** for p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05). Multiple models are highlighted if the difference is not significant

Model MW LogP QED

DKL DJS DKL DJS DKL DJS

SMILES VAE 13.5 ± 0.6 3.6 ± 0.2 3.9 ± 0.4 0.9 ± 0.1 2.6 ± 0.4 0.6 ± 0.1

SMILES GRU1 8.6 ± 0.4 2.3 ± 0.1 3.1 ± 0.3 0.7 ± 0.0 1.5 ± 0.3 0.3 ± 0.1

SMILES GRU2 7.8 ± 0:3 2:0 ± 0.1 1.4 ± 0.2 0.3 ± 0.0 2.2 ± 0.3 0.5 ± 0.1

SMILES LSTM 6.5 ± 0.7 1.8 ± 0.2 3.4 ± 1.2 0.8 ± 0.3 1.9 ± 1.3 0.4 ± 0.3

MolMP (α = 1.0) 11.5 ± 1.3 3.4 ± 0.4 7.0 ± 1.8 1.7 ± 0.4 5.3 ± 1.2 1.3 ± 0.3

MolMP (α = 0.8) 8.3 ± 1.6 2.4 ± 0.5 4.3 ± 1.2 0.9 ± 0.2 2.7 ± 0.8 0.6 ± 0.2

MolMP (α = 0.6) 8.4 ± 1.0 2.4 ± 0.3 5.0 ± 1.3 1.1 ± 0.4 3.0 ± 0.9 0.7 ± 0.2

MolRNN (α = 1.0) 5.0 ± 0.6 1.4 ± 0.2 2.8 ± 0.5 0.7 ± 0.1 2.0 ± 0.6 0.5 ± 0.1

MolRNN (α = 0.8) 4.1 ± 0.7 1.1 ± 0.2 1.6 ± 0.3 0.3 ± 0.1 1.0 ± 0.2 0.2 ± 0.0

MolRNN (α = 0.6) 3.3 ± 0.2* 0.9 ± 0.1** 3.0 ± 0.4 0.5 ± 0.1 1.1 ± 0.4 0.2 ± 0.1

Page 15 of 24Li et al. J Cheminform (2018) 10:33

a

b

Fig. 9 Results of scaffold based generation. a Candesartan and the extracted scaffolds (scaffold 1–4); b Output samples based on scaffold 1–4

Page 16 of 24Li et al. J Cheminform (2018) 10:33

The RL based approach, however, optimizes a com-

pletely different objective. It can be proved that

maximizing Eq. 18 is equivalent to minimizing the

reviersed KL divergence DKL(qθ ||p(x|c)) . In fact, if the

score σS(x) is formulated as log p(c|x) , which is the log-

likelihood for the molecule x to satisfy the requirement

c , we can obtain the following relationship between

G(x) ans DKL:

The derivation is given in Additional file 1: Supplemen-

tary Text 6. This objective will force the model to com-

ply with the given condition c , but may result in potential

mode collapse, and therefore lower output diversity. In

short, conditonal generative model and RL based meth-

ods each emphasizes different aspect of the molecule dis-

tribution, and future research may explore the possibility

to combine those methods.

Several generated samples by graph based model are

given for each scaffold in Fig. 9b. Recall that the outputs

given scaffold s should contain two type of molecules:

(1) molecules with s as its Bemis–Murcko scaffold and

(2) molecule whose Bemis–Murcko scaffold contains s

but does not reside inside S. Both types are observed

for scaffold 1–4 as shown in Fig. 9b. By further inves-

tigating the generated samples, it is observed that the

(28)∇θDKL(qθ ||p(x|c)) = −Ex∼qθ
[∇θG(x)]

model seems to have learnt about the side chains char-

acteristics each scaffold. For example, samples gener-

ated from scaffold 1–3 usually have their substitutions

occur at restricted positions, and frequently contains

a long aliphatic side chain. Interestingly, this actu-

ally reflects the structural activity relationship (SAR)

for angiotensin II (Ang II) receptor antagonists [55].

In fact, scaffold 1–3 have long been treated as a privi-

leged structure against Ang II receptors [28], and as a

result, molecules with scaffold 1–3 are largely biased to

those who matches the SAR rules for the target. When

trained with the biased dataset, the model can memo-

rize the underlying structural activity relationship as a

byproduct of scaffold based learning. This characteris-

tic is beneficial for the generation of libraries contain-

ing specified privileged structures.

Generation based on drug‑likeness and synthetic

accessibility

In this task, the generative model is used to produce

molecules according to the requirement on drug-

likeness and synthetic accessibility. The conditional

code is specified as c = (QED, SA) . In the first experi-

ments, the models are required to generate molecules

based on the following requirements expressed as sub-

sets of conditional code space: C1 = (0.84, 1) × (0, 1.9) ,

C2 = (0, 0.27) × (0, 2.5) , C3 = (0.84, 1) × (3.4,+∞) and

C4 = (0, 0.27) × (4.8,+∞).

The values are determined from the distribution of

QED and SA in ChEMBL dataset (see Fig. 10a) using

the 90 and 10% quantile. The conditions are illustrated

in Fig. 10d. The four sets represent four classes of mol-

ecules respectively and the first class C1 , which contains

structures with high drug-likeness and high synthetic

accessibility, defines the set of compounds that are most

important for drug design.

Quantitative evaluations of graph based and SMILES

based models are demonstrated in Table 5. Again, under

Table 3 Performance of graph based and SMILES based model on scaffold diversification tasks

Results are reported as Mean ± SD . The best performance in each metric is highlighted in italics face. Paired t-tests are carried out for the difference between the

graph and SMILES based method (*** for p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05)

Condition (c) R0 I0 Model % valid Rc EORc Diversity (Ic)

scaffold 1 7.9 × 10
−5 0.46 Graph 0.931 ± 0.008 0.86 ± 0.03 10865 0.45 ± 0.01

SMILES 0.924 ± 0.005 0.87 ± 0.01 10976 0.46 ± 0.01

scaffold 2 1.1 × 10
−4 0.50 Graph 0.900 ± 0.016 0.77 ± 0.04 6972 0.47 ± 0.02*

SMILES 0.896 ± 0:011 0.84 ± 0.01* 7607 0.44 ± 0.01

scaffold 3 7.9 × 10
−5 0.56 Graph 0.940 ± 0.019* 0.56 ± 0.08** 7086 0.60 ± 0.02

SMILES 0.898 ± 0.024 0.37 ± 0.07 4623 0.59 ± 0.03

scaffold 4 5.8 × 10
−3 0.82 Graph 0.982 ± 0.001*** 0.88 ± 0.01 151 0.815 ± 0.001

SMILES 0.969 ± 0.002 0.88 ± 0.00 151 0.819 ± 0.00***

Table 4 The comparison between condtional generative

models RL based models in the task of generating

molecules containing scaffold 4

Results are reported as Mean ± SD

The best performance in each metric is highlighted in italics face

Model % valid Rc EORc Diversity (Ic)

REINVENT 0.998 ± 0.000 1.000 ± 0.000 172 0.75 ± 0.01

Naive RL 0.984 ± 0.015 0.999 ± 0.001 172 0.48 ± 0.08

RL + Prior 0.999 ± 0.001 1.000 ± 0.000 172 0.55 ± 0.09

Graph 0.982 ± 0.001 0.88 ± 0.01 151 0.815 ± 0.001

SMILES 0.969 ± 0.002 0.88 ± 0.00 151 0.819 ± 0.000

Page 17 of 24Li et al. J Cheminform (2018) 10:33

all conditions (C1 ∼ C4), the graph based model is able

to outperform SMILES based model on the rate of valid

outputs. The difference is most significant for condi-

tions specifying low synthetic accessibility (that is, high

SAscore, which is given by C3 and C4). This observation

suggests that SMILES based model have difficulty in gen-

erating complex structures while maintaining the struc-

tural validity.

The graph based model also provides better perfor-

mance in terms of RC and EORC as shown in Table 5.

It is noted that both graph and SMILES based models

result in comparatively low RC and EORC on condition

C3 , which corresponds to molecules with high drug-

likeness and low synthetic accessibility. However, this

result is relatively easy to understand. Since the defini-

tion of drug-likeness contains the requriement for high

synthetic accessibility, therefore finding molecules with

high QED score and high SAscore is in itself a difficult

task. For other conditions, the RC results for both mod-

els varies from 50 to 70%. Those values are lower com-

pared with scaffold based task, but nonetheless showing

enrichments for all conditions over the distribution

from ChEMBL. The diversity of generated samples are

also reported.Different from the performance in %valid

and Rc , SMILES based method is able to produce out-

puts with slighly higher diversity compared with graph

based method. The different is statistically significant

for tasks C1 and C3.

We compared conditional generative model with RL

based methods using C1 as example. Similar to “Scaf-

fold-Based Generation”, we set σ to 20, and use the dis-

crete score function SC(x) defined in Eq. 27. The results

are summarized in Table 6. Overall, the performance

of RL based methods are similar to that in the scaffold-

based task. All RL methods are able to achieve high

level of Rc , but with lower output diversity.

For a visualized demonstration, the distributions of

QED and SA score for the output samples from graph

based generator are shown in Fig. 11. Random samples

are also chosen for each class and are visualization in

Fig. 12. The structural features for the output samples

are mostly consistent with the predefined conditions,

with small and simple molecules for C1 and highly com-

plex molecules for C4.

a b

Fig. 10 Location of C1 ∼ C4 and c1 ∼ c4 . a Distribution of QED and SAscore in the ChEMBL dataset; b Location of input conditions (C1 ∼ C4 and

c1 ∼ c4)

Table 5 Performance of graph based and SMILES based model on property based generation tasks

Results are reported as Mean ± SD . The best performance in each metric is highlighted in italics face. Paired t-tests are carried out for the difference between the

graph and SMILES based method (*** for p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05)

Condition (C) R0 I0 Model % valid RC EORC Diversity (Ic)

C1 0.009 0.810 Graph 0.997 ± 0.000*** 0.55 ± 0.01*** 61 0.798 ± 0.002

SMILES 0.995 ± 0.001 0.51 ± 0.00 57 0.806 ± 0.000***

C2 0.012 0.850 Graph 0.970 ± 0.002*** 0.55 ± 0.01** 46 0.841 ± 0.001

SMILES 0.944 ± 0.001 0.52 ± 0.00 43 0.841 ± 0.001

C3 0.011 0.868 Graph 0.957 ± 0.001*** 0.35 ± 0.01** 32 0.864 ± 0.001

SMILES 0.894 ± 0.007 0.31 ± 0.00 28 0.866 ± 0.001**

C4 0.008 0.867 Graph 0.929 ± 0.003*** 0.73 ± 0.01** 91 0.863 ± 0.001

SMILES 0.613 ± 0.015 0.66 ± 0.00 82 0.863 ± 0.000

Page 18 of 24Li et al. J Cheminform (2018) 10:33

Note that conditional models also support genera-

tion based on a given point of QED and SAscore. This

is demonstrated visually using graph based conditional

model. Now, the molecule generation process is condi-

tioned on a single points of conditional code c . Here,

we use four different conditions as specified as follows:

c1 = (0.84, 1.9) , c2 = (0.27, 2.5) , c3 = (0.84, 3.8) and

c4 = (0.27, 4.8) . Those conditons are also demonstrated

in Fig. 10.

The distributions of QED and SAscore for the output

molecules by graph based model are shown in Fig. 10e–h.

Results show that, although the requirement is specified

using a single value of QED and SAscore, the distribution

of the two properties for output samples are relatively

dispersed. This result is not surprising since the QED

and SAscore score are relatively abstract descriptions of

structural features of molecules, and a small modification

of molecule structure may lead to significant changes in

QED and SA scores. Nonetheless, it can be found that

the generated samples are enriched around the corre-

sponding code c . It is also observed that the distribution

of SAscore is more concentrated than that of QED. This

is probably because that SAscore is direct measurement

of molecular graph complexity, which may be easier to

model for the graph based generator. In contrast, QED is

a more abstract descriptor related to various molecular

properties.

Generating dual inhibitors for JNK3 and GSK‑3β

In this task, the models are used to generate dual inhibi-

tor for JNK3 and GSK-3β . A predictive model is first used

to label the conditional code for ChEMBL dataset, and

the conditional graph generator is trained on the labeled

training set. The two predictors yield good results in

Fig. 11 Distribution of QED and SAscore for generated results: the upper row indicates distribution of QED and SAscore of molecules generated

under conditions C1 , C2 , C3 and C4 . The conditions C1 ∼ C4 are shown as intervals represented by error bar. The lower row indicates distribution of

QED and SAscore of molecules generated using single point conditions (c1 , c2 , c3 and c4). The conditions c1 ∼ c4 are represented as dots in the plot

Page 19 of 24Li et al. J Cheminform (2018) 10:33

general, with AUC = 0.983 for JNK3 and AUC = 0.984

for GSK-3β . The ROC curves for the two models are

show in Additional file 2: Figure S4.

Results for both the SMILES based and graph based

conditional generator are given in Table 7. In terms

of output validity, graph based model outperforms

SMILES based model in generating GSK-3β selective

and JNK3 selective compounds, but for the generation

of dual inhibitors, SMILES based model achieves better

performance. In terms of Rc and EORc , SMILES based

model is able to obtain better performance in generat-

ing dual inhibitors and selective inhibitors against GSK-

3β , while the graph based model performs better in the

task of generating JNK3 selective inhibitors.The Kcc′

matrices for graph based and SMILES based model are

shown in Table 8. For both graph based and SMILES

based model, it is noted that when generating com-

pounds that is active to both JNK3 and GSK-3β , there is

a significant amount of outputs falling into the category

Table 6 The comparison between condtional generative

models RL based models in the task of generating

molecules satisfying condition C1 (that is, QED > 0.84

and SA score < 1.9)

Results are reported as Mean ± SD

The best performance in each metric is highlighted in italics face

Model % valid Rc EORc Diversity (Ic)

REINVENT 0.999 ± 0.001 0.986 ± 0.004 110 0.73 ± 0.07

Naive RL 0.993 ± 0.006 0.948 ± 0.052 105 0.64 ± 0.05

RL + Prior 1.000 ± 0.000 0.999 ± 0.000 111 0.44 ± 0.16

Graph 0.929 ± 0.003 0.73 ± 0.01 91 0.863 ± 0.001

SMILES 0.613 ± 0.015 0.66 ± 0.00 82 0.863 ± 0.000

a b

c d

Fig. 12 Samples generated under the four predefined conditions on drug-likeness and synthetic accessibility score

Page 20 of 24Li et al. J Cheminform (2018) 10:33

of GSK-3β positive and JNK3 negative. Nonetheless, in

terms of the enrichment over random EORc , the two

models are able to achieve high performance for all

selectivity combinations. Note that selective inhibitors

for GSK-3β are relatively enriched in ChEMBL data-

base, according to the result of the predictor. In com-

parison, the selective inhibitors against JNK3 and the

dual inhibitor for both JNK3 and GSK-3β are much

rarer. However, the model is still able to achieve sig-

nificant enrichment for the two types of selectivity. The

result shows potential application for target combina-

tions that have low data enrichment rate.

Similar to previous tasks, a comparison with RL based

methods is performed. Here, we mainly focus on the

task to generate joint inhibitors to JNK3 and GSK-3β . In

terms of the design of score function, we have employed

Sc(x) similar to that used in previous tasks (Eq. 27). The

value of σ is set to 20 for Sd . The results are summarized

in Table 9. Note that result for RL + Prior is omited, since

in this task, we found that it tends to collapse quickly to a

single molecule that could not provide meaningful result.

The performance of Naive RL and REINVENT is simi-

lar to that reported in previous sections. Both RL based

methods achieves high value of Rc , but have much lower

output diversity.

To better demonstrate the structural distribution of

the generated samples, visualization based on t-SNE [56]

is performed using the ECFP6 fingerprint. The gener-

ated samples under different selectivity specifications and

molecules in the test set for each target are projected into

two-dimensional embeddings and are shown in Fig. 13a–

d. According to the result, it is shown that the conditional

generator tends to produce molecules near the test set

samples, which is consistent with observations based on

other methods [12]. It is also observed that molecules

generated under different selectivity condition occupy

distinct region of chemical space.

Table 7 Performance of graph based and SMILES based model on inhibitor generation, results are reported as Mean ± SD

The best performance in each metric is highlighted in italics face. Paired t-tests are carried out for the difference between the graph and SMILES based method (*** for

p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05)

Condition (c) R0 I0 Model % valid Rc EORc Diversity

GSK-3β(+) 0.0008 0.806 Graph 0.939 ± 0.007 0.53 ± 0.01 666 0.783 ± 0.006

JNK3(+) SMILES 0.959 ± 0.003** 0.56 ± 0.01*** 697 0.784 ± 0.003

GSK-3β(+) 0.01 0.860 Graph 0.932 ± 0.007 0.42 ± 0.01 42 0.851 ± 0.001

JNK3(−) SMILES 0.928 ± 0.003* 0.47 ± 0.01*** 47 0.854 ± 0.001**

GSK-3β(−) 0.0008 0.829 Graph 0.955 ± 0.003** 0.61 ± 0.00*** 759 0.814 ± 0.002

JNK3(+) SMILES 0.944 ± 0.003 0.56 ± 0.01 698 0.821 ± 0.001***

Table 8 The Kcc′ matrix for kinase inhibitor generation task, the diagnal elements Kcc = Rc are omitted since they have

been reported in Table 7

Results are reported as Mean ± SD . The best performance in each metric is highlighted in italics face.Paired t-tests are carried out for the difference between the graph

and SMILES based method (*** for p ≤ 0.001 , ** for p ≤ 0.01 and * for p ≤ 0.05)

Condition (c) Model Results(c′)

GSK‑3β(+),
JNK3(+)

GSK‑3β(+),
JNK3(−)

GSK‑3β(−),
JNK3(+)

GSK-3β(+) Graph – 0.178 ± 0.007 0.018 ± 0.001

JNK3(+) SMILES – 0.167 ± 0.010* 0.063 ± 0.006

GSK-3β(+) Graph 0.034 ± 0.001*** – 0.003 ± 0.000***

JNK3(−) SMILES 0.082 ± 0.007 – 0.023 ± 0.002

GSK-3β(−) Graph 0.024 ± 0.004*** 0.022 ± 0.002*** –

JNK3(+) SMILES 0.083 ± 0.007 0.057 ± 0.002 –

Table 9 The comparison between condtional generative

models RL based models in the task of generating dual

inhibitors against GSK-3β and JNK3

Results are reported as Mean ± SD

The best performance in each metric is highlighted in italics face

Model % valid Rc EORc Diversity (Ic)

REINVENT 0.999 ± 0.001 0.996 ± 0.005 1245 0.3 ± 0.2

Naive RL 0.987 ± 0.007 0.969 ± 0.022 1211 0.4 ± 0.1

Graph 0.955 ± 0.003 0.61 ± 0.00 759 0.814 ± 0.002

SMILES 0.944 ± 0.003 0.56 ± 0.01 698 0.821 ± 0.001

Page 21 of 24Li et al. J Cheminform (2018) 10:33

For each selectivity condition, several molecules

are sampled using the model and are demonstrated in

Fig. 14a–c. By investigating the generated structures in

detail, it can be observed that the model tends to gen-

erate samples containing well-established scaffold for

the corresponding target. For JNK3, structures such as

diaminopurines [57] and triazolones [58], which have

been frequently used in the design of JNK inhibitors,

show high occurrence in the generated samples. The

observation is the same for GSK-3β , with example like

2,3-bis-arylmaleimides, a class of widely studied inhibi-

tors of GSK-3 [59]. On the other hand, aminopyrimidines

are frequently shown in the outputs of all selectivity con-

ditions, but they are more enriched in generated dual

inhibitors. Those observations show good interpretability

of the outputs, and indicate that the structural features of

generated samples are in line with the existing knowledge

about the two targets.

Finally, we report the percentage of reproduced sam-

ples from the test set for each target. From the result,

10.3% of molecules are reproduced for JNK3 and, 6.0%

of molecules are reproduced for GSK-3β . Note that mol-

ecules in the test sets for each targets have been excluded

from the ChEMBL training set in this task, which means

that the method is capable of generating molecules that

have been confirmed to be positive, without seeing them

in the training set of predictive model and conditional

generative model.

Several recovered actives are shown in Fig. 14d–e.

Those molecules show relatively high diversity in

Test Set (GSK-3β)

Generated: GSK-3β(+), JNK3(-)

Test Set (GSK-3β)

Generated: GSK-3β(+), JNK3(+)

Test Set (JNK3)

Generated: GSK-3β(-), JNK3(+)

Test Set (JNK3)

Generated: GSK-3β(+), JNK3(+)

a b

c d

Fig. 13 Visualizing the distribution of generated samples for each target. The figure shows the t-SNE visualization of: a molecules form test set of

GSK-3β and samples conditioned on JNK3(−), GSK-3β(+), b molecules from test set of GSK-3β and samples conditioned on JNK3(+), GSK-3β(+). c

Molecules from test set of JNK3 and samples conditioned on JNK3(+), GSK-3β(−), d molecules from test set of JNK3 and samples conditioned on

JNK3(+), GSK-3β(+)

Page 22 of 24Li et al. J Cheminform (2018) 10:33

structure, indicating that the model does not collapse to

a subgroup of active compounds. A quantitative evalu-

ation is performed using the internal diversity, and the

result shows that the recovered GSK-3β inhibitors have

a internal diversity of 0.819, while the recovered JNK3

inhibitors have a internal diversity of 0.761. Those values,

although slighly lower, are relatively close to the diversity

of test set molecules, which are 0.867 for GSK-3β and

0.852 for JNK3.

Conclusions
In this work, a new framework for de novo molecular

design is proposed based on graph generative model and

is applied to solve different drug design problems. The

graph generator is designed to be more fitted to the tasks

of molecule generation using a simple decoding scheme

and a graph convolutional architecture that is less com-

putationally expensive. Furthermore, a more flexible way

of introducing decoding invariance is also suggested. The

a

b

c

d e

Fig. 14 Samples conditioned on different selectivity conditions. a–c Generated samples under different condition of selectivity (a for dual

inhibitors, b for GSK-3β selective inhibitors, and c for JNK3 selective inhibitors); d, e Some recovered actives of JNK3 and GSK-3β respectively. a

Generated dual inhibitors. b Generated GSK-3β selective inhibiors. c Generated JNK3 selective inhibiors. d Recovered JNK3 inhibitors. e Recovered

GSK-3β inhibitors

Page 23 of 24Li et al. J Cheminform (2018) 10:33

method is trained using molecules in ChEMBL dataset

and has demonstrated better performance compared

with SMILES based methods, especially in terms of the

rate of valid outputs.

To generate molecules with specific requirements, we

propose to use conditional generative model, which offers

high flexibility and do not require reinforcement learn-

ing. The model is applied to solve problems that is highly

related to drug design, such as generating molecules

based on a given scaffold, generating molecules with good

drug-likeness and synthetic accessibility and the genera-

tion of molecules with specific profile against multiple

targets. Results have showed that the conditional genera-

tive model can effectively produce enriched outputs based

on the given requirements. A comparison with RL based

method is performed, and results shows that although

conditional generative model yields lower output accu-

racy, but it is capable of achieving higher output diversity.

This work can be extended in various aspects. First of

all, the models used in this work completely ignores the

stereochemistry information for molecules. In fact, stere-

ochemistry is extremely important in the process of drug

development, and introducing this information helps to

improve the applicability of existing models. Secondly, for

the target based generation, it will be much more help-

ful to jointly train the generator and the decoder, utilizing

strategies such as semi-supervised learning [60, 61]. Finally,

besides the three tasks experimented in this work, condi-

tional graph generator can be used in many other scenarios.

To summarize, the graph generative architecture proposed

in this work gives promising result in various drug design

tasks, and it is worthwhile to explore other potential appli-

cations using this method.

Abbreviations

SMILES: simplified molecular-input line-entry system; RNN: recurrent neural

network; LM: language model; RF: random forest; RL: reinforcement learning;

VAE: variational autoencoder; GRU : gated recurrent unit; DRD2: dopamine

receptor D2; JNK3: c-Jun N-terminal kinase 3; GSK3β: glycogen synthase

kinase-3 beta; QED: quantitative estimate of drug-likeness; SA: synthetic acces-

sibility; ECFP: extended connectivity fingerprint; t-SNE: t-distributed stochastic

neighbor embedding; DKL: Kullback–Leibler divergence; DJS: Jensen–Shannon

divergence.

Author’s contributions

YL formulated the concept and contributed to the implementation. YL wrote

the manuscript, LZ and ZL reviewed and edited the manuscript. All authors

read and approved the final manuscript.

Additional files

Additional file 1. Containing additional information about the imple-

mentation details of experiments.

Additional file 2. Contianing supplementary figures.

Acknowledgements

We would like to thank Xiaodong Dou for his help on the discussion of gener-

ated inhibitors of JNK3 and GSK3β. Thanks to Bo Yang who helped with the

profiling of Additional file 1: Supplementary Text 8.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The materials supporing this article, including the source code, sampled

molecules and pretrained models, are available at: https ://githu b.com/kevin

id/molec ule_gener ator.

Funding

This research was supported by the National Natural Science Foundation of

China (Grant Nos. 81573273, 81673279 21572010 and 21772005), the National

Major Scientific and Technological Special Project for “Significant New Drugs

Development” (2018ZX09735001-003) and Beijing Natural Science Foundation

(7172118).

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors declare no competing fnancial interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

Received: 22 February 2018 Accepted: 13 July 2018

References

 1. Schneider G, Fechner U (2005) Computer-based de novo design of drug-

like molecules. Nat Rev Drug Discov 4(8):649–663

 2. Gómez-Bombarelli R, Duvenaud D, Hernández-Lobato JM, Aguilera-Ipar-

raguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2016) Automatic chemi-

cal design using a data-driven continuous representation of molecules.

arXiv preprint arXiv :1610.02415 v1

 3. Böhm H-J (1992) The computer program ludi: a new method for the de

novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1):61–78

 4. Mauser H, Stahl M (2007) Chemical fragment spaces for de novo design. J

Chem Inf Model 47(2):318–324

 5. Reutlinger M, Rodrigues T, Schneider P, Schneider G (2014) Multi-

objective molecular de novo design by adaptive fragment prioritization.

Angew Chem Int Ed 53(16):4244–4248

 6. Hiss JA, Reutlinger M, Koch CP, Perna AM, Schneider P, Rodrigues T, Haller

S, Folkers G, Weber L, Baleeiro RB (2014) Combinatorial chemistry by ant

colony optimization. Future Med Chem 6(3):267–280

 7. Dey F, Caflisch A (2008) Fragment-based de novo ligand design by multi-

objective evolutionary optimization. J Chem Inf Model 48(3):679–690

 8. Yuan Y, Pei J, Lai L (2011) Ligbuilder 2: a practical de novo drug design

approach. J Chem Inf Model 51(5):1083–1091

 9. Hartenfeller M, Proschak E, Schüller A, Schneider G (2008) Concept of

combinatorial de novo design of drug-like molecules by particle swarm

optimization. Chem Biol Drug Des 72(1):16–26

 10. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press,

Massachusetts

 11. Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural

networks for sequence learning. arXiv preprint arXiv :1506.00019

 12. Segler MH, Kogej T, Tyrchan C, Waller MP (2018) Generating focussed

molecule libraries for drug discovery with recurrent neural networks. ACS

Cent Sci 4(1):120–130

 13. Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de-novo

design through deep reinforcement learning. J Cheminform 9(1):48

https://doi.org/10.1186/s13321-018-0287-6
https://doi.org/10.1186/s13321-018-0287-6
https://github.com/kevinid/molecule_generator
https://github.com/kevinid/molecule_generator
http://arxiv.org/abs/1610.02415v1
http://arxiv.org/abs/1506.00019

Page 24 of 24Li et al. J Cheminform (2018) 10:33

 14. Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk

H, Bengio Y (2014) Learning phrase representations using RNN encoder–

decoder for statistical machine translation. arXiv preprint arXiv :1406.1078

 15. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light

Y, McGlinchey S, Michalovich D, Al-Lazikani B (2011) Chembl: a

large-scale bioactivity database for drug discovery. Nucleic Acids Res

40(D1):1100–1107

 16. Popova M, Isayev O, Tropsha A (2017) Deep reinforcement learning for

de-novo drug design. arXiv preprint arXiv :1711.10907

 17. Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv

preprint arXiv :1312.6114

 18. And JJI, Shoichet BK (2005) Zinc: a free database of commercially avail-

able compounds for virtual screening. J Chem Inf Model 45(1):177

 19. Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H (2018) Applica-

tion of generative autoencoder in de novo molecular design. Mol Inform

37(1–2):1700123

 20. Johnson DD (2017) Learning graphical state transitions. In: International

conference on learning representations

 21. Simonovsky M, Komodakis N (2018) Graphvae: towards generation

of small graphs using variational autoencoders. arXiv preprint arXiv

:1802.03480

 22. Li Y, Vinyals O, Dyer C, Pascanu R, Battaglia P (2018) Learning deep

generative models of graphs. In: International conference on learning

representations

 23. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual

networks. arXiv preprint arXiv :1603.05027

 24. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS,

Leswing K, Pande V (2018) Moleculenet: a benchmark for molecular

machine learning. arXiv preprint arXiv :1703.00564

 25. Simonovsky M, Komodakis N (2017) Dynamic edge-conditioned filters in

convolutional neural networks on graphs. arXiv preprint arXiv :1704.02901

 26. Lima Guimaraes G, Sanchez-Lengeling B, Outeiral C, Cunha Farias PL,

Aspuru-Guzik A (2017) Objective-reinforced generative adversarial

networks (ORGAN) for sequence generation models. arXiv preprint arXiv

:1705.10843

 27. Neil D, Segler M, Guasch L, Ahmed M, Plumbley D, Sellwood M, Brown N

(2018) Exploring deep recurrent models with reinforcement learning for

molecule design. In: International conference on learning representations

 28. Braese S (2015) Privileged scaffolds in medicinal chemistry:design, syn-

thesis, evaluation. RSC Publishing, London

 29. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecu-

lar frameworks. J Med Chem 39(15):2887–2893

 30. Reis J, Gaspar A, Milhazes N, Borges FM (2017) Chromone as a

privileged scaffold in drug discovery: recent advances. J Med Chem

60(19):7941–7957

 31. Schuffenhauer A, Ertl P, Roggo S, Wetzel S, Koch MA, Waldmann H (2007)

The scaffold tree: visualization of the scaffold universe by hierarchical

scaffold classification. J Chem Inf Model 47(1):47–58

 32. Varin T, Schuffenhauer A, Ertl P, Renner S (2011) Mining for bioactive scaf-

folds with scaffold networks: improved compound set enrichment from

primary screening data. J Chem Inf Model 51(7):1528–1538

 33. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P,

Chang Z, Woolsey J (2006) Drugbank: a comprehensive resource for in

silico drug discovery and exploration. Nucleic Acids Res 34(Database

issue):668–672

 34. Kadam R, Roy N (2007) Recent trends in drug-likeness prediction: a com-

prehensive review of in silico methods. Indian J Pharm Sci 69(5):609

 35. Tian S, Wang J, Li Y, Li D, Xu L, Hou T (2015) The application of in silico

drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev

86:2–10

 36. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score

of drug-like molecules based on molecular complexity and fragment

contributions. J Cheminform 1(1):8

 37. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quanti-

fying the chemical beauty of drugs. Nat Chem 4(2):90–98

 38. RDKit: Open Source Cheminformatics. http://www.rdkit .org/

 39. Koch P, Gehringer M, Laufer SA (2014) Inhibitors of c-jun N-terminal

kinases: an update. J Med Chem 58(1):72–95

 40. McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Basecke J,

Libra M, Nicoletti F, Cocco L, Martelli AM (2014) Diverse roles of gsk-3:

tumor promoter-tumor suppressor, target in cancer therapy. Adv Biol

Regul 54:176

 41. Merget B, Turk S, Eid S, Rippmann F, Fulle S (2016) Profiling prediction of

kinase inhibitors: toward the virtual assay. J Med Chem 60(1):474–485

 42. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf

Model 50(5):742–754

 43. Sun J, Jeliazkova N, Chupakhin V, Golib-Dzib J-F, Engkvist O, Carlsson L,

Wegner J, Ceulemans H, Georgiev I, Jeliazkov V (2017) Excape-db: an

integrated large scale dataset facilitating big data analysis in chemog-

enomics. J Cheminform 9(1):17

 44. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) Pubchem: integrated

platform of small molecules and biological activities. Annu Rep Comput

Chem 4:217–241

 45. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z

(2015) Mxnet: A flexible and efficient machine learning library for hetero-

geneous distributed systems. CoRR abs/1512.01274

 46. Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv

preprint arXiv :1412.6980

 47. Bowman SR, Vilnis L, Vinyals O, Dai AM, Jozefowicz R, Bengio S (2015)

Generating sentences from a continuous space. arXiv preprint arXiv

:1511.06349

 48. Chen X, Kingma DP, Salimans T, Duan Y, Dhariwal P, Schulman J, Sutskever

I, Abbeel P (2016) Variational lossy autoencoder. arXiv preprint arXiv

:1611.02731

 49. Kingma DP, Salimans T, Jozefowicz R, Chen X, Sutskever I, Welling M

Improved variational inference with inverse autoregressive flow. In:

Advances in neural information processing systems, pp 4743–4751

 50. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair

S, Courville A, Bengio Y (2014) Generative adversarial networks. arXiv

preprint arXiv :1406.2661

 51. Im DJ, Ma AH, Taylor GW, Branson K (2018) Quantitatively evaluating

GANs with divergences proposed for training. In: International confer-

ence on learning representations

 52. Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific

tools for Python. http://www.scipy .org/

 53. Scott DW (2008) Multivariate density estimation: theory, practice, and

visualization. Wiley, New York

 54. Benhenda M (2017) ChemGAN challenge for drug discovery: can AI

reproduce natural chemical diversity? arXiv preprint arXiv :1708.08227

 55. Almansa C, Gómez LA, Cavalcanti FL, de Arriba AF, García-Rafanell J, Forn

J (1997) Synthesis and structure: activity relationship of a new series of

potent at1 selective angiotensin ii receptor antagonists: 5-(biphenyl-

4-ylmethyl) pyrazoles. J Med Chem 40(4):547–558

 56. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach

Learn Res 9(Nov):2579–2605

 57. Krenitsky VP, Nadolny L, Delgado M, Ayala L, Clareen SS, Hilgraf R, Albers

R, Hegde S, D’Sidocky N, Sapienza J (2012) Discovery of cc-930, an orally

active anti-fibrotic JNK inhibitor. Bioorg Med Chem Lett 22(3):1433–1438

 58. Probst GD, Bowers S, Sealy JM, Truong AP, Hom RK, Galemmo RA, Konradi

AW, Sham HL, Quincy DA, Pan H (2011) Highly selective c-jun N-terminal

kinase (JNK) 2 and 3 inhibitors with in vitro CNS-like pharmacoki-

netic properties prevent neurodegeneration. Bioorg Med Chem Lett

21(1):315–319

 59. Osolodkin DI, Palyulin VA, Zefirov NS (2013) Glycogen synthase kinase 3

as an anticancer drug target: novel experimental findings and trends in

the design of inhibitors. Curr Pharm Des 19(4):665–679

 60. Kingma DP, Mohamed S, Rezende DJ, Welling M Semi-supervised learn-

ing with deep generative models. In: Advances in neural information

processing systems, pp 3581–3589

 61. Siddharth N, Paige B, de Meent V, Desmaison A, Wood F, Goodman ND,

Kohli P, Torr PH (2017) Learning disentangled representations with semi-

supervised deep generative models. arXiv preprint arXiv :1706.00400

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1711.10907
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1802.03480
http://arxiv.org/abs/1802.03480
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1703.00564
http://arxiv.org/abs/1704.02901
http://arxiv.org/abs/1705.10843
http://arxiv.org/abs/1705.10843
http://www.rdkit.org/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1611.02731
http://arxiv.org/abs/1611.02731
http://arxiv.org/abs/1406.2661
http://www.scipy.org/
http://arxiv.org/abs/1708.08227
http://arxiv.org/abs/1706.00400

	Multi-objective de novo drug design with conditional graph generative model
	Abstract
	Background
	Methods
	Molecular graph
	Graph generative model
	Decoding scheme
	Decoding policy
	MolMP
	MolRNN
	Graph convolution

	Likelihood function
	Conditional generative model
	Scaffold-based generation
	Generation based on synthetic accessibility and drug-likeness
	Designing dual inhibitor against JNK3 and GSK-3
	Training details
	Comparison with SMILES based methods
	Comparison with reinforcement learning (RL) based methods
	Evaluation metrics
	Sample validity
	 and for molecular properties
	Performance metrics (  , and  ) for task specific molecule design
	Rate of reproduced active compounds
	Sample diversity

	Results and discussion
	Model performance and sample quality
	Scaffold-based generation
	Generation based on drug-likeness and synthetic accessibility
	Generating dual inhibitors for JNK3 and GSK-3

	Conclusions
	Author’s contributions
	References

