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Decision making is hard. It o� en requires reasoning about uncertain environments, partial 
observability and action spaces that are too large to enumerate. In such complex decision-
making tasks decision-theoretic agents, that can reason about their environments on the basis 
of mathematical models and produce policies that optimize the utility for their users, can o� en 
assist us. 

In most research on decision-theoretic agents, the desirability of actions and their eff ects is 
codifi ed in a scalar reward function. However, many real-world decision problems have multiple 
objectives. In such cases the problem is more naturally expressed using a vector-valued reward 
function. Rather than having a single optimal policy, we then want to produce a set of policies 
that covers all possible preferences between the objectives. We call such a set a coverage set. In 
this dissertation, we focus on decision-theoretic planning algorithms that produce the convex 
coverage set (CCS), which is the optimal solution set when either: 1) the user utility can be 
expressed as a weighted sum over the values for each objective; or 2) policies can be stochastic. 

We propose new methods based on two popular approaches to creating planning algorithms 
that produce an (approximate) CCS by building on an existing single-objective algorithm. In 
the inner loop approach, we replace the summations and maximizations in the inner most 
loops of the single-objective algorithm by cross-sums and pruning operations. In the outer loop 
approach, we solve a multi-objective problem as a series of scalarized problems by employing 
the single-objective method as a subroutine. 

Our most important contribution is an outer loop framework that we call optimistic linear 
support (OLS). As an outer loop method OLS builds the CCS incrementally. We show that, 
contrary to existing outer loop methods, each intermediate result is a bounded approximation 
of the CCS with known bounds (even when the single-objective method used is a bounded 
approximate method as well) and is guaranteed to terminate in a fi nite number of iterations. 

We apply OLS-based algorithms to a variety of multi-objective decision problems, and show 
that it is more memory-effi  cient, and faster than corresponding inner loop algorithms for 
moderate numbers of objectives. We show that exchanging subroutines in OLS is relatively easy 
and illustrate the importance on a complex planning problem. Finally, we show that it is o� en 
possible to reuse parts of the policies and values, found in earlier iterations of OLS, to hot-start 
later iterations of OLS. Using this last insight, we propose the fi rst method for multi-objective 
POMDPs that employs point-based planning and can produce an ε-CCS in reasonable time. 

Overall, the methods we propose bring us closer to truly practical multi-objective decision-
theoretic planning.
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Chapter 1

Introduction

A central problem in artificial intelligence is the design of artificial autonomous agents.

An agent is “anything that can be viewed as perceiving its environment through sen-

sors and acting upon that environment through effectors” (Russell et al., 1995), i.e.,

an artificial agent typically is a computer program — possibly embedded in specific

hardware — that takes actions in an environment that changes as a result of these ac-

tions. An autonomous agent (Franklin and Graesser, 1997) can act autonomously, i.e.,

without constant human control or intervention, on a user’s behalf.1

Artificial autonomous agents can assist us in many useful ways. For example,

agents can perform the control of manufacturing machine, in order to produce products

for a company (Monostori et al., 2006; Van Moergestel, 2014), drive a car instead of a

human driver (Guizzo, 2011), trade goods or services on markets (Ketter et al., 2013;

Pardoe, 2011) and help provide security (Tambe, 2011). As such, autonomous agents

have enormous economic potential, as well as potential for improving our quality of

life.

In order to perform tasks, autonomous agents require the capacity to reason about

their environment and consequences of their actions — and the desirability thereof.

The study of this reasoning is called decision theory. Decision theory uses probabilistic

models of the environment. Typically these models include the states the environment

can be in, the possible actions that agents can perform in each state, and how the state

of the environment is affected by these actions. Furthermore, the desirability of actions

and their effects are codified in numerical feedback signals. These feedback signals are

typically referred to as reward or payoff functions.

Decision-theoretical models enable autonomous agents to plan how to act. The

models encode how the environment behaves as a result of the actions agents and

which observations and rewards agents can expect. Agents can use this information

to formulate a policy that specifies agent behavior as a function of what the agents

observe.

1For a detailed discussion on the definition of autonomous agents, see e.g., the discourses by Russell

et al. (1995) and Franklin and Graesser (1997).

1
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In most research on planning in decision problems, the desirability of actions and

their effects are codified in a scalar reward function (Busoniu et al., 2008; Oliehoek,

2010; Thiébaux et al., 2006; Wiering and Van Otterlo, 2012). The planning task in

such scenarios is to find a policy that maximizes the expected (cumulative) reward.

However, many real-world decision problems have multiple objectives. For exam-

ple, for a computer network we may want to maximize performance while minimizing

power consumption (Tesauro et al., 2007). In such cases the problem is more natu-

rally expressed using a vector-valued reward function. When the reward function is

vector-valued, the value of a policy is also vector-valued. Typically, there is no single

policy that maximizes the value for all objectives simultaneously. For example, in the

computer network example, we can achieve higher performance by using more power.

Rather than producing a single optimal policy, as in single-objective planning, it may

therefore be crucial to produce a set of policies that offer different trade-offs between

the objectives.

In this dissertation, we focus on multi-objective decision-theoretic planning. In a

multi-objective planning scenario, the agents are given a model of the environment

and asked to provide a set of policies from which to elect a policy to execute. We first

motivate the need for specialized multi-objective planning methods in this scenario,

and introduce our perspective on what it means to solve a multi-objective decision

problem. Then we introduce the research questions, the scope of this dissertation and

provide an overview of the contributions in this dissertation.

1.1 Motivating Scenarios

The existence of multiple objectives in a decision problem does not automatically im-

ply that we require specialized multi-objective methods to solve it. If the decision

problem can be scalarized, i.e., the vector-valued reward function can be converted to

a scalar reward function, the problem may be solvable with existing single-objective

methods. Such a conversion involves two steps (Roijers et al., 2013a). The first step

is to specify a scalarization function that expresses the utility of the user for different

trade-offs between the objectives.

Definition 1. A scalarization function f , is a function that maps a multi-objective value

of a policy π of a decision problem, Vπ, to a scalar value V π
w

:

V π
w
= f(Vπ,w),

where w is a so-called weight vector that parameterizes f .

The second step of the conversion is to define a single-objective version of the decision

problem such that the utility of each policy π equals the scalarized value of the original

multi-objective decision problem V π
w

.

Though it is rarely stated explicitly, all research on automated multi-objective deci-

sion making rests on the premise that there are decision problems for which one or both
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of these conversion steps are impossible, infeasible, or undesirable. Here, we discuss

three motivating scenarios in which this is indeed the case, thereby demonstrating the

need for specialized multi-objective methods. These scenarios are depicted schemati-

cally in Figure 1.1.

Figure 1.1a provides an overview of the unknown weights scenario. In this sce-

nario, w is unknown at the moment when planning must occur: the planning phase.

For example, consider a company that mines different resources from different mines

spread out through a mountain belt. The workers of the company live in villages at

the foot of the mountains. In Figure 1.2, we depict the problem this company faces:

in the morning one van per village needs to transport workers from that village to a

nearby mine, where various resources can be mined. Different mines yield different

quantities of resource per worker. The market prices per unit of resource vary through

a stochastic process and every price change can change the optimal assignment of

vans. Furthermore, the expected price variation increases with time. It is therefore

critical to act based on the latest possible price information in order to maximize per-

formance. Because computing the optimal van assignment takes time, redoing this

computation every time the prices change is highly undesirable. Therefore, we need

a multi-objective method that computes a set containing an optimal solution for every

possible value of the prices, w. We call such a set a coverage set, as it “covers” all

possible preferences of the user (i.e., the possible values of the prices in our example)

with respect to the objectives (as specified by f ). Although computing a coverage set

is computationally more expensive than computing a single optimal policy for a given

price, it needs to be done only once. Furthermore, the planning phase (Figure 1.1a)

can take place in advance, when more computational resources are available.

In the selection phase, when the prices (w) are revealed and we want to use as

little computation time as possible, we can use the coverage set to determine the best

policy by simple maximization. Finally, in the execution phase, the selected policy is

employed.

In the unknown weights scenario a priori scalarization is undesirable, because it

would shift the burden of computation towards a point in time where it is not available.

The scalarization f is known, and the weights w will become available in the selection

phase, where a single policy is selected for execution. However, there are also settings

in which w or even f will never be made explicit. We call this scenario the decision

support scenario.

In the decision support scenario (Figure 1.1b), scalarization is infeasible through-

out the entire decision-making process because of the difficulty of specifying w and/or

f . For example, when a community is considering the construction of a new metro line,

economists may not be able to accurately compute the economic benefit of reduced

commuting times. The users may also have “fuzzy” preferences that defy meaningful

quantification. For example, if construction of the new metro line could be made more

efficient by building it in such a way that it obstructs a beautiful view, then a human

designer may not be able to quantify the loss of beauty. The difficulty of specifying the

exact scalarization is especially apparent when the designer is not a single person but a
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Figure 1.1: The three motivating scenarios for multi-objective decision-theoretic plan-

ning: (a) the unknown weights scenario, (b) the decision support scenario, (c) the

known weights scenario.

village

mine

Figure 1.2: Mining company example.
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committee or legislative body whose members have different preferences and agendas,

such as the politicians and interest groups involved in the metro line example. In such

a system, the multi-objective planning method is used to calculate a coverage set with

respect to the constraints that can safely be imposed on f and w. For example, we can

safely assume that gaining value in one objective, without reducing the value in any of

the others cannot reduce the utility of the user (i.e., the scalarized value).

As shown in Figure 1.1b, the decision support scenario proceeds similarly to the

unknown weights scenario in the planning phase. In the selection phase however, the

user or users select a policy from the coverage set according to their preferences di-

rectly, rather than explicitly computing a numerical utility by applying the scalarization

function to each value vector.

In the decision support scenario, one could still argue that scalarization before plan-

ning or learning is possible in principle. For example, the loss of beauty can be quanti-

fied by measuring the resulting drop in housing prices in neighborhoods that previously

enjoyed an unobstructed view. However, the difficulty with explicit scalarization is not

only that doing so may be impractical but, more importantly, that it forces the users to

express their preferences in a way that may be inconvenient and unnatural. This is be-

cause selecting w requires weighing hypothetical trade-offs, which can be much harder

than choosing from a set of actual alternatives. This is a well understood phenomenon

in the field of decision analysis (Clemen, 1997), where the standard workflow involves

presenting alternatives before soliciting preferences. In the same way, algorithms for

multi-objective decision problems can provide critical decision support; rather than

forcing the users to specify f and w in advance, these algorithms just prune policies

that would not be optimal for any f and w that fit the known constraints on the pref-

erences of the users, and produce a coverage set. By producing a coverage set that

contains optimal solutions across all f and w that fit the known constraints — rather

than just all w for a specified f , as in the unknown weights scenario — this cover-

age set now offers a range of alternatives from which the users can select according to

preferences whose relative importance is not easily quantified.

Finally, we present one more scenario that requires explicit multi-objective meth-

ods that we call the known weights scenario (Figure 1.1c). In this scenario we assume

that w is known at the time of planning and thus scalarization would be possible.

However, it may well be undesirable because of the difficulty of the second step in the

conversion. In particular, if f is nonlinear, then the resulting single-objective problem

may be much more complex than the original multi-objective problem. As a result,

finding the optimal policy may be intractable whilst the original multi-objective prob-

lem is tractable. This happens for example in the case of multi-objective Markov deci-

sion processes (MOMDPs2), where a non-linear scalarization would lead to the loss of

the additivity property on which single-objective solution methods rely (Roijers et al.,

2013a).

2This abbreviation is also used for mixed-observability MDPs (Ong et al., 2010), which we do not

consider in this dissertation; we use the abbreviation MOMDPs solely for multi-objective MDPs.
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In contrast to the unknown weights and the decision support scenarios, in the

known weights scenario, the multi-objective method only produces one policy, which

is then executed, i.e., there is no separate selection phase.

The scenarios we have presented here require explicit multi-objective methods be-

cause a priori scalarization of the multi-objective decision problems, and subsequent

solving with standard single-objective methods, does not apply. In this dissertation, we

focus on the two multi-policy scenarios, i.e., the unknown weights and decision sup-

port scenarios, in which the goal of a multi-objective planning method is to produce

a coverage set, i.e., a set that contains at least one optimal solution for each possible

trade-off between the objectives (as expressed by f and w). From this coverage set,

the policy that maximizes user utility will be selected in the selection phase. The goal

of the planning algorithms presented in this dissertation is to maximize user utility, by

producing the best possible coverage set.

1.2 Utility-Based Approach

The goal of solving all — including multi-objective — decision problems is to maxi-

mize user utility. However, in the unknown weights and decision support scenarios, we

cannot optimize this directly, because at the time when planning takes place the scalar-

ization function, f , that maps the multi-objective values to a scalar utility, and/or its

parameters, w, are unknown. Therefore, we must compute a coverage set (as in Figure

1.1). This coverage set is a set of policies such that, for every possible scalarization, a

maximizing policy is in the set.

In this dissertation, we argue that we should derive which policies are to be included

in the coverage from what we know about f . We call this the utility-based approach.

The utility-based approach stands in contrast to the axiomatic approach in which it

is axiomatically assumed that the coverage set is the so-called Pareto front, which we

define formally in Section 2.1. In short, the Pareto front is the set of all policies that are

Pareto optimal. A policy is Pareto optimal when there is no other policy that has at least

equal value in all objectives and has a higher value in at least one objective. Indeed,

the Pareto front contains at least one optimal policy for most, if not all, scalarization

functions that occur in practice. However, we argue that while the Pareto front is

sufficient it is often not necessary to compute the entire Pareto front. In fact the only

context in which the full Pareto front is required is for the known weights or decision-

support scenarios, where the scalarization function is non-linear, and a strict conditions

are imposed on the type of policies that are allowed. Therefore — as we will show —

a utility-based approach often results in a much smaller coverage set, which is less

computationally intensive to compute and appropriate to the needs of the user.

Another upshot of the utility-based approach is that it is possible to derive how

much utility is maximally lost if it is not possible to compute an exact coverage set

(Zintgraf et al., 2015). Such bounds on the loss of quality due to approximation is often

crucial for a meaningful interpretation of the quality of heuristic methods, especially
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when comparing algorithms (Oliehoek et al., 2015). Furthermore, the bounds provide

insight for the users into the quality and reliability of the selected final policy.

1.3 Focus

This dissertation is about multi-objective decision making using autonomous agents.

As such it is positioned within the field of decision theory. According to the Oxford

dictionary, decision theory is defined as:

The mathematical study of strategies for optimal decision-making between

options involving different risks or expectations of gain or loss depending

on the outcome.

Specifically, we study “strategies for optimal decision-making” given that there are

multiple objectives. However, within the field of decision-making there are many de-

cision problems “involving different risks or expectations of gain or loss depending on

the outcome” which we could study. We limit the scope of our inquiry, by starting at

(relatively) simple multi-objective decision problems, and adding more complicating

aspects. We focus on the following aspects:

• Single agent versus cooperative multi-agent decision problems

Multi-agent problems are more complex than single-agent problems, because

they require coordinating the actions between the agents, and the amount of pos-

sible joint actions grows exponentially with the amount of agents.3

• Single-shot versus sequential environments

In single-shot environments policies specify how to select a (joint) action for a

single timestep, while in sequential settings the agents interact with the environ-

ment repeatedly, and have to consider the effect of their actions upon the future

state of the environment.

• Fully observable versus partially observable environments

In a fully observable environment the true state of the environment is known to

the agents, while in a partially observable environment only a (possibly noisy)

observation signal that correlates with the state of the environment is available

to the agents.

Planning in single-agent single-shot settings is trivial, but other combinations of these

aspects are not. We therefore focus on the following decision problems:

• Multi-objective coordination graphs (MO-CoGs)

MO-CoGs are multi-objective multi-agent fully observable single-shot decision

3In this dissertation, we only consider cooperative multi-agent problems. We briefly discuss non-

cooperative models in Section 6.2.3.
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problems. MO-CoGs model the coordination problem that cooperative teams

of agents face while making a single joint decision in the face of multiple ob-

jectives. The main challenge in this problem is the scalability in the number

of agents, as the number of possible joint actions grows exponentially in this

number.

• Multi-objective Markov decision processes (MOMDPs)

MOMDPs are single-agent fully observable sequential decision problems. In

this problem setting, an agent observes the state of the environment and must

reason about the effects of its actions upon the environment in order to obtain a

favorable expected (discounted) sum of rewards over time. The main challenge

in this problem is reasoning about these effects of actions upon the environment

given the possibly stochastic transitions between states of the environment.

• Multi-objective partially observable Markov decision processes (MOPOMDPs)

MOPOMDPs are single-agent partially observable sequential decision problems,

and differ from MOMDPs only in the aspect of observability. Partial observ-

ability significantly complicates planning, to the extent that finding an optimal

solution set is typically no longer tractable, and we therefore have to settle for

approximate solution sets.

For the different problem settings, we aim to find planning methods that provide a cov-

erage set. In this dissertation, we focus on methods that are either exact, or can produce

bounded approximations of the coverage set, i.e., methods that produce ε-approximate

coverage sets, where ε is the maximal loss of utility for the user due to approximation.

As such, heuristic multi-objective planning methods based on evolutionary algorithms

(Handa, 2009a,b; Soh and Demiris, 2011a) or local search (Kooijman et al., 2015; Inja

et al., 2014) are beyond the scope of this dissertation.

Another aspect that is beyond the scope of this dissertation is learning (Sutton and

Barto, 1998; Wiering and Van Otterlo, 2012). In a learning setting, the model of the

environment is unknown to the agent. Therefore, the agent must learn about its en-

vironment through interaction. However, the planning methods and learning methods

are not entirely disjoint; when the agent explicitly learns a model of the environment

through its interaction, it can use a planning method in order to produce a coverage

set. Such model-based learning has been investigated extensively in single-objective

settings, and has recently been introduced to multi-objective settings as well (Wiering

et al., 2014). As such, the methods proposed in this dissertation can be employed as

planning subroutines inside a model-based learning algorithm. Furthermore, our meth-

ods could be applied in the Bayesian reinforcement learning approach (Vlassis et al.,

2012) — in which learning in an MDP can be modeled as a planning in a POMDP.
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1.4 Research Questions

In this research we aim to answer the following question: “Can we create fast multi-

objective planning algorithms for cooperative decision problems that are: either single-

or multi-agent, single-shot or sequential, and fully or partially observable?”

We do so by trying to find fast multi-objective planning algorithms for the problem

settings discussed in Section 1.3. Note that these problem settings do not exhaust the

possible combinations of the different aspects mentioned in the research question. This

is partially because some of the other combinations are either trivial or too difficult, but

more importantly, because we aim to find fast multi-objective methods that are appli-

cable to as wide a range of multi-objective decision problems as possible. Specifically,

we aim to create methods that are as modular and as generic as possible.

1.5 Contributions and Outline

In this section we outline the the organization of this dissertations, and the contributions

we present. Also, we indicate which of these contributions have been published before

and in which papers and articles.

In this introduction (Chapter 1), we have introduced and motivated multi-objective

decision-theoretic planning problems and motivated the need for specialized multi-

objective planning methods by using three scenarios. Furthermore, we have introduced

the utility-based approach to multi-objective decision making. The motivating scenar-

ios and the utility-based approach were introduced in (Roijers et al., 2013a), and further

discussed in (Roijers et al., 2015d; Zintgraf et al., 2015; Whiteson and Roijers, 2015).

Chapter 2 provides an extensive introduction to decision-theoretic planning in gen-

eral, and multi-objective decision-theoretic planning in particular. First, we discuss

what it means to solve a multi-objective decision problem, and how different assump-

tions about the scalarization function and the types of policy allowed lead to different

coverage sets. Then we outline which decision problems are common in literature, both

single-objective and multi-objective and how they relate. Finally, we make the case for

a specific coverage set called a convex coverage set (CCS) which we use throughout

this dissertation, based on the utility-based approach. We argue that it is often suffi-

cient and less costly to compute a CCS than a Pareto coverage set (PCS) or Pareto

front, which is often assumed to be the optimal solution set in literature. This chapter

uses our earlier taxonomy of multi-objective decision problems (Roijers et al., 2013a).

Chapter 3 presents the optimistic linear support (OLS) algorithm. OLS is a generic

multi-objective method that solves a multi-objective decision problem as a series of

scalarized, i.e., single-objective, problems. In order to do so it repeatedly calls a single-

objective subroutine that is specific to the decision problem at hand.

We refer to the approach of solving a multi-objective problem as a series of single-

objective problems as the outer loop approach. The outer loop approach stands in

contrast to the inner loop approach, which solves a multi-objective problems using a
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series of multi-objective operations, such as solving a series of smaller multi-objective

problems. A practical upshot of the outer loop approach is that any single objective

algorithm can be used, when made OLS-compliant, making any improvement in the

state-of-the-art for a single objective decision problem an improvement for its multi-

objective counterpart.

The first version of OLS was proposed in (Roijers et al., 2014b) and (Roijers et al.,

2015b), and requires an exact single-objective subroutine. This limitation was coun-

tered in (Roijers et al., 2014a) by allowing approximate single-objective solvers to

be used as well. OLS was further improved in terms of both theoretic and practical

runtime by allowing the reuse of values and policies found in earlier calls to the single-

objective subroutine in (Roijers et al., 2015a,c).

Chapter 4 considers the multi-objective coordination graph (MO-CoG). In this

chapter we propose five algorithms for MO-CoGs: two inner loop methods based on

exact single-objective solvers: convex multi-objective variable elimination (CMOVE)

and convex AND/OR tree search (CTS), and two outer loop methods based on OLS

that use these same exact single-objective solvers as subroutines: variable elimination

linear support (VELS) and AND/OR tree search linear support (TSLS). Finally, we

propose variational optimistic linear support (VOLS), an OLS-based method that uses

a variational single-objective coordination graph solver called weighted mini-buckets

(WMB) as a subroutine. Because variational methods scale much better than the exact

single-objective solvers, VOLS can be used to solve much larger MO-CoGs than was

previously possible. However, because WMB computes only bounded approximate

solutions, so does VOLS. In VOLS we leverage the insight that the algorithm can hot-

start each call to WMB by reusing the reparameterizations output by WMB on earlier

calls, leading to additional improvements in both runtime and approximation quality.

All our proposed algorithms compute a CCS rather than a PCS, which we show

to be favorable both theoretically and experimentally in many situations. We compare

both the runtime and the memory complexities of the the inner loop and the outer loop

methods, and compare runtimes experimentally. We indicate which methods are better

for which problem settings.

The algorithms we contribute in Chapter 4 have been published earlier in (Roijers

et al., 2013b,c, 2014b, 2015a,b).

Chapter 5 analyses the usage of OLS for sequential single-agent decision problems.

First, we consider the fully observable setting, i.e., MOMDPs, using a problem domain

with large state and action spaces called the maintenance planning problem (MPP).

We show how to construct multi-objective planning methods based on single-objective

methods via OLS, as previously published in (Roijers et al., 2014a). Because the

single-objective version of the MPP is in itself a difficult problem for which the state-

of-the-art is highly problem-specific (Scharpff et al., 2013), it is beneficial to be able

efficiently replace the single-objective subroutines in OLS to bring the state-of-the-art

in multi-objective methods up-to-date. We run new experiments for an algorithm that

combines OLS with the recent CoRe algorithm (Scharpff et al., 2016), which improved

the state-of-the-art for the single-objective version of the MPP. We compare this to the



1.5. Contributions and Outline 11

previous state-of-the-art, which was to use OLS in combination with SPUDD. Further-

more, we examine the possibility of using an approximate solver (i.e., UCT∗) instead

of an exact solver (as previously published in (Roijers et al., 2014a)).

Then, we shift our attention to the partially observable sequential single-agent set-

ting, i.e., MOPOMDPs. MOPOMDPs have not been studied very much in literature,

due to their high complexity. We propose the first MOPOMDP method that is rea-

sonably scalable and produces a bounded approximation of the CCS, which we call

optimistic linear support with alpha reuse (OLSAR). This algorithm was previously

proposed in (Roijers et al., 2015c).

Chapter 6 enumerates the main conclusions and contributions of this dissertation,

discusses the implications for further work in multi-objective decision making, and

identifies opportunities for future work.





Chapter 2

Background

This chapter provides background on multi-objective decision-theoretic planning for

different multi-objective decision problems. First, in Section 2.1, we treat the decision

problems as a black box, i.e., each policy π has an associated multi-objective value Vπ,

without discussing how the policy is defined, or how it induces its value. We show what

it means to solve a multi-objective decision problem in terms of the set of all allowed

policies and how this can be derived — following the utility-based approach — from

what is known about the scalarization function, f . We show that different assump-

tions about f lead to different solution concepts. Then, in Section 2.2, we make the

decision problems more concrete by introducing a simple concrete decision problem

called a multi-objective bandit problem, and its single-objective equivalent. Using this

problem, we illustrate that in multi-objective decision problems, (dis)allowing stochas-

tic policies can have a large impact on the attainable value, while this is typically not

the case for single-objective problems. We then discuss decision problems with more

structure, and discuss how they relate to each other. Finally, in Section 2.3, we provide

a taxonomy of multi-objective decision problems and solution concepts based on the

different assumptions about f and the set of allowed policies, Π, and make the case

for a specific solution concept, called the convex coverage set. The convex coverage

set applies to a large class of settings, has important computational advantages, and we

will use this solution concept for the remainder of this dissertation.

2.1 Multiple Objectives

In this dissertation, we focus on different (cooperative) multi-objective decision prob-

lems.

Definition 2. A cooperative single-objective decision problem (SODP), consists of:

• a set of allowed (joint) policies Π,

• a value function that assigns a real numbered value, V π ∈ R, to each joint policy

π ∈ Π, corresponding to the desirability, i.e., the utility, of the policy.

13
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Definition 3. In a cooperative multi-objective decision problem (MODP), Π is the

same as in an SODP, but

• there are d ≥ 2 objectives, and

• the value function assigns a value vector, Vπ ∈ R
d, to each joint policy π ∈ Π,

corresponding to the desirability of the policy with respect to each objective.

We denote to value of policy π in the i-th objective as V π
i .

Both V
π and Π may have underlying structure corresponding to the structure of

the environment, which we will discuss in Section 2.2. For now, we only assume Π is

known and that we can, at least in theory, compute the value of each policy.

In an SODP the value function provides a complete ordering on the joint policies,

i.e., for each pair of policies π and π′, V π must be greater than, equal to, or less than

V π′

. In contrast, in an MODP, the presence of multiple objectives means that the value

function V
π is a vector rather than a scalar. Such value functions supply only a partial

ordering. For example, it is possible that, V π
i > V π′

i but V π
j < V π′

j . Consequently,

unlike in an SODP, we can no longer determine which values are optimal without

additional information about how to prioritize the objectives, i.e., about what the utility

of the user is for different trade-offs between the objectives.

In the unknown weights and decision support scenarios (Figure 1.1), the parameters

of the scalarization function w, or even f itself, are unknown during the planning

phase. Therefore, in order to optimize the utility for the user, the agent has to provide

a solution set. Given a solution set, the user can then pick the policy that maximizes

his utility in the selection phase.

We want the solution set to contain at least one optimal policy for every possible

scalarization (in order to guarantee optimality), but we also want the solution set to be

as small as possible, in order to make the selection phase as efficient as possible.

In this dissertation, we advocate the utility-based approach (Roijers et al., 2013a)

for determining which policies the solution set should contain. The utility-based ap-

proach rests on the following premise: before the execution phases of the scenarios of

Figure 1.1, one policy is selected by collapsing the value vector of a policy to a scalar

utility, using the scalarization function (Definition 1). The application of the scalar-

ization function may be implicit or hidden, e.g., it may be embedded in the thought-

process of the user, but it nonetheless occurs. The scalarization function is thus an

integral part of the notion of utility, i.e., what the agent should maximize. Therefore,

if we find a set with an optimal solution for each possible weight setting of the scalar-

ization function, we have solved the MODP.

The utility-based approach stands in contrast to the axiomatic approach to opti-

mality in multi-objective decision problems that is followed in a lot of multi-objective

research. The axiomatic approach begins with the axiom that the optimal solution set

is the Pareto front (which we define later in this section). This approach is limiting

because, as we demonstrate in Section 2.3, there are many settings for which other

solution sets are more suitable.
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2.1.1 Undominated Sets

We will now derive the appropriate solution sets, as a subset of Π, for different as-

sumptions about f and w. The first thing we do is remove all policies that can never

be optimal for any allowed choice of f and w. Such policies are called dominated.

For a dominated policy, for every choice of f and w within the provided constraints,

there is some other policy in Π that has a higher scalarized value. When we remove all

dominated policies from Π, we call the resulting set the undominated set (U). When

we refer to the set all allowed scalarization functions as F , i.e., the family of permitted

scalarization functions, we can define U as follows.

Definition 4. The undominated set (U) of an MODP, is the set of all policies and

associated value vectors that are optimal for some w of a scalarization function f ∈ F .

U(Π) =
{

V
π : π∈Π ∧ ∃f∈F ∃w ∀π′∈Π f(Vπ,w) ≥ f(Vπ′

,w)
}

.

For convenience, we assume that payoff vectors in U(Π) contain both the value

vectors and associated policies.

A minimal assumption is that f is monotonically increasing, i.e., if the value for

one objective V π
i , increases while all V π

j 6=i stay constant, the scalarized value V π
w

can-

not decrease. This assumption ensures that objectives are desirable, i.e., all else being

equal, having more of them is always better. When FMI is the set of strictly mono-

tonically increasing scalarization functions, the undominated set is called the Pareto

front.

Definition 5. The Pareto front is the undominated set for arbitrary strictly monotoni-

cally increasing scalarization functions, FMI .

PF (Π) =
{

V
π : π∈Π ∧ ¬∃π′∈Π V

π′≻P V
π
}

,

where ≻P indicates Pareto dominance (P-dominance): greater or equal in all objec-

tives and strictly greater in at least one objective.

Computing P-dominance requires only pairwise comparison of value vectors (Feng

and Zilberstein, 2004).1

A highly prevalent case is that in addition to f being monotonically increasing, we

also know that it is linear, i.e., the parameter vectors w are weights by which the values

of the individual objectives are multiplied.

Definition 6. The (monotonically increasing) linear scalarization function is a weighted

sum of the objectives, for a weight vector w.

f = w ·Vπ

In the context of linear scalarization functions, we denote the weight for objective i as

wi. Because f is monotonically increasing ∀i wi ≥ 0.

1P-dominance is often called pairwise dominance in the POMDP literature.
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Figure 2.1: The CH and CCS versus the PF / PCS.

In the mining example from Figure 1.2, f is linear: resources are traded on an

open market and all resources have a positive unit price. In this case, the scalariza-

tion is a linear combination of the amount of each resource mined, where the weights

correspond to the price per unit of each resource.

Many more examples of linear scalarization functions exist in the literature (e.g.,

(Lizotte et al., 2010)). Because we assume the linear scalarization is monotonically

increasing, we can represent it without loss of generality as a convex combination of

the objectives: i.e., the weights are positive and sum to 1. In this case, the undominated

set is the convex hull (CH)2:

Definition 7. The convex hull (CH) is the undominated set for non-decreasing linear

scalarizations f(Vπ,w) = w ·Vπ:

CH(Π) =
{

V
π : π∈Π ∧ ∃w∀π′

w ·Vπ ≥ w ·Vπ′

}

,

where w adheres to the simplex constraints, i.e., ∀i wi ≥ 0 and
∑

i wi = 1.

That is, the CH contains all solutions that attain the optimal value for at least one w.

Vectors not in the CH are called C-dominated. In contrast to P-domination, C-

domination cannot be tested by using pairwise comparisons because it can take two

or more value vectors to C-dominate a value vector, Vπ. The difference between the

CH and the PF is illustrated in Figure 2.1. On the left the values of all policies in Π
of a 2-objective MODP are represented as points in value-space. The red (such as B

and C) and blue (D) points are both in the PF and in the CH. The black point (A) is in

the PF, but not in the CH. The gray points are nor in the PF nor in the CH, e.g., E is

not in the PF/CH because it is P-dominated by A. On the right, the scalarized values,

Vw = w ·V, of the policies in Π are shown as a function of w of the linear scalarization

function. Each line on the right corresponds to a point on the left. For example, the

black line corresponds to the scalarized value for A as a function of w and the blue

2Note that the term convex hull is overloaded. In geometry (e.g., (Jarvis, 1973)), the convex hull is a

superset of what we mean by the convex hull in this dissertation.
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line corresponds to D. Note that because of the simplex constraints w2 = 1 − w1.

C-domination of a policy π means that there is no w such that V π
w

= max
π′∈Π

w · Vπ′

.

Note that this is true for the black line (corresponding to point A; the point that is in

the PF but not the CH): even though there is no single other policy that is better for

every w, there is always some policy for every w. For D, represented by the blue

line, we observe that it is in the CH, because there is exactly one w for which it is

optimal. However, note that at that w there are two other policies that achieve the

same scalarized value (i.e., B and C).

2.1.2 Coverage Sets

The undominated set, U(Π), contains all policies that are optimal for some f ∈ F
and a parameterization, w, thereof. Although this set contains no policies that are

dominated, it may well contain redundant policies. In fact, we only need a set with

at least one optimal policy for every f and w. We call such a lossless subset of U a

coverage set, as it covers every f and w with an optimal policy.

Definition 8. A coverage set (CS), CS(Π), is a subset of U , such that for each possible

w, there is at least one optimal solution in the CS, i.e.,

∀f∈F ∀w ∃π
(

V
π∈CS(Π) ∧ (∀π′ f(Vπ,w)≥f(Vπ′

,w) )
)

.

Note that a CS is not necessarily unique. Typically we seek the smallest possible

CS. For convenience, we assume that payoff vectors in the CS contain both the value

vectors and associated policies.

For arbitrary monotonically increasing scalarization functions, we call the CS a

Pareto coverage set (PCS). Due to the minimal constraints on f however, we can only

remove policies that have the exact same value as another policy.

Definition 9. A Pareto coverage set (PCS), PCS(Π)⊆PF (Π), is a lossless subset of

PF (Π), i.e., it only needs to contain each unique value-vector in the PF once:

V
π = V

π′ →
(

V
π ∈ PCS(Π) ∨V

π′∈ PCS(Π) ∨V
π 6∈PF (Π)

)

.

Note that the PF itself is a PCS, but that there may be smaller PCSs.

A lossless subset of the CH with respect to linear scalarizations is called a con-

vex coverage set (CCS). That is, a CCS retains at least one policy from the CH that

maximizes the scalarized payoff, w ·Vπ, for every w:

Definition 10. A convex coverage set (CCS), CCS(Π) ⊆ CH(Π), is a CS for linear

non-decreasing scalarizations, i.e.,

∀w∃π
(

V
π ∈ CCS(Π) ∧ ∀π′

w ·Vπ ≥ w ·Vπ′

)

.
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Because linear non-decreasing functions are a specific type of monotonically increas-

ing function, there is always a CCS that is a subset of the smallest possible PCS.

Because we aim to optimize the utility for the user, we have solved an MODP once

we have found a coverage set, as it contains at least one optimal policy for each f and

w, and in the selection phase, the user cannot lose utility by having a CS(Π) instead of

U(Π). For example, for linear scalarizations and the example MODP of Figure 2.1, we

do require all the policies shown in red, but we do not require the blue policy, because

for every w there is a red policy with at least equal scalarized value.

2.1.3 Approximate Coverage Sets

A coverage set constitutes an optimal solution with respect to user utility. However, in

practice it might not always be feasible to compute an exact PCS or CCS. For example,

there just might not be enough runtime to compute it, or it might be too large to deal

with during selection. In such cases we need to consider approximate versions of these

coverage sets. Following the utility based approach, we have to limit the loss of user

utility as much as possible. In order words, we focus on the maximum utility loss

(MUL) with respect to f and w, which are not known exactly in the planning phase.

We assume that we only know that f is monotonically increasing in all objectives

(leading to an approximate PCS), or that we also know f to be linear (leading to an

approximate CCS.3 A given approximate solution set, S, should thus contain a policy,

for every f and w, for which the MUL is at most a constant.

Definition 11. For a given solution set S and some family of scalarization functions

F , the maximum utility loss MUL(S,F) is the maximum scalarized value that is lost

due to approximation:

∀f∈F ∀w ∀Vπ∈CS(Π) ∃Vπ′∈S f(Vπ,w) ≤ f(Vπ′

,w) +MUL(S,F),

where CS(Π) is the coverage set appropriate w.r.t. F .

Several approximate versions of PCSs have been proposed. One of the most pop-

ular is the ε-PCS (Zitzler et al., 2003).4 There are multiple definitions of the ε-PCS;

here, we provide the definition of the so-called additive ε-PCS.5

Definition 12. A given solution set S is an ε-PCS if

∀Vπ∈PCS(Π) ∃Vπ′∈S : ∀i = 1, . . . , d : V π
i ≤ V π′

i + ε,

where d is the number of objectives.

3For discussions about what happens if other prior information is available, please refer to (Roijers

et al., 2014a) and (Zintgraf et al., 2015).
4The ε-PCS is called ε-approximate Pareto front in (Zitzler et al., 2003). We use ε-PCS for consis-

tency with the terminology in this dissertation.
5Besides an additive ε-PCS there is also a multiplicative ε-PCS. Please refer to (Zintgraf et al., 2015)

for details.
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Note that an ε-PCS may in fact not contain any undominated solutions — S ∩
PF (Π) may be an empty set — but at least the maximal difference between a value

vector in the PCS and the closest value vector in the ε-PCS is at most ε in all dimen-

sions. However, when we look at the MUL of an ε-PCS for arbitrary monotonically

increasing scalarizations, we immediately notice a problem: any increase in any ob-

jective may lead to an infinite increase in user utility. Therefore, it is impossible to

compute the MUL of an ε-PCS, without more information about f and w. For exam-

ple, if we know that f is Lipschitz-continuous with a Lipschitz-constant L, the MUL

is bounded by ε
√
dL (Zintgraf et al., 2015).

For linear scalarization functions, we have much more information, i.e., we know

the exact shape of f , and that w adheres to the simplex constraints. In this case it is

possible to formulate an ε-CCS where ε is the MUL.

Definition 13. A given solution set S is an ε-CCS if

∀w max
Vπ∈CCS(Π)

w · V π
i − max

Vπ′∈S
w · V π′

i ≤ ε,

where w is a linear weight vector adhering to the simplex constraints.6

Note that an ε-PCS is automatically an ε-CCS, though most probably not a minimally

sized one.

In Chapter 3 we propose a bounded approximate solution method for computing

CCSs in MODPs, i.e., methods that come with the guarantee that they can produce an

ε-CCS, for any value of ε, within finite time. Typically, the closer ε is set to 0, the

longer the algorithms take to terminate.

2.2 Overview of Concrete Decision Problems

Now that we have derived the solution to MODPs, as well as bounded approximations

thereof, we move to concrete MODPs to solve. In Section 1.3 we limited our scope

to cooperative multi-objective decision problems. Furthermore, we discussed three

aspects of decision problems: single- or multi-agent, single-shot or sequential, and

fully or partially observable. Note that the first option is always the more restrictive:

the most restrictive model would thus be a single-agent, single-shot, fully observable

MODP.

In this section, we discuss the different models that result from different combina-

tions of the three aspects, and place the models for which we propose new methods in

context. Before doing so however, we first treat a single multi-objective decision prob-

lem with very little structure that illustrates some fundamental differences between

solving single-objective and multi-objective decision problems. Specifically, we go

6
w can always be made to adhere to the simplex constraints by dividing with a constant c. If w is

not on the simplex, the MUL reported here should be multiplied by this c.
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into how for cooperative SODPs, restricting the set of allowed policies Π by disal-

lowing stochasticity typically does not affect the optimal attainable utility, while in

MODPs the optimal utility is affected.

2.2.1 Bandit Problems

The simplest SODP is the multi-armed bandit problem (BP) (Sutton and Barto, 1998).

BPs have very little structure to exploit, and therefore planning is either trivial — when

the problem is small — or intractable — when the problem is too large. However, it is

a useful problem in order to illustrate the basic concepts of decision problems.

In a BP, an agent can select an action a from a discrete set of possible actions A.

The environment provides a reward (possibly stochastically) on the basis of this action,

i.e., each action has an associated expected reward R(a).

Definition 14. A multi-armed bandit problem (BP) is a tuple 〈A, R〉, where

• A is a discrete set of actions, also called arms, and

• R is the reward function, that specifies an expected reward R(a) ∈ R for each

action.

A policy, π, for a BP is a probability distribution over actions, A → [0, 1]. The value

of a policy π, V π, is the expected reward of the policy:

V π =
∑

a∈A
π(a)R(a).

A special case of a policy is the deterministic policy, in which one action will be chosen

with probability 1. In other words, a deterministic policy in a BP is a single action.

Policies that are not deterministic are called stochastic.

Planning in a single-objective BP is straight-forward. In the planning setting we

know the model, and therefore we can chose an optimal deterministic policy by simple

maximization. There is always a deterministic policy that is optimal, because there is

always an action a that maximizes the reward, and choosing a different action a′ cannot

improve the value. This does not imply that it is always possible to retrieve the optimal

policy in practice though; maximization can be infeasible when the number of actions

is too large. However, because BPs do not have any structure that can be exploited to

compute the optimal policy more efficiently, there is no way to mitigate that by clever

algorithms.

In the multi-objective case, i.e., a multi-objective multi-armed bandit problem (MOBP)

(Drugan and Nowé, 2013), we typically need more than one policy, and deterministic

policies no longer suffice.

Definition 15. A multi-objective multi-armed bandit problem (MOBP) is a tuple 〈A,R〉,
where
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• A is a discrete set of actions, and

• R is the reward function, that specifies an expected reward R(a) ∈ R
d for each

action, where d is the number of objectives.

In the MOBP case the value of a policy, Vπ =
∑

a∈A π(a)R(a), is vector-valued. This

means that there is no longer a single action that maximizes the immediate reward.

We now illustrate which policies are required for the PCS and CCS, using an exam-

ple MOBP. Imagine a 2-objective MOBP with three actions, a1, a2 and a3, for which

the corresponding rewards are:

• R(a1) = (3, 0),

• R(a2) = (1, 1), and

• R(a3) = (0, 3).

When we only allow deterministic policies (of which there are three), all policies

are Pareto optimal and in the PCS. However, when we determine the CCS, we see that

a2 is C-dominated, because there is no linear weight w for which w · (1, 1) is better

than both w · (3, 0) and w · (0, 3).
Now, let us allow stochastic policies. First, we observe that a stochastic policy can

P-dominate a deterministic policy. The deterministic policy of always performing ac-

tion a2 is dominated by the stochastic policy π(a1) = π(a3) = 0.5 with value (1.5, 1.5).
In fact, we can see that all policies for which π(a2) = 0 are Pareto optimal, and a PCS

necessarily consists of all of these policies. For the CCS we also see that all policies

for which π(a2) = 0 are C-undominated. However, all but two of these policies — the

deterministic policies π1, always selecting action a1, and π3 always selecting a3 — are

only optimal for the weight w = (0.5, 0.5) and π1 and π3 also maximize the scalarized

value for this w. Therefore, a minimally sized CCS would still only consist these two

deterministic policies. We therefore make the following observations:

Observation 1. The PCS of deterministic policies can contain policies that are domi-

nated by policies in the PCS of stochastic policies. The PCS of stochastic policies can

be infinitely large.

Observation 2. The CH of stochastic policies can be infinitely large, but a CCS can

still consist of a discrete set of policies.

Let us formalize the intuition of Observation 2. We can in fact show that for com-

puting a CCS, even when stochastic policies are allowed, we can restrict ourselves to

only deterministic policies.

Theorem 1. For an MODP that can be expressed as an MOBP, there is always a CCS

with only deterministic policies, even when stochastic policies are allowed.
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Proof. We observe that for all weights w in a linear scalarization function, we can

translate the MOBP to a single-objective BP, by redefining the reward function as the

inner product of w with the multi-objective reward function: for all a the reward be-

comes Rw(a) = w ·R(a). For the resulting BP we know that there exists an optimal

deterministic policy.

This is an important result, because it guarantees that we can define a finite-size

CCS. Furthermore, we generalize this proof for more complex planning problems in

the following chapters, when we introduce each specific MODP.

For the stochastic PCS, a theorem similar to Theorem 1 does not hold, and the PCS

can be infinitely large. However, in Section 2.3 we argue that we can mitigate this by

using a compact representation of a stochastic PCS using a deterministic CCS. For now,

we assume that solving an MOBP consists of either computing a deterministic PCS,

or a deterministic CCS. This can be done by putting all the values of the deterministic

policies in a set and subsequently removing all policies that are dominated. We refer to

the removal of dominated policies from a set as pruning (Feng and Zilberstein, 2004).

Planning in MOBPs is nothing more than pruning away all P-dominated or C-

dominated actions. The challenge in both BPs and MOBPs arises when the reward

function R is unknown to the agent, and information about these rewards can only be

attained through repeated interaction. This learning setting (Sutton and Barto, 1998;

Wiering and Van Otterlo, 2012) poses an interesting challenge because the agent should

balance exploring its options to learn more about R and exploiting what it already

knows in order to attain high rewards. However, the learning setting is beyond the

scope of this dissertation. Please refer to (Auer and Ortner, 2010; Kuleshov and Precup,

2014) for an overview of BP learning algorithms, and to (Drugan and Nowé, 2013;

Yahyaa et al., 2014) for MOBP algorithms.

MOBPs are problems with very little structure, making it an uninteresting problem

for planning; it is either possible to compute a CS by pruning or it is not, and it the

latter case, nothing can be done about it. Therefore, we focus attention on MODPs with

a more structure, that can be exploited algorithmically. In fact, the structured MODPs

that we treat in this dissertation can be reduced to MOBPs, by discarding all structure.

However, doing so typically makes these problems intractable.

2.2.2 Overview of Decision Problems

The MOBP is a very simple model, that is well-suited to model single-agent, single-

shot and fully observable decision problems. When we relax either the first or the

second of these constraints though, the planning problem will be more structured, and

planning becomes more complex.

An overview of SODPs, as a Venn diagram, is presented in Figure 2.2. The different

models in this diagram are: the (multi-armed) bandit problem (BP), the coordination

graph (CoG), the Markov decision process (MDP), the multi-agent Markov decision

process (MMDP), the partially observable Markov decision process (POMDP), and
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Figure 2.2: Venn diagram of cooperative (single-objective) decision problems

finally the decentralized partially observable Markov decision process (Dec-POMDP).

All these models have multi-objective counter-parts, that can be defined by replacing

the scalar reward function in these models by a vector-valued one.

The Models in this Dissertation

In this dissertation, we limit our scope to three specific MODPs models: multi-objective

coordination graphs (MO-CoGs), and multi-objective Markov decision processes (MOMDPs)

and multi-objective partially observable Markov decision processes (MOPOMDPs).

MO-CoGs are cooperative single-shot, fully observable, multi-agent decision prob-

lems. In MO-CoGs, agents must coordinate their behavior in order to find effective

policies. Key to making coordination between agents efficient is exploiting loose cou-

plings, i.e., each agent’s actions directly affect only a subset of the other agents. Such

loose couplings are expressed by a reward function, that decomposes into a sum over

(many) local reward functions in which only subsets of the agents participate. We

define the MO-CoG model formally in Chapter 4.

As we discuss in Chapter 4, it is possible to flatten a MO-CoG to an MOBP, by

ignoring the graphical structure of the reward function. Such a flattening can be seen

as defining a single central control agent that has the Cartesian product of the individual

action spaces of all agents as its action space. Because the size of this Cartesian product

grows exponentially with the number of agents tin the problem however, this approach

is typically intractable. It is however important to note that because this flattening is

possible, Theorem 1 applies.

MOMDPs are single-agent, fully observable, sequential decision problems. A pol-

icy in an MOMDP thus consists of a sequence of (probability distributions over) ac-

tions. This sequence executed actions that results from a policy affect the environment.

Therefore, the agents do not only have to consider their immediate reward, but also the

reward they will be able attain later, by changing the state of the environment to a

more favorable one. Because the effects of the actions are typically stochastic, find-

ing suitable policies for defining a coverage set requires reasoning over all possible
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future states of the environment. We define the MOMDP model formally in Chapter

5. While it is not straight-forward to flatten an MOMDP to an MOBP, it is known that

we can define a CCS consisting of deterministic policies even when stochastic policies

are allowed.

Also in Chapter 5, we discuss MOPOMDPs, which are single-agent, partially ob-

servable, sequential decision problems. While this partial observability poses an im-

portant additional challenge, it important to note that a reduction exists to a multi-

objective MDP, be it with a continuous state-space. Therefore, is possible to define

a CCS consisting of deterministic policies even when stochastic policies are allowed,

with respect to this continuous state. We discuss how this works in detail in Section

5.1.2.

Other Models

For the MO-CoG, MOMDP and MOPOMDP models we propose new algorithms in

the following chapters. However, there are more possible collaborative MODPs, that

extend SODPs from Figure 2.2. In particular, these models represent other combina-

tions of the aspects we discussed in Section 1.3:

• (Multi-objective) collaborative bayesian games (CBGs) (Oliehoek et al., 2012)

are multi-agent, single-shot, and partially observable decision problems.

• (Multi-objective) multi-agent Markov decision processes (MMDPs) (Boutilier,

1996) are multi-agent, sequential, and fully observable decision problems.

• (Multi-objective) decentralized partially observable Markov decision process

(Dec-POMDP) (Bernstein et al., 2002; Oliehoek, 2010) are multi-agent, sequen-

tial, and partially observable decision problems.

We do not propose new methods for these models in this dissertation, but we do discuss

the implications of our work for these models in Section 6.2.3 of Future Work.

2.3 Case for the Convex Coverage Set

Now that we have introduced different solution concepts for multi-objective decision

problems (MODPs) as well as specific instances of MODPs, we advocate a specific

solution concept, i.e., the convex coverage set (CCS) of deterministic policies. As ex-

plained in Section 2.1.2, the CCS is an exact solution when the scalarization function,

f (Definition 1), is linear. In this section, we show that the CCS is also a sufficient

set to easily construct all necessary values for a PCS of stochastic policies by using

a specific type of stochastic policy called a mixture policy (Vamplew et al., 2009).

Furthermore, we will show that we can restrict our attention to deterministic policies

when we have cooperative MODPs for constructing a CCS. In other words, the CCS



2.3. Case for the Convex Coverage Set 25

0 1 2 3 4

0
1

2
3

4
V0

V
1

B

C

A

Figure 2.3: The CCS of deterministic stationary policies, mixture policies and the PCS

of stochastic/non-stationary policies.

of deterministic policies, CCS(ΠD), applies to cooperative MODPs when either, the

scalarization function is linear, or policies can be stochastic, or both.

In scenarios in which multiple policies are required, e.g., the unknown weights and

decision support scenarios of Section 1.1, where stochastic policies are allowed, we

refer to the full set of all possible stochastic policies for an MODP as Π. However,

when we can make the following assumption, we do not require all of Π to establish a

CCS.

Assumption 1. Optimality of Deterministic Policies for Scalarized Instances

For any given w of a linear scalarization function (Definition 6), an MODP can be

scalarized resulting in an SODP for which there is an optimal deterministic policy.

If this assumption holds, we can employ stochastic policies instead of deterministic

non-stationary ones. In particular, we can employ a mixture policy (Vamplew et al.,

2009) πm that takes a set of N deterministic policies, and selects the i-th policy from

this set, πi with probability pi, where
∑N

i=0 pi = 1. This leads to policy values that are

a linear combination of the values of the constituent policies:

V
πm =

N
∑

i=0

piV
πi .

When we consider the possible values we can attain through using these mixture poli-

cies on policies that are in the CCS (using the same values as for Figure 2.1) in Figure

2.3, we observe that we can create all the policy values on the red lines connecting the

red dots (such as B and C, which represent the CCS policy values). This is a highly use-

ful observation, as — as we discuss in the following chapters — in all the cooperative

MODPs we consider, we can restrict ourselves to deterministic policies for computing

a CCS.

Corollary 1. (Vamplew et al., 2009; Roijers et al., 2013a) In an MODP for which

Assumption 1 holds, there exists a CCS(ΠD) that includes only deterministic policies,

such that this set PM , is a PCS(Π).
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Proof. We can construct a policy with any value vector on the convex surface, e.g., the

red lines connecting the red dots (which represent the CCS policy values) in Figure 2.3,

by mixing policies on a CCS.7 Therefore, we can always construct a mixture policy that

dominates a policy, with a value under this surface, such as A. Furthermore, we show

by contradiction that there cannot be any policy above the convex surface. If there was,

it would be optimal for some w if f was linear. Consequently, due to Assumption 1,

there would be a deterministic policy with at least equal value. But since the convex

surface spans the values on the CCS, this leads to a contradiction. Therefore, no policy

can Pareto-dominate a mixture policy on the convex surface.

Thanks to Corollary 1, it is sufficient to compute a CCS, CCS(ΠD), of deter-

ministic policies to solve cooperative MODPs even when the scalarization function is

non-linear, as long as we can establish that Assumption 1 holds. We show this for all

MODPs of this dissertation in the following chapters. This leads us to the taxonomy of

Table 2.1, in which for each scenario we discussed in Section 1.1 and type of policies

allowed, for the different assumptions about the family of scalarization functions dis-

cussed in Section 2.1, the appropriate solution concept is provided. In this dissertation

we focus on the case in which multiple policies are required (the unknown weights and

decision support scenarios) and where either the scalarization function can be assumed

to be linear, or the policies can be stochastic, or both. The corresponding solution

concept is the CCS of deterministic policies, as highlighted in blue in the table.

In the rest of this dissertation, we focus on finding methods for computing the CCS

of deterministic policies. For convenience, we typically assume linear f . However,

please note that our methods also apply to merely monotonically increasing f , when-

ever stochastic policies are allowed.

7Note that we should always mix policies that are “adjacent” (such as B and C); the line between

any pair of the policies we mix should be on the convex surface.
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single policy multiple policies

(known weights) (unknown weights/decision support)

deterministic stochastic deterministic stochastic

linear

scalariza-

tion

one deterministic policy CCS of deterministic policies

monotoni-

cally

increasing

scalariza-

tion

one

deterministic

policy

one mixture

policy of two

or more

deterministic

policies

PCS of

deterministic

policies

CCS of

deterministic

policies

Table 2.1: The MODP problem taxonomy — the columns describe whether the prob-

lem necessitates a single policy or multiple policies (and in which scenarios it does so),

and whether those policies must be deterministic (by specification) or are allowed to

be stochastic. The rows describe whether the scalarization function is a linear (Defi-

nition 6), or whether this cannot be assumed and the scalarization function is merely

a monotonically increasing function. The contents of each cell describe what solution

set should be used as a solution concept (as defined in Section 2.1).





Chapter 3

Optimistic Linear Support

In this chapter we present one of our central contributions: the optimistic linear sup-

port (OLS) framework for cooperative multi-objective decision problems (MODPs).

Before we go into OLS, we first discuss two approaches to solving MODPs in Section

3.1, which we refer to as the inner and the outer loop approaches. In the former, a

single-objective algorithm for a specific decision problem (such as a CoGs, MDPs or

POMDPs) is adapted to apply to the corresponding MODP, by changing the summa-

tion and maximization operators into cross-sum and suitable pruning operators. In the

latter — to which OLS belongs — an MODP is solved as a series of scalarized (i.e.,

single-objective) problems, and single-objective algorithms are used as subroutines.

In Section 3.2, we analyze the outer loop approach, by identifying the similarities

between computing a CCS for MODPs, and computing the value function of a (single-

objective) POMDP. We observe that the scalarized value function of MODPs and the

value function of single-objective POMDPs exhibit the same favorable property, which

can be exploited in a similar way. However, we also observe that in the analogy be-

tween MODPs and POMDPs, the number of states in a POMDP corresponds to the

number of objectives in an MODP. While the scalability in the number of states in a

POMDP is typically the bottleneck, the number of objectives in an MODP is typically

much smaller and therefore not the bottleneck. In fact, there are many real-world prob-

lems with two or three objectives. Therefore, an algorithm that is efficient for POMDPs

with only a small number of states but does not scale well, may still be a good starting

point for creating an MODP algorithm.

In Section 3.3, we define the OLS framework, and explain the algorithm in detail.

OLS is a generic outer loop method, that takes inspiration from the POMDP literature.

It takes a single-objective method as a subroutine, and calls this method a finite number

of times in order to solve an MODP optimally. In Section 3.4, we analyze OLS theoret-

ically, and show that OLS has many advantages over inner loop algorithms, that extend

the same single-objective algorithms used by OLS as subroutines. Firstly, OLS comes

with strong guarantees with respect to time and space complexity. Secondly, OLS-

based algorithms can be much faster for small and medium numbers of objectives than

29
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Al (5.7, 6.9)

Bl (7.1, 5.7)

Cl (7.5, 5.4)

Dl (6.6, 6.7)

Ar (7.3, 7.6)

Br (5.9, 8.2)

Cr (8.8, 6.4)

Dr (6.6, 7.7)

Vl(al) Vr(ar)

Table 3.1: A simple MODP — select one element from each list and receive the asso-

ciated reward vector.

corresponding inner loop algorithms. And finally, in OLS, the single-objective sub-

routines can be used out of the box1, making any improvement for single-objective

methods an improvement for multi-objective methods.

After defining and analyzing OLS, we make two key improvements to OLS, that

improve its applicability for different MODPs. In Section 3.5, we show that OLS can

be used in combination with bounded approximate single-objective subroutines, and

show that if this is the case, OLS produces ε-CCSs (Definition 13). In Section 3.6, we

show that we can improve the runtime of OLS, by reusing the solutions found by earlier

calls to the single-objective subroutines to hot-start later calls to these subroutines.

3.1 Inner Loop versus Outer Loop

In this section, we present a “how-to” on creating algorithms that compute a CCS for

an MODP, starting from a method that computes the optimal policy (and associated

value) for the corresponding single-objective decision problem (SODP). We discuss

two popular approaches. The first, which we refer to as the inner loop approach,

adapts the inner workings of the single-objective algorithm by exchanging sums and

maximizations by cross-sums and pruning, which we will define soon. The second,

which we refer to as the outer loop approach, leaves the single-objective algorithm

intact, but creates a shell, i.e., an outer loop, around the single-objective method.

In order to illustrate the difference between inner and outer loop methods, we make

use of the following simple multi-objective decision problem (Table 3.1): there are

two local payoff functions called Vl(al) and Vr(ar) with for each local action (A,

B, C, or D), an expected reward. A deterministic policy takes one action al and

one action ar. The value of a deterministic policy is the sum of the local rewards.

We denote a deterministic policy as a = (al, ar) (a joint action), and the value of a

deterministic policy as V(a) = Vl(al) + Vr(ar). For example, for the deterministic

policy a = (Al, Ar), the value would be V(Al, Ar) = (13, 14.5).

1Though sometimes, adaptations can be made as we explain in Section 5.3.
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Figure 3.1: (a) All values and local rewards for the problem of Table 3.1. (b) The

optimal scalarized value function, V ∗
CCS(w) = max

V∈CCS
w ·V.

A single-objective version of our toy problem would consist of two local payoff

functions with scalar values. When we are given a specific linear scalarization weight

w, we can scalarize the problem of Table 3.1, resulting in such a single-objective

problem. For example, when w = (0.5, 0.5), the rewards in Vl would become:

Vl,w(Al) = 6.3, Vl,w(Bl) = 6.4, Vl,w(Cl) = 6.45, and Vl,w(Dl) = 6.65. From such

a local payoff function, it is easy to pick the maximizing local action. Furthermore,

combining the maximizing actions from both lists provides the maximizing policy for

the full problem. A single-objective solver would thus be:

1. pick the maximum from each list, and

2. compute the sum.

Finding the maximum value can thus be expressed as:

max
a

Vw(a) = max
al

Vl,w(al) + max
ar

Vr,w(ar), (3.1)

and the maximizing policy can be found by using argmax instead of max. When we

call the number of elements in each list l, the single-objective algorithm returns the

optimal solution in O(l) time.

For the multi-objective version (Table 3.1), we want to compute the CCS. A naive

way to do so would be to first list all possible joint actions and associated value vec-

tors and compute the CCS from that list. The multi-objective values of all possible

deterministic policies are illustrated in black and purple in Figure 3.1. Because there

are l2 = 16 deterministic policies, but only 5 CCS policies, we might be doing a lot of

unnecessary work when we follow this approach. In the following two subsections, we
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provide two approaches to adapting single-objective methods in a smart way. In the

problem of Table 3.1, both approaches avoid full enumeration of deterministic policies.

3.1.1 The Inner Loop Approach

A key difference between SODPs and MODPs, is that while in single-objective prob-

lems the solution is a single policy that maximizes a scalar value, in multi-objective

problems, the solution is typically a set of policies and associated value vectors, i.e.,

coverage sets. For convenience we assume that the CSs contain both value vectors as

well as the policies that achieve these value vectors. We do not go into the implemen-

tation details of how this is achieved in this section.2

In order to work with solution sets, we first need to translate the problem to sets

rather than local reward functions:

Vl = {Vl(al) : al ∈ {Al, Bl, Cl, Dl}},

and accordingly for Vr.

In the inner loop approach, the required solution sets are produced by changing

the operators required for optimization in single-objective problems, to operators that

work on sets. The first single-objective operator that we must adapt in the inner loop

approach is the maximization operator. In the multi-objective setting the maximization

corresponds to computing a (local) coverage set. Computing a CS can be seen as

computing the maximal value for all weights of the scalarization function in parallel.

The multi-objective operator corresponding to maximization takes a set, such as Vl,
and prunes away all vectors that do not maximize the value for any weight w of the

scalarization function f , resulting in a local CS. Therefore, we call these operators

pruning operators. Note that when computing a PCS, we need a different pruning

operator than when computing a CCS. In its abstract form, i.e., when the operator

computes a local CS (either a CCS or PCS), we denote this operator as LCS.

The second single-objective operator we must adapt is the summation operator. The

corresponding multi-objective operator is the cross-sum operator, ⊕, which combines

two sets by computing the sum of all possible pairs with one element from each set:

A⊕ B = {A+B : A ∈ A ∧B ∈ B} . (3.2)

Having defined the appropriate operators, we can now translate Equation 3.1, to

reflect the inner loop method for the problem of Table 3.1:

CS = LCS(LCS(Vl)⊕ LCS(Vr)). (3.3)

Note that while there are only two maximization operations in Equation 3.1, there are

now three LCS operations. This is because while the sum of maximal local rewards

2We do go into these details for the specific MODPs we discuss in later chapters.
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in the single-objective problem form a single value when summed, the combination of

two sets may contain combinations that are dominated.

We have now defined the general schema for creating a multi-objective inner loop

method from a base single-objective method, i.e., replace the maximizations by prun-

ing operations, and replace the summations by cross-sums. Before we can use such a

method in practice however, we must:

(a) define appropriate implementations of LCS depending on what type of solution

set we are after, e.g., a CCS or a PCS,

(b) select the places in the algorithm where pruning is applied, and

(c) check whether the resulting inner loop method is indeed correctly outputting the

CS. In particular, we check that no necessary vectors for computing the CS pruned

prematurely, and that no excess vectors, i.e., vectors that are never optimal for any

allowed scalarization, retained in the output.

First, let us address (a). We provide a possible implementation of LCS for the

case of CCS computations in Algorithm 1. We use this implementation throughout

this dissertation, and refer to it as CPrune. CPrune is based on the algorithm for CCS

pruning3 by Feng and Zilberstein (2004), with one modification. In order to improve

runtime guarantees, CPrune first pre-prunes the input set, V , to a PCS using the PPrune

algorithm (Algorithm 2) at line 1. PPrune computes a PCS in O(d|V||PCS|) time by

running pairwise comparisons. Next, a partial CCS, V∗, is constructed as follows: a

random vector V from V ′ is selected at line 4. For V the algorithm tries to find a

weight vector w for which V is better than the vectors in V∗ (line 5), by solving the

linear program in Algorithm 3. If there is such a w, CPrune finds the best vector V′

for w in V ′ and moves it to V∗ (line 10–12). If there is no weight for which V is better,

it is C-dominated and thus removed from V ′ (line 7).

Theorem 2. The computational complexity of CPrune as defined by Algorithm 1 is

O(d|V||PCS|+ |PCS|P (d|CCS|)), (3.4)

where P (d|CCS|) is a polynomial in the size of the CCS and the number of objectives

d, which is the runtime of the linear program that tests for C-domination (Algorithm

4).

Concerning (c), i.e., whether the algorithm outputs the correct CS, we provide a

small proof sketch for our simple MODP problem of Table 3.1. (In later chapters we

provide more formal proofs.) First, note that for each w, CPrune retains at least one

optimal value vector, and removes all vectors that are not optimal for any w. Because

3The work by Feng and Zilberstein (2004) is from the POMDP literature. We explain the relation

between POMDPs and multi-objective decision making in Section 3.2. Note that many algorithms

for CCS pruning originate in other fields than POMDPs, such as graphics or geometry (e.g., Graham

(1972)).
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Algorithm 1: CPrune(V)
Input: A set of value vectors V

1 V ′ ← PPrune(V)
2 V∗ ← ∅
3 while V ′ 6= ∅ do

4 select random V from V ′
5 w← findWeight(V,V∗); // identify a w where V improves V∗

6 if w=null then

7 remove V from V ′ ; // there is no w where where V improves V∗

8 end

9 else

10 V
′ ← argmaxV∈V ′ w ·V ; // find best value vector for w

11 V ′ ← V ′ \ {V′}
12 V∗ ← V∗ ∪ {V′}
13 end

14 end

15 return V∗

Algorithm 2: PPrune(V)
Input: A set of value vectors V

1 V∗ ← ∅
2 while V 6= ∅ do

3 V← the first element of V
4 foreach V

′ ∈ V do

5 if V′ ≻P V then

6 V← V
′ ; // Continue with V

′ instead of V

7 end

8 end

9 Remove V, and all vectors P-dominated by V, from V
10 Add V to V∗
11 end

12 return V∗
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Algorithm 3: findWeight(V,V)

// Find a weight vector w, where the scalarized value of a new value

vector V is an improvement, i.e., w · V > max
V′∈V

w · V′, using a linear

program.

max
x,w

x

subject to w · (V −V
′)− x ≥ 0, ∀V′ ∈ V

d
∑

i=1

wi = 1

if x > 0 return w else return null

linear scalarization distributes over addition, i.e., w · (Vl(al)+Vr(ar)) = w ·Vl(al)+
w ·Vr(ar), we know that no optimal values can be lost when performing CPrune on

the separate sets Vl and Vr, before taking the cross-sum. Furthermore, we know that

because CPrune is applied again after taking the cross-sum, no excess value vectors

can remain.

When we apply the inner loop method, i.e., Equation 3.3 where LCS = CPrune, to

the problem of Table 3.1 (and Figure 3.1(a)), we observe the following: when applying

CPrune to Vl and Vr, it removes one vector each. In other words, the local CCSs

both consist of three vectors. Therefore, the cross-sum of these CCSs consists of 9
vectors, which is significantly less than the 16 we would get if we took the cross-sum

before local pruning. However, in order to do the local pruning, we have to invest

effort, which in this (small) problem amounts to as much work as computing the cross-

sum. Therefore, we have to be careful when applying the inner loop approach; it is

not always worth the effort to prune everywhere we can. Selecting how much to prune

— by choosing either to not prune at all, apply only PPrune, or to apply CPrune, at

each possible point in the algorithm — is a non-trivial design choice that may be very

problem-specific. In Sections 4.3.1 and 4.3.3 for example, we analyze the different

design choices for an inner loop method for MO-CoGs.

Many algorithms in the literature on multi-objective decision problems, take an

inner loop approach (e.g., the methods by Rollón (2008) and Wilson et al. (2015)

for MO-CoGs, and Barrett and Narayanan (2008) and Moffaert and Nowé (2014) for

MOMDPs). However, it is also possible to create multi-objective methods by creating

a shell around a single-objective method, rather than making major changes to the

single-objective method itself, as we describe in the next subsection.
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3.1.2 The Outer Loop Approach

In an outer loop approach, an (approximate) coverage set is built incrementally, by

solving scalarized instances. In order to solve these scalarized instances, a subroutine

appropriate for the single-objective version of the MODP at hand is required. For ex-

ample, when we want to solve an MOMDP, an MDP solver is required as a subroutine.

The solutions produced for scalarized instances are kept in a partial CCS.

Definition 16. A partial CCS, S , is a subset of a CCS, which is in turn a subset of all

possible value vectors (V = {Vπ : π ∈ Π}), i.e., S ⊆ CCS ⊆ V .

The basic structure of an outer loop method is given in Algorithm 4. It starts from

an empty set (line 1), as a partial CCS. In each iteration, a scalarized instance (i.e.,

an SODP resulting from scalarizing the MODP with a given f and a w) is selected

(line 3), and solved using a single-objective subroutine (line 4). For each solution, i.e.,

an optimal policy π∗
w

, of a scalarized instance, the multi-objective value vector Vw is

retrieved. If Vw improves upon the partial CS, S — by improving the scalarized value

for some (allowed) f and w — it is added to S (lines 5–8). This process continues

until some stop criterion is reached, e.g., when it can be proven that S is a CS or time

runs out.

Algorithm 4: OuterLoopMethod(m, SolveSO)

Input: An MODP, m, and a corresponding single-objective solver SolveSO.

1 S ← ∅ ; // a partial CS

2 while stop criterion not reached do

3 mw ← select a w and scalarize m

4 π∗
w ← SolveSO(mw)

5 Vw ← retrieve/compute the multi-objective value of π∗
w

6 if Vw improves upon S then

7 S ← S ∪ {Vw} ; // add Vw (and associated π∗
w) to S.

8 end

9 end

10 return S

The three main design choices when creating an outer loop method are:

(a) how to select scalarized instances to solve,

(b) which single-objective subroutine to use, and

(c) whether to compute the value vectors separately (by policy evaluation), or to adapt

the single-objective solver such that it returns both π∗
w

and Vw.

For example, in random sampling (RS) (which we use as a baseline in Roijers et al.

(2015c)), scalarized instances are selected randomly, by sampling one allowed w (and

f ) at each iteration and scalarizing the problem. The scalarized problem is then solved
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using, e.g., an out-of-the-box single-objective solver that produces an optimal policy

for mw, and the value vector, Vw retrieved by a standard policy evaluation algorithm.

At each iteration, it is checked whether Vw is already in S or not — note that Vw

cannot be dominated when the single-objective solver is optimal, because it is optimal

for at least one scalarized instance by definition — and if not, added to S . Typically,

this is done for a limited number of iterations, or until a fixed number Istop of iterations

has not produced a new value vector for S .

RS has two important advantages. Firstly, it quickly produces some result, and im-

proves upon it iteratively, i.e., it is an anytime algorithm. This is a major advantage

over many inner loop methods, as they typically need to run until completion to pro-

duce any useful results. Secondly, RS is extremely easy to implement, as long as a

suitable single-objective solver and policy evaluation method are available. However,

RS also has a major downside: it is optimal only in the limit. Because of its random-

ized nature, there is no guarantee that (within finite time) there will be no f and w left

for which an improvement still exists.

More sophisticated linear scalarization weight sampling-based methods (Kim and

de Weck, 2005; Van Moffaert et al., 2014) exist (in those articles referred to as weighted-

sum methods), in which scalarizations are sampled on the basis of, e.g., the relative

distance of the value vectors V or the hyper-volume metric. However, these methods

also do not provide runtime and optimality guarantees.

In Section 3.3, we present a novel algorithm which retains the advantages of RS

and other outer loop methods, but is provably optimal when the single-objective sub-

routines used are optimal, and produces bounded approximations when the subroutines

produce upper and lower bounds, and runs in finite time. In order to do this, we make

use of an analogy between finding the CCS for MODPs, and POMDP planning.

3.2 The Scalarized Value Function

In order to create outer loop methods that are provably optimal, run in finite time, and

make smart choices about which scalarized instances of the MODP to solve next, we

first need to define the scalarized value function with respect to the linear scalariza-

tion function (Definition 6). Note that focussing on linear scalarization is sufficient to

discover the CCS, even though the CCS can also be used in the context of non-linear

scalarization.

When we look at the linearly scalarized value Vw of a value vector V as a function

of w, it becomes a hyperplane above the weight simplex. For example, the scalarized

values for the vectors in the CCS of Table 3.1 are shown in Figure 3.1b. Because this

is a 2-objective problem, the weight for objective 0, w0, is equal to 1 − w1. When we

plot the scalarized value as a function of w1, each value vector becomes a line.

The maximal scalarized value function over a set of vectors, S , takes the maximum

over all the vectors in that set.

Definition 17. A scalarized value function over a partial CCS, S , is a function that
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takes a weight vector w as input, and returns the maximal attainable scalarized value

with any payoff vector in S:

V ∗
S (w) = max

Vπ∈S
w ·Vπ.

If we take a complete CCS as S , the scalarized value function V ∗
CCS(w) is the opti-

mal scalarized value function. By definition, for every w the optimal scalarized value

for the MODP is V ∗
CCS(w). In Figure 3.1(b), the optimal scalarized value function is

represented by the bold line segments. Similar to the scalarized value function, we

define the set of maximizing value vectors and associated policies:

Definition 18. The optimal value vector set function with respect to S is a function

that gives the value vectors that maximize the scalarized value for a given w:

VS(w) = argmax
Vπ∈S

w ·Vπ,

Similarly, the optimal policy set ΠS(w), is the set of policies that constitute the value

vectors in VS(w).

Note that VS(w) and ΠS(w) are sets because for some w there can be multiple value

vectors that provide the same scalarized value.

Because V ∗
S (w) is the maximum scalarized value for each w, it is the convex upper

surface of all of these lines (which represent the value vectors in S). Hence, V ∗
S (w)

and V ∗
CCS(w) are piecewise linear and convex (PWLC) functions.

When considering partially observable Markov decision processes (POMDPs) (Cheng,

1988; Kaelbling et al., 1998), the optimal value function is also a PWLC function. In

particular, the belief vectors b in POMDPs correspond to our weight vectors w and

the α-vectors correspond to our value vectors V. POMDPs and MODPs are thus re-

lated problems. This is an important observation, as many insights from the POMDP

literature can thus also be exploited in the context of computing CCSs for MODPs.

However, while scalability in the number of states in a POMDP is key to the succes

of a POMDP solver, the number of objectives in an MODP is typically small — there

are many MODPs with only two or three objectives. Therefore, scalability in the num-

ber of objectives is typically less important than scalability in other properties of an

MODP. In the next section, we build off a POMDP method that has poor scalability in

the number of POMDP states, but forms a good starting point for creating an MODP

method.

3.3 The OLS Algorithm

In this section, we present our main algorithmic contribution: optimistic linear support

(OLS). OLS is a novel outer loop algorithm for computing the CCS for MODPs.
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Like the random sampling (RS) method described in Section 3.1.2, OLS deals with

multiple objectives in the outer loop by employing a single-objective method as a sub-

routine, and building the CCS incrementally. With each iteration of its outer loop,

OLS thus adds at most one new vector to a partial CCS, S . To find this vector, OLS

selects a single linear scalarization weight, w. The key difference with RS is that OLS

selects this w intelligently. Specifically, OLS is optimistic: it selects the w that of-

fers the maximal possible improvement — an upper bound on the difference between

V ∗
S (w) and the optimal scalarized value function V ∗

CCS(w). After OLS identifies it,

this w is passed to the inner loop. In the inner loop, OLS calls a problem specific

single-objective solver to solve the single-objective decision problem that results from

scalarizing the MODP using the w selected by the outer loop. The policy that is opti-

mal for this scalarized problem and its value vector are then added to the partial CCS.

The departure point for creating OLS is Cheng’s linear support (CLS) (Cheng,

1988). CLS was originally designed as a pruning algorithm for POMDPs. Unfor-

tunately, this algorithm is rarely used for POMDPs in practice, as its runtime is ex-

ponential in the number of states. However, the number of states in a POMDP cor-

responds to the number of objectives in an MODP, and while realistic POMDPs typi-

cally have many states, many MODPs have only a handful of objectives. Therefore, for

MODPs, scalability in the number of objectives is typically less important than scala-

bility in other properties of the problem (such as the number of agents or the number

of states), making Cheng’s linear support an attractive starting point for developing

efficient MODP algorithms.

Because OLS takes an arbitrary single-objective problem solver as input, it can be

seen as a generic multi-objective method that applies to any cooperative MODP. We

show that OLS chooses a w at each iteration such that, after a finite number of itera-

tions, no further improvements to the partial CCS can be made and OLS can terminate.

Furthermore, we bound the maximum scalarized error of the intermediate results, so

that they can be used as bounded approximations of the CCS. After defining the al-

gorithm in this section, we show that OLS inherits any favorable properties from the

single-objective subroutines it uses in Section 3.4. In subsequent chapters, we instanti-

ate OLS by using different single-objective solvers for different instances of MODPs,

and show how this leads to novel state-of-the-art algorithms for a variety of problems.

In this section, we assume that the single-objective solver used as a subroutine by

OLS is exact, i.e., the scalarized instances are solved optimally. In other words, we

assume that OLS has access to a function called SolveSODP that computes the best

payoff vector for a given w. For now, we leave the implementation of SolveSODP

abstract. As mentioned in Section 3.1.2, we can either use an adapted single-objective

solver that returns the value vector, or we can use a separate policy evaluation step. In

Section 3.5 we relax the assumption that SolveSODP needs to be exact.

OLS exploits the PWLC property of the scalarized value function, V ∗
S (w) (Defini-

tion 17). OLS incrementally builds up the CCS, by adding new value vectors that are

found at so-called corner weights, to an initially empty partial CCS, S . These corner

weights are the weights where V ∗
S (w) changes slope in all directions. These must thus
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Figure 3.2: A run of OLS for the problem of Table 3.1. In each picture, V ∗
S is indicated

by bold line segments, corner weights are indicated by vertical lines (gray for visited,

and red for pending), and CCS is shown as dotted lines. (a) OLS finds two payoff

vectors at the extrema, and a new corner weight wc = (0.4125, 0.5875) is found, with

maximal possible improvement ∆. (b) OLS finds a new vector at wc, and adds two

new corner weights to Q. (c and d) OLS finds another new vector and adds two new

corner weights to Q. (e) OLS does not find a new vector for the corner weight it

selects, reducing the maximal possible improvement at that corner weight to 0. (f) For

the remaining corner weights, no new vectors are found, ensuring S = CCS = CCS.
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Algorithm 5: OLS(m, SolveSODP, ε)

Input: A MODP m, a single-objective subroutine SolveSODP, and max. allowed error ε

1 S ← ∅ ; // a partial CCS

2 W ← ∅ ; // a set of visited weights

3 Q← an empty priority queue

4 foreach extremum of the weight simplex we do

5 Q.add(we,∞) ; // add the extrema to Q with infinite priority

6 end

7 while ¬Q.isEmpty() ∧ ¬timeOut do

8 w← Q.pop()

9 V
π ← SolveSODP(m,w)

10 W ←W ∪ {w}
11 if Vπ 6∈ S then

12 Wdel ← remove the corner weights made obsolete by V from Q, and store them

13 Wdel ← {w} ∪Wdel ; // corner weights to remove

14 WVπ ← newCornerWeights(Vπ,Wdel,S)
15 S ← S ∪ {Vπ}
16 foreach w ∈WVπ do

17 ∆r(w)← calculate improvement using maxValueLP(w,S,W)
18 if ∆r(w) > ε then

19 Q.add(w, ∆r(w))
20 end

21 end

22 end

23 end

24 return S and the highest ∆r(w) left in Q

be weights where VS(w) and ΠS(w) (Definition 18) consist of multiple value vectors

and associated policies. Every corner weight is prioritized by the maximal possible

improvement of finding a new value vector at that corner weight. When the maximal

possible improvement is 0, OLS knows that the partial CCS is complete.

As an example of this process, we show the entire run of OLS for the problem of

Table 3.1 in Figure 3.2. The (corner) weights where the algorithm has already searched

for new payoff vectors are indicated by gray vertical lines, and the corner weights that

are still pending are indicated by red vertical lines.

OLS is shown in Algorithm 5. OLS takes as input: m, the MODP to be solved,

the single-objective subroutine, SolveSODP, and ε, the maximal tolerable error in the

result.

We first describe how OLS is initialized. Then, we define corner weights formally

and describe how OLS identifies them. Finally, we describe how OLS prioritizes corner

weights and how this can also be used to bound the error when stopping OLS before it

is done finding a full CCS.
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Initialization

OLS starts by initializing the partial CCS, S , which contains the payoff vectors in the

CCS that have been discovered so far (line 1 of Algorithm 5), as well as the set of

visited weights W (line 2). Then, OLS adds the extrema of the weight simplex, i.e.,

those points where all of the weight is on one objective, to a priority queue Q, with

infinite priority (line 5).

The First Iterations

The extrema that we added in the initialization are popped off the priority queue when

OLS enters the main loop (line 7), in which the w with the highest priority is selected

(line 8). Because the extrema have infinite priority, they are guaranteed to be popped

off the queue first. SolveSODP is called with w (line 9) to find V, the best payoff

vector for that w.

In the algorithm, we assume that SolveSODP returns the best value vector for w.

This can be done by adapting an out-of-the-box single-objective solver to return this

value vector, or by adding a separate policy evaluation step. In the latter case line 9 of

the algorithm could instead be written as:

π ← SolveSODP(m,w)
V

π ← PolicyEval(m, π)
Throughout this dissertation, we assume that we can determine the exact value of Vπ

of the π that SolveSODP returns, i.e., the policy evaluation step is exact.

To illustrate the situation after initialization, Figure 3.2a shows S after two pay-

off vectors of the 2-objective list combination problem of Table 3.1 have been found

by applying SolveSODP to the extrema of the weight simplex. This leads to S =
{(16.3, 11.8), (11.6, 15.1)}. Each of these vectors must be part of the CCS because

it is optimal for at least one w: the one for which SolveSODP returned it as a solu-

tion. The set of weightsW that OLS has tested so far, i.e., the extrema of the weight

simplex, are marked with vertical gray line segments.

Corner Weights

After having evaluated the extrema, S consists of d (the number of objectives) payoff

vectors and associated joint actions. However, for many weights on the simplex, it does

not yet contain the optimal payoff vector. Therefore, after identifying a new vector Vπ

to add to S, OLS must determine which new weight vectors to add to Q, and with

what priority. Like Cheng’s linear support, OLS identifies the corner weights: the

weights at the corners of the convex upper surface, i.e., the points where the PWLC

surface V ∗
S (w) changes slope. To define the corner weights precisely, we define P ,

the polyhedral subspace that is above V ∗
S (w) (Bertsimas and Tsitsiklis, 1997). For

example, in Figure 3.1b, P is displayed as the shaded area above the optimal scalarized

value function. The corner weights are the vertices of P, which can be defined by a set

of linear inequalities:
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Algorithm 6: newCornerWeights(Vπ
new,Wdel,S)

Input: A new value vector, Vπ
new, a set of obsolete corner weights, Wdel, and the

current partial CCS, S
1 Vrel ←

⋃

w∈Wdel

VS(w) ; // involved value vectors (see Definition 18)

2 Brel ← the set of boundaries of the weight simplex involved in any w ∈Wdel;

3 Wnew ← ∅; // new corner weights

4 foreach subset X of d− 1 elements from Vrel ∪ Brel do

5 wc ← compute weight where the vectors/boundaries in X intersect with V
π
new ;

6 if wc is inside the weight simplex then

7 if wc ·Vπ
new = V ∗

S (wc) then

8 Wnew ←Wnew ∪wc

9 end

10 end

11 end

12 return Wnew

Definition 19. If S is the set of known payoff vectors, we define a polyhedron

P = {x ∈ ℜd+1 : S+
x ≥ ~0, ∀i, wi > 0,

∑

i

wi = 1},

where S+ is a matrix with the elements of S as row vectors, augmented by a column

vector of −1’s. The set of linear inequalities S+
x ≥ ~0, is supplemented by the simplex

constraints: ∀i wi > 0 and
∑

i wi = 1. The vector x = (w1, ..., wd, Vw) consists of

a weight vector and a scalarized value at those weights. The corner weights are the

weights contained in the vertices of P , which are also of the form (w1, ..., wd, Vw).

Note that, due to the simplex constraints, P is only d-dimensional. Furthermore, the

extrema of the weight simplex are special cases of corner weights.

After identifying the new value vector Vπ, OLS identifies which corner weights

change in the polyhedron P by adding V
π to S. Fortunately, this does not require re-

computation of all the corner weights, but can be done incrementally: first, the corner

weights in Q for which V
π yields a better scalarized value than currently known are

deleted from the queue (line 12) and then the function newCornerWeights(Vπ,Wdel,
S) (line 14) calculates the new corner weights that involve V

π.

The function newCornerWeights(Vπ,Wdel, S) (Algorithm 6) first calculates the

set of all relevant payoff vectors, Vrel, by taking the union of all the maximizing vec-

tors of the weights in Wdel for S (on line 1). In our implementation, we optimize this

step by caching VS(w) (Definition 18) and associated policies for all w in Q. If for

a corner weight, w, VS(w) contains fewer than d value vectors, then a boundary of

the weight simplex is involved. These boundaries are also stored (line 2). All pos-

sible subsets of size d−1 — of both vectors and boundaries — are taken. For each

subset the weight where these d − 1 payoff vectors (and boundaries) intersect with
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each other and V is computed by solving a system of linear equations (on line 5). The

intersection weights for all subsets together form the set of candidate corner weights:

Wcan. newCornerWeights(Vπ,Wdel, S) returns the subset of Wcan which are inside

the weight simplex and for which there is no vector V′ ∈ S that has a higher scalar-

ized value than V at that weight. OLS then adds the new corner weights returned by

newCornerWeights(Vπ, Wdel,S) to its queue, Q.

In Figure 3.2a, after computing the value vectors for the two extrema, one new cor-

ner weight is produced, labelled wc = (0.4125, 0.5875). In the subsequent iterations

where a new value vector is identified (Figure 3.2b-d), two new corner weights are

produced. For two objectives, there are always (at most) two new corner weights per

iteration, and two value vectors involved in each corner weights. For higher number

of objectives, it is in theory possible to construct a partial CCS, S that has a corner

weight for which all payoff vectors in S are in Vrel, leading to very many new corner

weights. In practice however, |Vrel| is typically very small, and only a few systems of

linear equations need to be solved, leading to a limited number of new corner weights.

After calculating the new corner weights WVπ at line 14 (in Algorithm 5), V is

added to S at line 15. Cheng showed that finding the best payoff vector for each corner

weight and adding it to the partial CCS, guarantees the best improvement to S:

Theorem 3. (Cheng, 1988) The maximum value of:

max
w,V∈CCS

min
V′∈S

w ·V −w ·V′,

i.e., the maximal improvement to S by adding a vector to it, is at one of the corner

weights.

Theorem 3 guarantees the correctness of OLS: after all corner weights are checked,

there are no new payoff vectors; thus the maximal improvement must be 0 and OLS

has found the full CCS (as is the case in Figure 3.2f).

Prioritization

Cheng’s linear support assumes that all corner weights can be checked inexpensively,

which is a reasonable assumption in a POMDP setting. However, since SolveSODP

is typically an expensive operation, testing all corner weights may not be feasible in

MODPs. For example, in MO-CoGs, a common choice for SolveSODP is the variable

elimination algorithm (which we discuss in detail in the next chapter), whose runtime

can be exponential in the size of the problem. Therefore, unlike Cheng’s linear support,

OLS pops only one w off Q to be tested per iteration. Making OLS efficient thus

critically depends on giving each w a suitable priority when adding it to Q. To this end,

OLS prioritizes each corner weight w according to its maximal possible improvement,

an upper bound on the improvement to V ∗
S (w) that can be made by adding a single

new value vector. This upper bound is computed with respect to CCS, the optimistic

hypothetical CCS, i.e., the best-case scenario for the final CCS given that S is the
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current partial CCS and W is the set of weights already tested with SolveSODP. A

key advantage of OLS over Cheng’s linear support is thus that these priorities can be

computed without calling SolveSODP, obviating the need to run SolveSODP on all

corner weights.

Definition 20. An optimistic hypothetical CCS, CCS is a set of payoff vectors that

yields the highest possible scalarized value for all possible w consistent with finding

the vectors S at the weights inW .

In Figure 3.2a the CCS = {(16.3, 11.8), (11.6, 15.1), (16.3, 15.1)}. CCS is a superset

of S and the value of V ∗
CCS

(w) (indicated by the dotted line) is the same as V ∗
S (w) at

all the weights inW . For a given w, maxValueLP(w,S,W) finds the scalarized value

of V ∗
CCS

(w) by solving the following linear program (LP):

max w · v
subject to W v ≤ V

∗
S,W ,

where V
∗
S,W is a vector containing V ∗

S (w
′) for all w′ ∈ W , and v is a vector of

variables of length d. Note that we abuse the notationW , which in this case is a matrix

whose rows correspond to all the weight vectors in the setW .4

Using CCS, we can define the maximal possible improvement of each w:

∆(w) = V ∗
CCS

(w)− V ∗
S (w).

Figure 3.2a shows ∆(wc) with a dashed line. We use the maximal relative possible

improvement, ∆r(w) = ∆(w)/V ∗
CCS

(w), as the priority of each new corner weight

w ∈ WV. In Figure 3.2a, ∆r(wc)=
(0.4125,0.5875)·((16.3,15.1)−(11.6,15.1))

13.65625
=0.141968. When

a corner weight w is identified (line 14), it is added to Q with priority ∆r(w) as long

as ∆r(w) > ε (lines 17-19). In Figure 3.2 the corner weights in Q are indicated by red

vertical line segments.

After wc in Figure 3.2a is added to Q, it is popped off again (as it is the only

element of Q). SolveSODP(wc) generates a new value vector (13.9, 14.3), yielding

S = {(16.3, 11.8), (11.6, 15.1), (13.9, 14.3)}, as illustrated in Figure 3.2b. The new

corner weights are the points at which (13.9, 14.3) intersects with (16.3, 11.8) and

(11.6, 15.1). Testing these weights, as illustrated in Figure 3.2cd, results in 2 new pay-

off vectors, and two new corner weights each. After these two value vectors however,

checking the weight with the highest priority in Q does not result in a new vector, re-

ducing the maximal possible improvement at that weight to 0 (Figure 3.2e). Checking

the remaining 3 corner weights in Q, also does not lead to new value vectors, causing

OLS to terminate. Because the maximal improvement at these corner weights is 0 upon

termination, S = CCS due to Theorem 3. OLS called SolveSODP for only 9 weights

resulting exactly in the 5 payoff vectors of the CCS. The other 7 payoff vectors in V
(the black points of Figure 3.1) were never generated.

4 Our implementation of OLS reduces the size of the LP by using only the subset of weights inW
for which the policies involved in w, ΠS(w), have been found to be optimal. This can lead to a slight

overestimation of V ∗

CCS
(w).
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3.4 Analysis

We now analyze the computational and space complexity of OLS. Because OLS is a

generic algorithm that takes a single-objective solver (and possibly a policy evaluation

algorithm) as a subroutine, we provide the complexity bounds of OLS in terms of

the runtime and space complexities of these subroutines. We denote the runtime of

a single-objective solver as Rso and the runtime of policy evaluation as Rpe, and the

corresponding memory as Mso and Mpe.

Theorem 4. The runtime of OLS is

O( (|ε−CCS|+ |Wε−CCS|)(Rso +Rpe +Rnw +Rheur) ),

where |ε−CCS| is the size of the ε-CCS (Definition 13) outputted by OLS, |Wε−CCS| is
the number of corner weights of the scalarized V ∗

ε−CCS(w) corresponding to the output

ε-CCS, Rnw the time it takes to run newCornerWeights, and Rheur the time it takes to

compute the value of the optimistic CCS using maxValueLP.

Proof. The runtime of one iteration of OLS is the cost of running the single-objective

solver plus policy evaluation, Rso + Rpe, plus the overhead per corner weight Rnw +
Rheur, multiplied by the number iterations. To count the number of iterations, we

consider two cases: calls to the single-objective solver that result in adding a new

vector to the partial CCS, S and those that do not result in a new vector but instead

confirm the optimality of the scalarized value V ∗
S (w) at that weight. The former is the

size of the output of OLS, i.e., |ε−CCS|, while the latter is at most the number of corner

weights of the scalarized value function of that same output set, |Wε−CCS|.

Note that we can often adapt the implementation of SolveSODP to return the value

vector of the optimal policy for a weight, alongside this optimal policy, without an

increase in the complexity bounds of the single-objective solver. In this case Rpe be-

comes 0.

We have experienced that the overhead of OLS itself, i.e., computing new corner

weights, Rnw, and calculating the maximal relative improvement, Rheur, is very small

compared to the SolveSODP for the decision problems that we study in this dissertation.

In practice, newCornerWeights(u, Wdel, S) computes the solutions to only a small

set of linear equations (of d equations each). maxValueLP(w, S, W) computes the

solutions to linear programs, which is polynomial in the size of its inputs.5

If ε 6= 0, OLS does in practice not test all the corner weights of the polyhedron

spanned by the ε-CCS it outputs, as OLS only tests a corner weight if the maximal

possible improvement is larger than ε. However, this cannot be guaranteed in general.

Note that if ε = 0, OLS outputs an exact CCS, and needs to check every corner weight

in order to establish that it is in fact an exact CCS.

5When the reduction in Footnote 4 is used, only a very small subset of W is used, making it even

smaller.
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For d = 2, the number of corner weights is smaller than the size, |ε–CCS|, of

the output of OLS. Therefore, the runtime of OLS is O(|ε–CCS|(Rso +Rpe +Rnw +
Rheur)). For d = 3, the number of corner weights is 2|ε–CCS| (minus a constant)

because, when SolveSODP finds a new payoff vector, one corner weight is removed

and three new corner weights are added. For d = 3, the computational complex-

ity is thus still only O(|ε–CCS|(Rso + Rpe + Rnw + Rheur)). For d > 3, a loose

bound on |Wε–CCS| is the total number of possible combinations of d payoff vectors

or boundaries: O(
(|ε–CCS|+d

d

)

). However, we can obtain a tighter bound by observing

that counting the number of corner weights given a CCS is equivalent to vertex enu-

meration, which is the dual problem of facet enumeration, i.e., counting the number of

vertices given the corner weights (Kaibel and Pfetsch, 2003).

Theorem 5. (Avis and Devroye, 2000) For arbitrary d, |Wε–CCS| is bounded by

O(

(|ε–CCS| − ⌊d+1
2
⌋

|ε–CCS| − d

)

+

(|ε–CCS| − ⌊d+2
2
⌋

|ε–CCS| − d

)

).

Proof. This result follows directly from McMullen’s upper bound theorem for facet

enumeration (McMullen, 1970; Henk et al., 1997).

Theorem 6. The space complexity of OLS is

O(d|ε–CCS|+ d|Wε–CCS|+Mso +Mpe).

Proof. OLS needs to store every corner weight (a vector of length d) in the queue,

which is at most |Wε–CCS|. OLS also needs to store every vector in S (also vectors of

length d). Furthermore, when SolveSODP is called, the memory usage of this single-

objective solver is added to the memory usage of the outer loop of OLS. The same

holds for policy evaluation.

Because OLS adds few memory requirements to that of the single-objective solver

for small and medium numbers of objectives, OLS is almost as memory efficient as

the single-objective solver itself in these cases. This is a big difference with inner loop

methods, which need to retain sets of value vectors and partial policies, everywhere

that the single-objective method would have a single value and a single partial policy.

3.5 Approximate Single-Objective Solvers

Up until now, we have assumed that OLS takes an arbitrary exact single-objective

solver as a subroutine. In this section, we show that OLS can also be applied when

the single-objective subroutine is approximate. Furthermore, when the subroutine is

produces bounded approximations of at most ε error, OLS is guaranteed to produce an

ε-CCS.

First, we define what it means to have an ε-approximate algorithm as a single-

objective subroutine.
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Algorithm 7: AOLS(m, approxSolveSODP, ε)

Input: An MODP m, an approximate SODP subroutine ApproxSolveSODP, and max.

allowed error, ε.

1 S ← ∅ ; // a partial CCS

2 W ← ∅ ; // set of tuples of visited weights and upper bounds, V̄w

3 Q← an empty priority queue

4 foreach extremum of the weight simplex we do

5 Q.add(we,∞) ; // add the extrema to Q with infinite priority

6 end

7 while ¬Q.isEmpty() ∧ ¬timeOut do

8 w← Q.pop()

9 V
π, V̄w ← approxSolveSODP(m,w)

10 W ←W ∪ {(w, V̄w)}
11 if Vπ 6∈ S then

12 Wdel ← remove the corner weights made obsolete by V from Q, and store them

13 Wdel ← {w} ∪Wdel ; // corner weights to remove

14 WVπ ← newCornerWeights(Vπ,Wdel,S)
15 remove vectors from S that are no longer optimal for any w when V

π is added

16 S ← (S ∪ {Vπ})
17 foreach w ∈WVπ do

18 ∆r(w)← calculate improvement using maxValueLP(w,S,W)
19 if ∆r(w) > ε then

20 Q.add(w, ∆r(w))
21 end

22 end

23 end

24 end

25 return S and the highest ∆r(w) left in Q

Definition 21. An ε-approximate SODP solver is an algorithm that produces a policy

whose value is at least (1 − ε)V∗, where V ∗ is the optimal value for the SODP and

ε ≥ 0.

Given an ε-approximate SODP solver we can compute a set of policies for which

the scalarized value for each possible w is at least 1 − ε times the optimal scalarized

value, i.e., an ε-CCS (Definition 13). To this end we change the OLS algorithm in

order to handle approximate solvers, leading to the approximate OLS (AOLS) algorithm

(Algorithm 7). The differences with OLS (Algorithm 5) are highlighted in blue. We

go through the differences one by one.

Firstly, in Algorithm 7 we assume that the single-objective subroutine — in this al-

gorithm referred to as approxSolveSODP — returns both the value vector and policy6,

6We assume that the value Vπ is the correct value vector of π, i.e., the evaluation of the policy value

is exact.
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V
π, and an upper bound on the scalarized value at the weight w for which it is called,

V̄w (line 9). This upper bound is stored alongside w (lines 2 and 10), and used instead

of the scalarized values in maxValueLP. Specifically, for a given w, maxValueLP finds

(line 18) the scalarized value of V ∗
CCS

(w) by solving:

max w · v
subject to W ′

v ≤ V̄
∗
S,W ,

where for each tuple (w, V̄w) ∈ W , there is a row in the matrixW ′ corresponding to

w with a corresponding element V̄w in the vector V̄∗
S,W .

Secondly, because we have an approximate single-objective subroutine, the vectors

in the partial CCS S , may not be optimal for any w anymore when we add a new value

vector. Therefore, we first have to remove these vectors from S (line 15). We can

do this efficiently, by checking whether Vπ is better than a vector V′ ∈ S for all the

corner weights of V ∗
S (w) for which V

′ is optimal, as this bounds the area for which V
′

is optimal w.r.t. to the other value vectors currently in S .

Correctness

We now establish the correctness of Algorithm 7, i.e., OLS with approximate single-

objective subroutines. Because the scalarized value of V ∗
CCS

(w) (as computed by

maxValueLP) obtained through using the ε of the approximate solveMDP is no longer

identical to V ∗
S (w), we need to make an adjustment to Cheng’s theorem.

Theorem 7. There is a corner weight of V ∗
S (w) that maximizes:

∆(w) = V ∗
CCS(w)− V ∗

S (w),

where S is an intermediate set of value vectors computed by AOLS (Algorithm 7).

This theorem is identical to Cheng’s, but, because S is no longer a subset of the CCS,

the proof is different.

Proof. ∆(w) is the difference between two PWLC functions: V ∗
CCS(w) and V ∗

S (w).
To maximize this function, we have three possible cases, shown in Figure 3.3: (a) the

maximum is at a weight that is neither a corner point of V ∗
CCS(w), nor of V ∗

S (w); (b)

it is at a corner point of V ∗
CCS(w) but not of V ∗

S (w); or (c) it is at a corner point of

V ∗
S (w).

Case (a) can only apply if the slope of ∆(w) at w is 0, if this is so, then the

value of ∆(w) is equal to the value at the corner points where this slope changes.

Case (b) can never occur: if w is a corner point of V ∗
CCS(w), and not of V ∗

S (w), and

∆(w) = V ∗
CCS(w) − V ∗

S (w) is at a maximum, then because V ∗
S (w) does not change

slope in w, the change in slope for V ∗
CCS(w) must be negative. However, because we

know that V ∗
CCS(w) is a PWLC function, this leads to a contradiction. Therefore, only

case (c) remains.
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(a) (b) (c)

Figure 3.3: Possible cases for the maximum possible improvement of S with respect

to the CCS.

Because the maximum possible improvement is still at the corner points of S ,

even though S now contains ε-approximate solutions, the original scheme of calling a

single-objective subroutine for the corner weights still applies.

The approximate-subroutine version of OLS terminates when the maximal possible

improvement is less than or equal to ε · V ∗
CCS

(w). In other words, when there are no

corner weights with a possible improvement higher than the input slack ε.

Theorem 8. AOLS — as specified in Algorithm 7 — terminates after a finite number of

calls to an ε-approximate SODP solver approxSolveSODP and produces an ε-CCS.

Proof. The algorithm runs until there are no corner points left in the priority queue to

check, and returns S and the highest priority left in Q. Once a corner point is evaluated,

it is never considered again because the established value lies within (1− ε)V ∗
CCS

(w)
(as guaranteed by the ε-bound of approxSolveSODP). AOLS thus terminates after

checking a finite number of corner weights. All other corner weights have a possible

improvement less than or equal to εV ∗
CCS

(w). Therefore S must be an ε-CCS.

An equivalent, but subtly different version of the approximate OLS algorithm and

the corresponding correctness theorem, can be established accordingly, when the single-

objective subroutine provides an upper and lower bound (implying an ε), but it cannot

be know beforehand how strict these bounds will be:

Corollary 2. When an approximate single-objective solver produces a bounded ap-

proximate solution for each scalarized problem, with an error bound of at most ε,

AOLS produces an ε-CCS.

Proof. The proof is the same as for 8, by assuming that there is some ε for which

approxSolveSODP is ε-approximate, and establishing this on the fly, by inspecting the

difference between the upper and lower bounds found by the ε-approximate solver.

Note that the runtime and memory requirements, as established in Theorems 4 and

6, are not affected by the usage of an approximate single-objective subroutine instead

of an exact one, in any way other than changing the value of Rso, and Mso.
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3.6 Value reuse

Figure 3.4: Close corner

weights lead to close value

vectors.

One possible issue with using OLS in practice is that

for every corner weight w, the single-objective sub-

routine is called. When there are many corner weights,

this may take a long time, especially when the single-

objective solver need to start from scratch. However,

in many cases, we might be able to reuse part of the

work done in earlier iterations of OLS, in order to hot-

start the single-objective subroutine for a new w.

The key insight behind reuse in OLS, is that when

two corner weights, w and w
′, are similar, the value

vectors for these weights found by the single-objective

solver are also likely to be similar, (e.g., in Figure 3.4).

Therefore, we also expect that similar policies are op-

timal for w′. If that is indeed the case, and we have a single-objective subroutine that

can start from a previous solution — or part of this previous solution — and gradually

improve, this may save us a lot of runtime.

In Algorithm 8, we show how this could be implemented. The differences with Al-

gorithm 7 are shown in blue. We aim to show the most general form of the algorithm,

and therefore use an abstract data type Iw that represents any possible information

from a previous call to approxSolveSODP for a weight w, that we may reuse in sub-

sequent iterations. Which information can be reused depends on the specifics of the

MODP, e.g., the full state-value function of a MO(PO)MDP (Chapter 5), or a repa-

rameterization used by variational methods for coordination graphs (Chapter 4). We

assume that this information is produced by the single-objective solver (line 10), and

is stored together with the previous search weights (lines 2 and 11). At every iteration,

all possibly reusable information from all previous iterations, I , is retrieved (line 9)

and used to hot-start the single-objective subroutine on line 10.

Without further assumptions, reuse is a heuristic, i.e., it may improve the runtime in

practice, but it does not show up in the complexity results for the algorithm. However,

if we can assume that I contains enough information for approxSolveSODP to check

that S is already sufficient for the new weight w, and that this check can be performed

in Rconfirm, we do not require a full run of the single-objective subroutine for corner

weights for which we will not find a new value vector, and can reduce the theoretical

runtime guarantees.

Theorem 9. The runtime of OLS with reuse is

O( (|ε−CCS|)(Rso +Rpe +Rnw +Rheur) + |Wε−CCS|Rconfirm ),

where Rconfirm is the time it takes to check the sufficiency of the solutions currently in

W and their value vectors S .
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Algorithm 8: OLS+R(m, approxSolveSODP, ε)

Input: An MODP m, an approximate SODP subroutine ApproxSolveSODP, and max.

allowed error, ε.

1 S ← ∅ ; // a partial CCS

2 W ← ∅ ; // a set of tuples of w, V̄w and Iw

3 Q← an empty priority queue;

4 foreach extremum of the weight simplex we do

5 Q.add(we,∞) ; // add the extrema to Q with infinite priority

6 end

7 while ¬Q.isEmpty() ∧ ¬timeOut do

8 w← Q.pop();

9 I ← Retrieve the reusable information for relevant previous iterations fromW;

10 V
π, V̄w, Iw ← approxSolveSODP(m,w, I) ;

11 W ←W ∪ {(w, V̄w, Iw)};
12 if Vπ 6∈ S then

13 Wdel ← remove the corner weights made obsolete by V from Q, and store them

14 Wdel ← {w} ∪Wdel ; // corner weights to remove

15 WVπ ← newCornerWeights(Vπ,Wdel,S);
16 remove vectors from S that are no longer optimal for any w when V

π is added;

17 S ← (S ∪ {Vπ});
18 foreach w ∈WVπ do

19 ∆r(w)← calculate improvement using maxValueLP(w,S,W);
20 if ∆r(w) > ε then

21 Q.add(w, ∆r(w));
22 end

23 end

24 end

25 end

26 return S and the highest ∆r(w) left in Q

This is especially important when the number of objectives is high, because — as

we have seen in Theorem 5 — |Wε−CCS| increases exponentially with the number of

objectives. Note however, that the greater the amount of information stored per w, the

more memory per corner weight OLS with reuse uses. We discuss problem-specific

instances of this algorithm, implementing reuse for the various problems we discuss in

this dissertation in the following chapters.



Chapter 4

Coordination

In cooperative multi-agent settings agents must coordinate their behavior in order to

optimize their common team payoff. Key to making coordination between agents ef-

ficient is exploiting the loose couplings common to such tasks: each agent’s actions

directly affect only a subset of the other agents. Multi-objective coordination graphs

(MO-CoGs) (Definition 27) express such independence in a graphical model for single-

shot decisions. In this chapter, we propose new methods for MO-CoGs that compute

the convex coverage set (CCS).

The single-objective version of MO-CoGs, i.e., coordination graphs (CoGs), is

well-studied, and many methods to exploit loose couplings exist, including variable

elimination (Rosenthal, 1977; Dechter, 1998; Guestrin et al., 2002; Kok and Vlassis,

2006), AND/OR tree search (Dechter and Mateescu, 2007; Marinescu, 2008; Mateescu

and Dechter, 2005; Yeoh et al., 2010), and variational methods (Wainwright and Jor-

dan, 2008; Liu and Ihler, 2011; Sontag et al., 2011; Ihler et al., 2012). For MO-CoGs,

several methods (Delle Fave et al., 2011; Dubus et al., 2009a; Marinescu et al., 2012)

that have previously been developed build upon a single-objective method using an in-

ner loop approach. These methods typically compute a Pareto coverage set (PCS). For

instance, Rollón (2008) introduces an inner-loop algorithm that we refer to as multi-

objective variable elimination (MOVE), which builds upon the variable elimination

algorithm and solves multi-objective coordination graphs by iteratively solving local

problems to eliminate agents from the graph. In this dissertation (i.e., Section 2.3)

however, we argue that the PCS is often not the most appropriate solution concept.

Therefore, we propose novel algorithms that compute the CCS rather than the PCS.

We define both inner and outer loop methods, and compare them to each other.

Before we can propose multi-objective methods however, we must first provide

background on the single-objective methods upon which these methods build, as well

as single-objective coordination graphs, in Section 4.1. Then, in Section 4.2, we define

multi-objective coordination graphs formally.

In Section 4.3 we propose novel inner loop methods that compute a CCS for MO-

CoGs. We propose convex multi-objective variable elimination (CMOVE) in Section

53
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4.3.1, that builds upon variable elimination, and convex tree-search (CTS) in Section

4.3.3 that builds upon AND/OR tree search. Both CMOVE and CTS are exact methods,

but while CMOVE is fast and uses a lot of memory, CTS focusses on situations in

which limited memory is available.

In Section 4.4, we propose our novel outer loop methods. Firstly, we propose

variable elimination linear support (VELS) that combines our outer loop approach —

OLS (Chapter 3) — with variable elimination, and tree search linear support (TSLS)

that combines AND/OR tree search with OLS. Because VELS and TSLS are based

on the same single-objective methods as CMOVE respectively CTS, comparing these

methods provides a fair comparison between outer and inner loop methods.

Finally, we introduce variational optimistic linear support (VOLS) that combines

OLS with variational methods. For VOLS, it is not clear how to create a correspond-

ing inner loop method, as variational methods do not have explicit maximization and

summation as their core operators. However, VOLS is an important addition to the

aforementioned outer loop methods; it is not exact — though it provides a bounded ap-

proximation — but makes up for this lack of optimality with very favorable empirical

runtime results.

The results of comparing our algorithms to PCS methods indicate that computing

the CCS is typically much less computationally intensive than computing a PCS. Fur-

thermore, the results indicate that the outer loop approach is typically much faster than

the inner loop approach for small and medium numbers of objectives. We conclude

with a summary of the available trade-offs that our novel algorithms pose with respect

to runtime, memory-usage, and quality of the output set in Section 4.5.

4.1 Coordination Graphs

Before going into MO-CoGs, we first provide background on the corresponding single-

objective problem, i.e., coordination graphs (CoGs) (Guestrin et al., 2002; Kok and

Vlassis, 2004), and methods for solving them. Our — and several existing — methods

for solving MO-CoGs build upon these single-objective methods.

In the context of coordination graphs, what we called reward for bandits is typically

called payoff in the literature. Payoff is usually denoted u (for utility). We adopt this

terminology in this dissertation when talking about coordination graphs.

Definition 22. A coordination graph (CoG) (Guestrin et al., 2002; Kok and Vlassis,

2004) is a tuple 〈D,A,U〉, where

• D = {1, ..., n} is the set of n agents,

• A = Ai × ... × An is the joint action space: the Cartesian product of the finite

action spaces of all agents. A joint action is thus a tuple containing an action

for each agent a = 〈a1, ..., an〉, and
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• U = {u1, ..., uρ} is the set of ρ scalar local payoff functions, each of which has

limited scope, i.e., it depends on only a subset of the agents. The total team

payoff is the sum of the local payoffs: u(a) =
∑ρ

e=1 u
e(ae).

In order to ensure that the coordination graph is fully cooperative, all agents share

the payoff function u(a). We abuse the notation e to both index a local payoff function

ue and to denote the subset of agents in its scope; ae is thus a local joint action, i.e.,

a joint action of this subset of agents. The decomposition of u(a) into local payoff

functions can be represented as a factor graph (Bishop, 2006) (Figure 4.1); a bipartite

graph containing two types of vertices: agents (variables) and local payoff functions

(factors), with edges connecting local payoff functions to the agents in their scope.1

The main challenge in a CoG is that the size of the joint action space, A, grows

exponentially with the number of agents. It will thus quickly become intractable to

enumerate all joint actions and their associated payoffs — which would be equivalent

to flattening a CoG to a multi-armed bandit problem (BP) (Definition 14). Key to

solving CoGs is therefore to exploit loose couplings between agents, i.e., each agent’s

behavior directly affects only a subset of the other agents.

Figure 4.1 shows the factor graph of an example CoG in which the team payoff

function decomposes into two local payoff functions, each with two agents in scope:

u(a) =

ρ
∑

e=1

ue(ae) = u1(a1, a2) + u2(a2, a3).

The local payoff functions are defined in Table 4.1. We use this CoG as a running

example throughout this section.

The policies for a CoG represent which joint action to take. A deterministic policy

is a single joint action, and a stochastic policy is a probability distribution over joint

actions, A → [0, 1]. Note that because coordination between agents is essential, we

typically cannot restrict ourselves to independent distributions over local actions per

agent, as such independent policies cannot express that certain joint actions that can

result from drawing actions from these distributions should always be preferred to

others (that can result from the same distributions).

For a CoG, as for a BP, deterministic policies suffice.

1In the literature, many different names are in use for the CoG model, as it has applications to many

different problem domains. The constraint optimization problem (COP) (Yeoh et al., 2010) is identical

to a CoG. Other names in use for CoGs and COPs are weighted constraint satisfaction problems (WC-

SPs) (Rollón, 2008) and we have used collaborative graphical games (CoGG) (Roijers et al., 2013c) in

the past ourselves. Another equivalent model is the generalized additive independence (GAI) network

(Gonzales and Perny, 2004). (Although the graphical illustrations in GAI network papers are different

from those used in CoG literature — a bipartite graph with two different types of vertices: groups of

agents that participate in a local payoff function, and agents that form the overlap between two local

payoff functions — the (conditional independence) structure of the payoff functions is the same.) Fur-

thermore, the maximum a posteriori (MAP) assignment problem in probabilistic inference in graphical

models (Pearl, 1988) is an equivalent problem.
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                                    3  1                   2                  3
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Figure 4.1: A CoG with 3 agents and 2 local payoff functions. The factor graph illustrates the

loose couplings that result from the decomposition into local payoff functions. In particular,

each agent’s choice of action directly depends only on those of its immediate neighbors, e.g.,

once agent 1 knows agent 2’s action, it can choose its own action without considering agent 3.

ȧ2 ā2

ȧ1 3.25 0

ā1 1.25 3.75

ȧ3 ā3

ȧ2 2.5 1.5

ā2 0 1

Table 4.1: The payoff matrices for u1(a1, a2) (left) and u2(a2, a3) (right). There are

two possible actions per agent, denoted by a dot (ȧ1) and a bar (ā1).

Theorem 10. For a CoG, there is always a deterministic policy that maximizes the

value.

Proof. We can a flatten CoG to a (very large) BP (Definition 14), i.e., we can see the

team of cooperative agents as a single centralized agent with a very large action space

(i.e., A), with associated payoffs u(a), and we know that for a BP there is always a

deterministic policy that maximizes the value.

Even though we can in theory flatten a CoG to a BP, this is typically not possible in

practice as the size of the action space is exponential in the number of agents, and there-

fore becomes too large to enumerate for all but small numbers of agents. Therefore we

need special solution methods that exploit the structure of the reward function.There

are many algorithms that do this; these can roughly be subdivided into four major

classes of algorithms: message passing (Bishop, 2006; Kok and Vlassis, 2006; Vlassis

et al., 2004), variable elimination (also called non-serial dynamic programming and

bucket elimination) (Dechter, 1998; Rosenthal, 1977), search-based methods (Dechter

and Mateescu, 2007; Furcy and Koenig, 2005; Marinescu, 2008), and variational meth-

ods (Liu and Ihler, 2013; Sontag et al., 2011).

In the following subsections, we summarize the three methods that we use as a

starting point to create new methods for MO-CoGs, and on which several existing

multi-objective algorithms are already based. Because message-passing algorithms
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typically do not have quality guarantees on the joint actions they produce; we focus

on the variable elimination algorithm, which is fast and produces optimal joint ac-

tions; one subclass of search-based algorithms called AND/OR tree search, which can

produce the optimal joint actions with limited memory-usage (Mateescu and Dechter,

2005); and variational methods, which are fast, but do not always produce optimal joint

actions. However, variational methods typically do return a bound on how much value

is lost when they do not produce the optimal joint action. Therefore, we can use these

methods as a basis for creating multi-objective methods that produce ε-CSs.

4.1.1 Variable Elimination

We first discuss the variable elimination (VE) algorithm, on which several multi-

objective extensions (e.g., Rollón and Larrosa (2006); Rollón (2008)) build, including

our own CMOVE (Section 4.3.1) and VELS (Section 4.4.1) algorithms.

VE exploits the loose couplings expressed by the local payoff functions to effi-

ciently compute the optimal joint action. The optimal joint action is that joint action,

a, that maximizes the team payoff, u(a). First, in the forward pass, VE eliminates

each of the agents in turn by computing the value of that agent’s best response to ev-

ery possible joint action of its neighbors. These best responses are used to construct

a new local payoff function that encodes the values of the best responses. The new

local payoff function then replaces the agent and the payoff functions in which it par-

ticipated. In the original algorithm, once all agents are eliminated, a backward pass

assembles the optimal joint action using the constructed payoff functions. Here, we

present a slight variant in which each payoff is ‘tagged’ with the action that generates

it, obviating the need for a backwards pass. While the two algorithms are equivalent,

this variant is more amenable to the multi-objective (inner loop) extension we present

in Section 4.3.1.

VE eliminates agents from the graph in a predetermined order. This order is typ-

ically determined heuristically (e.g., following Koller and Friedman (2009)), because

finding the optimal elimination order is itself NP-hard (Arnborg, 1985; Dechter, 1998).

Algorithm 9 shows pseudocode for the elimination of a single agent i. First, VE

determines the set, Ui, of local payoff functions connected to i, and the set, ni, of

neighboring agents of i (lines 1-2).

Definition 23. The set, Ui, of neighboring local payoff functions of i is the set of all

local payoff functions that have agent i in scope.

Definition 24. The set, ni, of neighboring agents of i is the set of all agents that are in

scope of one or more of the local payoff functions in Ui.

Then, VE constructs a new local payoff function, unew(ani
), by computing the

value of agent i’s best response to each possible joint action ani
of the agents in ni

(lines 3-12). To do so, it loops over all these joint actions Ani
(line 4). For each ani

, it

loops over all the actionsAi available to agent i (line 6). For each ai ∈ Ai, it computes
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Figure 4.2: (a) A CoG with 3 agents and 2 local payoff functions (b) after eliminating agent 3

by adding u3 (c) after eliminating agent 2 by adding u4.

the local payoff when agent i responds to ani
with ai (line 7). VE tags the total payoff

with ai, the action that generates it (line 8) in order to be able to retrieve the optimal

joint action later. If there are already tags present, VE appends ai to these tags. In this

manner, the entire joint action is constructed incrementally. VE maintains the value of

the best response by taking the maximum of these payoffs, and storing this maximal

payoff in the new local payoff function, unew(ani
), on line 11. After the value for each

ani
is computed, VE eliminates the agent and all payoff functions in Ui and replaces

them with the newly constructed local payoff function (line 13).

Algorithm 9: elimVE(U , i)
Input: A set, U , of local payoff functions, and an agent i

1 Ui← set of local payoff functions involving i

2 ni← set of neighboring agents of i

3 unew ← a new factor taking joint actions of ni, ani
, as input

4 foreach ani
∈ Ani

do

5 S ← ∅ ; // set of action values for i

6 foreach ai ∈ Ai do

7 v ←
∑

uj∈Ui

uj(ani
, ai)

8 tag v with ai
9 S ← S ∪ {v}

10 end

11 unew(ani
)← max(S); // pick maximal value

12 end

13 return (U \ Ui) ∪ {unew}

Now, let us consider the example of Figure 4.1 and Table 4.1. The optimal payoff

maximizes the sum of the two payoff functions:

max
a

u(a) = max
a1,a2,a3

u1(a1, a2) + u2(a2, a3).
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The working of VE is illustrated in Figure 4.2, for the elimination order [3, 2, 1]. VE

eliminates agent 3 first, by pushing the maximization over a3 inward such that goes

only over the local payoff functions involving agent 3, in this case just u2:

max
a

u(a) = max
a1,a2

(

u1(a1, a2) + max
a3

u2(a2, a3)

)

.

VE solves the inner maximization and replaces it with a new local payoff function u3

that depends only on agent 3’s neighbors, thereby eliminating agent 3:

max
a

u(a) = max
a1,a2

(

u1(a1, a2) + u3(a2)
)

,

which leads to the new factor graph depicted in Figure 4.1b. The values of u3(a2) are

u3(ȧ2) = 2.5, using ȧ3, and u3(ā2) = 1 using ā3, as these are the optimal payoffs for

the actions of agent 2, given the payoffs shown in Table 4.1.

Because we ultimately want the optimal joint action as well as the optimal payoff,

VE needs to store the actions of agent 3 that correspond to the values in the new local

payoff factor. In our adaption of VE, the algorithm tags each payoff of u3 with the

action of agent 3 that generates it. We can thus think of u3(a2) as a tuple of value and

tags, where value is a scalar payoff, and tags is a list of individual agent actions. We

denote such a tuple with parentheses and a subscript: u3(ȧ2) = (2.5)ȧ3 , and u3(ā2) =
(1)ā3 .

VE next eliminates agent 2, yielding the factor graph shown in Figure 4.1c:

max
a

u(a) = max
a1

(

max
a2

u1(a1, a2) + u3(a2)

)

= max
a1

u4(a1).

VE appends the new tags for agent 2 to the existing tags for agent 3, yielding: u4(ȧ1) =
maxa2 u

1(ȧ1, a2)+u3(a2) =(3.25)ȧ2 +(2.5)ȧ2ȧ3 = (5.75)ȧ2ȧ3 and u4(ā1) = (3.75)ā2 +
(1)ā2ā3 = (4.75)ā2ā3 . Finally, maximizing over a1 yields the optimal payoff — (5.75)ȧ1ȧ2ȧ3
— with the optimal action contained in the tags.

The computational complexity of VE is exponential in the induced width, w,

Theorem 11. (Guestrin et al., 2002) The computational complexity of VE is O(n|Amax|w)
where |Amax| is the maximal number of actions for a single agent and w is the induced

width, i.e., the maximal number of neighboring agents of an agent plus one (the agent

itself), at the moment when it is eliminated.

The induced width is limited by the number of agents; when the factor graph is

fully connected, i.e., every agent shares a local payoff function with every other agent,

w is equal to n. In practice however, w is typically much smaller than n.

The space complexity of VE is also exponential in the induced width:

Theorem 12. (Dechter, 1998) The space complexity of VE is O( n |Amax|w).
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Figure 4.3: (a) a pseudo tree, (b) a corresponding AND/OR search tree.

This space complexity arises because, for every agent elimination, a new local

payoff function is created with O(|Amax|w) fields (possible input actions). Since it is

impossible to tell a priori how many of these new local payoff functions exist at any

given time during the execution of VE, this need to be multiplied by the total number

of new local payoff functions created during a VE execution, which is n.

While VE is designed to minimize runtime2 other methods focus on memory ef-

ficiency instead (Mateescu and Dechter, 2005). We discuss a class of more memory

efficient — but still exact — methods in the next section.

4.1.2 AND/OR tree search

AND/OR tree search (Dechter and Mateescu, 2007; Marinescu, 2008; Mateescu and

Dechter, 2005; Yeoh et al., 2010) is a class of algorithms for solving CoGs that can be

tuned to provide better space complexity guarantees than VE. However, this improve-

ment in space complexity does come at the price of a worse runtime complexity (Ma-

teescu and Dechter, 2005). In this section we provide a brief background on AND/OR

tree search. For a broader overview of AND/OR tree search for CoGs and related mod-

els please see the work of Dechter (2013) and Marinescu (2008). For multi-objective

versions of AND/OR tree search that compute a PCS, please see the work of Marinescu

(2009, 2011).

The first step in an AND/OR tree search algorithm, is to convert the CoG to a

pseudo tree (PT). Given a PT, each agent need only know which actions its ancestors

and descendants in the PT take in order to select its own action. For example, if an

agent i (a node) in the PT has two subtrees (T1 and T2) under it, all the agents in T1 are

conditionally independent of all the agents in T2 given i and the ancestors of i. Figure

4.3a shows the PT for the example CoG of Figure 4.1 and Table 4.1.

2In fact, VE is proven to have the best runtime guarantees within a large class of algorithms (Rosen-

thal, 1977).
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Next, AND/OR tree search algorithms perform a tree search that results in an

AND/OR search tree (AOST). Each agent i in an AOST is an OR-node. Its children

are AND-nodes, each corresponding to one of agent i’s possible actions, ai ∈ Ai. In

turn, the children of these AND-nodes are OR-nodes corresponding to agent i’s chil-

dren in the PT. Because each action (AND-node) of agent i has the same agents under

it as OR-nodes, the agents and actions can appear in the tree multiple times. Figure

4.3b shows an AOST corresponding to the PT of Figure 4.3a.

A specific joint action can be constructed by traversing the tree, starting at the root

and selecting one alternative from the children of each OR-node, i.e., one action for

each agent, and continuing down all children of each AND-node. For example, in

Figure 4.3b, the joint action < ā1, ȧ2, ȧ3 > is indicated in grey.

To retrieve the value of a joint action, we must first define the value of AND-nodes.

Definition 25. The value of an AND-node, vai , that represents an action ai of an agent

i is the sum of the local payoff functions, ue(ae), that have i in scope (i.e., i ∈ e) for

which ai, together with its AND-node ancestors’ actions, specifies a complete local

joint action, ae.

For example, in the AOST of Figure 4.3b, the total payoff of the CoG is u(a1, a2, a3)
= u1(a1, a2) + u2(a2, a3). The value of the grey AND-node ȧ3 is u2(ȧ2, ȧ3), as u3 is

the only payoff function that has agent 3 in scope and, together with its ancestral AND-

node, the grey ȧ2-node, ȧ3 completes a joint local action for u2.

To retrieve the optimal action, we must define the value of a subtree in the AOST:

Definition 26. The value of a subtree v(Ti) rooted by an OR-node i in an AOST is the

maximum of the value of the subtrees rooted by the (AND-node) children of i. The

value of a subtree v(Tai) rooted by an AND-node ai in an AOST is the value of ai
itself (Definition 25) plus the sum of the value of the subtrees rooted by the (OR-node)

children of ai.

The most memory-efficient way to retrieve the optimal joint action using an AOST

is performing a depth-first search and computing the values of the subtrees. By gen-

erating nodes on the fly and deleting them after they are evaluated, memory usage is

minimized. We refer to this algorithm simply as AND/OR tree search (TS). As in our

implementation of VE, our implementation of TS employs a tagging scheme, tagging

the value of a subtree with the actions that maximize it.

TS has much better space complexity than VE, i.e., only linear in the number of

agents n, but a worse computational complexity:

Theorem 13. (Mateescu and Dechter, 2005) The space complexity of TS is O(n),
where n is the number of agents.

Proof. Because TS performs depth-first search, creating and deleting nodes on the fly,

at most O(n) nodes need to exist at any point during execution of TS.
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Theorem 14. (Mateescu and Dechter, 2005) The computational complexity of TS is

O(n|Amax|m), where n is the number of agents, |Amax| is the maximal number of

actions of a single agent and m is the depth of the pseudo tree, and uses linear space,

O(n).

Proof. The number of nodes in an AOST is bounded by O(n|Amax|m). The tree creates

maximally |Amax| children at each OR-node. If every AND-node had exactly one

child, the number of nodes would be bounded by O(|Amax|m), as the PT is m deep.

However, if there is branching in the PT, an AND-node can have multiple children.

Each branch increases the size of the AOST by at most O(|Amax|m) nodes. Because

there are exactly n agents in the PT, this can happen at most n times. At each node in

the AOST, TS performs either a summation of scalars, or a maximization over scalars.

The PT-depth m is a different constant than the induced width w, and is typically larger.

However, m can be bounded in w.

Theorem 15. (Dechter and Mateescu, 2007) Given a (MO-)CoG with induced width

w, there exists a pseudo tree for which the depth m ≤ w log n.

Note that this theorem hold for CoGs and MO-CoGs alike, because it concerns only

the structure of the graphs.

To obtain PTs in practice, we perform two steps: first, we use the same heuristic

as for VE to generate an elimination order and then transform it into a PT for which

m ≤ w log n holds — whose existence is guaranteed by Theorem 15 — using the

procedure proposed by Bayardo and Miranker.

Thus, combining Theorems 13, 14 and 15 shows that, when there are few agents,

TS can be much more memory efficient than VE with a relatively small negative effect

on the runtime.

4.1.3 Variational methods

The CoG solvers that we have described in the previous two subsections — VE and

TS — are both exact methods and their computational complexity is exponential in

induced width, or worse. In this section, we describe a class of algorithms called

variational algorithms. Variational algorithms are not exact, but can provide a bounded

approximate solution. In return for the loss of optimality, variational methods have

runtimes that are sub-exponential in practice.

Variational algorithms (Sontag et al., 2011; Wainwright and Jordan, 2008) bound

the maximal payoff of a single-objective coordination graph. We denote this upper

bound as ū. At each iteration of a variational algorithm, this upper bound is tightened,

by reparameterizing and possibly restructuring the CoG.

As an example of how upper bounds are computed, we use dual decomposition,

which is a popular and illustrative variational algorithm.
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Dual decomposition relaxes the full maximization into an easily evaluated bound

based on local payoff functions, ue ∈ U ,

max
a

u(a) = max
a

∑

ue∈U
ue(ae) ≤

∑

ue∈U
max
ae

ue(ae) = ū. (4.1)

Then, this bound is iteratively tightened by re-parameterizing the individual functions

in U , i.e., one finds a set of equivalent local payoffs U ′ such that the total payoff is

unchanged,

∀a u′(a) =
∑

u′e∈U ′

u′e(ae) =
∑

ue∈U
ue(ae) = u(a),

while minimizing the decomposed upper bound (the right-hand side of Equation 4.1).

Dual decomposition achieves the equality of u′(a) and u(ae), and the tightening of the

upper bound via Lagrangian multipliers. For each original local payoff function ue(ae)
with more than 1 agent in scope, dual decomposition creates a reparameterized local

payoff function u
′e ∈ U ′ that is identically scoped, and is structured as:

u′e(ae) = ue(ae)−
∑

i∈e
λe
i (ai),

where, λe
i (ai) is the Lagrangian multiplier for agent i for the local payoff function

with scope e, and for each agent separately, dual decomposition creates a local payoff

function, u′i(ai) ∈ U ′:

u′i(ai) = ui(ai) +
∑

e∋i
λe
i (ai),

where ui(ai) represents an original payoff function with only agent i in scope (if there

is no such local payoff function in U , we assume ui(ai) = 0), and
∑

e∋i λ
e
i (ai) is a

sum over the Lagrangian multipliers used in the larger local payoff functions u′e(ae)
in which agent i participates. This ensures that the sum over all payoff functions in

U ′ is identical to the sum over all payoff functions in U for all joint actions a, as the

λe
i (ai) components of the functions with one agent and those with more than one agent

in scope cancel each other out.

After it is ensured that the total team payoff stays the same for a variational method,

the remaining problem of finding equivalent sets of local payoffs U ′ while minimizing

the upper bound, is a convex optimization problem and can be solved iteratively using

gradient-based or fixed-point techniques (Sontag et al., 2011).

The upper bound corresponds to an optimization of the individual ue(ae). If the op-

timal local actions for each individual local payoff function a
∗
e are all consistent with

some global joint action a
∗, then a

∗ is also the global optimum of u(a). In practice

however, the decomposition bound may not be able to find the global optimum. There-

fore, variational methods typically also assemble a joint action al that provides a lower

bound

u = u(al).
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Assembling al can for example be done by greedy assignment: for each local payoff

u′e(ae), we assign the elements of ae that are not already assigned in al by maximizing

the local function, conditioned on the already-assigned elements.

4.2 Multi-objective Coordination Graphs

When we extend the CoG to the multi-objective setting, it becomes harder to solve. We

have to not only consider stochastic policies, but a priori scalarization of the problem

can become infeasible, even when we know the exact scalarization function, f , and its

parameters w.

Definition 27. A multi-objective coordination graph (MO-CoG) is a tuple 〈D,A,U〉
in which D and A are as in a CoG but,

• U = {u1, ...,uρ} is a set of ρ, d-dimensional local reward functions.

The total team payoff is the sum of local vector-valued rewards: u(a) =
∑ρ

e=1 u
e(ae).

We use ui to indicate the value of the i-th objective.

Firstly, we observe that even when we know f , and its parameters w, but f is non-

linear, it is not possible to scalarize the MO-CoG a priori while retaining the same

structure for the reward function. This is because f does not distribute over the sum,

f(u(a),w) 6=
ρ

∑

e=1

f(ue(ae),w),

when f is non-linear. However, when f is linear, the scalarization is possible:

w · u(a) =
ρ

∑

e=1

w · ue(ae). (4.2)

This observation leads directly to a conclusion about the sufficiency of deterministic

policies for the CCS.

Corollary 3. For a MO-CoG, there is always a CCS with only deterministic policies,

even when stochastic policies are allowed.

Proof. A CCS is an optimal solution set for all possible linear scalarizations. For all

weights w in a linear scalarization function, we can translate the MO-CoG to a single-

objective CoG using Equation 4.2. For the resulting CoG we know that there exists

a deterministic policy that maximizes the scalarized value. Therefore, for all possible

linear scalarizations there exists a deterministic policy that is optimal, and thus there is

also a CCS consisting of only deterministic policies.
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ȧ2 ā2

ȧ1 (4,1) (0,0)

ā1 (1,2) (3,6)

ȧ3 ā3

ȧ2 (3,1) (1,3)

ā2 (0,0) (1,1)

Table 4.2: The two-dimensional payoff matrices for u1(a1, a2) (left) and u
2(a2, a3) (right).

Secondly, we observe that allowing stochastic policies can improve the maximal

scalarized value for non-linear f . This follows directly from flattening the MO-CoG to

an MOBP, analogous to Theorem 10, and Observation 1. Therefore, the PCS of deter-

ministic policies is typically not a subset of the PCS of stochastic policies. However,

because Equation 4.2 fulfills the conditions of Assumption 1, we know that Theorem

1 holds, i.e., that a PCS of stochastic policies can be constructed from a CCS of deter-

ministic policies.

Existing solution methods for MO-CoGs (Delle Fave et al., 2011; Dubus et al.,

2009b; Marinescu, 2009, 2011; Rollón, 2008; Rollón and Larrosa, 2006), (as far as we

are aware) all focus on finding the PCS of deterministic policies, which is axiomatically

assumed to be the optimal solution set. From a utility-based perspective however, we

argue that this is often not the most suitable solution set; when we focus on the CCS

of deterministic policies, we have a sufficient solution set for when the scalarization

function, f , is linear, and can construct a sufficient solution set from this CCS when f
is non-linear, but stochastic policies are allowed.

In the following sections we propose novel algorithms for computing the CCS of

deterministic policies for MO-CoGs. To illustrate the workings of these algorithms,

we use an example MO-CoG with an identical structure to Figure 4.1 but with vector-

valued local payoff functions. These local payoffs are given in Table 4.2.

4.3 Inner Loop CCS Methods for MO-CoGs

In this section we propose two inner loop methods for computing the CCS. These

methods replace the summation and maximization operators by cross-sum and pruning

operators, as described in Section 3.1.1.

In order to apply the inner loop approach, we first need to be able to work with sets

of value vectors rather than single vectors. Therefore, we first translate the MO-CoG to

a set of value set factors (VSFs), F , instead of the set of local payoff functions U . Each

VSF, f e ∈ F , is a function mapping local joint actions, ae to sets of payoff vectors.

The initial VSFs are constructed from the local payoff functions, ue ∈ U , such that

f e(ae) = {ue(ae)}, (4.3)

i.e., each VSF maps a local joint action to the singleton set containing only that action’s

local payoff.
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Using these VSFs, we can now define the set of all possible (team) payoff vectors,

V in terms of F using the cross-sum operator over all VSFs in F for each joint action

a:

V(F) =
⋃

a

⊕

fe∈F
f e(ae),

where
⊕

fe∈F is the cross-sum (Definition 3.2) across all VSFs.

The CCS can now be calculated by applying a pruning operator CPrune (Algorithm

1) that removes all C-dominated vectors from a set of value vectors, to V:

CCS(V(F)) = CPrune(V(F)) = CPrune(
⋃

a

⊕

fe∈F
f e(ae)). (4.4)

A naive, non-graphical approach to compute the CCS would simply compute the

righthand side of Equation 4.4, i.e., it would compute V(F) explicitly by looping over

all actions, and for each action looping over all local VSFs, and then pruning that set

down to a CCS. This corresponds to flattening a MO-CoG to an MOBP (Definition 15)

Theorem 16. The computational complexity of computing a CCS of a MO-CoG con-

taining ρ local payoff functions, following the non-graphical approach (Equation 4.4)

is:

O(dρ|Amax|n + d|Amax|n|PCS|+ |PCS|P (d|CCS|) )

Proof. V is computed by looping over all ρ VSFs for each joint action a, summing

vectors of length d. If the maximum size of the action space of an agent is Amax there

are O(|Amax|n) joint actions. V contains one payoff vector for each joint action. V is

the input of CPrune, whose runtime is O(d|V||PCS|+ |PCS|P (d|CCS|)) (Theorem

2).

Because the non-graphical approach requires explicitly enumerating all possible

joint actions and calculating the payoffs associated with each one, it is intractable for all

but the smallest numbers of agents, as the number of joint actions grows exponentially

in the number of agents.

In the rest of this section, we show how to use VE (Section 4.1.1) and TS (Section

4.1.2) as a basis for new algorithms that compute the CCS and scale much better in the

number of agents than a non-graphical approach.3

4.3.1 Convex Multi-Objective Variable Elimination

In MO-CoGs, we can compute a CCS much more efficiently when we exploit the

MO-CoG’s graphical structure. Like in the VE algorithm for CoGs, we can solve the

MO-CoG as a series of local subproblems, by eliminating agents and manipulating the

3Note that for variational methods (Section 4.1.3) an inner loop approach does not apply because

they use reparameterization rather than summation and maximization. Therefore, we only propose an

outer loop method building on variational methods in Section 4.4.5.
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set of VSFs F which describe the MO-CoG. We call the resulting algorithm Convex

Multi-Objective Variable Elimination (CMOVE). CMOVE is an extension to Rollón

and Larrosa’s Pareto-based extension of VE, which we refer to as PMOVE (Rollón

and Larrosa, 2006).

The key idea of CMOVE is to compute local CCSs (LCCSs) when eliminating an

agent instead of a single best response (as in VE). When computing an LCCS, the

algorithm prunes away as many vectors as possible, minimizing the number of payoff

vectors that are calculated at the global level. Minimizing the number of payoff vectors

that are calculated greatly reduces computation time.

Eliminating agents

First, we describe the elim operator for eliminating agents from a set of VSF. This

operator corresponds to the elim operator used by VE (Algorithm 9) for eliminating

agents in single-objective CoGs. We first need to update our definition of neighboring

local payoff functions (Definition 23), to neighboring VSFs.

Definition 28. The set of neighboring VSFsFi of i is the set of all local payoff functions

that have agent i in scope.

The neighboring agents ni of an agent i are now the agents in the scope of a VSF in

Fi, except for i itself, corresponding to Definition 24. For each possible local joint

action of ni, we now compute an LCCS — a local CCS — that contains the payoffs

of the C-undominated responses of agent i, as the best response values of i. In other

words, it is the CCS of the subproblem that arises when considering only Fi and fixing

a specific local joint action ani
.

To compute the LCCS, we must consider all payoff vectors of the subproblem, Vi,
and prune the C-dominated ones. This can be achieved by taking the cross-sum of all

the VSFs in the local subproblem, and then pruning.

Definition 29. If we fix all actions in ani
, but not ai, the set of all payoff vectors is:

Vi(Fi, ani
) =

⋃

ai

⊕

fe∈Fi
f e(ae), where ae is formed from ai and the appropriate part

of ani
.

Using Definition 29, we can now formally define the LCCS as the CCS of Vi:
Definition 30. A local CCS, an LCCS, is the C-undominated subset of Vi(Fi, ani

):

LCCSi(Fi, ani
) = CCS(Vi(Fi, ani

)).

Because the LCCSi is the CCS of a specified set of vectors, we can compute the

LCCS by standard pruning algorithms, such as CPrune (Algorithm 1). Using LCCSs,

we can create a new VSF, fnew, conditioned on the actions of the agents in ni:

∀ani
fnew(ani

) = LCCSi(Fi, ani
).
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The elim operator replaces the VSFs in Fi in F by this new factor:

elim(F , i) = (F \ Fi) ∪ {fnew(ani
)}.

Eliminating an agent reduces the number of agents and VSFs in the graph, and

forms the cornerstone operator of the CMOVE algorithm. Before defining the full

CMOVE algorithm, we first prove the correctness of elim. Particularly (as described

in Section 3.1.1), we must prove that no necessary vectors are lost when applying the

elim operator.

We show that the maximal scalarized payoff, for any w, cannot be lost as a result

of elim, i.e., no necessary payoff vectors for creating a CCS are lost.

Theorem 17. elim preserves the CCS, i.e.,

∀i ∀F CCS(V(F)) = CCS(V(elim(F , i))).

Proof. By definition the CCS of a MO-CoG, contains at least one payoff vector that

maximizes the scalarized value for every w. Therefore, for each vector u(a) that is

optimal for at least one w, there must be a vector that achieves the same scalarized

value for that w:

∀w
(

a = argmax
a∈A

w · u(a)
)

=⇒

∃a′
u(a′) ∈ CCS(V(F)) ∧ w · u(a) = w · u(a′). (4.5)

If and only if this is not the case, necessary values are lost.

First, we observe that for all joint actions a for which there is a w at which the

scalarized value of a is maximal, a vector-valued payoff u(a′) for which w · u(a′) =
w ·u(a) is in the CCS (by definition). Second, we observe that the linear scalarization

function distributes over the local payoff functions: w · u(a) = w ·∑e u
e(ae) =

∑

e w · ue(ae). Thus, when eliminating agent i, we divide the set of VSFs into non-

neighbors (nn), in which agent i does not participate, and neighbors (ni) such that:

w · u(a) =
∑

e∈nn
w · ue(ae) +

∑

e∈ni
w · ue(ae).

Now, following Equation 4.5, the CCS contains maxa∈A w · u(a) for all w. elim

pushes this maximization in:

max
a∈A

w · u(a) = max
a−i∈A−i

∑

e∈nn
w · ue(ae) + max

ai∈Ai

∑

e∈ni
w · ue(ae).

elim replaces the agent-i factors by a term fnew(ani
) that satisfies w · fnew(ani

) =
maxai

∑

e∈ni
w · ue(ae) — for all w — per definition, thus preserving the maximum

scalarized value for all w and thereby preserving the CCS.
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Instead of an LCCS, we could compute a local PCS (LPCS), that is, using a PCS

computation on Vi instead of a CCS computation. Note that, since LCCS ⊆ LPCS

⊆ Vi, elim not only reduces the problem size with respect to Vi, it can do so more

than would be possible if we only considered P-dominance. Therefore, focusing on

the CCS can greatly reduce the sizes of local subproblems. Since the solution of a

local subproblem is the input for the next agent elimination, the size of subsequent

local subproblems is also reduced, which can lead to considerable speed-ups.

Algorithm

Using elim, we now present the convex multi-objective variable elimination (CMOVE)

algorithm. In our implementation elim uses CPrune to compute the local CCSs. Like

VE, CMOVE iteratively eliminates agents until none are left. However, our implemen-

tation of elim computes a CCS and outputs the correct joint actions for each payoff

vector in this CCS, rather than a single joint action.

As previously mentioned, CMOVE is an extension to Rollón and Larrosa’s Pareto-

based extension of VE, which we refer to as PMOVE (Rollón and Larrosa, 2006). The

most important difference between CMOVE and PMOVE is that CMOVE computes a

CCS, which typically leads to much smaller subproblems and thus much better compu-

tational efficiency. In addition, we identify three places where pruning can take place,

yielding a more flexible algorithm with different trade-offs. Finally, we use the tagging

scheme instead of the backwards pass, as in Section 4.1.1.

Algorithm 10 presents an abstract version of CMOVE that leaves the pruning op-

erators unspecified. Depending on preference, these pruning operators can be filled in

with PPrune (Algorithm 2), or CPrune (Algorithm 1), or other algorithms for comput-

ing PCSs or CCSs. Depending on which pruning operators are used in which points in

the algorithm, Algorithm 10 correctly computes a correct CCS or PCS.4

CMOVE first translates the problem into a set of vector-set factors (VSFs), F on

line 1, according to Equation 4.3. Next, CMOVE iteratively eliminates agents using

elim (line 2–5). The elimination order can be determined using techniques devised for

single-objective VE (e.g., the method proposed by Koller and Friedman (2009) for this

purpose).

Algorithm 11 shows our implementation of elim, parameterized with two pruning

operators, prune1 and prune2. These pruning operators correspond to two different

pruning locations inside the operator that computes LCCSi: ComputeLCCSi(Fi, ani
,

prune1, prune2).

4If more information is known about the scalarization function, f (Definition 1), this could be incor-

porated in new pruning algorithms, that could be used here as well. E.g., if it is known that objective

1 is worth as least twice as much as objective 2, inside a linear scalarization function, this could be

incorporated into the pruning operators, without affecting the correctness of the algorithm. However,

what is possible in this respect highly depends on what information about f is available, and is beyond

the scope of this dissertation.
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Algorithm 10: CMOVE(U , prune1, prune2, prune3, q)
Input: A set of local payoff functions U and an elimination order q (a queue containing

all agents)

1 F ← create one VSF for every local payoff function in U
2 while ani

∈ Ani
do

3 i← q.dequeue()
4 F ← elim(F , i, prune1, prune2)
5 end

6 f ← retrieve final factor from F
7 S ← f(a∅)
8 return prune3(S)

Algorithm 11: elim(F , i, prune1, prune2)
Input: A set of VSFs F , and an agent i

1 ni ← the set of neighboring agents of i

2 Fi ← the subset of VSF that have i in scope

3 fnew(ani
)← a new VSF

4 foreach ani
∈ Ani

do

5 fnew(ani
)← ComputeLCCSi(Fi,ani

, prune1, prune2)
6 end

7 F ← F \ Fi ∪ {fnew}
8 return F

ComputeLCCSi is implemented as follows: first we define a new cross-sum-and-

prune operator A⊕̂B = prune1(A⊕ B). LCCSi applies this operator sequentially:

ComputeLCCSi(Fi, ani
, prune1, prune2) = prune2(

⋃

ai

ˆ⊕

fe∈Fi

f e(ae)). (4.6)

prune1 is applied to each cross-sum of two sets, via the ⊕̂ operator, leading to incre-

mental pruning (Cassandra et al., 1997), i.e.,

A ⊕̂ B ⊕̂ C = prune1(A⊕ prune1(B ⊕ C)).

prune2 is applied at a coarser level, after the union. CMOVE applies elim iteratively

until no agents remain, resulting in a CCS. When there are no agents left, fnew on line

3 has no agents to condition on. In this case, we consider the “actions of the neighbors”

to be a single empty action: a∅.
Pruning can also be applied at the very end, after all agents have been eliminated.

We call this pruner prune3. After all agents have been eliminated, the final factor is

taken from the set of factors (line 6), and the single set, S contained in that factor is

retrieved (line 7). Note that we use the empty action a∅ to denote the field in the final

factor, as it has no agents in scope. Finally prune3 is called on S. In increasing level
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of coarseness, we thus have three pruning operators: incremental pruning (prune1),

pruning after the union over actions of the eliminated agent (prune2), and pruning

after all agents have been eliminated (prune3).

When either prune2 or prune3 (or both) compute CCSs, the CMOVE algorithms

correctly computes the CCS. When no pruning takes place for prune3 and prune1 =
prune2 = PPrune, the resulting algorithm computes the PCS rather than the CCS, and

is equivalent to the PMOVE algorithm proposed by Rollón and Larrosa (2006).

When comparing CMOVE to PMOVE we make the following observation: the

local coverage sets are input to the next subproblem in agent elimination sequence.

A smaller local coverage set thus results in a smaller next subproblem. Because it is

always possible to have a CCS that is a subset of the smallest possible PCS, the sub-

problems in CMOVE are thus always smaller than the corresponding subproblems in

PMOVE. A key insight behind CMOVE is that this results in faster computation over-

all for CMOVE compared to PMOVE. Furthermore, we discuss variants of CMOVE,

with different instantiations of the pruning operators, that lead to different trade-offs

between pruning and the size of the subproblems.

CMOVE Variants

There are several ways to implement the pruning operators that lead to correct instan-

tiations of CMOVE. Both PPrune (Algorithm 2) and CPrune (Algorithm 1) can be

used, as long as either prune2 or prune3 is CPrune. Note that if prune2 computes

the CCS, prune3 is not necessary.

In this dissertation, we consider two variants: Basic CMOVE, which does not

use prune1 and prune3 and only prunes at prune2 using CPrune, and Incremental

CMOVE, which uses CPrune at both prune1 and prune2. The latter invests more

effort in intermediate pruning, which can result in smaller cross-sums, and a result-

ing speedup. However, when only a few vectors can be pruned in these intermediate

steps, this additional speedup may not occur, and the algorithm creates unnecessary

overhead.5

Example

Consider the example in Figure 4.1a, using the payoffs defined by Table 4.2, and apply

CMOVE, using CPrune for prune2, and no pruning for prune1 and prune3, i.e., Basic

CMOVE.

First, CMOVE creates the VSFs f 1 and f 2 from u
1 and u

2. To eliminate agent

3, it creates a new VSF f 3(a2) by computing the LCCSs for every a2 and tagging

each element of each set with the action of agent 3 that generates it. For ȧ2, CMOVE

first generates the set {(3, 1)ȧ3 , (1, 3)ā3}. Since both of these vectors are optimal for

5We can also compute a PCS first, using prune1 and prune2, and then compute the CCS with

prune3. However, this is useful only for small problems for which a PCS is cheaper to compute than a

CCS.
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some w, neither is removed by pruning and thus f 3(ȧ2) = {(3, 1)ȧ3 , (1, 3)ā3}. For ā2,
CMOVE first generates {(0, 0)ȧ3 , (1, 1)ā3}. CPrune determines that (0, 0)ȧ3 is domi-

nated and consequently removes it, yielding f 3(ā2) = {(1, 1)ā3}. CMOVE then adds

f 3 to the graph and removes f 2 and agent 3, yielding the factor graph shown in Figure

4.1b.

CMOVE then eliminates agent 2 by combining f 1 and f 3 to create f 4. For f 4(ȧ1),
CMOVE must calculate the LCCS of:

(f 1(ȧ1, ȧ2)⊕ f 3(ȧ2)) ∪ (f 1(ȧ1, ā2)⊕ f 3(ā2)).

The first cross sum yields {(7, 2)ȧ2ȧ3 , (5, 4)ȧ2ā3} and the second yields {(1, 1)ā2ā3}.
Pruning their union yields f 4(ȧ1) = {(7, 2)ȧ2ȧ3 , (5, 4)ȧ2ā3}. Similarly, for ā1 tak-

ing the union yields {(4, 3)ȧ2ȧ3 , (2, 5)ȧ2ā3 , (4, 7)ā2ā3}, of which the LCCS is f 4(ā1) =
{(4, 7)ā2ā3}. Adding f 4 results in the graph in Figure 4.1c.

Finally, CMOVE eliminates agent 1. Since there are no neighboring agents left,

Ai contains only the empty action. CMOVE takes the union of f 4(ȧ1) and f 4(ā1).
Since (7, 2){ȧ1ȧ2ȧ3} and (4, 7){ā1ā2ā3} dominate (5, 4){ȧ1ȧ2ā3}, the latter is pruned, leav-

ing CCS = {(7, 2){ȧ1ȧ2ȧ3}, (4, 7){ā1ā2ā3}}.

Analysis

We now analyze the correctness and complexity of CMOVE.

Theorem 18. CMOVE correctly computes a CCS.

Proof. The proof works by induction on the number of agents. The base case is the

original MO-CoG, where each f e(ae) from F is a singleton set. Then, since elim

preserves the CCS (see Theorem 17), no necessary vectors are lost. Furthermore, no

excess payoff vectors are retained; when the last agent is eliminated, only one factor

remains; since it is not conditioned on any agent actions and is the result of an LCCS
computation, it must contain one set: the CCS.

Theorem 19. The computational complexity of CMOVE is

O( n |Amax|wa (wf R1 +R2) +R3 ), (4.7)

where wa is the induced agent width, i.e., the maximum number of neighboring agents

(connected via factors) of an agent when eliminated, wf is the induced factor width,

i.e., the maximum number of neighboring factors of an agent when eliminated, and R1,

R2 and R3 are the cost of applying the prune1, prune2 and prune3 operators.

Proof. CMOVE eliminates n agents and for each one computes an LCCS for each

joint action of the eliminated agent’s neighbors, in a field in a new VSF. CMOVE

computes O(|Amax|wa) fields per iteration, calling prune1 (Equation 4.6) for each

adjacent factor, and prune2 once after taking the union over actions of the eliminated

agent. prune3 is called exactly once, after eliminating all agents (line 8 of Algorithm

10).
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R1, R2, and R3 — the runtime of the pruning operators — depend on the size

of the local subproblems. Specifically, the runtime of CPrune is O(d|V||PCS| +
|PCS|P (d|CCS|)) (Theorem 2), where |V| is the number of vectors inputted to CPrune.

How big these input sets are, depends on how much pruning has been done in earlier

iterations and at finer levels. Specifically, the input set of prune2 is the union of what

is returned by a series of applications of prune1, while prune3 uses the output of the

last application of prune2. We therefore need to balance the effort of the lower-level

pruning with that of the higher-level pruning, which occurs less often but is dependent

on the output of the lower level. The bigger the LCCSs, the more can be gained from

lower-level pruning.

CMOVE is exponential only in wa, and not in the number of agents as in the non-

graphical approach (Theorem 16). In this respect, our results are similar to those pro-

vided for PMOVE by Rollón (2008). However, those earlier complexity results do not

make the effect of pruning explicit. Instead, the complexity bound makes use of ad-

ditional problem constraints, which limit the total number of possible different value

vectors. Specifically, in the analysis of PMOVE, the payoff vectors are integer-valued,

with a maximum value for all objectives. Such bounds can be very loose or even im-

possible to define in practice, e.g., when the payoff values are real-valued in one or

more objectives. For this reason, we provide a description of the computational com-

plexity that makes explicit the dependence on the effectiveness of pruning, i.e., in terms

of R1, R2, and R3. While such complexity bounds are not better in the worst case —

when no pruning is possible — they do allow greater insight into the runtimes of the

algorithms we evaluate.

Besides the computational complexity, another important aspect of the behavior of

MO-CoGs is the space complexity. In fact, as we show empirically in Section 4.3.4,

memory is often the bottleneck for solving MO-CoGs:

Theorem 20. The space complexity of CMOVE is

O( d n |Amax|wa |LCCSmax|+ d ρ |Amax||emax| + |LCCSmax||Fmax| ),

where |LCCSmax| is maximum size of a local CCS, ρ is the original number of VSFs,

|emax| is the maximum scope size of the original VSFs, and the |Fmax| is the maximal

number of VSFs that get replaced by a new VSF.

Proof. CMOVE computes a local CCS — using CPrune — for each new VSF for each

joint action of the eliminated agent’s neighbors. There are maximally wa neighbors.

There are maximally n new VSFs. Each payoff vector stores d real numbers.

The size of the input of CPrune depends on the number of VSFs, |Fmax|, that get

replaced by a new VSF, and the size of the local CCSs in the VSFs that are replaced,

i.e., the size of the cross-sum in Equation 4.6. Note that, in the case of incremental

pruning (prune1 = CPrune), the size of this cross-sum is limited even further, by

pruning after each cross-sum of 2 local CCSs.
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There are ρ VSFs created during the initialization of CMOVE. All of these VSFs

have exactly one payoff vector containing d real numbers, per joint action of the agents

in scope. There are maximally |Amax||emax| such joint actions.

For PMOVE, the space complexity is equivalent to Theorem 20, but with the size of

a local PCS, |LPCSmax|, instead of |LCCSmax|. Because an LCCS is a subset of the

corresponding LPCS6, CMOVE is thus strictly more memory efficient than PMOVE.

Note that Theorem 20 is a rather loose upper bound on the space complexity, as

not all VSFs, original or new, exist at the same time. However, it is not possible to to

predict a priori how many of these VSFs exist at the same time, resulting in a space

complexity bound on the basis of all VSFs that exist at some point during the execution

of CMOVE.

4.3.2 Experiments: CMOVE versus PMOVE

In order to test the efficiency of CMOVE, we compare basic CMOVE and incremental

CMOVE to PMOVE7 and the non-graphical approach (described at the beginning of

Section 4.3) for problems with varying numbers of agents and objectives. We also

analyze how these runtimes correspond to the sizes of the PCS and CCS, as well as the

induced width.

Because CMOVE and PMOVE are inner loop methods based on the same schema,

i.e., VE, these experiments indicate how inner loop methods that compute the CCS

compare to inner loop methods that compute the CCS. Furthermore, we see how the

different variants of CMOVE compare to each other.

We use two types of experiments. The first experiments are done with random

MO-CoGs in which we can directly control all variables. In the second experiment,

we use Mining Day, a more realistic benchmark, that is more structured than random

MO-CoGs but still randomized.

Random Graphs

To generate random MO-CoGs, we employ a procedure that takes as input: n, the

number of agents; d, the number of payoff dimensions; ρ the number of local payoff

functions; and |Ai|, the action space size of the agents, which is the same for all agents.

The procedure then starts with a fully connected graph with local payoff functions

connecting to two agents each. Then, local payoff functions are randomly removed,

while ensuring that the graph remains connected, until only ρ local payoff functions

remain. The values for the different objectives in each local payoff function are real

numbers that are drawn independently and uniformly from the interval [0, 10].

6Our implementation of CPrune (Algorithm 1) uses PPrune as a pre-processing step (on line 1).
7We compare to PMOVE using only prune2 = PPrune, rather than prune1 = prune2 = PPrune,

as was proposed in the original article (Rollón and Larrosa, 2006) because we found the former option

slightly but consistently faster.
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Figure 4.4: (a) Runtimes (ms) in log-scale for the nongraphical method, PMOVE and CMOVE

with standard deviation of mean (error bars), (b) the corresponding number of vectors in the

PCS and CCS, and (c) the corresponding spread of the induced width as a boxplot.

We compare algorithms on the same set of randomly generated MO-CoGs for each

separate value of n, d, ρ, and |Ai|.
To compare basic CMOVE, incremental CMOVE, PMOVE, and the non-graphical

method, we test them on random MO-CoGs with the number of agents ranging between

10 and 85, the average number of factors per agent held at ρ = 1.5n, and the number

of objectives d = 2. This experiment was run on a 2.4 GHz Intel Core i5 computer,

with 4 GB memory. Figure 4.4 shows the results, averaged over 20 MO-CoGs for

each number of agents. The runtime (Figure 4.4a) of the non-graphical method quickly

explodes. Both CMOVE variants are slower than PMOVE for small numbers of agents,

but the runtime grows much more slowly than that of PMOVE. At 70 agents, both

CMOVE variants are faster than PMOVE on average. For 75 agents, one of the MO-

CoGs generated caused PMOVE to time out at 5000s, while basic CMOVE had a

maximum runtime of 132s, and incremental CMOVE 136s. This can be explained by

the differences in the size of the solutions, i.e., the PCS and the CCS (Figure 4.4b). The

PCS grows much more quickly with the number of agents than the CCS does. For two-

objective problems, incremental CMOVE seems to be consistently slower than basic

CMOVE.

While CMOVE’s runtime grows much more slowly than that of the nongraphical

method, it is still exponential in the number of agents, a counterintuitive result since

the worst-case complexity is linear in the number of agents. This can be explained by

the induced width of the MO-CoGs, in which the runtime of CMOVE is exponential.

In Figure 4.4c, we see that the induced width increases linearly with the number of

agents for random graphs.

We therefore conclude that, in two-objective MO-CoGs, the non-graphical method

is intractable, even for small numbers of agents, and that the runtime of CMOVE in-

creases much less with the number of agents than PMOVE does.

To test how the runtime behavior changes with a higher number of objectives, we

run the same experiment with the average number of factors per agent held at ρ = 1.5n
and increasing numbers of agents again, but now for d = 5. This and all remain-

ing experiments described in this section were executed on a Xeon L5520 2.26 GHz
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Figure 4.5: Runtimes (ms) for the non-graphical method, PMOVE and CMOVE in log-scale

with the standard deviation of mean (error bars) (left) and the corresponding number of vectors

in the PCS and CCS (right), for increasing numbers of agents and 5 objectives.

computer with 24 GB memory. Figure 4.5 (left) shows the results of this experiment,

averaged over 85 MO-CoGs for each number of agents. Note that we do not plot

the induced widths, as this does not change with the number of objectives. These re-

sults demonstrate that, as the number of agents grows, using CMOVE becomes key

to containing the computational cost of solving the MO-CoG. CMOVE outperforms

the nongraphical method from 12 agents onwards. At 25 agents, basic CMOVE is 38
times faster. CMOVE also does significantly better than PMOVE. Though it is one

order of magnitude slower with 10 agents (238ms (basic) and 416ms (incremental)

versus 33ms on average), its runtime grows much more slowly than that of PMOVE.

At 20 agents, both CMOVE variants are faster than PMOVE and at 28 agents, Basic

CMOVE is almost one order of magnitude faster (228s versus 1, 650s on average), and

the difference increases with every agent.

As before, the runtime of CMOVE is exponential in the induced width, which

increases with the number of agents, from 3.1 at n = 10 to 6.0 at n = 30 on average,

as a result of the random MO-CoG generation procedure. However, CMOVE’s runtime

is polynomial in the size of the CCS, and this size grows exponentially, as shown in

Figure 4.5 (right). The fact that CMOVE is much faster than PMOVE can be explained

by the sizes of the PCS and CCS, as the former grows much faster than the latter. At

10 agents, the average PCS size is 230 and the average CCS size is 65. At 30 agents,

the average PCS size has risen to 51, 745 while the average CCS size is only 1, 575.

Figure 4.6 (left) compares the scalability of the algorithms in the number of objec-

tives, on random MO-CoGs with n = 20 and ρ = 30, averaged over 100 MO-CoGs.

CMOVE always outperforms the nongraphical method. Interestingly, the nongraphical

method is several orders of magnitude slower at d = 2, grows slowly until d = 5, and

then starts to grow with about the same exponent as PMOVE. This can be explained

by the fact that the time it takes to enumerate of all joint actions and payoffs remains

approximately constant, while the time it takes to prune increases exponentially with

the number of objectives. When d = 2, CMOVE is an order of magnitude slower than

PMOVE (163ms (basic) and 377 (incremental) versus 30ms). However, when d = 5,
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Figure 4.6: Runtimes (ms) for the non-graphical method, PMOVE and CMOVE in logscale

with the standard deviation of mean (error bars) (left) and the corresponding number of vectors

in the PCS and CCS (right), for increasing numbers of objectives.

both CMOVE variants are already faster than PMOVE and at 8 dimensions they are

respectively 3.2 and 2.4 times faster. This happens because the CCS grows much more

slowly than the PCS, as shown in Figure 4.6 (right). The difference between incremen-

tal and basic CMOVE decreases as the number of dimensions increases, from a factor

2.3 at d = 2 to 1.3 at d = 8. This trend indicates that pruning after every cross-sum,

i.e., at prune1, becomes (relatively) better for higher numbers of objectives. Although

we were unable to solve problem instances with many more objectives within reason-

able time, we expect this trend to continue and that incremental CMOVE would be

faster than basic CMOVE for problems with very many objectives.

Overall, we conclude that, for random graphs, CMOVE is key to solving MO-

CoGs within reasonable time, especially when the problem size increases in either the

number of agents, the number of objectives, or both.

Mining Day

In Mining Day, a mining company mines gold and silver (objectives) from a set of

mines (local payoff functions) located in the mountains (see Figure 1.2). The mine

workers live in villages at the foot of the mountains. The company has one van in each

village (agents) for transporting workers and must determine every morning to which

mine each van should go (actions). However, vans can only travel to nearby mines

(graph connectivity). Workers are more efficient if there are more workers at the mine:

there is a 3% efficiency bonus per worker such that the amount of each resource mined

per worker is x · 1.03w, where x is the base rate per worker and w is the number of

workers at the mine. The base rate of gold and silver are properties of a mine. Since

the company aims to maximize revenue, the best strategy depends on the fluctuating

prices of gold and silver. To maximize revenue, the mining company wants to use the

latest possible price information, and not lose time recomputing the optimal strategy
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Figure 4.7: Runtimes (ms) for basic and incremental CMOVE, and PMOVE, in log-scale with

the standard deviation of mean (error bars) (left) and the corresponding number of vectors in

the PCS and CCS (right), for increasing numbers of agents.

with every price change. Therefore, we must calculate a CCS.

To generate a Mining Day instance with v villages (agents), we randomly assign

2-5 workers to each village and connect it to 2-4 mines. Each village is only connected

to mines with a greater or equal index, i.e., if village i is connected to m mines, it is

connected to mines i to i + m − 1. The last village is connected to 4 mines and thus

the number of mines is v+3. The base rates per worker for each resource at each mine

are drawn uniformly and independently from the interval [0, 10].

In order to compare the runtimes of basic and incremental CMOVE against PMOVE

on a more realistic benchmark, we generate Mining Day instances with varying num-

bers of agents. Note that we do not include the non-graphical method, as its runtime

mainly depends on the number of agents, and is thus not considerably faster for this

problem than for random graphs. The runtime results are shown in Figure 4.7 (left).

Both CMOVE and PMOVE are able to tackle problems with over 100 agents. However,

the runtime of PMOVE grows much more quickly than that of CMOVE. In this two-

objective setting, basic CMOVE is better than incremental CMOVE. Basic CMOVE

and PMOVE both have runtimes of around 2.8s at 60 agents, but at 100 agents, basic

CMOVE runs in about 5.9s and PMOVE in 21s. Even though incremental CMOVE

is worse than basic CMOVE, its runtime still grows much more slowly than that of

PMOVE, and it beats PMOVE when there are many agents.

The difference between PMOVE and CMOVE results from the relationship be-

tween the number of agents and the sizes of the CCS, which grows linearly, and the

PCS, which grows polynomially, as shown in Figure 4.7 (right). The induced width

remains around 4 regardless of the number of agents. These results demonstrate that,

as the CCS grows more slowly than the PCS with the number of agents, CMOVE can

solve MO-CoGs more efficiently than PMOVE as the number of agents increases.

From these — as well as the Random Graphs results — we conclude that CMOVE
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scales much better than PMOVE. Furthermore, we conclude that Basic CMOVE is

faster than incremental CMOVE (at least for 8 objectives or less).

4.3.3 Convex AND/OR Tree Search

In Section 4.1.2, we described how the optimal joint action in a CoG can be found

using an AND/OR Search tree (AOST), such as in Figure 4.3b, using AND/OR tree

search (TS). In such an AOST, there are two types of nodes: OR nodes that represent

agents, and AND nodes that represent actions. The TS algorithm traverses the tree,

taking maximizations over the values of the subtrees rooted by the AND node children

of an OR node, and summations over the values of subtrees rooted by the OR node

children of an AND node. In this subsection, we show how the inner loop approach

can be applied to create multi-objective methods from this algorithm.

First, we note that AND/OR tree search algorithms have been extended to compute

a PCS by Marinescu (2009). When we apply this inner loop approach to compute the

PCS to TS, it yields an algorithm we call Pareto TS (PTS).8 To define PTS, we must

update Definition 26 to be a set of Pareto-optimal payoffs. We refer to such a subtree

value set as an intermediate PCS (IPCS).

Definition 31. The intermediate PCS of a subtree, IPCS(Ti) rooted by an OR-node i
is the PCS of the union of the intermediate PCSs of the children, ch(i), of i:

IPCS(Ti) = PPrune(
⋃

aj∈ch(i)
IPCS(Taj)).

The intermediate PCS of a subtree, IPCS(Tai) rooted by an AND-node ai is the PCS

of the value of ai itself (Definition 25) plus the (pruned) cross-sum of the intermediate

PCSs of the subtrees rooted by the (OR-node) children of ai:

IPCS(Tai) = PPrune(





ˆ⊕

j∈ch(ai)
IPCS(Tj)



⊕ {vai}).

Thus, PTS replaces the max operator in TS by a pruning operator, just as PMOVE

replaces the max operator in VE by a pruning operator.

As we argued for CMOVE, computing a CCS rather than a PCS is often faster and

sufficient for many real-world problems. To compute the CCS in a memory-efficient

way, we propose convex TS (CTS). CTS simply replaces PPrune by CPrune in Def-

inition 31. Thus, CTS is like PTS but with a different pruning operator. It can also

be seen as CMOVE but with VE replaced with TS. The advantage of CTS over PTS

is analogous to that of CMOVE over PMOVE: it is highly beneficial to compute local

CCSs instead of local PCSs because the intermediate coverage sets are input to the next

8Marinescu (2009) applies this approach to different algorithms from the class of AND/OR tree

search algorithms as base algorithms. Here, we use TS, as it is the most memory-efficient.
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subproblem in a sequential search scheme, regardless of whether that scheme is VE or

TS; this is both more runtime and memory efficient.

Like in CMOVE, we can apply incremental pruning (Cassandra et al., 1997), i.e.,

pruning after every cross-sum. Incremental pruning is more memory efficient, as it

greatly reduces the sizes of the cross-sums.

While CTS is more memory efficient than CMOVE, it still requires computing

intermediate coverage sets that take up space. While these are typically only about as

large as the CCS, their size is bounded only by the total number of joint actions.

Analysis

Using the time and space complexity results for TS, we can establish the following

corollaries about the time and space complexity of CTS.

Corollary 4. The time complexity of CTS is O(n|Amax|mR), where R is the runtime

of CPrune.

Proof. O(n|Amax|m) bounds the number of nodes in the AOST. For each node in the

AOST CPrune is called.

The runtime of CPrune in terms of the size of its input is given by Definition 2.

The size of the input of CPrune depends on the size of the intermediate CCSs of the

children of a node. In the case of an AND-node, this input size is O(|ICCSmax|c),
where c is the maximum number of children of an AND-node.9 For OR-nodes this is

O(|Amax||ICCSmax|).

Corollary 5. The space complexity of CTS is

O(n|ICCSmax|+ |Amax||ICCSmax|+ |ICCSmax|c),

where |ICCSmax| is the maximum size of an intermediate CCS during the execution

of CTS.

Proof. Like in TS, only O(n) nodes of the AOST need to exist during any point during

execution, and each node contains an intermediate CCS. After computing a cross-sum

at most |ICCSmax|c vectors are generated before pruning.

Note that when incremental pruning is applied, the full cross-sums (of size |ICCSmax|c)
are never generated. Instead, the cross-sums of only 2 (instead of c) ICCSs are com-

puted. CTS is much more memory efficient than CMOVE, which has a space com-

plexity that is exponential in the induced width (Theorem 20).

9Note that c is in turn upper bounded by n but this is a very loose bound.
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Figure 4.8: (left) Runtimes in ms of CTS, basic CMOVE and PMOVE on random

3-objective MO-CoGs with varying numbers of agents n and ρ = 2.0n local payoff

factors. (right) The corresponding CCS and PCS sizes of the MO-CoGs. (right) The

corresponding induced widths of the MO-CoGs.

4.3.4 Experiments: CTS versus CMOVE

In this subsection we empirically compare CMOVE and CTS in settings where there

is little available memory. In order to test the memory-efficiency, we limit the memory

the algorithms is allowed to use, using the -Xmx runtime option for the JAVA Virtual

Machine. All experiments use our JAVA implementation (version 1.6 SE), and the

corresponding MacOS X Virtual Machine. All experiments in this subsection were run

on a 2.4 GHz Intel Core i5 computer, with 4 GB memory.

To obtain the PTs for CTS, we use the same heuristic as CMOVE and VELS to

generate an elimination order. We then transform this elimination order into a PT for

which m ≤ w log n holds (whose existence is guaranteed by Theorem 15), using the

procedure suggested by Bayardo and Miranker .

We employ the same generation procedure for random graphs as in Section 4.3.2.

Because connections between agents in these graphs are generated randomly, the in-

duced width varies between different problems. On average, the induced width in-

creases with the number of local payoff functions, even when the ratio between local

payoff factors and the number of agents remains constant.

In order to test the sizes of problems that the different MO-CoG solution methods

can handle within limited memory, we generate very challenging random graphs with

a varying number of agents n, three objectives, and ρ = 2.0n local payoff functions.

We limited the maximal available memory to 10MB.

Figure 4.8 (left) shows that within 10 MB, PMOVE and CMOVE can solve MO-

CoGs of respectively 20 and 30 agents. Because the local coverage sets while running

CMOVE are smaller than those while running PMOVE, CMOVE requires less memory

and therefore can tackle problems with higher numbers of agents. In this figure, we

show only basic CMOVE and not incremental CMOVE because the runtimes of basic

CMOVE are better, and incremental CMOVE was not able to solve larger problem

instances.
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Figure 4.9: An example of a 4 by 4 Mining Field instance. The additional mines m are

marked with a ‘+’.

Solving MO-CoGs with 35 agents or more, the induced width (shown in the right

of Figure 4.8) becomes to large, and a memory-efficient approach is required. CTS and

PTS are more memory efficient than CMOVE and PMOVE. However, as Figure 4.8

(middle) shows, the CCSs are much smaller than the PCSs. For example, at 35 agents,

the CCSs consist of only 102 payoff vectors on average, while the PCSs consist of 1602
payoff vectors on average. Therefore, while PTS runs out of memory at 40 agents, CTS

can solve problems with larger numbers of agents. In fact, we were unable to generate

Random Graphs that made CTS run out of memory. We therefore conclude that CTS

can tackle larger problems than PTS.

When comparing runtimes, we observe that CTS requires more runtime; 3.0 times

more than CMOVE at 35 agents. However, CTS can handle more agents within the

memory constraints. We therefore conclude that while CMOVE is faster than CTS,

CTS offers a solution for MO-CoGs where CMOVE runs out of memory.

Mining Field

We compare the performance of basic and incremental CMOVE and CTS on a variation

of Mining Day that we call Mining Field. We use Mining Field in order to ensure an

interesting problem for the memory-restricted setting. In Mining Day (see Section

4.3.1), the induced width depends only on the parameter specifying the connectivity of

the villages and does not increase with the number of agents and factors. Therefore,

whether or not CMOVE is memory-efficient enough to handle a particular instance

depends primarily on this parameter and not on the number of agents.

In Mining Field, the villages are not situated along a mountain ridge but are placed

on an s × s grid. The number of agents is thus n = s2. We use random placement

of mines, while ensuring that the graph is connected. Because the induced width of

a connected grid is s and we generate grid-like graphs, larger instances have a higher

induced width. The induced width thus no longer depends only on the connectivity

parameter but also increases with the number of agents and factors in the graph.

An example Mining Field instance is provided in Figure 4.9 (left). We choose the
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distance between adjacent villages on the grid to be unit length. On this map, we then

place the mines (local payoff functions). We connect all agents using an arbitrary tree

using 2-agent local payoff functions (mines). In the figures, the mines that span this

tree are unmarked and connected to the mines with black edges. We require s2 − 1
factors to build the tree. Then we add m additional mines, by (independently) placing

them on a random point on the map inside the grid. When a mine is placed, we connect

it to the villages that are within a r = 1√
2
+ η radius of that mine on the map. We

chose η = 0.2. Therefore, the maximum connectivity of a factor (mine) created in this

fashion is 4. In the figure, these mines are marked with a ‘+’. The rewards per mine

per worker, as well as the number of workers per village, are generated in the same

way as in Mining Day.

To compare the runtimes and memory requirements of basic and incremental CMOVE

and CTS on Mining Field, we tested them on a 7 × 7 instance (49 agents) with 3 ob-

jectives, and 10MB available memory. We increase the number of additional mines m
from 2 (50 factors in total) onwards, by steps of 2. Using this setup, it was not possible

to solve any of the problem instances using PMOVE and even PTS, which ran out of

memory for all problems.

Figure 4.9 (middle) shows that within 10 MB, basic CMOVE can solve MO-CoGs

of only 49 local payoff functions or less. Contrary to our Random Graph results how-

ever, incremental CMOVE can solve larger problem instances than basic CMOVE. An

explanation for this is, is that in the Mining Field experiment, the induced width (Fig-

ure 4.9 (right)) increases much more slowly than in the Random Graph experiment

of Figure 4.8. We thus expect that the part that for the Mining Field experiment, the

dominant factor in the memory requirements of CMOVE (Theorem 20) is the compu-

tation of the cross-sums of Equation 4.6, whilst in Random Graphs the dominant part

is the storage of the new VSFs. This also explains why after 55 local payoff functions,

both CTS — whose main memory requirement is the computation of the cross-sums

— and incremental CMOVE run out of memory. We therefore conclude that incre-

mental CMOVE is more memory-efficient than basic CMOVE, and that for problems

with a low induced width CTS and incremental CMOVE use a comparable amount of

memory.

Summarizing, we have shown that CMOVE and CTS offer different trade-offs be-

tween memory and runtime. Basic CMOVE is faster than Incremental CMOVE which

is in turn faster than CTS. However, Basic CMOVE also uses most memory. Incre-

mental CMOVE and CTS use less memory, and can therefore tackle larger problems.

CMOVE (both basic and incremental) scales poorly in the induced width in terms of

memory usage. CTS can solve MO-CoGs with a much higher induced width. How-

ever, both the memory requirements of CTS and of CMOVE depend on the size of the

cross-sums between local/intermediate CCSs. In the following Section, we propose

methods that scale much better in the size of these local/intermediate CCSs.
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4.4 OLS for MO-CoGs

In the previous section, we showed how to create CCS methods by taking an inner loop

approach and using a single-objective search schema such as VE or TS. Furthermore,

we have shown that when ample memory is available CMOVE is faster, and therefore

better, while if memory is limited, CTS can solve MO-CoGs that CMOVE cannot. In

this section, we create novel CCS methods using an outer loop rather than an inner loop

approach. Not only are outer loop methods easier to create than inner loop methods —

as the single-objective search algorithms themselves do not have to change — and can

take any single-objective CoG solver as a subroutine, but they also have better compu-

tational and space complexity bounds for small and medium numbers of objectives.

4.4.1 Variable Elimination Linear Support

Rather than dealing with the multiple objectives in the inner loop of the VE search

schema, as CMOVE does, we can also employ our outer loop approach, i.e., the opti-

mistic linear support we defined in Section 3.3, and employ VE as a subroutine. We

refer to the resulting algorithm as variable elimination linear support (VELS).

Because VELS uses the OLS outer loop, VELS builds the CCS incrementally, i.e.,

with each iteration of its outer loop, it adds at most one new vector to a partial CCS.

To find this vector, VELS selects a single w (the one that offers the maximal possible

improvement), and passes that w to the inner loop. In the inner loop, VELS uses VE

(Section 4.1.1) to solve the single-objective coordination graph (CoG) that results from

scalarizing the MO-CoG using the w selected by the outer loop. The joint action, a,

that is optimal for this CoG and its payoff vector, u(a) are then added to the partial

CCS. Having dealt with the multiple objectives in the outer loop of OLS, VELS thus

relies on VE to exploit the graphical structure in the inner loop.

VELS is implemented as OLS(m, SolveSODP, ε) (Algorithm 5), where,

• m is a MO-CoG, and

• SolveSODP consists of two steps: first calling VE to retrieve the optimal action,

a for a scalarized instance of m, and then evaluating this action to retrieve the

corresponding payoff vector u(a).

The computational and space complexities can immediately be derived from combin-

ing the computational and space complexities of OLS (Theorems 4 and 6) with those

of VE (Theorems 11 and 12).

Corollary 6. The computational complexity of VELS

O( (|ε−CCS|+ |Wε−CCS|)(n|Amax|w + dρ+Rnw +Rheur) ),

where |Amax| is the maximal number of actions for a single agent and w is the induced

width, ρ is the number of factors, and Rnw and Rheur are the time it costs to run

newCornerWeights, and maxValueLP, as defined in Section 3.3.
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Proof. This follows directly from filling in the runtime of VE, n|Amax|w, for Rso, and

the look-up and summation of ρ local payoff vectors of length d for Rpe, in Theorem

4.

The overhead of OLS itself, i.e., computing new corner weights, Rnw, and calcu-

lating the maximal relative improvement, Rheur, is small compared to the VE calls.

Rnw + Rheur and dρ are thus negligible in practice. When comparing the runtime of

CMOVE and VELS, we observe that in the former, the runtime of VE is multiplied by

the runtime of the pruning operators (R1 and R2 in Theorem 19), while in the latter, the

runtime of VE is multiplied by (|ε−CCS|+ |Wε−CCS|). Considering that |Wε−CCS| is
linear in |ε−CCS| for d = 2 and d = 3, while CPrune is polynomial in the size of the

local CCSs, we thus expect VELS to be much faster for these numbers of objectives.

However, because |Wε−CCS| grows exponentially with the number of objectives (The-

orem 5) we expect CMOVE to be faster than VELS for larger number of objectives.

Corollary 7. The space complexity of VELS is

O(d|ε–CCS|+ d|Wε–CCS|+ n |Amax|w).

Proof. This follows directly from filling in the memory requirements of VE, n|Amax|w,

for Mso, in Theorem 4. The memory requirements for computing the payoff vector,

u(a), given a are negligible.

Because OLS adds few memory requirements to that of VE, VELS is almost as

memory efficient as VE and thus considerably more memory efficient than CMOVE

(Theorem 20).

4.4.2 Experiments: VELS versus CMOVE

We now empirically evaluate VELS in comparison to CMOVE. We no longer com-

pare against the non-graphical method and PMOVE as these are clearly dominated by

CMOVE. Where we refer to CMOVE in this section, we mean basic CMOVE, as this

was fastest for the tested scenarios. Like before, we use both random graphs and the

Mining Day benchmark. All experiments in this subsection were run on a 2.4 GHz

Intel Core i5 computer, with 4 GB memory.

Random Graphs

To test VELS on randomly generated MO-CoGs, we use the same MO-CoG generation

procedure as in Section 4.3.2. To determine how the scalability of exact and approxi-

mate VELS compares to that of CMOVE, we tested them on random MO-CoGs with

increasing numbers of agents. The average number of factors per agent was held at

ρ = 1.5n and the number of objectives at d = 2. Figure 4.10 shows the results, which

are averaged over 30 MO-CoGs for each number of agents. Note that the runtimes on

the left, on the y-axis, are in log-scale but the set sizes on the right are not.
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Figure 4.10: (left) The runtimes of CMOVE and VELS with different values of ε,

for varying numbers of agents, n, and ρ = 1.5n factors, 2 actions per agent, and 2

objectives and (right) the corresponding sizes of the ε-CCSs.

These results demonstrate that VELS is more efficient than CMOVE for two-

objective random MO-CoGs. The runtime of exact VELS (ε = 0) is on average 16

times less than that of CMOVE. CMOVE solves random MO-CoGs with 85 agents in

74s on average, whilst exact VELS can handle 110 agents in 71s.

While this is already a large gain, we can achieve an even lower growth rate by

permitting a small ε. For 110 agents, permitting a 0.001 error margin yields a gain of

more than an order of magnitude, reducing the runtime to 5.7s. Permitting a 0.01 error

reduces the runtime to only 1.3s. We can thus reduce the runtime of VELS by a factor

of 57, while retaining 99% accuracy. Compared to CMOVE at 85 agents, VELS with

ε = 0.01 is 109 times faster.

These speedups can be explained by the slower growth of the ε-CCS, as we see in

Figure 4.10 (right). For small numbers of agents, the size of the ε-CCS grows only

slightly more slowly than the size of the full CCS. However, from a certain number

of agents onwards, the size of the ε-CCS grows only marginally while the size of the

full CCS keeps on growing. For ε = 0.01, the average ε-CCS grew from 2.95 payoff

vectors to 5.45 payoff vectors between 5 and 20 agents, and then only marginally to

5.50 at 110 agents. By contrast, the full CCS grew from 3.00 to 9.90 vectors between

5 and 20 agents, but then keeps on growing to 44.50 at 110 agents. A similar picture

holds for the 0.001-CCS, which grows rapidly from 3.00 vectors at 5 to 14.75 vectors

at 50 agents, then grows slowly to 16.00 at 90 agents, and then stabilizes, to reach

16.30 vectors at 120 agents. Between 90 and 120 agents, the full CCS grows from

35.07 vectors to 45.40 vectors, making it almost 3 times as large as the 0.001-CCS and

9 times larger than the 0.01-CCS .

To test the scalability of VELS with respect to the number of objectives, we tested

it on random MO-CoGs with a constant number of agents and factors n = 25 and

ρ = 1.5n, but increased the number of objectives, for ε = 0 and ε = 0.1. We compare
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Figure 4.11: (left) the runtimes of CMOVE and VELS (ε = 0 and ε = 0.1), for varying

numbers of objectives (right) the size of the ε-CCS for varying numbers of objectives.

this to the scalability of CMOVE. We kept the number of agents (n = 25) and the

number of local payoff functions (ρ = 37) small in order to test the limits of scalability

in the number of objectives. The number of actions per agent was 2. Figure 4.11

(left) plots the number of objectives against the runtime (in log scale). Because the

CCS grows exponentially with the number of objectives, as can be seen in Figure 4.11

(right), the runtime of CMOVE is also exponential in the number of objectives. VELS

however is linear in the number of corner weights, which is exponential in the size

of the CCS, making VELS doubly exponential. Exact VELS (ε = 0) is faster than

CMOVE for d = 2 and d = 3, and for d = 4 approximate VELS with ε = 0.1 is

more than 20 times faster. However for d = 5 even approximate VELS with ε = 0.1 is

slower than CMOVE.

Unlike when the number of agents grows, the size of the ε-CCS (Figure 4.11

(right)) does not stabilize when the number of objectives grows, as can be seen in

the following table:

|ε–CCS| ε = 0 ε = 0.001 ε = 0.01 ε = 0.1

d = 2 10.6 7.3 5.6 3.0

d = 3 68.8 64.6 41.0 34.8

d = 4 295.1 286.1 242.6 221.7

We therefore conclude that VELS can compute a CCS faster than CMOVE for 3 ob-

jectives or less, but that CMOVE scales better in the number of objectives. VELS

however, scales better in the number of agents.10 We note that these conclusions are

conform expectations, because when we compare the runtimes of CMOVE and VELS

10Note that all the runtime figures in this subsection are in logscale.
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Figure 4.12: (left) plot of the runtimes of CMOVE and VELS with different values of

ε, for varying n (up to 500). (right) loglogplot of the runtime of VELS on 250, 500,

and 1000 agent mining day instances, for varying values of ε.

(Theorem 19 and Corollary 6), CMOVE is polynomial in the size of the (local) CCSs,

where VELS is merely linear in the size of the CCS and the number of corner weights

(which is in turn linear in the size of the CCS for d = 2 and d = 3).

Mining Day

We now compare CMOVE and VELS on the Mining Day benchmark using the same

generation procedure as in Section 4.3.2. We generated 30 Mining Day instances for

increasing n and averaged the runtimes (Figure 4.12 (left)). At 160 agents, CMOVE

has reached a runtime of 22s. Exact VELS (ε = 0) can compute the complete CCS

for a MO-CoG with 420 agents in the same time. This indicates that VELS greatly

outperforms CMOVE on this structured 2-objective MO-CoG. Moreover, when we

allow only 0.1% error (ε = 0.001), it takes only 1.1s to compute an ε-CCS for 420

agents, a speedup of over an order of magnitude.

To measure the additional speedups obtainable by further increasing ε, and to

test VELS on very large problems, we generated Mining Day instances with n ∈
{250, 500, 1000}. We averaged over 25 instances per value of ε. On these instances,

exact VELS runs in 4.2s for n = 250, 30s for n = 500 and 218s for n = 1000 on

average. As expected, increasing ε leads to greater speedups (Figure 4.12 (right)).

However, when ε is close to 0, i.e., the ε-CCS is close to the full CCS, the speedup

is small. After ε has increased beyond a certain value (dependent on n), the decline

becomes steady, shown as a line in the log-log plot. If ε increases by a factor 10, the

runtime decreases by about a factor 1.6.

Thus, these results show that VELS can compute an exact CCS for unprecedented

numbers of agents (1000) in well-structured problems. In addition, they show that

small values of ε enable large speedups, and that increasing ε leads to even bigger

improvements in scalability.
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4.4.3 AND/OR Tree Search Linear Support

VELS is considerably more memory efficient than CMOVE. However, CTS is more

memory efficient than either of them. In order to become even more memory efficient

than CTS — as well as faster for small numbers of objectives we define tree search

linear support (TSLS).

TSLS employs OLS with TS as the single-objective solver subroutine. TSLS is

equal to VELS but with VE replaced by TS. Because TSLS is an outer-loop method, it

runs TS in sequence, requiring only the memory used by TS itself and the overhead of

the outer loop, which consists only of the partial CCS (Definition 16) and the priority

queue. Consequently, TSLS is even more memory efficient than CTS, while being

faster for small and medium numbers of objectives.

Corollary 8. The computational complexity of TSLS is

O((|ε−CCS|+ |Wε−CCS|) (n |Amax|m +Rnw +Rheur)),

where m ≤ w log n and ε ≥ 0.

Proof. The proof is the same as that of Theorem 6 but with the time complexity of VE

replaced by that of TS (Theorem 14).

In terms of memory usage, the outer loop approach (OLS) has a large advantage

over the inner loop approach, because the overhead of the outer loop consists only

of the partial CCS (Definition 16) and the priority queue. VELS (Theorem 6) thus

has much better space complexity than CMOVE (Theorem 20). TSLS has the same

advantage over CTS as VELS over CMOVE. Therefore, TSLS has very low memory

usage, since it requires only the memory used by TS itself plus the overhead of the

outer loop.

Corollary 9. The space complexity of TSLS is O(d|ε-CCS|+ d|Wε-CCS|+n)), where

m ≤ w log n and ε ≥ 0.

Proof. The proof is the same as that of Corollary 7 but with the space complexity of

VE replaced by that of TS (Theorem 13).

As mentioned in Section 4.1.2, TS is the most memory-efficient member of the

class of AND/OR tree search algorithms. Other members of this class offer different

trade-offs between time and space complexity. It is possible to create inner loop algo-

rithms and corresponding outer loop algorithms on the basis of these other algorithms.

The time and space complexity analyses of these algorithms can be performed in a

similar manner to Corollaries 4 and 5 (CTS), and 8 and 9 (TSLS). The advantages of

the outer loop methods compared to their corresponding inner loop methods however

remain the same as for TSLS and CTS. Therefore, in this dissertation we focus on com-

paring the most memory-efficient inner loop method against the most memory-efficient

outer loop method.
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4.4.4 Experiments: TSLS versus VELS and CTS

In this section, we compare TSLS to CTS, and VELS and CMOVE11. In order to test

the memory-efficiency, we limit the memory the algorithms is allowed to use, using

the -Xmx runtime option for the JAVA Virtual Machine. All experiments use our JAVA

implementation (version 1.6 (SE)), and the corresponding MacOS X Virtual Machine.

As before, we use both random graphs and the Mining Field benchmark.

To obtain the PTs for CTS and TSLS, we again use the same heuristic as CMOVE

and VELS to generate an elimination order and then transform it into a PT for which

m ≤ w log n holds, using the procedure suggested by Bayardo and Miranker .

Random Graphs

First, we test our algorithms on random graphs, employing the same generation pro-

cedure as in Section 4.3.2. Because connections between agents in these graphs are

generated randomly, the induced width varies between different problems. On aver-

age, the induced width increases with the number of local payoff functions, even when

the ratio between local payoff factors and the number of agents remains constant.

In order to test the sizes of problems that the different MO-CoG solution methods

can handle within limited memory, we generate random graphs with two objectives, a

varying number of agents n, and with ρ = 1.5n local payoff functions, as in previous

sections. We limited the maximal available memory to 1kB and imposed a timeout of

1800s.

Figure 4.13a shows that VELS can scale to more agents within the given memory

constraints than the other non-memory efficient methods. In particular, PMOVE and

CMOVE can handle only 30 and 40 agents, respectively, because, for a given induced

width w, they must store O(|Amax|w) local CSs. At 30 agents, the induced width

(Figure 4.13c) is at most 6, while at 40 agents the induced width is at most 8. VELS

can handle 65 agents, with an induced width of at most 11, because most of its memory

demands come from running VE in the inner loop, while the outer loop adds little

overhead. VE need only store one payoff in each new local payoff function that results

from an agent elimination, whereas PMOVE and CMOVE must store local coverage

sets. Thus, using an outer loop approach (VELS) instead of the inner loop approach

(CMOVE) already yields a significant improvement in the problem sizes that can be

tackled with limited memory.

However, scaling beyond 65 agents requires a memory-efficient approach. Figure

4.13a also shows that, while CTS and TSLS require more runtime, they can handle

more agents within the memory constraints. In fact, we were unable to generate a MO-

CoG with enough agents to cause these methods to run out of memory. TSLS is faster

than CTS, in this case 4.2 times faster, for the same reasons that VELS is faster than

CMOVE.

11As in Section 4.4.2, where we write CMOVE, we mean basic CMOVE.
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Figure 4.13: (a) Runtimes in ms of TSLS, VELS, CTS, CMOVE and PMOVE on

random 2-objective MO-CoGs with varying numbers of agents n and ρ = 1.5n local

payoff factors. (b) Runtimes of approximate TSLS for varying amounts of allowed

error ε, compared to (Exact) VELS, for the same problem parameters as in (a). (c) The

corresponding induced widths of the MO-CoGs in (b).

However, speed is not the only advantage of the outer loop approach. When we

allow a bit of error in scalarized value, ε, we can trade accuracy for runtime (Figure

4.13b). At 65 agents, exact TSLS (ε = 0), had an average runtime of 106s, which is

51 times slower than VELS. However, for ε = 0.0001, the runtime was only 70s (33
times slower). For ε = 0.01 it is 11s (5.4 times slower), and for ε = 0.1 it is only

6s (2.9 times slower). Furthermore, the relative increase in runtime as the number of

agents increases is less for higher ε. Thus, an approximate version of TSLS is a highly

attractive method for cases in which both memory and runtime are limited.

Mining Field

We compare the performance of VELS against TSLS on Mining Field (as defined in

Section 4.3.4). We no longer consider CTS and CMOVE because these inner loop

methods have consistently higher runtime than their corresponding outer loop methods,

and worse space complexity. We use Mining Field (as described in Section 4.3.4) in

order to ensure an interesting problem for the memory-restricted setting.

To compare the runtimes and memory requirements, VELS, and TSLS on Mining

Field, we tested them on a 7×7 instance (49 agents), with 1MB available memory. For

TSLS, we use three different values of ε: 0 (exact), 0.01 and 0.1. We use a time limit

of 1.8× 106s (30 minutes). We increase the number of additional mines m from 2 (50

factors in total) onwards, by steps of 2.

Figure 4.14 shows the comparison between VELS and TSLS. VELS runs out of

memory only at 16 additional factors, at an induced width of 6. Compared to the

random-graph results in Section 4.4.4, the induced widths of the problems that VELS

can handle are lower in Mining Field. We suspect that this is because, on a grid-shaped

problem, the number of factors with the highest induced width that need to exist in

parallel during the execution of the algorithms is higher.



92 Chapter 4. Coordination

50 54 58 62

number of factors

ru
n

ti
m

e
 (

m
s
)

1
e
+
0
1

1
e
+
0
3

1
e
+
0
5

VELS ε = 0

TSLS ε = 0

TSLS ε = 0.01

TSLS ε = 0.1

50 54 58 62

2
3

4
5

6

number of factors

in
d

u
c
e

d
 w

id
th

Figure 4.14: (left) Runtimes in ms of TSLS (for varying amounts of allowed error ε),

VELS (ε = 0), and CMOVE on 2-objective Mining Field instances with varying num-

bers of additional mines m ∈ [2..14] and a grid size of s = 7. (right) The corresponding

induced widths of the Mining Field instances.

TSLS does not run out of memory on any of the tested instances. In face, we were

unable to generate instances for which TSLS does run out of memory. However, it

does run out of time. For ε = 0, TSLS first exceeds the time limit at m = 10 additional

mines. For ε = 0.01, this happens at m = 14. For ε = 0.1, TSLS ran out of time

at m = 16. The differences in runtime between TSLS and VELS are larger than for

random graphs and therefore it is more difficult to compensate for the slower runtime

of TSLS by choosing a higher ε. How much slower TSLS is compared to VELS thus

seems to depend on the structure of the MO-CoG.

These Mining Field results confirm the conclusion of the random-graph experi-

ments that TSLS can be used to solve problem sizes beyond those that VELS can han-

dle within limited memory. An approximate version of TSLS is an appealing choice

for cases in which both memory and runtime are limited.

4.4.5 Variational Optimistic Linear Support

VELS and TSLS are both exact outer loop methods, that offer different trade-offs with

respect to speed and memory usage. Furthermore, it is also possible to sacrifice accu-

racy for runtime by allowing some slack ε to limit the number of calls to VE or TS.

However, because VE and TS are exact single-objective solvers, this does not change

the fact that VELS and TSLS have an exponential runtime in the induced width. To

address this, we can instead also use an approximate single-objective solver as a sub-

routine.

In this subsection we propose using variational CoG solvers, as described in Section

4.1.3, as a basis for finding the CCS in a MO-CoG. As previously described, variational

methods rely on restructuring and reparameterization rather than local summation and

maximization (like VE and TS). Therefore, it is not obvious how to apply an inner loop



4.4. OLS for MO-CoGs 93

approach. However, as an outer loop approach does not affect the inner workings of the

single-objective solvers, it is possible to use variational methods inside OLS. This is an

important advantage for OLS, as variational methods are amongst the state-of-the-art

solvers for CoGs.

Variational solvers for CoGs are bounded approximate algorithms. Therefore, we

must use the OLS schema that allows for approximate subroutines, as described in Sec-

tion 3.5. Using Algorithm 7, with a bounded-approximate variational method yields

a new algorithm we call variational optimistic linear support (VOLS). VOLS has two

important advantages over VELS and TSLS. Firstly, because variational methods scale

much better than VE and TS, VOLS achieves unprecedented scalability. In addition,

since the variational method we use, which is called weighted mini-buckets (WMB) (Liu

and Ihler, 2011), computes bounded approximations, VOLS does so too. Secondly, we

leverage the key insight that VOLS can hot-start each call to WMB by reusing the repa-

rameterizations output by WMB on earlier calls, as described in an abstract manner in

Section 3.6.

In the rest of this subsection we describe how to implement reuse in OLS using

variational methods in the VOLS algorithm. Specifically, we show how to use the

reparameterizations output by a variational method as well as the lower bound for

reuse in the next call to the variational solver. In Section 4.4.6 we compare VOLS

empirically to CMOVE and VELS, and show that it scales much better than these

methods at very little cost to the quality of the found solutions.

VOLS uses a variational subroutine as its instantiation of approxSolveSODP, to

solve scalarized instances of the MO-CoG. This subroutine takes a scalarized MO-

CoG as input. As output, the subroutine produces a lower-bound joint action al, which

we use to construct the approximate CCS. It also produces an upper bound ū on the

optimal value, which we use to bound the quality of the final approximate CCS, and

to prioritize instances in the series of single-objective problems to solve. Furthermore,

the variational method manipulates the set of scalarized local payoff functions Uw to

output a reparameterization, i.e., a set of manipulated local payoff functions U ′
w

for

which all joint actions have the same (scalar) payoff:

∀a
∑

ue∈Uw

ue(ae) =
∑

ug∈U ′

w

ug(ag). (4.8)

We can re-use the reparameterization, i.e., U ′
w

, to hot-start the reparameterization

of a new scalarized instance for a new weight vector z. Specifically, if we define the

difference graph between two scalarization weights w and z as

Uw→z = {ue
w→z

(ae) = (z−w) · ue(ae) : u
e(ae) ∈ U},

then adding this difference graph to the reparameterization U ′
w

yields a valid reparam-

eterization for z:

Ûz = U ′
w
∪ Uw→z.
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When w is close to z, the magnitude of the local payoff functions in Uw→z is small,

and Ûz is close to U ′
w

. Intuitively, Ûz is therefore likely to be closer to the eventual

reparameterization U ′
z

that the variational subroutine will produce for Uz, than Uz itself

would be, and fewer iterations of the variational method will be required to further

tighten the bounds and find U ′
z
. Using the difference graph Uw→z in order to hot-

start the next call to a variational subroutine in OLS works for any variational single-

objective CoG solver.

Using the definition of the difference graph, we can define variational optimistic

linear support (VOLS) formally. VOLS — defined in Algorithm 12 — takes a MO-

CoG 〈D,A,U〉 and any variational single-objective coordination graph subroutine as

input. In this section we refer to the variational subroutine as variationalSOSolver.

Following the OLS framework, VOLS keeps a set S , that becomes an approximate

CCS (line 1), a set of upper bounds on the optimal values that VOLS finds for scalar-

ized instances (for individual w), Uold (line 2), and starts looking for solutions, i.e.,

approximately optimal joint actions and payoffs, for the extrema of the weight simplex

(line 3–4).

In order to enable the reuse of reparameterizations and lower bounds found by the

variational subroutine, VOLS keeps a set R (line 5) with tuples of weights w, and

reparameterizations and joint actions that implement the lower bounds produced at

those w by variationalSOSolver in iterations of the main loop.

In the main loop (lines 6–17), VOLS iteratively pops a corner weight w off the

priority queue Q and solves the corresponding scalarized MO-CoG, Uw, as in standard

OLS. However, instead of just calling the single-objective solver for Uw directly, VOLS

first looks for the reparameterization U ′
v

found in earlier iterations (on line 8), for the

weight closest to w. Because, the value for all joint actions remains the same when

after reparameterizing Uv to U ′
v

(Equation 4.8), adding the difference graph, Uv→w

results in a graph, Ûw = U ′
v ∪ Uv→w, for which

∀a
∑

ue∈Uw

ue(ae) =
∑

uh∈Ûw

uh(ah).

In other words, reusing the reparameterization for v on the scalarized graph for w

does not affect the scalarized payoff, uw(a), for any a, and Ûw is thus a valid repa-

rameterization Uw. The aim of applying this reparameterization is for Ûw to be closer

to the eventual output graph U ′
w of the variational solver. Our key insight is that by

doing so, the runtime of the variational single-objective solver can be drastically re-

duced if the reparameterization U ′
v was found at a weight v close to w. We verify this

experimentally in Section 4.4.6.

Besides the reparameterization U ′
v ∪ Uv→w, variationalSolver is also provided

with the joint action av that achieves the lower bound of the previous weight v. This

joint action can be reused as an initial guess for the joint action at w. If at any time dur-

ing the execution of variationalSolver for U ′
v∪Uv→w, the upper bound is achieved

by av, the variational solver can stop. Such lower bound reuse is thus highly effec-

tive when the variational single-objective solver can produce optimal solutions for the
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Algorithm 12: VOLS(〈D,A,U〉 , variationalSOSolver)
Input: A MO-CoG

1 S ← ∅; // approximate CCS of multi-objective payoff vectors u(a)
2 Uold ← ∅; // set of previous w and ūw, for determining optimistic estimates for new

corner weights

3 Q← an empty priority queue ; // a priority queue with corner weights to search

4 Add extrema of the weight simplex to Q with infinite priority;

5 R← ∅ ; // set of reparameterizations, joint actions, and associated weights

6 while ¬Q.isEmpty() ∧ ¬timeOut do

7 w← Q.dequeue(); // retrieve a weight vector

8 U ′
v,av← select previous reparameterization and joint action found for the closest

weight v to w fromR;

9 U ′
w, al, ūw ← variationalSOSolver(U ′

v ∪ Uv→w) ; // a variational single

objective solver.

10 R ← R∪ {(w,U ′
w,al)} ; // store the reparameterization of the scalarized graph for

reuse

11 Uold ← Uold ∪ {(w, ūw)}; // store upper bound for w, for determining the next

max. possible improv.

12 if u(al) 6∈ S then

13 S ← S ∪ {u(al)} ; // add lower bound payoff and associated action, u(al), to

the approximate CCS

14 W ← compute new corner weights and max. possible improvements (w,∆w)
using Uold and S;

15 Q.addAll(W );

16 end

17 end

18 return S;

scalarized problem as it can circumvent the decoding phase of variational algorithms,

which is often very computationally intensive.

The single-objective variational solver (called on line 9) produces three outputs:

the new reparameterized graph U ′
w

, an upper bound on the optimal scalarized payoff,

ūw, and the approximately optimal joint action al. Note that al implies a lower bound

on the optimal payoff in w, i.e., w · u(al). All of these are stored (lines 10 and 11).

If u(al) is not already in S , then it is added to it and new corner weights are identi-

fied. VOLS calculates the maximum possible improvement for the new corner weights

by solving a linear program (line 14) based on the corner weights for which the vari-

ational subroutine has been called, and the upper bounds found at those weights, as

described in Section 3.6. Finally — as is standard in OLS — the new corner weights

are added to the priority queue Q (line 15), with the maximal possible improvements

as priority. Because the maximum possible improvement to the scalarized payoff is

guaranteed to be at one of the corner weights of S even when the single-objective

subroutine is approximate (Theorem 7), VOLS terminates when Q is empty.
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Upon termination, we can use Uold to determine the approximation quality ε, of the

approximate CCS, S using the following corollary of Corollary 2:

Corollary 10. VOLS returns S , an ε-CCS, where

ε = max
(w,ūw)∈Uold

(

ūw − u∗
S(w)

)

.

Variational solvers for single-objective CoGs typically have no runtime guaran-

tees, but are anytime and provide bounded approximations. Because OLS inherits the

runtime guarantees of the single-objective solvers it employs, VOLS has no runtime

guarantees either. In our implementation we stop the single-objective solver after a

limited number of iterations. However, when the lower bound becomes equal to the

upper bound during an iteration of the variational single-objective solver, it can termi-

nate before this maximum is reached.

Because VOLS employs reuse of the reparameterizations, the memory require-

ments are are proportional to the number of weights for which a reparameterization

is stored. This storage happens on line 10, in the main loop of OLS. This hap-

pens for every weight for which the variational single-objective CoG is called, i.e.,

(|ε−CCS|+ |Wε−CCS|) times. The reparameterizations we use in our implementation

are of (roughly) the same size as the original graphs. However, different variational

solvers can have different reparameterization sizes.

When the memory burden of reuse becomes too big there are two possible ways

to get around it: either not to do reuse, and use the variational method inside standard

OLS (Algorithm 5), or to store the reparameterizations on disk rather than in memory.

To summarize, VOLS is a bounded approximate method that employs variational

CoG solvers inside OLS with reuse (Algorithm 8). These variational CoG solvers

have been proven to be very effective, but have no optimality or runtime guarantees.

They are however anytime, and can be stopped after a number of iterations. Because

VOLS does not have runtime guarantees, we have to test its effectivity empirically.

Furthermore, though reuse can easily be motivated intuitively — as we have done in

this subsection — it does not come with any guarantees that it is in fact faster to do so.

The effectiveness of reuse must therefore be evaluated empirically as well.

4.4.6 Experiments: VOLS versus VELS

In this subsection, we compare the performance of VOLS that of VELS, as well as a

version of VOLS without reuse. We no longer compare against CTS, CMOVE, and

TSLS, as these methods are slower than VELS. All experiments in this subsection use

our JAVA implementation (version 1.6 (SE)). This work was carried out on the Dutch

national e-infrastructure with the support of SURF Cooperative, on a virtual machine

on the HPC Cloud service, with an 2.7 GHz Intel processor. We use random graphs as

well as the Mining Day benchmark.
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Figure 4.15: (left) The runtime (in logscale) of VOLS versus the runtime (in logscale)

of VELS as a function of the number of agents n with ρ = 1.8n and d = 3. The error

bars represent SDOM. (middle) The quality (ε) of the approximate CCSs produced by

VOLS with and without reuse for the same MO-CoGs. (right) The ratio of the runtimes

and ε of VOLS with and without reuse for the same MO-CoGs.

Random Graphs

In this section, we compare the performance of VELS and VOLS on randomly gen-

erated MO-CoGs. For the single-objective subroutine, we use weighted mini-buckets

(WMB) (Ihler et al., 2012; Liu and Ihler, 2011), with an i-bound of i = 1. i = 1
is the highest degree of approximation.12 We limit the maximal number of iterations

of the single-objective subroutine at 100. The MO-CoGs are generated following the

procedure explained in Subsection 4.3.2.

We compare VELS and VOLS on random 3-objective MO-CoGs with increasing

numbers of agents n with ρ = 1.8n factors per agent. We use more objectives and a

higher ρ than we used in the previous (sub)sections, in order to create more challenging

problems, i.e., problems with a more rapidly increasing induced width and with larger

CCSs. We generated 25 MO-CoGs for each number of agents and ran both algorithms

on the same instances.

Figure 4.15 (left) shows that exact VELS (ε = 0) is faster than VOLS for the ran-

dom graphs with up to 55 agents. However, the runtime of VELS (for any ε) increases

exponentially with the induced width, whilst that of VOLS does not. At 70 agents,

VOLS is more than an order of magnitude faster than exact VELS, and at 150 agents

VOLS is still faster than exact VELS is at 70 agents.

Of course, VOLS only produces an ε-CCS, whereas exact VELS produces an exact

one. However, when we measure ε using Corollary 10, we find that it is consistently

1.1% of the value or less. Note that this ε needs to be determined after VOLS finishes,

as VOLS does not guarantee it can reach a given ε, but instead is just limited at a

maximum number of iterations of its single-objective subroutine. When we introduce

comparable ε into VELS, by allowing a slack of ε of 1% (i.e., ε = 0.01), we see

that VELS remains faster than VOLS up until 75 agents. However, the runtime of

12The code was provided to us by dr. Alexander Ihler.



98 Chapter 4. Coordination

1e-08 1e-06 1e-04 1e-02 1e+00

1
e
-0
3

1
e
-0
1

1
e
+
0
1

Δ w

ru
n

ti
m

e
 r

a
ti
o

Figure 4.16: The runtime of the variational subroutine for different weights with reuse,

divided by the runtime without reuse in logscale, as a function of the difference with

the closest weight ∆w, for a MO-CoG with n = 125 with ρ = 1.8 and d = 3.

VELS still increases exponentially with the induced width. Furthermore, VELS uses

exponential memory, while VOLS does not. In Figure 4.15 (left), we see that VELS

with ε = 0.01 can solve problems up until 85 agents, but then runs out of memory. This

is a significant memory limitation, as we used a virtual machine with 4GB memory (the

default setting for JAVA). In comparison, VOLS uses very little memory —comparable

to the size of the input graph — and does not run out of memory. Therefore, we

conclude that VOLS scales much better than VELS, even when VELS is allowed a

comparable ε to the ε-bounds that VOLS guarantees in practice.

When we zoom in on the ε-bound that VOLS guarantees for MO-CoGs with rising

numbers of agents in Figure 4.15 (middle), ε appears to decrease as a function of

the size of the problem. At 150 agents, VOLS (with reuse) produced an ε-CCS with

a ε of only 0.27% of the scalarized payoff. We thus conclude that VOLS’ improved

scalability in practice comes at only a negligible cost in terms of payoff, even for larger

graphs.

To test the effect of reuse on runtime, we compare the runtime of VOLS with

and without reuse. We ran both versions on the same 25 instances for each number

of agents. Figure 4.15 (left) shows that VOLS with reuse requires consistently less

runtime across all numbers of agents. Across all numbers of agents, VOLS with reuse

is a factor 1.22 faster. Furthermore, Figure 4.15 (middle) shows that VOLS with reuse

produces ε-CCSs with a consistently smaller ε. Figure 4.15 (right), shows the ratio

of the runtimes of VOLS with, and without reuse (the runtime with reuse divided by

the runtime without reuse), and the ratio of the ε produced by VOLS with and without

reuse. While the runtime ratio gradually increases, meaning less benefit from reuse, the

ε ratio gradually decreases, meaning better accuracy. Furthermore, VOLS with reuse

has lower runtime and ε overall. Therefore, we conclude that for random graphs, reuse

contributes positively to VOLS’ performance.
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Figure 4.17: Plot of the runtimes of VOLS (with and without reuse) and VELS (ε = 0)

with different values of ε, for varying n.

In order to test our hypothesis that reuse is more effective when the reparameteriza-

tion reused for a weight w was found at a weight z closer to w, we tested the effect of

reuse on the runtime of the single-objective subroutine inside VOLS. For this purpose,

we used a single MO-CoG with d = 3, n = 125 and ρ = 1.8n. For each weight w

in the sequence, we executed the variational subroutine with and without reuse. The

average total runtime with reuse was 0.10s while it was 0.16s without reuse. Fig-

ure 4.16 shows the ratio between the runtime with and without reuse as a function of

∆w = |z −w|, i.e., the Euclidean distance between the current weight on the weight

on which the reused reparameterization is based. This figure shows that the runtime

is positively correlated with ∆w. However, there are also a lot of weights for which

reuse has little or no effect, and even outliers for which reuse has a negative effect on

the runtime. These outliers contribute disproportionally to the average runtime: al-

though they make up only 5% the weights, they are responsible for 48% of the total

runtime of VOLS with reuse. For comparison, the first 5% of the calls, i.e., those with

the 5% largest ∆w, account for only 9% of the runtime. We therefore conclude that

our hypothesis seems correct on average, but that a small ∆w is not a guarantee for a

low runtime.

Mining Day

In order to compare VOLS and VELS on a highly structured problem, with limited

induced width, we use the Mining Day benchmark. We use the same generation proce-

dure as in Section 4.3.2, with 2-5 workers per village and a connectivity of 2-4 mines

per village. We generated 25 Mining Day instances for increasing n and averaged the

runtimes.

Because the induced width of this problem is limited by the maximum number

of mines per village, the induced width does not increase with the number of agent.
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Furthermore, because we use a maximum connectivity of 4, the induced width is also

low.

In Figure 4.17, we see that exact VELS (ε = 0) outperforms VOLS — both with

and without reuse. At 220 — at which point we stopped running VOLS — VOLS was

147 (with reuse) respectively 42 (without reuse) times slower than VELS. We therefore

conclude that in problems with a low induced width, VOLS does not scale better than

VELS in the number of agents.

When we inspect how VOLS with reuse compared to VOLS without reuse, we see

that VOLS without reuse seems to perform better in terms of runtime than VOLS with

reuse. However, the ε of VOLS with reuse is better than without reuse: the maximal

ε for VOLS with reuse was 1.5 × 10−6 and has an average of 1.5 × 10−9, against a

maximum of 1.0×10−3 and an average of 8.7×10−6 for VOLS. We therefore conclude

that for Mining Day, reuse makes VOLS slower rather than faster, although it slightly

improves the ε.

4.5 Conclusion

In this chapter, we proposed several novel algorithms for computing a CCS for MO-

CoGs. These new methods either follow an inner loop approach (CMOVE and CTS),

or an outer loop approach based on OLS (VELS, TSLS, and VOLS).

When we compare our inner loop methods to corresponding inner loop methods

that compute the PCS, we find that our CCS methods scale much better in the size

of the MO-CoG as well as in the number of objectives. Therefore, we conclude that

computing a CCS should be preferred over computing a PCS whenever possible. As

we have argued in Chapter 2, the CCS applies to both the case when the scalarization

function is linear and to the case when stochastic policies are allowed.

When we compare inner loop methods to corresponding OLS-based methods, i.e.,

methods that use the same single-objective search schema as a basis, we find that inner

loop methods scale better in the number of objectives, while OLS-based methods scale

better in the number of agents. We argue that the latter is usually more important in

practice.

When compared our exact methods, i.e., CMOVE, CTS, VELS and TSLS. CMOVE

and VELS are fastest. For 2 and 3 objectives, VELS is faster than CMOVE. VELS also

scales better in the number of agents. However, CMOVE scales better in the number of

objectives. Both CMOVE and VELS use an exponential (in the induced width) amount

of runtime, while CTS and TSLS use an amount of memory independent of the induced

width. Between CTS and TSLS, TSLS is most memory efficient.

When exact CCSs are not required, VELS and TSLS (but not CMOVE and CTS)

can produce ε-CCSs for any pre-specified ε. Doing so can result in a decrease in

runtime of orders of magnitude, even for small ε.

When it is not necessary to pre-specify a given ε, VOLS outperforms the other

methods in terms of runtime and memory use. As we have seen from our random
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graph experiments, VELS and TSLS use an amount of runtime and memory that is

exponential in the induced width, while VOLS does not. However, when the induced

width is limited (as in Mining Day) VELS is typically faster than VOLS, even when

VELS solves the MO-CoG exactly (ε = 0).

To summarize, we have proposed five different CCS algorithms for MO-CoGs.

These methods are typically much faster than corresponding PCS methods. Compared

to each other, our methods provide different trade-offs between runtime, memory, and

output quality (ε).





Chapter 5

Sequential Decision-Making

In the previous chapter, we have considered problems in which a single (joint) action

is performed in order to obtain a reward. However, many decision problems consist

of a sequence of decisions. This sequence of decisions typically takes place in an

environment that is affected by these decisions. Therefore, the agents do not only have

to consider their immediate reward, but also the reward they will be able obtain later,

by changing the state of the environment to a more favorable one.

In this dissertation, we consider two multi-objective sequential single-agent deci-

sion-theoretic models. The first model is fully observable and extends the single-

objective Markov decision process (MDP) (Bellman, 1957b; Puterman, 1994; Sutton

and Barto, 1998; Wiering and Van Otterlo, 2012). The second is partially observ-

able and extends the partially observable Markov decision process (POMDP) (Cas-

sandra, 1998; Kaelbling et al., 1998; Spaan, 2012). The single-objective version of

these models are widely used and applied in areas such as: communication networks

(Altman, 2002), planning and scheduling (Scharpff et al., 2013), games (Szita, 2012)

and robotics (Kober and Peters, 2012). The multi-objective models have been gain-

ing traction relatively recently. There is a significant body of work on multi-objective

Markov decision problems (MOMDPs) (Roijers et al., 2013a), and recently, there have

been several papers on multi-objective partially observable Markov decision problems

(MOPOMDPs) (Soh and Demiris, 2011a,b; Roijers et al., 2015c; Wray and Zilberstein,

2015).

In this chapter we propose new methods for MOMDPs and MOPOMDPs based on

OLS. We focus on challenging instances of these models, and show that state-of-the-

art methods for single-objective planning can be effectively employed as subroutines

in OLS in order to create multi-objective methods, with relatively little effort. This is a

major advantage, for it implies that if the state-of-the-art for single-objective methods

improves, then — via OLS — so does the state-of-the-art in multi-objective methods.

For MOMDPs, we focus on finite-horizon problems with a very large state-space.

Specifically, we employ the multi-objective version of the maintenance planning prob-

lem (MPP) (Scharpff et al., 2013; Roijers et al., 2014a; Scharpff et al., 2015, 2016)

103
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as an illustrative example problem. The main challenge in both the single- and multi-

objective MPP is the size of the state and action spaces. For this problem, a highly

problem-specific solution method exists which makes use of a SPUDD (Hoey et al.,

1999) encoding. An inner loop method that uses such a problem-specific encoding

(and SPUDD itself) as a base for a multi-objective method, takes a lot of time to cre-

ate. Furthermore, the construction of the inner loop method has to be redone for every

different problem that requires such a problem-specific solution method or when a

state-of-the-art method for the single-objective version of a problem is invented. In

Section 5.2, we show that we can create effective multi-objective methods based on

OLS that do not have these disadvantages. We illustrate this by exchanging SPUDD

and its encoding by the CoRe algorithm which we proposed recently (Scharpff et al.,

2016). Furthermore, we show that by using an approximate solver, i.e., UCT∗ instead

of an exact solver, ε-CCSs can be found in a fraction of the runtime it takes to compute

an exact CCS.

For POMDPs, we focus on infinite-horizon problems. Creating planning meth-

ods for single-objective POMDPs is an active field of research (Kurniawati et al.,

2008; Pineau et al., 2006; Poupart et al., 2011), and as such, is regarded a hard and

open problem. Therefore, extending the POMDP model to the multi-objective set-

ting, i.e., multi-objective POMDPs (MOPOMDPs), results in a very computationally

challenging problem. Maybe this is one of the reasons why only a few papers about

MOPOMDPs exist. In Section 5.3, we propose the first planning method for multi-

objective POMDPs that computes a CCS and scales reasonably well. In order to do

so, we use point-based planning methods (Shani et al., 2013), and specifically Perseus

(Spaan and Vlassis, 2011), as a single-objective subroutine. We show that it is highly

beneficial to employ reuse (Section 3.6) of the value functions found in previous OLS

iterations. In order to enable this reuse — and to avoid separate policy evaluations,

which can be expensive in POMDPs — we show how to create OLS-compliant ver-

sions of point-based planning methods, that use a multi-objective representation of the

value function.

The rest of this chapter is structured as follows. We introduce MDPs, MOMDPs,

POMDPs and MOPOMDPs in Section 5.1. In Section 5.2, we show how we can create

efficient methods for large MOMDPs, using the MPP as an illustrating problem. In

Section 5.3 we propose OLS with Alpha Reuse (OLSAR), which is our main contribu-

tion for MOPOMDPs. We conclude in Section 5.4, with a summary of our results.

5.1 Background

In this section we provide the requisite background on the MOMDP and MOPOMDP

models. However, we first describe their single-objective counterparts.
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5.1.1 Markov decision processes

First, we describe the fully observable setting.

Definition 32. A (single-objective) Markov decision process (MDP) (Wiering and

Van Otterlo, 2012) is a tuple 〈S,A, T, R〉 where,

• S is the state space, i.e., the set of possible states the environment can be in,

• A is the action space, i.e., the set of actions the agent can take,

• T : S×A×S → [0, 1] is the transition function, giving the probability of a next

state given an action and a current state,

• R : S × A × S → R is the reward function, specifying the expected immediate

expected scalar reward corresponding to a transition.

At each timestep t the agent observes the current state of the environment s ∈ S .

When the agent takes an action a ∈ A the environment transitions to a new state s′.
The state in an MDP is Markovian, i.e., the current state s of the environment

and the current action of the agent a are a sufficient statistic for predicting the next

transition probabilities T (s′|s, a) and the associated expected immediate reward. The

agent’s history, i.e., the states and actions that led to the current state, do not provide

additional information in that respect.

The agent’s goal in an MDP is to find a policy that maximizes the expected sum of

future rewards. Informally, a policy is a set of decision rules that for each point in time

and state of the MDP, prescribes how to choose an action to perform. The expected

sum of future rewards given a policy, π, is called the value of π, V π. In a finite-horizon

setting there is a limited number of timesteps, h, and the sum is typically undiscounted:

V π = E[
h

∑

t=0

R(st, at, st+1)|π, µ0],

where µ0 is the distribution over initial states s0. In a discounted infinite-horizon set-

ting, the number of timesteps is not limited, but there is a discount factor, 0 ≤ γ ≤ 1,

that specifies the relative importance of future rewards with respect to immediate re-

wards:

V π = E[
∞
∑

t=0

γtR(st, at, st+1)|π, µ0].

There are different choices for what to condition a policy on. We refer to the set of

all possible policies for an MDP as Π. A stationary policy is one that conditions the

actions only on the current state, S×A → [0, 1], i.e., for each state there is a probability

distribution over actions. We refer to the set of all possible stationary policies as ΠS .
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Non-stationary policies can besides the state also condition on the timestep t.1 Another

special type of policy is a deterministic policy. A deterministic policy only assigns 0

or 1 probabilities to actions for each value of what it conditions on. A deterministic

stationary policy thus specifies a single action in each state S → A. We refer to the set

of all possible deterministic policies as ΠD, and the set of all deterministic stationary

policies as ΠDS .

For infinite horizon MDPs we can restrict the search to deterministic stationary

policies in order to find an optimal policy. For finite horizon MDPs we can restrict

restrict the search to deterministic non-stationary policies.

Theorem 21. (Boutilier et al., 1999; Howard, 1960) For any infinite-horizon single-

objective MDP, there exists a deterministic stationary policy, π∗ ∈ ΠDS that is optimal.

Theorem 22. (Boutilier et al., 1999) For any finite-horizon single-objective MDP,

there exists a deterministic policy π∗ ∈ ΠD that is optimal.

The existence of an optimal deterministic policy drastically reduces the size of the

space of policies that need to be considered. In the case of finite-horizon MDPs there

are |ΠD| = |A|h|S| policies to consider, and for infinite-horizon MDPs even |ΠDS| =
|A||S|, while there would be infinitely many if we consider stochastic policies as well.

Optimal policies in MDPs can be found efficiently using e.g., dynamic programming

techniques (Bellman, 1957a) or linear programming (Manne, 1960).

Definition 33. A multi-objective Markov decision process (MOMDP) (Roijers et al.,

2013a) is a tuple 〈S,A, T, R〉 where,

• S , A, and T are the same as in an MDP,

• R : S ×A× S → R
d is the reward function, specifying the expected immediate

vector-valued reward corresponding to a transition.

When only deterministic policies are allowed and the scalarization function, f , is

nonlinear, non-stationary policies can be better than the best stationary ones. There-

fore, unlike in single-objective MDPs, it is not always the case that we only need to

consider deterministic stationary policies.

Theorem 23. (White, 1982) In infinite-horizon MOMDPs, deterministic non-stationary

policies can Pareto-dominate deterministic stationary policies that are undominated by

other deterministic stationary policies.

To see why, consider the following infinite-horizon MOMDP with discount factor

γ, which was adapted from an example by White (1982): there is only one state, s and

three actions a1, a2, and a3, which yield rewards (3, 0), (0, 3), and (1, 1), respectively.

The transitions (for all actions) from state s all lead back to the same state. If we

1Note that there are also other options to condition on, e.g., the entire history of states and actions.

For sake of brevity we not consider these here.
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Figure 5.1: The policy values of π1, π2, π3, and πns for the example MOMDP by

White (1982), for γ = 0.95. The blue line indicates the possible values for all possible

mixture policies that use π1 and π2 as base policies.

allow only deterministic stationary policies, then there are only three possible policies

π1, π2, π3, each corresponding to always taking one of the actions, all of which are

Pareto optimal. These policies have the following values: V
π1 = (3/(1 − γ), 0),

V
π2 = (0, 3/(1−γ)), and V

π3 = (1/(1−γ), 1/(1−γ)). However, if we now consider

the set of possibly non-stationary policies, we can construct a policy πns that alternates

between a1 and a2, starting with a1, whose value is Vπns = (3/(1− γ2), 3γ/(1− γ2)).
Consequently, this policy Pareto-dominates π3, πns ≻P π3 when γ ≥ 0.5 (Figure

5.1) and thus we cannot restrict our attention to stationary policies. Note that similar

examples can be constructed for the finite-horizon setting.

For linear f however, we can restrict our attention to only deterministic stationary

policies (Roijers et al., 2013a):

Theorem 24. For an infinite-horizon MOMDP m, any CCS(ΠDS) of deterministic

stationary policies is also a CCS(Π) for stochastic non-stationary policies.

Proof. This proof is similar to that of Theorem 1 and Theorem 3. If f is linear, we

can translate the MOMDP to a single-objective MDP, for each possible w. This is

done by treating the inner product of the reward vector and w as the new rewards, and

leaving the rest of the problem as is. Since the inner product distributes over addition,

the scalarized returns remain additive. Thus, for every w there exists a translation to

a single-objective MDP, for which an optimal deterministic and stationary policy must

exist, due to Theorem 21. Consequently, when the optimal deterministic stationary

policy for w is πw, there cannot exist a non-stationary and/or stochastic policy, π′, such

that w ·Vπ′

> w ·Vπw . Because this holds for every possible w, a CCS with respect

to all deterministic stationary policies is also a CCS for all stochastic non-stationary

policies.
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Any deterministic stationary CCS is thus sufficient for solving infinite-horizon

MOMDPs with linear f , even when stochastic and non-stationary policies are allowed.

For finite-horizon MOMDPs a similar theorem holds but for deterministic (possibly

non-stationary) policies only:

Theorem 25. For a finite-horizon MOMDP m, any CCS(ΠD) of deterministic policies

is also a CCS(Π) for stochastic policies.

Proof. The proof is identical to that of Theorem 24.

In the proof of Theorem 24 we show than an MOMDP can be scalarized with a lin-

ear weight w, resulting in an MDP. Because this fulfills the conditions of Assumption

1), we can use a deterministic CCS as a compact representation of a PCS for stochastic

policies (Corollary 1). In Figure 5.1 for example, the values in the PCS of stochastic

policies for the abovementioned MOMDP example by White (1982) are indicated by

the blue line; these values can all be attained by mixing π1 and π2.

5.1.2 Partially Observable Markov Decision Problems

So far we have assumed that the state of the environment can be observed by the agent.

However, in many planning problems this is not the case. For example, imagine a

robot that has only a front camera as sensor input and needs to go to a given location in

an office building. When driving around, many locations in such a building may look

identical (especially in the hallways). Therefore the agent controlling the robot has

to rely on the memory of its previous observations to disambiguate the state as much

as possible. The partially observable Markov decision process (POMDP) (Kaelbling

et al., 1998) is a decision-theoretic model that incorporates partial observability into a

single-agent sequential decision problem.

Definition 34. A POMDP is a tuple 〈S,A, T, R,Ω, O〉 where,

• S , A, T , and R are the same as in an MDP,

• Ω, is the set of possible observations, and

• O is the observation function, giving the probability of each observation given

an action and the resulting state, i.e., O(o|a, s′) is the probability of observing

o ∈ Ω when taking action a resulting in state s′ (regardless of the state in which

action a was taken). It is thus a mapping: A× S × Ω→ [0, 1].

Because the agent cannot observe the entire state, the history of previous observa-

tions yields information about the present state that is not contained in the latest obser-

vation. In other words, the observations the agent receives are not Markovian, and only

conditioning on the last observation could lead to loss of optimality. This makes the

planning problem in POMDPs much harder than in an MDP. In fact, infinite-horizon

POMDPs are in general undecidable (Madani et al., 2003). However, there is some
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leverage that can be used for planning. Specifically, it turns out that the belief state of

an agent is a sufficient statistic for the (action-observation) history of an agent, and can

be used as a Markovian state signal.

Definition 35. The belief state b(s), specifies for each state s ∈ S the probability of

being in that state s.

In a POMDP, an agent can maintain such a belief b(s) (Åström, 1965). We call the

belief of an agent at timestep 0, b0(s). The agent updates its belief when it takes an

action a, makes an observation o, according to the following update rule:

bt+1(s
′) =

O(o|s′, a)
P (o|bt, a)

∑

s∈S
T (s′|s, a)bt(s),

where,

Pb(o|bt, a) =
∑

s′∈S
O(o|s′, a)

∑

s∈S
T (s′|s, a)bt(s).

We can use the belief updates to specify a transition function for belief-states, Tb(b
′|a, b).

Specifically, in a given belief bt, the next belief bt+1 only depends on the action a
and the observation o, and the probability of an observation is P (o|bt, a). Further-

more, we can also specify a reward function Rb(b, a) =
∑

s∈S b(s)R(s, a), where

R(s, a) =
∑

s′∈S R(s, a, s′)T (s′|s, a). Together, the belief-state, Rb, and Tb can be

used to specify a belief-MDP.

Theorem 26. (Spaan, 2012) For each POMDP 〈S,A, T, R,Ω, O〉, there is an equiv-

alent belief-MDP 〈Sb = ∆S,A, Tb, Rb〉, where ∆S is the belief simplex, i.e., all valid

probability distributions over S , A is the same set of actions as in the POMDP, and

Tb and Rb are as specified above. An optimal policy for this belief-MDP is an optimal

policy for the POMDP, and the optimal value function for the belief-MDP is equal to

the optimal value function for the POMDP.

Corollary 11. For any discounted infinite-horizon (single-objective) POMDP, there

exists an optimal deterministic stationary policy conditioned on the belief. For any

finite-horizon (single-objective) POMDP, there exists an optimal deterministic policy

conditioned on the belief.

Proof. This follows directly from Theorems 21, 22, and 26.

The value function for a single-objective POMDP, V (b), can thus be defined in

terms of the belief state. The value function can be represented by a set V of α-vectors.

Each vector α (of length |S|) gives a value for each state s. The value of a belief b
given V is:

V (b) = max
α∈V

b · α. (5.1)

Equation 5.1 implies the following observation:
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Observation 3. (Sondik, 1971) The value function of a POMDP is a piecewise-linear

and convex (PWLC) function in b.

Each α-vector is associated with an action. Therefore, a set of α-vectors V also

provides a policy πV that for each belief takes the maximizing action in Equation 5.1.

Because infinite-horizon POMDPs are in general undecidable, the exact optimal

value function and accompanying α-vectors cannot be found exactly within finite time.

An ε-approximate value function can in principle be computed using techniques like

value iteration (VI) (Monahan, 1982) and incremental pruning (Cassandra et al., 1997).

Unfortunately, these methods scale poorly in the number of states. However, point-

based methods (Shani et al., 2013), which approximate the value function for the entire

belief simplex by iteratively computing the best α-vector only for a set B of sampled

beliefs, scale much better. We explain how this works in Section 5.3.1.

Definition 36. An MOPOMDP is a tuple 〈S,A, T,R,Ω, O〉 where,

• S , A, T , Ω, and O are the same as in a POMDP,

• R : S ×A× S → R
d is the reward function, specifying the expected immediate

vector-valued reward corresponding to a transition.

For MOPOMDPs, we observe that because of the equivalence between POMDPs

and belief MDPs (Theorem 26 and Corollary 11), Theorem 24 also extends to POMDPs,

i.e.,

Corollary 12. For an MOPOMDP, any CCS of deterministic stationary policies —

with respect to belief-state — is also a CCS for stochastic non-stationary policies.

Furthermore, because MOPOMDPs can be scalarized to a POMDP equivalently to

scalarizing a MOMDP, i.e., by taking the inner product of a weight vector w and the

reward function R as the scalarized reward function, and leaving the rest of the problem

intact, the CCS of deterministic policies can be used as a compact representation of the

PCS of stochastic policies (Corollary 1).

The only current method available for computing a CCS for a MOPOMDP is based

on an old method for MOMDPs. White and Kim (1980) proposed a method to trans-

late a multi-objective MDP into a POMDP, which can also be applied to a MOPOMDP

and yields a single-objective POMDP. Intuitively, this translation assumes there is only

one “true” objective. Since the agent does not know which objective is the true one,

this yields a single-objective POMDP whose state is a tuple 〈s, i〉 where s is the orig-

inal MOPOMDP state and i ∈ {1 . . . d} indicates the true objective. The resulting

POMDP’s state space is of size |S|d. The observations provide information about s
but not about i. The resulting POMDP can be solved with standard methods but only

those that do not require an initial belief, as such a belief would fix not only a dis-

tribution over s but also over i, yielding a policy optimal only for a given w. Since

this precludes the effective usage of solvers like point-based methods, it is a severe

limitation.
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For PCSs, no theorem like Corollary 12 exists. In fact, the only current research

we are aware of that aims to find a PCS for a given MOPOMDP is by Soh and Demiris

(2011a,b) who use evolutionary methods to approximate the PCS. However, evolution-

ary methods are heuristic algorithms that provide no guarantees regarding the quality

of the approximation. Furthermore, as we discuss in Section 2.3, finding a PCS is

often not necessary. In Section 5.3, we show how to employ the class of point-based

planning algorithms (Shani et al., 2013) — to which many state-of-the-art planning

methods for POMDPs belong — as subroutines in OLS, to create planning methods

for MOPOMDPs and how these methods can provide bounds on the quality of the

approximation.

5.2 OLS for Large Finite-Horizon MOMDPs

In this section, we show how to tackle challenging real-world MOMDPs using OLS.

The problem we use to illustrate this is called the maintenance planning problem

(MPP) (Scharpff et al., 2013; Roijers et al., 2014a; Scharpff et al., 2015, 2016). We

first introduce the MPP and explain why it is a computationally hard problem. Then

we briefly discuss the existing single-objective methods for the MPP, explain the intu-

ition behind how these are able to solve the MPP efficiently, and how to use them as

subroutines inside OLS. Finally, we compare the different subroutines in combination

with OLS on instances of the MPP.

5.2.1 The Maintenance Planning Problem

The maintenance planning problem (MPP) (Scharpff et al., 2013; Roijers et al., 2014a;

Scharpff et al., 2015, 2016) is a task-based planning problem in which a government

needs to have road maintenance tasks performed. The government wants to minimize

maintenance costs that it will ultimately have to pay (objective 1) while minimizing

the hindrance of these maintenance tasks to traffic (objective 2). In order to do so, they

place fines on causing traffic delay.

In order achieve their objectives, the local government uses a public tender to at-

tract a group of contractors. Each contractor bids on a set of predetermined main-

tenance tasks. The tender is based on a dynamic-VCG mechanism (Bergemann and

Valimaki, 2006; Cavallo, 2008). In this mechanism, the rewards for a contractor are a

given weighted sum (i.e., a linear scalarization with a given weight w) of the payment

it receives from the government minus the costs of the maintenance tasks and the fines.

Because of the mechanism, the optimal strategy for each contractor is to be truthful

about the costs, and to cooperate in planning a policy for performing the maintenance

tasks. In other words, because of the mechanism, the problem becomes a fully coop-

erative multi-agent MDP. Therefore, we will refer to the contractors as the agents, and

to the multi-agent MDP as the single-objective MPP. A condition for being able to use

the mechanism however, is that the optimal policy can be computed.
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The government has estimates of the costs for each contractor based on previous

tenders. However, in previous tenders, there was too much traffic delay. Therefore,

the government wants to incentivize performing a policy that results in less hindrance

for traffic by adding to the fines on traffic delay, i.e., they want to investigate the effect

on the value of the optimal policies (i.e., the total costs and the total traffic delay) by

changing w. This can be modelled as finding the CCS a multi-objective multi-agent

MDP. After finding the CCS, the local government can select a w for which the optimal

policy of the contractors corresponds to the value vector the government selected from

the CCS. We refer to this multi-objective multi-agent MDP as the multi-objective MPP.

It is important that the CCS can be computed exactly. Otherwise, the dynamic-

VCG mechanism no longer guarantees that rational agents are truthful (Scharpff et al.,

2013), and we can no longer model the MPP as a multi-objective MMDP. Therefore,

we focus on using exact planning methods. However, approximate methods could still

be used by the local government to get a global idea about the values in the CCS.

In the multi-objective MPP, each task has a minimal completion time. Depending

on conditions that become known at the moment the task is started, a task may delay

with a given amount of time. The probability of delay is known.

The hindrance for traffic depends on which tasks are performed concurrently. For

instance, concurrent maintenance in a busy area causes more hindrance than when

maintenance tasks are performed sequentially.

The maintenance tasks for a given agent i are a fixed predetermined set. For each

task, a, there are

• a number of consecutive time steps required to complete the task, d ∈ Z
+,

• the probability that a task will delay, p ∈ [0, 1],

• the additional duration if the task is delayed, d̂ ∈ Z
+, and

• a cost function, c(a, t), that captures the cost of maintenance (e.g., personnel,

materials, etc.) per time step t ∈ [1, . . . , h].

The reward for executing a maintenance task is a (time-independent) payment, minus

these costs. This is the first objective in the multi-objective MPP. Note that the costs

may differ for each time step (e.g., it may be more expensive to perform a task at night

or during holiday periods). The total cost of the execution of a task is the sum of

the costs for each time step the task is being executed including delays. Agents are

restricted to executing a single task per time step and they can only plan activities if

they are guaranteed to finish them within the plan horizon. Because the payments are

independent of time, while the costs are dependent of time, the agents want to schedule

their tasks at the cheapest time-slots. However, there is also an incentive for agents to

cooperate and not schedule too many tasks in parallel, because of the fines that are

incurred by traffic hindrance.

The hindrance caused by maintenance is given by the function ℓ(At, t), expressed

in traffic time lost (TTL). In this function, At is used to denote any combination of
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maintenance tasks performed at time t, by one or more agents. This function is typi-

cally based on traffic simulations, but can also be computed using heuristic rules. TTL

is the second objective in the multi-objective MPP.

In the multi-objective MPP, the state is defined as the activities yet to be performed

(for all agents together), the time left to perform them, and the availability of the indi-

vidual agents (as they may currently be executing a task). The possible actions for a

single agent are starting a task that has not been performed yet (if not busy), continue

a task (if busy), or do nothing (if not busy). For more details on the MPP please refer

to (Scharpff et al., 2013).

The main challenge in the MPP is that both the size of the state space and the size

of the action space are exponential in the number of agents (Boutilier, 1996). Further-

more, contrary to decentralized models (Becker et al., 2003; Nair et al., 2005; Witwicki

and Durfee, 2010), the policy for each agent needs to condition on the entire (expo-

nentially sized) state space in order to be optimal, as agents can predict the actions of

other agents better based on the full state than based on only their own local state (as in

decentralized models) (Scharpff et al., 2016). Therefore, planning needs to take place

in a centralized manner, i.e., as if a single agent controls all others. It is, in general, not

possible to tell how much value would be lost if a decentralized approach were taken

as an approximation. Fortunately though, this does not mean that is impossible to ex-

ploit the structure of the MPP. It is however necessary to formulate tailored solution

methods to the specific properties of the MPP.

5.2.2 Solving MPP instances

In the single-objective version of the MPP, a monetary value is assigned to each hour

of traffic time lost (TTL), thereby linearly scalarizing the problem. For this single-

objective problem, we discuss three solution methods as proposed by Scharpff et al.

(2013), Roijers et al. (2014a) and (Scharpff et al., 2016). We later use these methods

as the single-objective subroutine in OLS, in order to solve the multi-objective MPP.

The single-objective methods are

• SPUDD + compact encoding — The stochastic planning using decision dia-

grams (SPUDD) algorithm (Hoey et al., 1999), is a value iteration algorithm that

employs algebraic decision diagrams (ADDs) to represent value functions and

policies. ADDs are compact representations that use state features — such as

whether a task has already been performed or not in the MPP — to describe

the value function. By doing so, many states are (implicitly) grouped together,

leading to compact representations of the value function (or policy). SPUDD

implements dynamic programming (Bellman, 1957a) via manipulation of these

ADDs. Therefore, SPUDD can handle large state spaces well, as long as these

state spaces are structured.

However, the MPP has a large action space as well as a large state space. There-

fore, Scharpff et al. (2013) propose an encoding of the single-objective MDP
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that reduces the size of the action space (at the cost of slightly increasing the

size of the state space). In this encoding, one time step is split up in one time

step per agent. At each such a “sub time step” an agent commits to carrying out

an action from its own available actions (i.e., tasks to perform, continue or do

nothing), and augmenting this commitment to the state. In this manner, an MDP

that SPUDD can handle is created.

SPUDD is an exact single-objective planning method, and can thus be used in

conjunction with the dynamic-VCG mechanism.

• CoRe — We have recently proposed a new method (Scharpff et al., 2016) that

exploits several of the properties of the single-objective MPP problem: firstly, we

observe that if we separate the state space into local states per agent (i.e., which

tasks an agent has left to perform, and whether it is currently busy), the transi-

tions in these local states only depend on the actions of that local agent, i.e., there

is transition independence. Secondly, we observe that the rewards that depend

on more than one agent (i.e., the traffic delay increase/decrease due to concur-

rent execution of tasks) are sparse, as only tasks that are performed on roads

that are relatively close affect each other, i.e., there is only sparse interaction

between agents. Finally, we observe that because the tasks are only performed

once, the interaction between agents can cease to exist when the particular tasks

that interact have been performed.

We proposed a new optimal solver for transition-independent multi-agent MDPs

(such as the MPP), called CoRe (Scharpff et al., 2016). CoRe decomposes the

returns into local subsets that it represents compactly in so-called conditional

return graphs (CRGs). Using CRGs the value of a joint policy and the bounds

on partially specified joint policies can be efficiently computed. CoRe employs

a branch-and-bound policy search schema building on CRGs.

Like SPUDD, CoRe is an exact planning method, and can thus be used in con-

junction with the dynamic-VCG mechanism. CoRe can solve much larger MPP

instances than SPUDD. Therefore, it is vitally important to be able to use CoRe

as a basis for a multi-objective method instead of SPUDD.

• UCT∗ + compact encoding — The UCT∗ algorithm (Keller and Helmert, 2013)

combines the popular upper-confidence bounds applied to trees (UCT) planning

algorithm (Kocsis and Szepesvári, 2006) with heuristic AND/OR search (AO∗),
in order to create a fast Monte Carlo tree search algorithm. We use this algo-

rithm, together with the aforementioned encoding of the single-objective MDP

by Scharpff et al. (2013), as an anytime approximate alternative to SPUDD, i.e.,

we stop it after a limited amount of runtime and use the best policy found so far.

UCT∗ is an approximate planning method. Therefore, it cannot be used in prac-

tice on the MPP to make the dynamic-VCG mechanism work. However, it does
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provide approximations that the government could use to get an idea about the

range of the values in the CCS quickly.

It would be difficult to create a multi-objective MPP solver using an inner loop

approach for all three of the above-mentioned single-objective solvers; it is not clear

how ADDs and their manipulations could be extended to apply to sets of value vectors

inside SPUDD, and in UCT∗ and CoRe it is unclear how the bounds that make these

algorithms fast would function with vector-valued rewards.

When we employ the above-mentioned algorithms as subroutines inside OLS, we

do not need to change the inner workings of these algorithms. Instead, we obtain an

optimal policy (for SPUDD and CoRe) or an approximate policy (for UCT∗), and run

policy evaluation to obtain the corresponding value vector. In the next subsection, we

compare the resulting multi-objective solution methods empirically.

5.2.3 Experiments: MPP

In order to demonstrate the efficacy of our algorithms, we test and compare OLS+

SPUDD, OLS+UCT∗, and OLS+CoRe on instances of the multi-objective MPP.2 We

use Joris Scharpff’s MPP generator to create instances of this problem. We employ

a JAVA implementation of OLS that calls the SPUDD package3 for OLS+SPUDD

or the PROST package4 (Keller and Eyerich, 2012) for UCT∗. These packages are

freely available online. For CoRe we use our own JAVA implementation (as we did in

Scharpff et al. (2016)).

Because we cannot let UCT∗ run until all states have been evaluated, we can only

obtain partial policies. In our experiments we ‘repair’ partial policies, i.e., supplement

these policies by taking a conservative action; in the MPP this means inserting “do

nothing” actions.

All experiments in this subsection were conducted on DAS4 cluster5 of Delft Uni-

versity of Technology, with a 2.4 GHz dual quad-core processor and 24 GB memory.

Comparing OLS-based methods

We use the single-objective subroutines of Section 5.2.2 in combination with OLS,

and compare the resulting OLS+SPUDD and OLS+CoRe algorithms on instances of

the MPP that both can solve within 30 minutes. These are 2- and 3-agent problems.6

The results are shown in Table 5.1. Note that because SPUDD cannot solve many

3-agent problems, there are signicantly fewer instances for that number of agents.

2These are new experiments that were performed in collaboration with Joris Scharpff. The experi-

ments will appear in his forthcoming dissertation as well.
3https://cs.uwaterloo.ca/˜jhoey/research/spudd/index.php
4http://prost.informatik.uni-freiburg.de/
5http://www.asci.tudelft.nl/pages/about-asci/das.php
6Scharpff et al. (2016) show that CoRe can also handle 4-agent problems, but SPUDD cannot.
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N = 2 N = 3

Algorithm Runtime (s) |CCS| ε Runtime (s) |CCS| ε

OLS+SPUDD 184.032 6.592 - 1997.079 7.591 -

OLS+CoRe 591.167 6.592 - 1160.516 7.591 -

OLS+UCT∗ (0.01s) 2.212 3.460 0.321 2.723 3.227 0.371

OLS+UCT∗ (0.1s) 3.432 4.615 0.209 4.572 3.561 0.263

OLS+UCT∗ (1s) 8.656 5.798 0.073 14.918 5.621 0.168

OLS+UCT∗ (10s) 39.906 6.690 0.002 85.191 7.364 0.022

OLS+UCT∗ (20s) 57.173 6.690 0.002 139.571 7.727 0.014

Table 5.1: Average runtimes, CCS sizes, and ε for 71 2-agent instances and 22 3-agent

instances of the multi-objective MPP with 2 to 4 tasks per agent, and plan horizons

between 3 and 10.

For 2-agent problems, which both algorithms can solve completely, OLS+SPUDD

takes a factor 3.2 less time than OLS+CoRe. However, OLS+CoRe scales better in the

number of number of agents, and is a factor 1.7 faster for the 3-agent instances. When

we zoom in on the runtimes, as a function of the plan horizon in Figure 5.2, we observe

that for 2 agents, the runtimes seem exponential in the plan horizon, and OLS+SPUDD

is consistently faster than OLS+CoRe. For 3-agent problems however, OLS+CoRe is

consistently faster than OLS+SPUDD. We therefore confirm that OLS+CoRe is better

when there are more than 2 agents.

Finally, we compare the exact methods to the approximate OLS+UCT∗ method.

Because UCT∗ does not provide ε-bounds, we cannot guarantee a bounded approxi-

mation. However, when we give each run of UCT∗ a fixed amount of runtime to solve

a scalarized MPP, we can measure ε empirically by comparing the approximate CCSs

outputted by OLS+UCT∗ to the true CCS outputted by OLS+SPUDD and OLS+CoRe.

From Table 5.1, we observe that OLS+UCT∗ can produce results with little error in less

than 10% of the runtime. E.g., for the 3-agent instances with 10 seconds per scalarized

instance for UCT∗ achieves ε = 2.2% in 85s while CoRe needs 1160s on average to

compute the exact CCS. Note that for some of the smaller instances, i.e., few agents

and a small plan horizon, UCT∗ sometimes finds the optimal policy for the scalarized

problems before its time-limit is reached and terminates before its time is up. This

happened for 2 agents and 10s or 20s per call to UCT∗. Therefore, we conclude that

OLS+UCT∗ can be used to provide quick approximations if necessary. However, be-

cause we can only measure ε w.r.t. to the true CCS, we cannot know ε when we apply

only OLS+UCT∗ (if it does not produce the exact CCS).
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Figure 5.2: Average runtimes of OLS+SPUDD and OLS+CoRe on 2-agent instances

and 3-agent instances of the multi-objective MPP with 2 to 4 tasks per agent, as a func-

tion of the plan horizon. NB: there are less data points for the larger planning horizons

as this plot contains only those instances that both OLS+SPUDD and OLS+CoRe could

solve.

5.3 OLS with Alpha Reuse for MOPOMDPs

In this Section we aim to create planning methods for multi-objective partially observ-

able Markov decision processes (MOPOMDPs) (Soh and Demiris, 2011a,b; Roijers

et al., 2015c; Wray and Zilberstein, 2015). Little research has been conducted on plan-

ning methods for MOPOMDPs; the naive approach to translate the MOPOMDP to a

single-objective POMDP with an augmented state space (White and Kim, 1980), which

we discussed in Section 5.1.2, precludes the use of POMDP methods that exploit an

initial belief such as point-based methods (Shani et al., 2013), because specifying an

initial belief fixes the scalarization weights. Another naive approach would be to use

Random Sampling (RS) of scalarization weights in an outer loop approach (as dis-

cussed in Section 3.1.2). However, because POMDP planning is expensive, such an

approach is undesirable, as it lacks guarantees with respect to approximation quality,

and it might solve many scalarized instances that contribute little or nothing to the im-

provement of the output approximate CCS. Lastly, the evolutionary approach proposed

by Soh and Demiris (2011a,b) does not have any guarantees with respect to approxima-

tion quality either, and computes the PCS of deterministic policies, and not the CCS,

which we argue (see Section 2.3) is often a more desirable solution concept.

In this section, we propose a new MOPOMDP solution method called optimistic

linear support with alpha reuse (OLSAR). Our approach is based on optimistic linear

support (OLS) (Chapter 3), and therefore selects its scalarization weights in such a way

as to maximally reduce the maximal possible error of the intermediate CCS at each

iteration, and — using a bounded approximate single-objective solver — produces an

ε-CCS.
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OLSAR contains two key components that — in addition to the usage of OLS

— are essential to making it tractable for MOPOMDPs. First, it uses a novel OLS-

compliant version of the point-based solver Perseus (Spaan and Vlassis, 2011). OLS-

compliant Perseus solves a given scalarized POMDP and simultaneously computes

the resulting policy’s multi-objective value. Doing so avoids the need for the separate

policy evaluation step that is often employed by OLS (e.g., as in Section 5.2). Since

POMDP policy evaluation is computationally expensive, the use of OLS-compliant

Perseus is key to OLSAR’s efficiency. Second, rather than solving each scalarized

POMDP from scratch, OLSAR reuses the α-matrices that represent each policy’s multi-

objective value to form an initial lower bound for subsequent calls to OLSAR-compliant

Perseus. In this section we show how reuse — which we discussed in an abstract man-

ner in Section 3.6 — can be implemented in the context of MOPOMDPs.

The rest of this section is structured as follows: first, we briefly discuss single-

objective point-based planning methods in Section 5.3.1; Perseus (Spaan and Vlassis,

2011) in particular. Then, in Section 5.3.2 we introduce the OLSAR algorithm, as

well as the OLS-compliant Perseus algorithm that OLSAR uses as a subroutine. In

Section 5.3.3 we empirically test OLSAR, and show that the usage of OLS is key to

keeping MOPOMDPs tractable and that reuse leads to dramatic reductions in runtime

in practice.

5.3.1 Point-based POMDP methods

An infinite-horizon single-objective POMDP (Kaelbling et al., 1998; Madani et al.,

2003) is a sequential decision problem that incorporates uncertainty about the state of

the environment, and is specified as a tuple 〈S,A,R, T,Ω, O, γ〉. As we discussed in

Section 5.1.2, an agent typically maintains a belief b over which state it is in. The value

function for a single-objective POMDP, Vb, is defined in terms of this belief and can

be represented by a set A of α-vectors. Each vector α (of length |S|) gives a value for

each state s. The value of a belief b given A is:

Vb = max
α∈A

b · α. (5.2)

Each α-vector is associated — or tagged, as we did in MO-CoGs in Chapter 4 — with

an action. Therefore, a set of α-vectorsA also provides a policy πA that for each belief

takes the maximizing action in Equation 5.2.

While infinite-horizon POMDPs are in general undecidable (Madani et al., 2003),

an ε-approximate value function can in principle be computed using techniques such

as value iteration (VI) (Monahan, 1982) and incremental pruning (Cassandra et al.,

1997). Unfortunately, these methods scale poorly in the number of states.

Point-based methods (Shani et al., 2013), which perform approximate backups by

computing the best α-vector only for a set B of sampled beliefs, scale much better in

the number of states than VI and incremental pruning. Point-based methods perform

a series of so-called point-based backups. For each b ∈ B, a point-based backup is
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performed by first computing for each a and o, the back-projection ga,oi of each next-

stage value vector αi ∈ Ak:

ga,oi (s) =
∑

s′∈S
O(a, s′, o)T (s, a, s′)αi(s

′). (5.3)

Because ga,oi (s) are identical for all b ∈ B, these ga,oi (s) can be cached and shared

between different b. However, once new αi(s) are computed, new ga,oi (s) also need to

be computed.

For each b, the back-projected vectors ga,oi are used to construct |A| new α-vectors

(one for each action):

αb,a
k+1 = ra + γ

∑

o∈Ω
argmax

ga,o
b · ga,o. (5.4)

Finally, the αb,a
k+1 that maximizes the inner product with b (in Equation 5.2) is retained

as the new α-vector for b:

backup(Ak, b) = argmax
α
b,a

k+1

b · αb,a
k+1. (5.5)

Point-based methods typically perform several point-based backups using Ak for dif-

ferent b to construct the set of α-vectors for the next iteration, Ak+1 in order to enable

efficient caching of the ga,oi (s) vectors. By constructing the α-vectors only from the

ga,o that are maximizing for the given b, point-based methods avoid generating the

much larger set of α-vectors that an exhaustive backup of Ak would generate.

In this section, we use the popular Perseus (Spaan and Vlassis, 2011) point-based

planning algorithm as a basis for creating a multi-objective method. Perseus is given

in Algorithm 13. It takes as input an initial lower bound A on the value function in

the form of a set of α-vectors, a set of sampled beliefs, a scalarization weight w, and

a precision parameter η. The initial lower bound vectors in A are typically determined

heuristically. Perseus repeatedly improves upon this lower bound (lines 3-10) by find-

ing an α-vector that improves upon the value, Vb = b · α, for each sampled belief.

However, this does not imply that a point-based backup is performed for each b in the

sampled belief set B. Instead, Perseus selects a random belief from the set of sampled

beliefs (line 6) and, if possible, finds an improving α-vector for it (line 7). When such

an α-vector also improves the value for another belief point in B, this belief point is

ignored until the next iteration (line 9). This results in an algorithm that generates few

α-vectors in early iterations, but improves the lower bound on the value function, and

gets more precise, i.e., generates more α-vectors, in later iterations. This is an impor-

tant aspect of the algorithm, as the number of α-vectors inAk at the start of iteration k
is the determining factor for the runtime of that iteration.

5.3.2 Optimistic Linear Support with Alpha Reuse

We now propose our main contribution for MOPOMDPs: optimistic linear support

with alpha reuse (OLSAR). This algorithm employs the OLS schema with reuse (Al-
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Algorithm 13: Perseus(A, B, η)

Input: A POMDP
1 A′ ← A;

2 A ← {− ~∞}; // worst possible vector in a singleton set

3 while maxbmaxα′∈A′ b · α′ − (maxα∈A b · α) > η do

4 A ← A′; A′ ← ∅ ; B′ ← B;

5 while B′ 6= ∅ do

6 Randomly select b from B’;

7 α← backup(A, b);
8 A′ ← A′ ∪ { argmax

α′∈(A∪{A})
b · α′};

9 B′ ← {b ∈ B′ : max
α′∈A′

b · α′ < max
α∈A

b · α}; // Continue with only

those b ∈ B′ for which the value has not yet improved

10 end

11 end

12 return A′;

gorithm 8). Specifically, it reuses the multi-objective value of the policies, i.e., the sets

A, found in earlier calls to the single-objective subroutine. In order to do so however,

we first need to define how we represent the multi-objective value as a function of the

belief.

A MOPOMDP is a POMDP with a vector-valued reward function R instead of a

scalar one. The value of a MOPOMDP policy given an initial belief b0 is thus also

a vector Vb0 . The scalarized value given w is then w · Vb0 . When we look at the α-

vectors for a MOPOMDP, each element of an α-vector, i.e., each α(s), is itself a vector,

indicating the value in all objectives. Thus, each α-vector is actually an α-matrix, A,

in which each row A(s) represents the multi-objective value vector for state s. The

multi-objective value of taking the action associated with A under belief b (provided

as a row vector) is then bA. When w is also given (as a column vector), the scalarized

value of taking the action associated with A under belief b is bAw.

Given a set of α-matrices A that approximates the multi-objective value function,

we can thus extract the scalar value given a belief b for every w:

Vb(w) = max
A∈A

bAw. (5.6)

Because each α-matrix is tagged with a certain action, a policy πw

A can be distilled

from A given w. We denote the multi-objective value for a given b0 under policy π as

V
π
b0
= b0A.

Now that we have defined the representation of the (multi-objective) value in terms

of α-matrices, we can define OLSAR. We first describe OLSAR abstractly and specify
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the criteria that the single-objective POMDP method that OLSAR calls as a subrou-

tine, which we call solveScalarizedPOMDP, must satisfy to be OLSAR-compliant.

Then, we describe an instantiation of solveScalarizedPOMDP that we call OLSAR-

Compliant Perseus. Finally, we discuss OLSAR’s theoretical properties, which lever-

age existing theoretical guarantees of point-based methods and those of OLS (as given

in Chapter 3).

Algorithm

OLSAR implements the OLS algorithm with reuse for MOPOMDPs. It thus maintains

an approximate CCS, S , and thereby an approximate scalarized value function V ∗
S .

The vectors Vb0 in S are computed using sets of α-matrices. OLSAR finds these sets

of α-matrices by solving a series of scalarized problems, each of which is a POMDP

over the belief space for a different weight w. Each scalarized problem is solved by

a single-objective solver we call solveScalarizedPOMDP, which computes the value

function in terms of α-matrices of the MOPOMDP scalarized by w.

OLSAR, given in Algorithm 14, takes an initial belief b0 and a convergence thresh-

old η as input. The approximate CCS, and the priority queue of corner weights are

computed as in Algorithm 8, in Chapter 3. The reuse of the α-matrices in OLSAR is

implemented by maintaining Aall: a set of all α-matrices. These α-matrices are re-

turned by calls to solveScalarizedPOMDP to reuse (line 5) and B, a set of sampled

beliefs (line 6).

Following the OLS schema, OLSAR repeatedly pops a corner weight off the queue.

For each popped w, it selects the α-matrices from Aall to initialize Ar, a set of α-

matrices that form a lower bound on the (multi-objective) value (line 9). Initially,

this lower bound is typically an admissible heuristic. In the single-objective case, this

usually consists of a minimally realizable value heuristic, in the form of α-vectors.

In order to enable α-reuse for the multi-objective version, these heuristics must be

in the form of α-matrices. For example, if we denote the minimal reward for each

objective i as Ri
min, one lower bound heuristic α-matrix Amin is the vectors consisting

of Ri
min/(1− γ) for each objective and state.

OLSAR selects the maximizing α-matrix for each belief b ∈ B and the given w

and puts them in a set Ar. Using Ar, OLSAR calls solveScalarizedPOMDP. After

obtaining a new set of α-matrices Aw from solveScalarizedPOMDP, OLSAR calcu-

lates Vb0; the maximizing multi-objective value vector for b0 at w (line 11). If Vb0

is an improvement to S (line 14), OLSAR adds it to S and calculates the new corner

weights and their priorities.

A key insight behind OLSAR is that if we can retrieve the α-matrices underlying

the policy found by solveScalarizedPOMDP for a specific w, we can reuse these

α-matrices as a lower bound for subsequent calls to solveScalarizedPOMDP with

another weight w′. Especially when w and w
′ are similar, we expect this lower bound

to be close to the α-matrices required for w′.
The corner weights that OLS selects lie increasingly closer together as the algo-
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Algorithm 14: OLSAR(b0, η)

Input: A POMDP
1 S ← ∅; // partial CCS of multi-objective value vectors Vb0

2 WVold ← ∅; // searched weights and scalarized values

3 Q← priority queue with weights to search;

4 Add extrema of the weight simplex to Q with infinite priority;

5 Aall← admissible heuristic lower bound in the form of α-matrices ;

6 B ← set of sampled belief points (e.g., by random exploration);

7 while ¬Q.isEmpty() ∧ ¬timeOut do

8 w← Q.dequeue(); // Retrieve a weight vector

9 Ar← {A : A∈Aall ∧ ∃b∈B bAw ≥ max
A′∈Aall

bA′
w} ; // the best α-matrices

found in earlier iterations for each b ∈ B for w

10 Aw ← solveScalarizedPOMDP(Ar, B,w, η);
11 Vb0 ← maxA∈Aw

b0Aw;

12 Aall ← Aall ∪ Aw;

13 WVold = WVold ∪ {(w, w ·Vb0)};
14 if Vb0 6∈ S then

15 S ← S ∪ {Vb0};
16 W ← compute new corner weights and maximum possible improvements

(w,∆w) using WVold and S;

17 Q.addAll(W );

18 end

19 end

20 return S;

rithm iterates. Consequently, the policies and value functions computed for those

weights lie closer together as well and solveScalarizedPOMDP needs less and less

time to improve upon the α-matrices that begin increasingly close to their converged

values. In fact, late in the execution of OLSAR, corner weights are tested that yield

no value improvement, i.e., no new α-matrices are found. These calls to the single-

objective point-based subroutine, solveScalarizedPOMDP, serve only to confirm that

the CCS has indeed been found, rather than to improve it. While such confirmation runs

of solveScalarizedPOMDP would be expensive in OLS without reuse, in OLSAR

they are cheap: the already present α-matrices suffice and solveScalarizedPOMDP

converges immediately (after one sweep over B). The α-matrix reuse can thus save a

lot of runtime late in execution, and is therefore key to the efficiency of OLSAR.

However, to exploit this insight, solveScalarizedPOMDPmust return the α-matrices

explicitly, and not just the scalarized value or the single-objective α-vectors, as stan-

dard single-objective solvers do. A naive way to retrieve the α-matrices is to per-

form a separate policy evaluation on the policy returned by solveScalarizedPOMDP.

However, since POMDP policy evaluation is expensive, we instead require the single-

objective point-based subroutine to be OLSAR-compliant: i.e., to return a set of α-

matrices, while computing the same scalarized value function as a single-objective
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solver.

OLS-Compliant Perseus

OLSAR requires an OLS-compliant implementation of solveScalarizedPOMDP that

returns the multi-objective value of the policy, in the form of a set of α-matrices, found

for a given w. This requires redefining the point-based backup such that it returns an α-

matrix rather than an α-vector. Because the new backup operations takes place inside

solveScalarizedPOMDP, we now perform a backup for a given b and w starting from

a set of α-matrices Ak.

As in Equation 5.3, the new backup first computes the back-projections G
a,o
i (for

all a, o) of each next-stage α-matrix Ai ∈ Ak. However, these G
a,o
i are now matrices

instead of vectors:

G
a,o
i (s) =

∑

s′∈S
O(a, s′, o)T (s, a, s′)Ai(s

′). (5.7)

For the given b and w, the back-projected matrices are used to construct |A| new

α-matrices (one for each action):

A
b,a
k+1 = ra + γ

∑

o∈Ω
argmax

Ga,o

b Ga,o
w. (5.8)

Note that the vectors G
a,o
w can also be shared between all b ∈ B. Therefore, we

cache the values of Ga,o
w.

Finally, the A
b,a
k+1 that maximizes the scalarized value given b and w is selected by

the backupMO operator:

backupMO(Ak, b,w) = argmax
A

b,a

k+1

bAa,b
k+1w. (5.9)

We can plug backupMO into any point-based method. In this dissertation, we use

Perseus because it is fast and can handle large sampled belief sets. The resulting OLS-

compliant Perseus is given in Algorithm 15. Note that this algorithm has the same

structure as Algorithm 13; the only differences are that the backups are now performed

given a b and w, the scalarized values are computed during Perseus are also computed

given b and w, and the resulting set A′ is a set of α-matrices rather than α-vectors.

Using solveScalarizedPOMDP = OCPerseus inside OLSAR yields a complete

algorithm that computes an approximate CCS for MOPOMDPs. Note however that

OCPerseus could be replaced by another OLS-compliant point planning method as

well.

Analysis

Point-based methods like Perseus have guarantees on the quality of the approximation.

These guarantees depend on the density δB of the sampled belief set, i.e., the maximal

distance from the closest b ∈ B to any other belief in the belief set (Pineau et al., 2006).
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Algorithm 15: OCPerseus(A, B,w, η)

Input: A POMDP
1 A′ ← A;

2 A ← {− ~∞};
3 while maxbmaxA′∈A′ bA′

w − (maxA∈A bAw) > η do

4 A ← A′; A′ ← ∅ ; B′ ← B;

5 while B′ 6= ∅ do

6 Randomly select b from B’;

7 A← backupMO(A, b,w);
8 A′ ← A′ ∪ { argmax

A′∈(A∪{A})
bA′

w};

9 B′ ← {b ∈ B′ : max
A′∈A′

bA′
w < max

A∈A
bAw};

10 end

11 end

12 return A′;

Lemma 1. (Pineau et al., 2006) The error ε on the lower bound of the value of an

infinite-horizon POMDP after convergence of point-based methods is:

ε ≤ δB(Rmax −Rmin)

(1− γ)2
, (5.10)

where Rmax and Rmin are the maximal and minimal possible immediate rewards.

Using Lemma 1 we can bound the error of the approximate CCS computed by

OLSAR.7

Corollary 13. OLSAR implemented with OCPerseus using belief set B converges in a

finite number of iterations to an ε-CCS, where ε ≤ δB(Rmax−Rmin)
(1−γ)2

.

Proof. This follows directly from Theorem 8 and Lemma 1.

A nice property of OLS is that it inherits any quality guarantees of the single-

objective solver it uses as a subroutine. Better initialization of OCPerseus due to α-

matrix reuse does not effect the guarantees in any way. On the contrary, it affects only

empirical runtimes. The next subsection presents experimental results that measure

these runtimes.

5.3.3 Experiments: MOPOMDPs

In this subsection, we empirically compare OLSAR to three baseline algorithms. The

first is random sampling (RS), described in Section 3.1.2, which does not use OLS

7Note that because ε is constant given a set of sampled beliefs B, we can use w · Vb0 instead of

w · Vb0 + ε on line 13 of Algorithm 14, because the relative priorities between corner weights in the

priority queue do not change by subtracting a constant.
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Figure 5.3: The error with respect to a reference set as a function of the runtime for

(left) Tiger 2 and (right) Tiger3. The shaded regions represent standard error. Note the

log scale in the y-axis. In order to avoid clutter in the plot (due to the log-scale) we

only show the standard error above the lines.

or α-matrix reuse. The second is random sampling with alpha reuse (RAR), which

does not use OLS. The third is OLS+OCPerseus, which does not use α-matrix reuse.

We do not present results for the augmented-state method of (White and Kim, 1980),

as this it proved to be prohibitively computationally expensive for even the smallest

problems. We tested the algorithms on three MOPOMDPs based on the Tiger (Cassan-

dra et al., 1994) and Maze20 (Hauskrecht, 2000) benchmark POMDPs. Because we

use infinite-horizon MOPOMDPs – which are undecidable – we cannot obtain the true

CCS. Therefore, we compare our algorithms’ solutions to reference sets obtained by

running OLSAR with many more sampled belief points and η set 10 times smaller.

Multi-Objective Tiger

In the Tiger problem (Cassandra et al., 1994), an agent faces two doors: behind one

is a tiger and behind the other is treasure. The agent can listen or open one of the

doors. When it listens, it hears the tiger behind one of the doors. This observation

is accurate with probability 0.85. Finding the treasure, finding the tiger, and listening

yield rewards of 10, 100, and -1, respectively. We use a discount factor of γ = 0.9.

While the single-objective Tiger problem assumes all three rewards are on the same

scale, it is actually difficult in practice to quantify the trade-offs between, e.g., risking

an encounter with the tiger and acquiring treasure. In two-objective MO-Tiger (Tiger2),

we assume that the treasure and the cost of listening are on the same scale but treat

avoiding the tiger as a separate objective. In three-objective MO-Tiger (Tiger3), we

treat all three forms of reward as separate objectives.

We conducted 25 runs of each method on both Tiger2 and Tiger3. We ran all

algorithms with 100 belief points generated by random exploration, η = 1 × 106, and

b0 set to a uniform distribution. The reference set was obtained using 250 belief points.
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On Tiger2 (Figure 5.3 (left)), OLS+OCPerseus converges in 0.87s on average, with

a maximal error in scalarized value across the weight simplex w.r.t. the reference set

of 5 × 10−6. OLSAR converges significantly faster (t-test: p < 0.01), in on average

0.53s, with similar error 4×10−6 (this difference in error is not significant). RAR does

not converge as it just keeps sampling new weights. However, we can measure error

w.r.t. the reference set. After 2s (about four times what OLSAR needs to converge),

RAR has an error with respect to the reference set of 4.5× 10−3 (a factor of 103 higher

than OLSAR after convergence). RS is even worse and does not come further than a

0.78 error after 2s. OLS+OCPerseus and OLSAR perform similarly in the first half:

they use about the same time on the first four iterations (0.35s). However, OLSAR is

significantly faster for the second half. Thus, on Tiger2, OLS-based methods are sig-

nificantly better than random sampling and α-reuse significantly speeds the discovery

of good value vectors.

The results for the Tiger3 problem are in Figure 5.3 (right). RS and RAR both

perform poorly, with RAR better by a factor of two. OLS+Perseus is faster than RAR

but OLSAR is the fastest and converges in about 2s. OLS+OCPerseus eventually con-

verges to the same error but takes 10 times longer. As before, OLS-based methods out-

perform random sampling. Furthermore, for this 3-objective problem, α-reuse speeds

convergence of OLSAR by an order of magnitude.

We also compared three variations of OLSAR: using all previously found α-matrices,

only reusing those found for the policy of the closest previous weight, and using

those α-matrices for policies whose multi-objective values make up the current corner

weight. However, no significant differences where found between their convergence

times or final error, neither in the 2- nor in the 3-objective Tiger problem.

Multi-Objective Maze20

In Maze20 (Hauskrecht, 2000), a robot must navigate through a 20-state maze. It

has four actions to move in the cardinal directions, plus two sensing actions to per-

ceive walls in the north-south or east-west directions. Transitions and observations are

stochastic. In the single-objective problem, the agent gets reward of 2 for sensing, 4 for

moving while avoiding the wall, and 150 for reaching the goal. In multi-objective Maze

20 (MO-Maze20), the reward for reaching the goal is treated as a separate objective,

yielding a two-objective problem.

To test performance of OLSAR on MO-Maze20, we first created a reference set by

letting OLSAR converge using 1500 sampled beliefs. This took 11 hours. Then we

ran OLSAR, OLS+OCPerseus, RAR, and RS with 1000 sampled beliefs. Due to the

computational expense, we conducted only three runs per method. Figure 5.4 shows

the results. OLSAR converges after (on average) 291 minutes (4.90hrs) at an error

of 0.09, less than 0.5% w.r.t. the reference set. We let OLS+OCPerseus run for 11

hours but it did not converge in that time. OLS+OCPerseus, RS, and RAR have similar

performance after around 300 minutes. However, until then, OLS+OCPerseus does

better (and unlike RS and RAR, OLS+OCPerseus is guaranteed to converge). OLSAR
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Figure 5.4: The error with respect to a reference set as a function of the runtime for

MO-Maze20. The shaded regions represent standard error. Note the log scale in the

y-axis. In order to avoid clutter in the plot (due to the log-scale) we only show the

standard error above the lines.

converges at significantly less error than what the other methods have attained after

400 minutes. We therefore conclude that OLSAR reduces error more quickly than the

other algorithms and converges faster than OLS+OCPerseus.

5.4 Conclusion

In this chapter we have proposed novel methods for multi-objective sequential decision

problems, i.e., MOMDPs and MOPOMDPs, using the OLS framework of Chapter 3.

First, we tackled a large MOMDP called the maintenance planning problem (MPP)

using OLS-based methods. Second, we proposed a new method for infinite-horizon

MOPOMDPs, that — as far as we are aware — is the first method to reasonably scale.

For the MPP, we have shown that it is possible to create multi-objective methods

on the basis of OLS and state-of-the single-objective subroutines that are tailored for

the MPP. We have shown that it is easy to replace these subroutines if the state-of-the-

art for a given problem improves. We compared exact CCS planning methods, i.e.,

OLS+SPUDD and OLS+CoRe, to an approximate planning method, i.e., OLS+UCT∗.
We showed that while the approximate subroutine does not provide bounds on the

quality of approximation, OLS+UCT∗ can quickly produce approximate CCSs with

low error, ε, in practice. We therefore conclude that the OLS framework offers a flex-

ible framework that is easy to use for large problems, especially when solvers for the

scalarized, i.e., single-objective, versions of these problems already exist.

For MOPOMDPs, we proposed, analyzed, and tested OLSAR, a novel algorithm

for MOPOMDPs that intelligently selects a sequence of scalarized POMDPs, by build-

ing on the OLS framework. OLSAR uses OCPerseus, a scalarized MOPOMDP solver

that returns the multi-objective value of the policies it finds, as well as the α-matrices
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that describe them. A key insight underlying OLSAR is that these α-matrices can

be reused in subsequent calls to OCPerseus, greatly reducing runtimes in practice.

Furthermore, because OCPerseus returns ε-optimal policies, OLSAR is guaranteed to

return an ε-CCS. Our experiments show that OLSAR greatly outperforms alternatives

that do not use OLS and/or α-matrix reuse. We therefore conclude that OLS and reuse

are key to keeping MOPOMDPs tractable.
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Conclusion

In this dissertation, we aimed to answer the following question: “Can we create fast

multi-objective planning algorithms for cooperative decision problems that are: either

single- or multi-agent, single-shot or sequential, and fully or partially observable?”

To answer this question affirmatively, we have discussed several models and proposed

algorithms for multi-objective decision-theoretic planning. In this final chapter, we first

reiterate our contributions and discuss their implications for the field of multi-objective

decision theory in Section 6.1. In Section 6.2, we critically review our own work and

outline several possibilities for future research.

6.1 Contributions

In this section we summarize our contributions. Our contributions are two-fold; we

have made contributions that apply to cooperative multi-objective decision problems

in general, and we have made problem-specific contributions. We start with the big

picture, and then go into the problem-specific contributions. For our contributions, we

briefly discuss what we think the implications are for future research in this research

direction.

6.1.1 The big picture

The research we presented in this dissertation is motivated by the need for solving

decision-problems with multiple objectives; not only are there many real-world prob-

lems that have multiple objectives, but we have also argued that these often cannot be

solved with existing single-objective techniques, because it is often impossible to a

priori scalarize, i.e., convert multi-objective problems to single-objective ones.

In order to make explicit under what circumstances special methods are needed to

solve multi-objective problems, we identified three scenarios in which it is impossible,

infeasible, or undesirable to scalarize a priori in Chapter 1. As well as providing mo-

129
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tivation for the need for multi-objective methods, these scenarios also represent three

main ways these methods are applied in practice.

We proposed a taxonomy that classifies multi-objective methods according to the

applicable scenario, the scalarization function (which projects multi-objective values

to scalar ones), and the type of policies that are allowed in Chapter 2. We showed how

these three aspects together determine the nature of an optimal solution, which can be

a single policy, or a coverage set containing multiple policies. We limited our scope to

problems for which multiple policies are required.

Our taxonomy is based on a utility-based approach, which sees the scalarization

function as part of the utility, and thus part of the problem definition. This contrasts

with the so-called axiomatic approach, which usually assumes the Pareto front is the

appropriate solution. We showed that the utility-based approach can be used to jus-

tify the choice for a solution set. Based on the utility-based approach we argued for

a particular solution set: the convex coverage set (CCS), which applies to two impor-

tant parts of the taxonomy. The first is the case in which the scalarization function is

linear, i.e., the inner product of a vector of positive weights, w, and the vector-valued

value of a policy in a multi-objective decision problem, and the second is when the

scalarization function is monotonically increasing in all objectives and stochastic poli-

cies are allowed. The CCS is the central solution concept of this dissertation, and

we propose several novel planning algorithms for determining the CCS in a variety of

multi-objective cooperative planning problems.

In Chapter 3, we discussed the two main approaches to create new CCS algorithms

building from an existing single-objective planning algorithm. The first approach, that

is often taken in the literature, we refer to as the inner loop approach. In this ap-

proach, the maximizations and summations — that are necessary to compute the opti-

mal policy and policy value of a single-objective decision problem — inside the inner

most loops of the single-objective algorithms are replaced with appropriate pruning

operators and cross-sums between sets of value vectors. Inner loop algorithms are as

problem-specific as the single-objective algorithms on which they are based. The sec-

ond approach is the outer loop approach, in which a series of scalarized problems are

solved using the single-objective method as a subroutine in order to incrementally build

up the CCS for a multi-objective problem. Because these single-objective subroutines

can be left unchanged, outer loop methods are generic frameworks: they can apply to

any (scalarizable) multi-objective decision problem. Important disadvantages of exist-

ing outer loop methods however, include that they often do not converge to the exact

CCS, except for in the limit, and that there are no quality bounds for the intermediate

approximate CCSs. Therefore, we propose a new outer loop method: the optimistic

linear support (OLS) framework.

The OLS framework takes inspiration from the POMDP literature (and specifically

Cheng’s linear support algorithm (Cheng, 1988)), to exploit the piecewise linearity

and convexity of the scalarized value function (under linear scalarization) in multi-

objective decision problems. OLS is an outer loop approach, and thus solves a series

of scalarized problems, for different (linear) scalarization weights w. At each itera-
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tion, OLS identifies the single weight vector w that can lead to the maximal possible

improvement on a partial CCS it has already identified, and calls a single-objective

subroutine to solve a scalarized instance of the problem for w. By doing so, OLS

is guaranteed to terminate in a finite number of iterations. Furthermore, when the

single-objective subroutine is exact, i.e., guaranteed to find the optimal policy for the

scalarized instance of the problem, OLS is guaranteed to return the exact CCS. Before

termination, OLS can bound the quality loss if the partial CCS it has identified so far

would be used to approximate the exact CCS, in terms of lost scalarized value. In other

words, it is an anytime algorithm, for which each intermediate CCS is an ε-CCS. We

have shown empirically (for MO-CoGs in Chapter 4) that it is often possible to produce

an ε-CCS in a fraction of the time it takes to produce an exact CCS, even for small ε.

When exact single-objective subroutines are not available, OLS can also function

in combination with approximate single-objective subroutines. When such an approx-

imate subroutine produces a bounded approximation with at most ε error, OLS is guar-

anteed to produce an ε-CCS upon termination. We have provided practical examples

of this in the context of MO-CoGs (Chapter 4) and MOPOMDPs (Chapter 5).

Often, OLS can be further improved by reusing the policies, value functions, or

other artifacts produced by the single-objective subroutines during earlier iterations

of OLS to hot-start the single-objective subroutines in later iterations. The precise

information that can be reused depends on the problem. We have shown the reuse of

a representation of the value function in the form of α-matrices in MOPOMDPs to be

particularly effective in Chapter 5.

When we compare inner loop algorithms and OLS-based algorithms that use the

same single-objective methods as a basis/subroutine, we observe that inner loop algo-

rithms typically scale better in the number of objective of a multi-objective decision

problem, and OLS-based algorithms scale better in the size of the scalarized problems

(such as the number of agents in a (MO-)CoG). We therefore conclude that inner loop

and outer loop methods are complementary in this respect. However, the inner loop

methods are typically not anytime, and need to run until completion before producing

a result. Additionally, contrary to inner loop methods, OLS imposes very little addi-

tional memory demands in addition to the memory demands of the single-objective

subroutines it employs. This can be a deciding factor when memory is limited, as we

have shown in the context of MO-CoGs in Chapter 4. Furthermore, while it is rela-

tively easy to replace a subroutine in OLS (as we show for example in Chapter 5 in the

context of large MOMDPs), it is typically far from trivial to create a new inner loop

method based on a different single-objective algorithm.

We conclude that OLS is a framework that can be applied in the context of differ-

ent multi-objective decision problems (with relatively little effort if a single-objective

subroutine is available), is faster than corresponding inner loop methods for small and

medium objectives, and typically uses less memory than inner loop methods.

We believe that the advantages of OLS can be exploited in many future CCS plan-

ning methods. Especially when real-world problems require the usage of problem-

specific solution methods, we argue that OLS provides a fast and relatively low-effort
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option for creating a multi-objective solution method.

6.1.2 Problem-specific contributions

In this dissertation, we have made contributions to three classes of decision problems:

multi-objective coordination graphs (MO-CoGs), multi-objective Markov decision pro-

cesses (MOMDPs) and multi-objective partially observable Markov decision processes

(MOPOMDPs).

Multi-objective coordination graphs

For MO-CoGs, we have proposed five novel algorithms: convex multi-objective vari-

able elimination (CMOVE), convex AND/OR tree search (CTS), variable elimination

linear support (VELS), AND/OR tree search linear support (TSLS) and variational op-

timistic linear support (VOLS). The first two are inner loop methods, while the last

three are outer loop methods that build on optimistic linear support (OLS).

We noted that it is possible to take the inner loop approach when building upon

single-objective methods whose core operations consist of maximizations and summa-

tions, such as variable elimination and AND/OR tree search. However, when the core

operations are different, such as for variational methods — in which reparameteriza-

tions and restructuring of the set of local payoff functions form the core operations —

it is not clear how to take an inner loop approach. It is always possible to take an outer

loop approach for MO-CoGs, as it can use a complete and unchanged single-objective

solver as a subroutine, and evaluate the multi-objective value of joint actions that are

produced by this subroutine. An example of this is our VOLS algorithm, which builds

on OLS and employs variational methods as subroutines. Because OLS inherits both

quality and memory guarantees from the single-objective subroutines it employs, OLS

opens up the way to creating multi-objective methods with favorable quality and mem-

ory properties from single-objective methods to which an inner loop approach does

not apply. We consider this an important advantage in the context of MO-CoGs as its

scalarized version, i.e., the single-objective CoG1, is a large and active field of research

that has produced many such methods. Furthermore, because it takes relatively little

effort to plug in a new subroutine into OLS, it offers an attractive framework to create

state-of-the-art multi-objective methods.

We compared the inner loop methods we propose to their corresponding OLS-

based methods. Specifically, we compared CMOVE to VELS and CTS to TSLS. We

showed both theoretically and empirically that OLS-based methods scale better in the

number of agents in terms of runtime, while inner loop methods scale better in the

number of objectives. We showed — both theoretically and empirically — that OLS-

based methods perform better overall in terms of memory requirements than inner loop

methods.

1Or equivalents of the CoG, such as finding the MAP in probabilistic graphical models (Pearl, 1988).
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We have shown that OLS-based algorithms are anytime, and that any intermediate

solution set during the execution of an OLS-based algorithm is an ε-CCS, as long as

the quality bounds of the single-objective method are known. We have used this result

to show empirically, e.g., using VELS, that we can produce ε-CCSs in a fraction of

the runtime that is required to produce an exact CCS. Furthermore, when the single-

objective subroutine, such as the variational subroutine in VOLS, is not exact, but

does produce an ε-approximate solution, that OLS inherits this quality guarantee and

can produce an ε-CCS. This is a major advantage, as (MO-)CoGs are NP-hard, and

therefore most state-of-the-art solvers are approximate.

We have shown with VOLS, that it is possible to reuse parts of the solutions/artifacts

produced by single-objective variational subroutines in earlier iterations of OLS, in or-

der to hot-start the variational subroutine in later iterations. Specifically, VOLS reuses

the restructured and reparameterized set of local payoff functions that variational meth-

ods produce. We have shown empirically that this can lead to better runtime and/or

quality results.

When we compare our outer and inner loop methods in terms of runtime, mem-

ory usage, and quality guarantees, we note that exact methods (CMOVE, CTS, VELS

and TSLS) have runtimes that depend exponentially on the induced width. Of these

exact methods, VELS is typically fastest and when the number of objectives is low or

medium, and TSLS is most memory-efficient. For higher number of objectives, inner

loop methods are typically faster than outer loop methods; CMOVE scales better than

VELS in the number of objectives, but has poor memory guarantees; CTS has better

memory usage than CMOVE but is slower. OLS-based outer loop methods are always

more memory-efficient than their inner loop counterparts. Compared to exact methods,

VOLS scales much better in the number of agents, i.e., the runtime does not increase

exponentially with the number of agents. However, VOLS only produces an ε-CCS.

Summarizing, we have proposed an analyzed five novel algorithms for MO-CoGs

that compute a (approximate) CCS. Our methods offer different trade-offs between

runtime, memory usage, and quality guarantees.

Multi-objective MDPs

For MOMDPs, we have demonstrated the efficacy of OLS when the MOMDP is very

large. In order to illustrate this we have made use of the maintenance planning problem

(MPP) (Scharpff et al., 2013; Roijers et al., 2014a; Scharpff et al., 2015, 2016). The

MPP is notoriously hard due to its large state and action space. Therefore, the exist-

ing methods for the single-objective version of the MPP exploit the specific problem

structure of the MPP; the SPUDD and UCT∗ algorithms employ a problem-specific en-

coding (Scharpff et al., 2013) while the CoRe algorithm (Scharpff et al., 2016) — that

was proposed only recently — exploits the transition independence between features

of the state-space.

We have shown that it possible to create planning methods that compute the CCS

for problems like the MPP by using state-of-the-art, possibly problem-specific, single-
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objective solvers as subroutines inside OLS. Because it is relatively easy to exchange

subroutines (but not to create inner loop methods from new single-objective methods),

we conclude that especially for problems that require a problem-specific approach,

OLS is key to the creation of effective multi-objective planning methods.

Multi-objective POMDPs

In this dissertation, we proposed, analyzed, and tested optimistic linear support with

alpha reuse (OLSAR). Because OLSAR uses the OLS framework, it intelligently se-

lects a sequence of scalarized POMDPs to solve in order to solve MOPOMDPs. As

far was we are aware, this is the first MOPOMDP planning method that computes the

CCS and reasonably scales in the number of states of the MOPOMDP.

We have shown how to represent the value function (in the belief b and the scalar-

ization weight w) in terms of α-matrices. OLSAR uses this representation. The single-

objective subroutine we propose for OLSAR is OLS-compliant Perseus (OCPerseus),

a scalarized MOPOMDP solver that returns the multi-objective value of the policies

it finds, as well as the α-matrices that describe them. A key insight underlying OL-

SAR is that the α-matrices produced by OCPerseus can be reused in subsequent calls

to OCPerseus. This α-reuse greatly reduces runtimes in practice. Furthermore, since

OCPerseus returns ε-optimal policies, OLSAR is guaranteed in turn to return an ε-

CCS. Our experimental results show that OLSAR greatly outperforms alternatives that

do not use OLS and/or α-matrix reuse.

6.2 Discussion and Future Work

In this section, we critically review the work in this dissertation, and identify opportu-

nities for future work.

6.2.1 On the sufficiency of the taxonomy

In Chapter 2, we introduced a taxonomy based on the utility-based approach. We

assumed the existence of a utility or scalarization function, f .

In this dissertation we have restricted f to monotonically increasing functions in

all objectives. We argue that this is a minimal assumption because it simply states

that increasing the value with respect to one objective without diminishing the others,

cannot decrease the scalarized value. This — in our view — corresponds to what we

mean by ‘objective’. However, it is possible to have a preference ordering over value

vectors, without there being an f that corresponds to it. When preference is based on a

lexicographical ordering, i.e., even an infinitesimal improvement in an objective with a

higher priority is better than a large improvement in an objective with a lower priority,

and the rewards are vectors in ℜn, there is no f : ℜn → ℜ that corresponds to this
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(Sen, 1995). Therefore, lexicographical orderings falls outside of our mathematical

formalism.

We have used one special case of f , namely the linear (and monotonically increas-

ing) scalarization function. However, there are more special cases of f corresponding

to different preference orderings described in the literature. For example, when certain

“fairness” constraints are imposed on f this leads to the Lorenz front (Perny et al.,

2013), which is a subset of the Pareto front. We have not identified this, or other, ad-

ditional constraints that can be imposed on f . However, it would be useful for future

work in multi-objective decision making to have an overview of such constraints, and

especially in what type of situations they occur.

6.2.2 Scalarized expectation of return versus expectation of scalar-

ized return

In Section 1.1 in Definition 1, we defined the scalarized value of a policy, π, to be

the result of applying the scalarization function f to the multi-objective value V
π,

i.e., V π
w
(s) = f(Vπ(s),w). Since V

π(s) is typically itself an expectation, this means

that the scalarization function is applied after the expectation is computed, e.g., for

MOMDPs (Definition 33):

V π
w
(s) = f(Vπ(s),w) = f(E[

∞
∑

k=0

γk
rk | π, s0 = s],w).

This formulation, which we refer to as the scalarization of the expected return (SER)

is standard in the literature. However, it is not the only conceivable option. It is also

possible to define V π
w
(s) as the expectation of the scalarized return (ESR), e.g., for

MOMDPs:

V π
w
(s) = E[f(

∞
∑

k=0

γk
rk,w) | π, s0 = s]

Which definition is used can critically affect which policies are preferred. For

example, consider the following 2-objective infinite-horizon MOMDP, illustrated in

Figure 6.1. There are four states (A, B, C, and D). The agent starts in state A and has

two possible actions: a1 transits to state B or C, each with probability of 0.5, and a2
transits to state D with probability 1. Both actions lead to a (0, 0) reward. In states B,

C and D there is only one action, which leads to a deterministic reward of (3, 0) for B,

(0, 3) for C, and (1, 1) for D.

The scalarization function just multiplies the two objectives together if the value in

both objectives is greater than 0, and is 0 otherwise. Thus for this MOMDP with only

positive rewards, the scalarized value under SER is,

V π
w
(s) = V π

1 (s)V
π
2 (s),
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Figure 6.1: An MOMDP with two objectives and four states.

and under ESR,

V π
w
(s) = E[

(

∞
∑

k=0

γkr1k

)(

∞
∑

k=0

γkr2k

)

| π, s0 = s],

where rik is the reward for the i-th objective on timestep k (w is not needed in this

example since f involves no constants). If π1(A) = a1 and π2(A) = a2, then the

multi-objective values are V
π1(A) = (1.5γ/(1 − γ), 1.5γ/(1 − γ)) and V

π2(A) =
(γ/(1− γ), γ/(1− γ)).

Under SER, this leads to scalarized values of V π1(A) = (1.5γ/(1 − γ))2 and

V π2(A) = (γ/(1 − γ))2 and consequently π1 is preferred. Under ESR, however, we

have V π1(A) = 0 and V π2(A) = (γ/(1− γ))2 and thus π2 is preferred.

Intuitively, the SER formulation is appropriate when the policy will be used many

times and return accumulates across episodes, for example because the same user is

using the policy each time. Then, scalarizing the expected reward makes sense and π1

is preferable because in expectation it will accumulate more return in both objectives.

However, if the policy will only be used a few times or the return does not accu-

mulate across episodes, for example because each episode is conducted for a different

user, then the ESR formulation seems more appropriate. In this case, the expected re-

turn before scalarization is not of interest and π2 is preferable because π1 will always

yield zero scalarized return on any given episode.

Another question that is related to this issue is whether or not to allow stochastic

policies, i.e., when a policy will be used many times and return accumulates across

episodes, as we argued for the SER formulation, then it also seems logical to allow

stochastic policies in order to increase the scalarized expected return. When a policy

will only be used a few times or the return does not accumulate across episodes, as

we argued for the ESR formulation, it also seems inappropriate to allow stochastic

policies.
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To our knowledge, there is no literature on multi-objective decision-theoretic plan-

ning and learning that employs the ESR formulation, even though there are many real-

world scenarios in which it seems more appropriate. For example, in the medical

application of Lizotte et al. (2010), each patient gets only one episode to treat his or

her illness, and needs to balance the effectiveness of the treatment against the severity

of the side-effects. Therefore, the patient clearly interested in maximizing ESR, not

SER. Thus, we believe that developing methods for the ESR formulation is a critical

direction for future research in multi-objective decision making.

6.2.3 Other decision problems

For the MO-CoG, MOMDP and MOPOMDP models we propose new algorithms.

However, there are more possible collaborative MODPs, that extend SODPs from Fig-

ure 2.2 that have been studied in the literature. We briefly discuss those models here,

and how they are related to the previously discussed MODPs.

Firstly, collaborative Bayesian games (CBGs) (Oliehoek et al., 2012) are single-

shot, multi-agent models like CoGs. Unlike CoGs however, each agent receives a

private observation, called a type θ, before it needs to act. The distributions over types

for each agent are common knowledge. Deterministic policies in a CBG specify for

an action for each agent for every type of that agent. CBGs can be flattened to a large

CoG by for enumerating the possible mappings from types to actions for each agent and

seeing these mappings as that agent’s local action space,Ai. This same reduction could

be made for a multi-objective version of a CBG to a MO-CoG. CBGs are often used as

a subproblem in the sequential version of the problem, the Dec-POMDP (MacDermed

and Isbell, 2013).

The class of multi-agent, sequential, and partially observable collaborative mod-

els is called the multi-agent Markov decision process (MMDP) model in the single-

objective-setting. Similar to flattening a CoG into a BP, by treating the team of agents

as one central agent with a very large action space, an MMDP can be flattened to a very

large MDP, as we have mentioned in Section 5.2 for the maintenance planning prob-

lem. However, the joint state and action spaces of an MMDP are exponentially sized

in the number of agents, so solving an MMDP in such a centralized manner, is typi-

cally infeasible. Therefore, MMDPs can — in general — only be exactly solved for

small numbers of agents (e.g., Scharpff et al. (2015)). For larger MMDPs, approximate

methods are required. These approximate methods — an overview of which is given

by Spaan et al. (2011) — either rely on an artificial factorization of the value func-

tion (Guestrin et al., 2002), or decentralization, which leads to a partially observable

problem setting. At present, decentralized approximation methods typically do not

provide bounds with respect to the approximation quality due to decentralization. It

may be an interesting research possibility to try and construct methods that do provide

such bounds. Once such methods are invented, their quality bounds will immediately

transfer to the multi-objective setting, when they are used as a subroutine inside OLS.

The class of multi-agent, sequential, and partially observable collaborative mod-
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els is known as the decentralized partially observable Markov decision process (Dec-

POMDP) (Bernstein et al., 2002; Oliehoek, 2010) model in the single-objective setting.

Recently, major strides in solving Dec-POMDPs have been made. In particular, it has

been shown that there is a reduction from Dec-POMDP to a special type of centralized

POMDP called a non-observable Markov decision process (NOMDP) (MacDermed

and Isbell, 2013; Nayyar et al., 2013; Dibangoye et al., 2013; Oliehoek and Amato,

2014). This allows POMDP solution methods to be employed in the context of Dec-

POMDPs. For multi-objective Dec-POMDPs (MO-Dec-POMDPs), the reduction to

NOMDPs is potentially very useful as well. Specifically, an equivalent reduction from

an MO-Dec-POMDP to a multi-objective NOMDP (MONOMDP) could be made, for

which the OLSAR algorithm that we propose for MOPOMDPs in Section 5.3 would

apply.

6.2.4 Other aspects of decision problems

Aside from the aspects that are discussed in Section 1.3, there are several other orthog-

onal aspects that are studied in the literature, such as continuous time (Van Hasselt,

2012; de Sousa Messias, 2014) and non-Markovian states (Das et al., 1999). These

aspects are in principle compatible with our approach. Models in which there are

multiple self-interested or even adversarial agents (Brown et al., 2012; Wiggers et al.,

2015) however, are not compatible with our approach, as Assumption 1 — on which

our methods rely — does not hold in these settings. It would be interesting to investi-

gate whether an outer loop approach may still be interesting in self-interested settings

by analyzing the properties of the scalarized value function of these problems.

6.2.5 Reuse in OLS and scalability in the number of objectives

As we have mentioned several times in this dissertation, OLS works well when the

number of objectives is low. OLS scales poorly in the number of objectives because

the number of calls to the single objective solver depends on the number of corner

weights, which is exponential in the number of objectives (Theorem 5).

As we have seen in Section 5.3, when we employ reuse (Section 3.6), the effort for

corner weights for which no new value is found can be drastically reduced in practice

by hot-starting the single-objective subroutine. For MOPOMDPs this is even vital to

keep the planning problem tractable.

In this dissertation, we have not yet made a theoretical analysis of the effect of

reuse and its effect on the scalability in the number of objectives. Intuitively, when the

single-objective method terminates immediately after a hot-start when no new value

vector can be identified this reduces the runtime to the runtime of the single-objective

solver times the number of solutions in the final CCS. In practice however, the single-

objective solver will need some time to determine whether improvements can be found.

Furthermore, as we have seen in VOLS in Section 4.4.6, reuse is not always guaranteed

to improve the runtime for every run of the single-objective solver.
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In future work, we aim to provide an analysis of the effect of reuse upon runtime

— and specifically on the scalability in the number of objectives — in different OLS-

based methods when it can be proven that: the single-objective solver used terminates

in one iteration (as in OLSAR) or when an extra check to confirm the optimality of

a partial CCS for a new w can be introduced, and that reuse can only improve the

runtime of the single-objective solver.

6.2.6 Decision makers in the loop

In this dissertation we have assumed that we know the constraints on the scalarization

function, f , produce a coverage set by running a planning algorithm, and only in a

separate selection phase present that coverage set to the decision maker. There are

however two issues with this workflow: first, the coverage set might be too large for a

decision maker to analyze, and second, we might be doing a lot of unnecessary work

because the constraints on f are too loose.

An interesting way to mitigate both issues is to involve the decision maker while

planning, i.e., when we produce intermediate results during the planning phase, we

might elicit more preference information from the decision maker by asking questions

about these intermediate results (Benabbou and Perny, 2015). We believe that this

particularly compatible with OLS, as decision makers can be presented with values of

complete policies from the partial CCS, S , between iterations of OLS. The answers

that the user provides can be used by OLS to quickly reduce the interesting region of

the weight space, leading to large speed ups.
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A novel adaptive weight selection algorithm for multi-objective multi-agent rein-

forcement learning. In IJCNN 2014: Proceedings of the 2013 International Joint

Conference on Neural Networks, pages 2306–2314.

Vlassis, N., Elhorst, R., and Kok, J. (2004). Anytime algorithms for multiagent de-

cision making using coordination graphs. In IEEE SMC 2004: Proceedings of the

2004 IEEE International Conference on Systems, Man and Cybernetics, volume 1,

pages 953–957.

Vlassis, N., Ghavamzadeh, M., Mannor, S., and Poupart, P. (2012). Bayesian rein-

forcement learning. In Wiering, M. A. and Van Otterlo, M., editors, Reinforcement

Learning: State-of-the-Art, volume 12 of Adaptation, Learning, and Optimization,

pages 359–386. Springer Berlin/Heidelberg.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families,

and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–

305.

White, C. C. and Kim, K. M. (1980). Solution procedures for solving vector criterion

Markov decision processes. Large Scale Systems, 1:129–140.

White, D. (1982). Multi-objective infinite-horizon discounted Markov decision pro-

cesses. Journal of Mathematical Analysis and Applications, 89(2):639 – 647.

Whiteson, S. and Roijers, D. M. (2015). Multi-objective decision making. In IJCAI

2015 tutorials.

Wiering, M. A. and Van Otterlo, M. (2012). Reinforcement learning: State-of-the-art.

In Adaptation, Learning, and Optimization, volume 12. Springer.



152 BIBLIOGRAPHY

Wiering, M. A., Withagen, M., and Drugan, M. M. (2014). Model-based multi-

objective reinforcement learning. In ADPRL 2014: Proceedings of the IEEE Sympo-

sium on Adaptive Dynamic Programming and Reinforcement Learning, pages 1–6.

Wiggers, A. J., Oliehoek, F. A., and Roijers, D. M. (2015). Structure in the value func-

tion of zero-sum games of incomplete information. In MSDM 2015: Proceedings

of the AAMAS Workshop on Multi-Agent Sequential Decision Making in Uncertain

Domains.

Wilson, N., Razak, A., and Marinescu, R. (2015). Computing possibly optimal so-

lutions for multi-objective constraint optimisation with tradeoffs. In IJCAI 2015:

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-

ligence, pages 815–821.

Witwicki, S. J. and Durfee, E. H. (2010). Influence-based policy abstraction for

weakly-coupled Dec-POMDPs. In ICAPS 2010: Proceedings of the Twentieth In-

ternational Conference on Automated Planning and Scheduling, pages 185–192.

Wray, K. H. and Zilberstein, S. (2015). Multi-objective POMDPs with lexicographic

reward preferences. In IJCAI 2015: Proceedings of the Twenty-Fourth International

Joint Conference on Artificial Intelligence, pages 1719–1725.

Yahyaa, S. Q., Drugan, M. M., and Manderick, B. (2014). The scalarized multi-

objective multi-armed bandit problem: an empirical study of its exploration vs. ex-

ploitation tradeoff. In IJCNN 2014: Proceedings of the 2014 International Joint

Conference on Neural Networks, pages 2290–2297.

Yeoh, W., Felner, A., and Koenig, S. (2010). BnB-ADOPT: An asynchronous branch-

and-bound DCOP algorithm. Journal of Artificial Intelligence Research, 38:85–133.

Zintgraf, L. M., Kanters, T. V., Roijers, D. M., Oliehoek, F. A., and Beau, P. (2015).

Quality assessment of MORL algorithms: A utility-based approach. In Benelearn

2015: Proceedings of the Twenty-Fourth Belgian-Dutch Conference on Machine

Learning.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Da Fonseca, V. G. (2003).

Performance assessment of multiobjective optimizers: An analysis and review. IEEE

Transactions on Evolutionary Computation, 7(2):117–132.



Abstract

Decision making is hard. It often requires reasoning about uncertain environments,

partial observability and action spaces that are too large to enumerate. In such com-

plex decision-making tasks decision-theoretic agents, that can reason about their envi-

ronments on the basis of mathematical models and produce policies that optimize the

utility for their users, can often assist us.

In most research on decision-theoretic agents, the desirability of actions and their

effects is codified in a scalar reward function. However, many real-world decision

problems have multiple objectives. In such cases the problem is more naturally ex-

pressed using a vector-valued reward function. Rather than having a single optimal

policy, we then want to produce a set of policies that covers all possible preferences

between the objectives. We call such a set a coverage set.

In this dissertation, we focus on decision-theoretic planning algorithms that pro-

duce the convex coverage set (CCS), which is the optimal solution set when either: 1)

the user utility can be expressed as a weighted sum over the values for each objective;

or 2) policies can be stochastic.

We propose new methods based on two popular approaches to creating planning

algorithms that produce an (approximate) CCS by building on an existing single-

objective algorithm. In the inner loop approach, we replace the summations and max-

imizations in the inner most loops of the single-objective algorithm by cross-sums and

pruning operations. In the outer loop approach, we solve a multi-objective problem as

a series of scalarized problems by employing the single-objective method as a subrou-

tine.

Our most important contribution is an outer loop framework that we call optimistic

linear support (OLS). As an outer loop method OLS builds the CCS incrementally.

We show that, contrary to existing outer loop methods, each intermediate result is

a bounded approximation of the CCS with known bounds (even when the single-

objective method used is a bounded approximate method as well) and is guaranteed

to terminate in a finite number of iterations.

We apply OLS-based algorithms to a variety of multi-objective decision problems,
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and show that it is more memory-efficient, and faster than corresponding inner loop

algorithms for moderate numbers of objectives. We show that exchanging subroutines

in OLS is relatively easy and illustrate the importance on a complex planning problem.

Finally, we show that it is often possible to reuse parts of the policies and values, found

in earlier iterations of OLS, to hot-start later iterations of OLS. Using this last insight,

we propose the first method for multi-objective POMDPs that employs point-based

planning and can produce an ε-CCS in reasonable time.

Overall, the methods we propose bring us closer to truly practical multi-objective

decision-theoretic planning.



Samenvatting

Beslissingen nemen is moeilijk. Het is vaak nodig om te redeneren over onzekerheid

in de omgevingsdynamiek, partiële observeerbaarheid en actieruimtes die te groot zijn

om te enumereren. In zulke complexe beslistaken kunnen beslistheoretische agents,

die aan de hand van mathematische modellen over omgevingen kunnen redeneren en

policies kunnen formuleren die het nut voor de gebruiker optimaliseren, ons helpen.

In het meeste onderzoek over beslistheoretische agents wordt de wenselijkheid van

acties en de gevolgen daarvan geëncodeerd in een scalaire beloningsfunctie. Echter,

veel realistische beslisproblemen hebben meerdere doelen tegelijk, waardoor het natuur-

lijker is om vectoren als beloning te gebruiken. In plaats van een enkele optimale po-

licy, willen wij in dit geval een verzameling van policies genereren die alle mogelijke

voorkeuren met betrekking tot de doelen dekt. Wij noemen dit een coverage set.

In dit proefschrift, focussen wij op belistheoretische planalgoritmes die een convex

coverage set (CCS) produceren. De CCS is de optimale oplossing als: 1) het nut voor

de gebruiker uitgedrukt kan worden als een gewogen som over de verschillende doelen;

of 2) stochastische policies zijn toegestaan.

Wij stellen nieuwe methodes voor met behulp van twee methodes voor het creëren

van CCS-planalgoritmes op basis van bestaande enkeldoelige algoritmes. Bij binnen-

loopaanpak vervangen wij de sommaties en maximisaties in de binnenste loops van

het algoritme door cross sums en pruningoperaties. In de buitenloopaanpak, lossen we

een meerdoelig beslisprobleem op als een serie gescalariseerde problemen, waarbij we

het enkeldoelige algoritme als subroutine gebruiken.

Onze belangrijkste bijdrage is een buitenloop-framework dat we optimistic linear

support (OLS) noemen. Als buitenloopmethode bouwt OLS de CCS iteratief op. We

laten zien dat, in tegenstelling tot bestaande buitenloopmethodes, op elk tussenresultaat

van OLS een benaderingsgarantie gegeven kan worden (zelfs als de enkeldoelige sub-

routine zelf een benaderingsalgoritme is), en dat OLS binnen een eindig aantal iteraties

termineert.

We passen op OLS gebaseerde algoritmes toe op verschillende meerdoelige beslispro-

blemen en tonen aan dat OLS zuiniger met geheugen is, en sneller is dan overeenkom-
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stige binnenloopalgoritmes voor gematigte hoeveelheden doelen. We laten zien dat

het vervangen van subroutines binnen OLS relatief eenvoudig is, en tonen het belang

daarvan aan met een complex planprobleem. Als laatste laten we zien dat het vaak

mogelijk is om delen van in eerdere iteraties gevonden policies en waarden daarvan te

hergebruiken in latere iteraties, om de enkeldoelige subroutines een vliegende start te

geven. Gebruik makend van dit laatste inzicht, stellen wij de eerste planmethode voor

meerdoelige POMDPs voor die gebruik maakt van point-based planalgoritmes en een

ε-CCS kan produceren binnen redelijke tijd.

De methodes die wij in dit proefschrift voorstellen brengen ons dichter bij in de

praktijk makkelijk toepasbare meerdoelige beslistheoretische planalgoritmes.
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Overview of Publications

Conforming to the regulations of the University of Amsterdam, we provide an overview

of the publications of the author (Diederik M. Roijers) that were used as the basis for

this dissertation. In accordance with the regulations, we mention the contributions of

the author of this dissertation on these publications.

We note that it is difficult to attribute the ideas to a single author as we did a lot of

brainstorming and iterated many times to improve our initial ideas, for all our papers

and articles.

Core Publications

These are the papers on which this disseration is based:

• Roijers et al. (2013a) — In this article, we (Diederik M. Roijers, Peter Vamplew,

Shimon Whiteson and Richard Dazeley) survey the field of decision-theoretic

planning and learning in multi-objective Markov decision processes. We use

part of the literature survey in Section 5.1.1 of this dissertation. While writing

the survey article, Diederik Roijers and Shimon Whiteson focussed on the utility-

based approach, the scenario’s and the taxonomy (that we use in Chapters 1

and 2 in this dissertation), as well as some of the future work (including the

ESR formulation, that we use in Section 6.2.2). Most of the initial ideas for

these topics were first conceived by the Diederik Roijers. Note however, that we

did a lot of brainstorming and iterated many times to improve our initial ideas.

Peter Vamplew and Richard Dazeley focussed on the literature overview and the

applications. All authors provided feedback on all sections of the article.

• Roijers et al. (2013b) and Roijers et al. (2013c) — In these two papers we

(Diederik M. Roijers, Shimon Whiteson and Frans A. Oliehoek) first propose

the CMOVE algorithm (Section 4.3.1). Although the idea of CMOVE was al-

ready conceived in the project proposal, before Diederik Roijers was hired as the

main researcher on this topic, he contributed some of the core elements of the
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CMOVE algorithm and the paper, such as the tagging scheme, the analysis in

terms of the size of the intermediate coverage sets, the implementation, and the

experiments.

• Roijers et al. (2014b) — In this paper, we (Diederik M. Roijers, Shimon White-

son and Frans Oliehoek) first proposed OLS (Chapter 3), in the context of MO-

CoGs (Chapter 4). Diederik Roijers was the primary researcher; the other au-

thors provided support and feedback.

• Roijers et al. (2014a) — In this paper, we (Diederik M. Roijers, Joris Scharpff,

Matthijs T.J. Spaan, Frans A. Oliehoek, Mathijs de Weerdt and Shimon White-

son) extend OLS to be able to handle bounded approximate single-objective sub-

routine (as we describe in Section 3.5), as well as a different outer loop method

that we do not treat in this dissertation. The (initial version of the) correct-

ness proof for approximate OLS was constructed in a brainstorm session with

Diederik Roijers, Joris Scharpff and Mathijs de Weerdt. In this paper, the work

was divided more or less evenly between the first two authors, Diederik Roijers

focussing more on the algorithmics, and Joris Scharpff more on the implemen-

tation and experiments; the other authors provided support and feedback.

• Roijers et al. (2015b) — In this article, we (Diederik M. Roijers, Shimon White-

son and Frans Oliehoek) collect our findings for MO-CoGs (Chapter 4) from our

earlier work (i.e., CMOVE and VELS), and propose the memory-efficient algo-

rithms CTS and TSLS. Diederik Roijers was the primary researcher; the other

authors provided support and feedback.

• Roijers et al. (2015c) —In this paper, we (Diederik M. Roijers, Shimon White-

son and Frans Oliehoek) propose the OLSAR algorithm (Section 5.3), and the

general idea for reuse in OLS (Section 3.6). Diederik Roijers was the primary

researcher; the other authors provided support and feedback.

• Roijers et al. (2015a) — In this paper, we (Diederik M. Roijers, Shimon White-

son, Alex Ihler and Frans Oliehoek) propose the VOLS algorithm (Section 4.4.5).

Diederik Roijers was the primary researcher; the other authors provided support

and feedback. Alex Ihler provided the single-objective solver code (WMB).

Other Papers

There are two more papers that have been (partially) used in this dissertation:

• Zintgraf et al. (2015) — In this paper, we (Luisa M. Zintgraf, Timon V. Kanters,

Diederik M. Roijers, Frans A. Oliehoek and Philipp Beau) use the utility-based

approach to prove a bound on the utility loss of ε-PCSs, and propose a gener-

alized MOMDP benchmark problem. The results of the proof were included in
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Section 2.1.3. Luisa Zintgraf focussed on the proof. Timon Kanters and Philipp

Beau focussed on the benchmark. Diederik Roijers and Frans Oliehoek provided

feedback and were involved in brainstorm sessions; this work was done in the

context of a student project supervised by Diederik Roijers and Frans Oliehoek.

• Scharpff et al. (2016) — In this paper, we (Joris Scharpff, Diederik M. Roijers,

Frans A. Oliehoek, Matthijs T.J. Spaan, and Mathijs M. de Weerdt) propose

the CoRe algorithm, which we use as a single-objective subroutine inside OLS

in Section 5.2. Joris Scharpff had the lead on this paper. Joris Scharpff and

Diederik Roijers did most of the research. Diederik Roijers’ focus was mainly

on the algorithmics. The other authors provided support and feedback.
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