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and  
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A new approach, Multi-Objective Design Exploration (MODE), is presented to address 

Multidisciplinary Design Optimization problems. MODE reveals the structure of the design 

space from the trade-off information and visualizes it as a panorama for Decision Maker. 

The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective 

Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of 

this approach is visual data mining. Two data mining examples using high fidelity simulation 

codes are presented: four-objective aerodynamic optimization for the fly-back booster and 

Multidisciplinary Design Optimization problem for a regional-jet wing. The first example 

confirms that two different data mining techniques produce consistent results. The second 

example illustrates the importance of the present approach because design knowledge can 

produce a better design even from the brief exploration of the design space.   

I. Introduction 

This paper discusses a new approach for Multidisciplinary Design Optimization (MDO). MDO has been a 

rapidly growing area of research.1-3 Thanks to these pioneering works, researchers in Computational Fluid Dynamics 

(CFD) are getting interested in MDO research as well. MDO research is still expanding because high fidelity CFD 

codes are becoming available with the aid of increasing computer power.  

A typical MDO problem involves competing objectives, for example in the aircraft design, minimization of 

aerodynamic drag, minimization of structural weight, etc. While single objective problems may have a unique 

optimal solution, multi-objective problems (MOPs) have a set of compromised solutions, largely known as the trade-

off surface, Pareto-optimal solutions or non-dominated solutions.4 These solutions are optimal in the sense that no 

other solutions in the search space are superior to them when all objectives are considered (Fig. 1).  

Traditional optimization methods such as the gradient-based methods5,6 are single objective optimization 

methods that optimize only one objective. These methods usually start with a single baseline design and use local 

gradient information of the objective function with respect to changes in the design variables to calculate a search 

direction. When these methods are applied to a MOP, the problem is transformed into a single objective 

optimization problem by combining multiple objectives into a single objective typically using a weighted sum 

method. For example, to minimize competing functions f1 and f2, these objective functions are combined into a 

scalar function F as 

 2211 fwfwF ⋅+⋅=   (1) 
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This approach, however, can find only one of the Pareto-optimal solutions corresponding to each set of the 

weights w1 and w2. Therefore, one must run many optimizations by trial and error adjusting the weights to get 

Pareto-optimal solutions uniformly over the potential Pareto-front. This is considerably time consuming in terms of 

human time. What is more, there is no guarantee that uniform Pareto-optimal solutions can be obtained. For example, 

when this approach is applied to a MOP that has concave trade-off surface, it converges to two extreme optimums 

without showing any trade-off information between the objectives (Fig. 2). To overcome these difficulties, Normal-

Boundary Intersection Method7 and Aspiration Level Method8 were developed. 

An alternative approach to solve MOP is to find as many Pareto-optimal solutions as possible to reveal trade-off 

information among different objectives. Once such solutions are obtained, Decision Maker (DM) will be able to 

choose a final design with further considerations. Evolutionary Algorithms (EAs, for example, see Refs. 9 and 10) 

are particularly suited for this purpose.  

Evolutionary Algorithm is a generic name for population-based optimization methods, such as Genetic 

Algorithms (GAs), Evolutionary Strategies (ESs), Genetic Programming (GP), etc.11 EAs simulate the mechanism of 

natural evolution, where a biological population evolves over generations to adapt to an environment. Fitness, the 

individual, and genes in the evolutionary theory correspond to the objective function, design candidate, and design 

variables in design optimization problems, respectively. 

EAs have been extended successfully to solve MO problems.12 EAs use a population to seek optimal solutions in 

parallel. This feature can be extended to seek Pareto solutions in parallel without specifying weights between the 

objective functions. Because of this characteristic, EAs can find Pareto solutions for various problems having 

convex, concave and discontinuous Pareto front. The resultant Pareto solutions represent global trade-offs.  In 

addition, EAs have other advantages such as robustness and suitability for parallel computing. Due to these 

advantages, EAs have been applied to MOPs very actively (EMO proceedings). EAs have been also applied to 

single objective and multi-objective aerospace design optimization problems.13-19  
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Figure 1 The concept of Pareto-optimality      Figure 2 Weighted-sum method applied to a MOP 

                    having a convex Pareto-front 

 

This approach of finding many Pareto solutions works fine as it is, however, only when the number of objectives 

remains small (usually two, three at most, as shown in Fig. 3). To reveal trade-off information from the resultant 

Pareto front for real-world problems with many objectives, visualization of the Pareto front becomes an issue. 

Several techniques have been considered, such as parallel coordinates,20 box plot,21 and Self-Organizing Map 

(SOM).22 The importance of visualization of design space is also discussed in Ref. 23. Because such visualization is 

a tool for data mining, data mining is found very important in this approach. 

To support data mining activities, response surfaces are found versatile. Once the surface is constructed, it can be 

used for statistical analysis, for example, analysis of variance (ANOVA).24 ANOVA shows the effect of each design 

variables on objective functions quantitatively while SOM shows the information qualitatively. When the response 

surface method (RSM) is introduced for data mining as post-process of optimization, it can be applied to pre-process 

of optimization as a surrogate model, 25-27 too. Pre-process has been an important aspect of introduction of surrogate 

models because it would reduce the computational expense greatly, while it would produce rich non-dominated 
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solutions efficiently. In this paper, surrogate models are introduced for both pre- and post-processes. However, it 

should be noted that RSM is needed for post-process primarily. EAs may be applied from the beginning in parallel 

to building the surrogate model. If function evaluations are very cheap, EAs may also be applied directly.  

As a result, the new approach for MDO named as Multi-Objective Design Exploration (MODE) can be 

summarized as a flowchart shown in Fig. 4.  MODE is not intended to give an optimal solution. MODE reveals the 

structure of the design space from the trade-off information and visualizes it as a panorama for DM. DM will know 

the reason for trade-offs from non-dominated designs, instead of receiving an optimal design without trade-off 

information. 

The rest of the paper will explain the components of MODE used in our group, although the concept of MODE 

can be coupled with other RSM and optimization algorithms. Examples of data mining17,24,28  will be given briefly.  
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Figure 3 Visualization of Pareto front 

 

 
Figure 4 Flowchart of Multi-Objective Design Exploration (MODE) with component algorithms 

 

Define design space 

Construct surrogate model 

Find non-dominated front 

Check the model and front 

Extract design knowledge   

Choose sample points 

Parameterization: PARSEC, B-Spline, etc. 

Design of Experiment: Latin Hypercube 

Response Surface Method: Kriging Model 

Optimization: Adaptive Range Multi Objective 

Genetic Algorithms 

Uncertainty Analysis: Expected Improvement based on 

Kriging Model, statistics of design variables, etc.  

Data Mining: Analysis of Variance, Self-Organizing 

Map, etc. 
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II. Surrogate Model  

A. Kriging Model 

The present Kriging model expresses the unknown function y(x) as  

 )()( xx Zy += μ  (2) 

where x is an m-dimensional vector (m design variables), μ is a constant global model, and Z(x) represents a local 

deviation from the global model. In the model, the local deviation at an unknown point is expressed using stochastic 

processes. The sample points are interpolated with the Gaussian correlation function to estimate the distribution of 

the function value at the unknown point. The correlation between Z(xi) and Z(xj) is strongly related to the distance 

between the two corresponding points, xi and xj. In the Kriging model, a special weighted distance is used instead of 

the Euclidean distance because the Euclidean distance weighs all design variables equally. The distance function 

between the point at xi and xj is expressed as           

   
2

1
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k
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k
ji xxd −=∑

=

θx,x     (3) 

where θk (0≦θk≦∞) is the kth element of the parameter θ. The correlation between the point xi and xj is defined as 

 ( )[ ] [ ]),(exp),( jiji dZZCorr xxxx −=   (4) 

The Kriging predictor27,29 is  

 )ˆ(ˆ)(ˆ 1 μμ 1yRrx −′+= −y  (5) 

Where μ̂  is the estimated value of μ, R denotes the n×n matrix whose (i, j) entry is Corr[Z(xi), Z(xj)]. r is vector 

whose ith element is 

 [ ])(),()( i
i ZZCorrr xxx ≡    (6) 

and y=[y(x1),……,y(xn)]. 

The unknown parameter, θ, for the Kriging model can be estimated by maximizing the following likelihood 

function: 
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where 1 denotes an m-dimensional unit vector.  

Maximization of the likelihood function is an m-dimensional unconstrained non-linear optimization problem. In 

this paper, the alternative method30 is adopted to solve this problem.  

For a given θ, μ̂ and 2σ̂ can be defined as  

  
1R1
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The accuracy of the estimated value on the Kriging model largely depends on the distance from the sample 

points. Intuitively speaking, the closer point x is to the sample points, the more accurate ( )xŷ is. This intuition is 

expressed in the mean squared error of the predictor.  
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s2(x) is the mean squared error at point x, indicating the uncertainty of the estimated value. 
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B. Exploration of Global Optimum and Treatment of Constraints on the Kriging model 

Once the approximation model is constructed, the optimum point can be explored using an arbitrary optimizer. 

However, there is a possibility of missing the global optimum because the estimated value includes uncertainty.  

 

 

Figure 5 The objective function and the approximation model 

In Fig. 5, the solid line is for the real shape of the objective function and the dotted line is for the approximation 

model. The minimum point on the approximation model is located near x=9, whereas, the real global minimum of 

the objective function is situated near x=4. Exploration of global minimum using the approximation model is apt to 

result in the local minimum. For a robust search of the global optimum on the approximation model, the uncertainty 

information is very useful. 

 

Figure 6 The estimated value and the standard error of the Kriging model 

 

Figure 6 shows the estimated value and the standard error (uncertainty) of the Kriging model. Around x=9.5, the 

standard error of the Kriging model is very small because there are many sample points around this point. Thus, the 

confidence interval is very short as shown in Fig. 6. On the other hand, the standard error around x=3.5 is very large 

due to the lack of sample points around there. Thus, the confidence interval at this point is very wide. The lower 

bound of this interval is smaller than current minimum on the Kriging model. Thus, it can be said that this point has 

some probability of being the global minimum.  

The probability of being the global optimum concept can be expressed by the criterion of ‘expected 

improvement (EI)31. In case of a minimization problem, the EI is express as follows: 

 
[ ]

  
                                otherwise                      0

 )0,-max(      )( if            )(
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yffxyxyf

xI  (11) 
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)()()( min

f

dyyyfIE φ   (12) 

whereφis the probability density function representing uncertainty about y. By selecting the maximum EI point as 

additional sample points of the Kriging model iteratively, the robust exploration of the global optimum is possible. 

Then, if there are constraint as follows,  
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 kibxca iii ,,1       )( L=≤≤   (13) 

 EI subject to constraints is expressed as follows: 
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In order to evaluate Eq. (14), the multivariate normal distribution ),,,( 1 kccy ⋅⋅⋅⋅φ , which is very complicated, 

should be specified. Thus, in this paper, we assume that y, c1, c2, ···,ck are statistically independent in order to 

simplify Eq. (14).  

The modified Eq. (14) is as follows  
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  (15) 

In order to calculate this value, the Kriging model is constructed for the objective function and all constraint 

functions separately. On the Kriging model of objective function, EI is calculated, and on the Kriging models of 

constraints, the probability to satisfying each constraint is calculated. Based on these values, the next additional 

point for balanced local and global search is selected, while satisfying the constraints. 

 

III. Adaptive Range Multi-Objective Genetic Algorithms  

Pareto solutions and Pareto front are exact solutions by definition. Because it is difficult to show that numerical 

solutions are exact, numerical solutions and the corresponding front are usually called as non-dominated solutions 

and non-dominated front, respectively. They are non-dominated among the solutions generated by the computation 

(Fig. 7).  

Except for the introduction of range adaptation operator, the present ARMOGAs’ operators15 are the same as the 

MOEAs.9 Therefore, each genetic operator of the MOEAs adopted here is firstly explained. Then the unique 

procedure of ARMOGAs is described in this chapter. 

 
Figure 7 Definition of Pareto solutions and non-dominated solutions 

Pareto front (exact) 

Approximate Pareto front 

Pareto solutions (exact) 

Non-dominated solutions (numerical) 

Non-dominated front (numerical) 

Extreme Pareto solutions (exact) 

Utopia 
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A. Algorithm of Multi-Objective Evolutionary Algorithms 

1. Binary and Floating-Point Representation 

As GAs originally simulated natural evolution, binary numbers were often used to represent design parameter 

values. However, for real function optimizations, such as aerodynamic optimization problems, it is more 

straightforward to use real numbers. Thus, the floating-point representation is adopted here.  

 

2. Coding and Decoding 

GAs require both phenotype and genotype design variables. The phenotype design variable represents the actual 

design variables, such as length, angle, shape, etc. On the other hand, the genotype design variable is a binary 

number (Binary GAs) or a real number in [0,1] (Real-coded GAs). The operators of many GAs require genotype 

representation of design parameters. Therefore, actual design variables (phenotype representation) must be 

converted to the genotype representation. The conversion from phenotype to genotype is called “coding,” and 

conversely, the conversion from genotype to phenotype is “encoding.” For real-parameter design problems, such as 

aerodynamic optimizations, it is not favorable to use binary representation. One reason for this is that phenotype 

design space is not continuous by binary representation. 

For the present floating-point representation, i-th design parameter pi is coded to genotype value ri, which is 

normalized in [0,1]: 

 

minimaxi

minii
i

pp

pp
r

,,

,

−
−

=  (16) 

 

3. Initial Population 

The results of GAs can be affected by the initial population if the number of individuals per generation is small. 

It would be better to generate initial individuals in a wide range of design spaces. Here, the initial population is 

generated randomly. 

 

 4. Evaluation 

As GAs use only objective-function values for optimization, no modification of evaluation tools is required. In 

addition, it is easy to apply Master-Slave type parallelization systems to conserve computational resources because 

GAs do not have to compute design candidates sequentially, unlike gradient-based method. 

 

5. Selection 

GAs choose superior individuals as parents to generate new design candidates. Therefore, selection has a large 

influence on search performance of GAs. For single-objective optimizations, as the aim is to obtain the best solution, 

selection is based on the fitness value given by the objective-function value. However, Pareto-optimal solutions 

must be obtained for MO optimization. To obtain Pareto solutions effectively, each individual is assigned a rank 

based on the Pareto ranking method and fitness sharing. In the present MOEAs, Fleming and Fonseca’s Pareto-

ranking method12 is adopted. Each individual is assigned a rank according to the number of individuals dominating 

it, as shown in Fig. 8. The fitness value (Fi) of individual i is assigned based on the following equation: 

 ( )1)(5.0)(
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1
−−−= ∑ −

= i

R

k
i RkNF

i μμ  (17) 

where N is the number of solutions, and μ(Ri) is the number of solutions in rank Ri. Thereafter, the standard sharing 

approach is adopted to prevent choosing similar solutions as parents and to maintain diversity of the population. The 

assigned fitness values are divided by the niche count: 
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Here, niche count nci is calculated by summing the sharing function values: 
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where uk is the maximum objective-function value of k at the present generation, lk is the minimum objective-

function value of k at the present generation, and α is the sharing function parameter. If the distance between 

individuals i and j is lower than σshare, then niche count increases to reduce the fitness of the solution. The 

normalized niching parameter σshare is proposed as follows: 

  (22) 

where N is the size of the population and M is the number of objective functions. 

After shared fitness values are determined for all individuals, the stochastic universal selection (SUS) is applied 

to select better solutions for producing a new generation. Unlike roulette wheel selection method, only one random 

number is chosen for the whole selection process for SUS. As many different solutions should be chosen to maintain 

the diversity, a set of N equi-spaced numbers is created. 

f1

f2 1
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Figure 8 Pareto ranking method (Rank 1 means non-dominated solutions) 

  

6. Crossover 

Crossover is an operator that interchanges the genotype parameters of selected parents and produces two 

different design candidates. Probability of crossovers and crossover method markedly affect the search performance 

of GAs.  

For the binary representation, crossover interchanges the bit strings of selected parents. However, many 

crossover methods have been proposed for real-parameter GAs. Simulated binary crossover (SBX) operator9 creates 

offspring based on the distance between the parents. If the two parents are closely related to each other, SBX is 

likely to generate new offspring near the parents. On the other hand, if the two parents are more distantly related, it 

is possible for solutions to be created away from the parents. This operator is described as follows: 

 Child1 = 0.5 [(1+βq)⋅Parent1 + (1–βq)⋅Parent2 ] (23a) 

 Child2 = 0.5 [ (1–βq)⋅Parent1 + (1+βq)⋅Parent2 ] (23b) 
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7.  Mutation 

Mutation maintains diversity and expands the search space by changing the design parameters. If the mutation 

rate is high, a GA search is close to a random search and results in slow convergence. Therefore, an adequate value 

is required for the mutation rate. For binary representation, mutation is performed to reverse the bit strings. It is not 

as simple for real-coded GAs as for binary GAs. This is realised by adding disturbances to the design parameters.  

( ) ( )M
share

M

share N σσ =−+ 11



AIAA-2005-4666 
Revised Aug. 22, 2007 

 

American Institute of Aeronautics and Astronautics 

 

9

Polynomial mutation, which is similar to the SBX operator described in previous section, has been proposed9:  

 Childmutation = Childcrossover + (xmax–xmin)⋅δ (24) 

where δ is calculated from the polynomial probability distribution:  
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where ran2 is a uniform random number in [0,1]. A value of ηm determines the perturbation size of mutation. 

 

8. Archiving 

To obtain Pareto solutions efficiently, it would be better to include past excellent solutions as current solutions. 

In the present MOEAs, two archiving techniques are combined. The first is the Best-xN technique, which keeps the 

latest better solutions and parent generation of (x-1)N size and uses these solutions for the selection process. The 

second is the standard archiving technique, which is comprised of all previous solutions to prevent the loss of 

previous excellent solutions. These two methods are combined in the present MOEAs as shown in Fig. 9. The 

procedure is as follows: 

1. Fitness values based on the fitness assignment operators are assigned to the present population and the 

Best-xN group. Here, x is set to 2. 

2. According to the fitness value, the top N individuals are chosen for the next step. In addition, the top (x-1)N 

individuals are preserved as the Best-xN group.  

3. Fitness values are assigned to chosen N individuals.  

4. SUS is used to select the parents. Then, crossover and mutation are applied to generate new individuals. 

5. Several individuals from the Best-xN group are replaced by the same number of individuals from the 

archives.  

Archiving

(all solutions)

Present population

[N individuals]

Fitness assignment

[xN individuals]

Best-xN

[(x-1)N individuals]

Selection 

for top N population

Fitness assignment

[N individuals]

Selection 

for mating pool

Crossover and 

mutation

Better 

individuals

 
 

Figure 9 Archiving procedure used in the present MOEAs 

 

9.  Constraint-Handling Technique 

In many real-world problems, it is common to have several constraints. Many constraint-handling techniques 

have been proposed, however, it is not easy for GAs to solve constrained-problems compared to gradient-based 

methods. A popular and easy constraint-handling strategy is the penalty function approach in which a penalty value 

is added to the objective-function value if the design violates the constraint. Although several penalty functions have 

been proposed, it is difficult to choose appropriate penalty values a priori. 

In the present MOEAs, an extended Pareto ranking method based on constraint-dominance is used. Constraint-

dominance is defined as follows9:  

A solution xi is said to ‘constrain-dominate’ a solution xj, if any of the following conditions are true: 

1. xi is feasible and xj is not. 
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2. xi and xj are both infeasible, but xi has a smaller constraint violation. 

3. xi and xj are feasible and xi dominates xj in the usual sense. 

Figure 10 shows the example of a Pareto ranking method based on constraint-dominance for the two-objective 

minimization problem with one constraint. Based on this approach, it would be easy to generate new offspring that 

satisfy the constraints because feasible solutions are likely to be chosen as the parents. However, it is possible for 

good solutions to lie close to the edge of the feasible and infeasible region in many industrial problems. Therefore, 

an adequate tolerance of the constraint (ctol) should be introduced to the constraint violation: 

 G – ctol ≤ 0 (26) 

where G is an original constraint less than zero. As the tolerance ctol is introduced, solutions having smaller violation 

than ctol are assumed to be feasible for constraint-dominance. This enables EAs to search for solutions near the 

boundary between feasible and infeasible solutions.  

To consider the aerodynamic optimization using time-consuming CFD, it is unfavorable to generate many 

violated candidates. If it is possible to determine that the solution violates constraints before CFD computation, such 

as geometrical constraints (length, angle, etc.), it is possible to prevent generating such solutions, as it would be a 

waste of computation time in CFD. In the case of aerodynamic optimization, it would be better to take account of 

the above problem.  

f2

1

1 1

27

4

f1

Feasible
Infeasible

Constraint

6
8

Pareto front

f2

1

1 1

27

4

f1

Feasible
Infeasible

Constraint

6
8

Pareto front
 

Figure 10 Example of constrain-dominance. 

B. Algorithm of Adaptive Range Multi-Objective Genetic Algorithms 

To reduce the large computational burden, the reduction of the total number of evaluations is needed. On the 

other hand, a large string length is necessary for real parameter problems. Oyama developed real-coded ARGAs and 

applied them to the transonic wing optimization.14 According to the encoding system based on normal distribution 

(Fig. 11) built by population statistics consisting of better designs computed before, ARGAs can find a good optimal 

design efficiently.  

The basis of ARMOGAs is the same as ARGAs, but a straightforward extension may cause a problem in the 

diversity of the population. Therefore, ARMOGAs have been developed based on ARGAs to deal with multiple 

Pareto solutions for the multi-objective optimization. In addition, archiving and constraint-handling techniques are 

considered to select better solutions to decide new search range. 

This section describes genetic operators of ARMOGAs. ARMOGAs differ from MOEAs described above with 

regard to the application of range adaptation. Therefore, before starting range adaptation, the MOEAs and 

ARMOGAs in the present study are identical. A flowchart of ARMOGAs is shown in Fig. 12. The range adaptation 

starts at Msa generation and is carried out every Mra generations. The new decision space is determined based on the 

statistics of selected better solutions, and then the new population is generated in the new decision space. Thereafter, 

all the genetic operators are applied to the new design space. 

ARMOGAs are able to find Pareto solutions more efficiently than conventional MOEAs because of the 

concentrated search of the promising design space out of the large, initial design space. ARMOGAs can adapt their 
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search region as shown in Fig. 13. In contrast, the search region of conventional EAs remains unchanged. The 

encoding system is based on the normal distribution with the plateau region as shown in Fig. 14. The selected 

designs locate in the plateau region, and the normal distribution region is determined based on the population 

statistics to better preserve the diversity of solution candidates. Re-initialization helps to maintain the population 

diversity.  

 

ri 

−∞ +∞ pn,i0

pi=μi pi

Probability 

xi

 
Figure 11 Normal distribution for encoding in real-coded ARGAs 

 

Initial population

Evaluation

Selection

Crossover

Mutation

Termination criteria

Sampling

Range adaptation

Re-initialisation

Archive

 

Figure 12 Flowchart of ARMOGAs 

 

x1L x1U 

Probability 
Probability 

x x 

x1L x1U 

Superior solution 

Inferior solution Search region 

Search region 

 
 

(a) Conventional MOEAs                (b) ARMOGAs 
 

Figure 13 Sketch of search region 
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Probability 

pi,min 

pi 

I II
αr < ri < 1−αr 

III

μi μi−fli μi+fli

0 ≤ ri ≤ αr 

pi,max 

1−αr ≤ ri ≤ 1

 

Figure 14 Sketch of probability distribution of phenotype design variable pi in ARMOGAs 

1. Sampling for Range Adaptation 

Range adaptation needs to select superior solutions to determine the new design space based on the statistics. 

The solutions, which have higher fitness values based on Pareto ranking method, are selected to determine the 

reasonable search range. It would be better to select many solutions to prevent the creation of new search regions 

that do not include the global optimum. On the other hand, many solutions for range adaptation generally interfere 

with the decrease in size of the search space. The solutions are selected at random according to their fitness given by 

the following solution sets:  

1. PRnon% non-dominated solutions from all solutions. (PRnon=100) 

2. PRarc% solutions from the archive. (PRarc=0) 

3. PRprs% solutions from the latest generation. (PRprs=0) 

4. PRvio% solutions that violate the constraint. (PRvio=1, at least one design) 

Solution set 4 is introduced to search near the boundary between feasible and infeasible solutions, as the global-

optimum for constraint problems is often located there. According to the amount of violation, violated designs are 

sampled. The probabilities in bracket are used in this optimization. In this case, only non-dominated solutions with 

several infeasible designs are selected to determine new design range. 

 

2. Range Adaptatoin 

In the ARMOGAs, the search region is changed according to the population statistics of the average and the 

standard deviation. The range adaptation adopts the Normal distribution to search global solutions efficiently. Figure 

11 shows the Normal distribution used for encoding in the real-coded ARGAs. The real value of the i-th design 

variable pi is encoded to a real number ri defined in (0,1) such that ri is equal to the integrations of the normal 

distribution from -∞ to pn,i: 

 ∫ ∞−
=

inp

i dzzNr
,

))(1,0(  (27a) 

 

i

ii
in

p
p

σ
μ−

=,  (27b) 

where μi is the average of the i-th design variable, and σi is the standard deviation of the i-th design variable. 

The basic idea of encoding system in ARMOGAs is the same as for real-coded ARGAs, but a straightforward 

extension is not suitable in diversity of the population. To better preserve the diversity of solution candidates, the 

Normal distribution for encoding has to be changed.  

Figure 14 shows the search range with the distribution of probability. The search region is partitioned into three 

parts, I, II, and III. Regions I and III make use of the same encoding method as ARGAs. The real value of the i-th 

design variable Pi is encoded to a real number ri defined in (0,1). In contrast, region II adopts the conventional real-

number encoding method. The plateau region (region II) is defined by the upper and lower design variables of 

chosen solutions. Then, the normal distribution is considered at both sides of the plateau determined by the average 

(μi) and the standard deviation (σi). This encoding system is controlled by the parameters αr and fli, where αr (<0.5) 
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is the population ratio at region I and fli is half the length of the plateau at region II. The encoding is conducted at 

each region described below: 

Region I (pi ≤ μi − fli, 0 ≤ ri ≤ αr): 

 iri rr ′⋅= α  (28a) 

 ∫ ∞−
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inp
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))(1,0(  (28b) 
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Region II (μi − fli < pi < μi + fli , αr < ri < 1−αr): 

 riri rr αα +′⋅−= )21(  (28d) 
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Region III (μi + fli ≤ pi, 1−αr ≤ ri ≤ 1): 
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IV. Data Mining 

A. ANOVA 

ANOVA is one of the data mining techniques showing the effect of each design variable to the objective and the 

constraint functions in a quantitative way. ANOVA uses the variance of the model due to the design variables on the 

approximation function. By decomposing the total variance of model into the variance due to each design variable, 

the influence of each design variable on the objective function can be calculated. The decomposition is 

accomplished by integrating out the variables of model ŷ .  

The total mean )ˆ( totalμ  and variance ( )2ˆ
totalσ of model ŷ  are as follows:  

  ∫ ∫ ⋅⋅⋅⋅⋅⋅⋅⋅≡ nntotal dxdxxxy 11 ),......,(ˆμ̂     (29)       

  [ ]∫ ∫ ⋅⋅⋅⋅−⋅⋅⋅⋅= nntotal dxdxxxy 1
2

1
2 ˆ),......,(ˆˆ μσ   (30) 

The main effect of variable xi is   

 ∫ ∫ −⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≡ +− μμ ˆ),,(ˆ)(ˆ
1111 niinii dxdxdxdxxxyx   (31) 

The variance due to the design variable xi is 

 ( )[ ] iii dxx
2

ˆ∫ μ   (32) 

The proportion of the variance due to design variable xi to the total variance of the model can be expressed by 

dividing Eq. (32) by Eq. (30). 

  
( )[ ]
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⋅⋅⋅⋅−⋅⋅⋅⋅ nn
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1
2

1

2

ˆ),......,(ˆ

ˆ

μ

μ
  (33) 

This value indicates how much effect design variable xi gives to the objective function ŷ . 
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B. Self-Organizing Map (SOM) 

 

1. General SOM algorithm 

SOM is an unsupervised learning, nonlinear projection algorithm32,33 from high to low-dimensional space. This 

projection is based on self-organization of a low-dimensional array of neurons. In the projection algorithm, the 

weights between the input vector and the array of neurons are adjusted to represent features of the high dimensional 

data on the low-dimensional map.  The closer two patterns are in the original space, the closer is the response of two 

neighboring neurons in the low-dimensional space. Thus, SOM reduces the dimension of input data while preserving 

their features.  

A neuron used in SOM is associated with weight vector mi= [mi1, mi2, ……,min] (i=1,….,M) where n is equal to 

the dimension of input vector and M is number of neuron. Each neuron is connected to adjacent neurons by a 

neighborhood relation and usually forms two-dimensional rectangular or hexagonal topology as shown in Fig. 15. 

 

                        
(a)Rectangular                                               (b) Hexagonal 

 

Figure 15 Topology used in SOMs 

 

The learning algorithm of SOM is started with finding the best-matching unit (mc) which is closest to the input 

vector x as follow: 

 ),,1(       min Mkkc LL=−=− mxmx    (34) 

Once the best-matching unit is determined, the weight adjustments are performed not only for the best-matching unit 

but also for its neighbors. The adjustment depends on the distance (similarity) between the input vector and the 

neuron. Based on the distance, the best-matching unit and its neighboring become closer to the input vector as 

shown in Fig. 16. The weight vectors are situated in the cross of the solid lines. The best-matching unit is the weight 

vector who is closest to the input vector x. The best-matching unit and its neighbors are adjusted to be closer to the 

input vector x. The adjusted topology is represented with dashed lines. Repeating this learning algorithm, the weight 

vectors become smooth not only locally but also globally. Thus, the sequence of close vectors in the original space 

results in a sequence of the corresponding neighboring neurons in the two-dimensional map.  

 

 
 

Figure 16 Adjustment of the best-matching unit and its neighbors 
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2. Kohonen’s Batch-SOM 

In this investigation, SOMs are generated by using commercial software Viscovery○RSOMine plus 4.034 produced 

by Eudaptics GmbH. Although SOMine is based on the general SOM concept and algorithm, it employs an 

advanced variant of unsupervised neural networks, i.e. Kohonen’s Batch SOM. The algorithm consists of two steps 

that are iterated until no more significant changes occur: search of the best-matching unit ci for all input data {xi} 

and adjustment of weight vector {mj} near the best-matching unit. The Batch-SOM algorithm can be formulated as 

follows:  

 ji
j

ic mx −= minarg   (35) 
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where *

jm  is the adjusted weight vector. The neighborhood relationship between two neurons j and k is defined by 

the following Gaussian-like function:  
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where djk denotes the Euclidean distance between the neuron k and the neuron j on the map, and rt denotes the 

neighborhood radius which is decreased with the iteration steps t.   

The standard Kohonen algorithm adjusts the weight vector after all each record is read and matched. On the 

contrary, the Batch-SOM takes a ‘batch’ of data (typically all records), and performs a ‘collected’ adjustment of the 

weight vectors after all records have been matched. This is much like ‘epoch’ learning in supervised neural networks. 

The Batch-SOM is a more robust approach, since it mediated over a large number of learning steps. In the SOMine, 

the uniqueness of the map is ensured by the adoption of the Batch-SOM and the linear initialization for input data. 

Much like some other SOMs, SOMine creates a map in a two-dimensional hexagonal grid. Starting from numerical, 

multivariate data, the nodes on the grid gradually adapt to the intrinsic shape of the data distribution. Since the order 

on the grid reflects the neighborhood within the data, features of the data distribution can be read off from the 

emerging map on the grid. The trained SOM is systematically converted into visual information. 

 

3. Cluster Analysis 

Once the high-dimensional data projected on the two-dimensional regular grid, the map can be used for 

visualization and the data mining. It is efficient to group all neurons by the similarity to facilitate SOM for the 

qualitative analysis, because number of neurons on the SOM is large as a whole. This process of grouping is called 

‘clustering’  

Hierarchical agglomerative algorithm is used for the clustering here. First, each node itself forms a single cluster 

and two clusters, which are adjacent in the map, are merged in each step. The distance between two clusters is 

calculated by using the SOM-ward distance.30 The number of clusters is determined by the hierarchical sequence of 

clustering. A relatively small number of clusters are used for visualization, while a large number are used for the 

generation of weight vectors for respective design variables.  

V. Data Mining Results 

A. Fly-back Booster of Reusable Launch Vehicle (RLV) Design
24

   

The first example considers the four-objective aerodynamic optimization for the fly-back booster using high 

fidelity CFD code. The resulting non-dominated front reveals trade-offs in the design space. Two different data 

mining techniques were applied to the resulting non-dominated front to examine whether they will produce 

consistent results. Although it is difficult to validate data mining results in general, this example gives a verification 

of the present data mining approach.  

Geometry of the fly-back booster used in the present optimization is shown in Fig. 17(a). The design variables 

used to define wing shape are related to planform, airfoil, wing twist and relative wing position to fuselage. A wing 

planform is determined by five design variables as shown in Fig. 17(b). Airfoil shapes are defined at wing root, kink 
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and tip, respectively, by using thickness and camber distributions. Both distributions are parameterized by using 

Bezier curves and linearly interpolated in the spanwise direction. Wing twist in refined by using a B-spline curve 

with six control points. Relative position of the wing root to the fuselage is parameterized by x and z coordinates of 

the leading edge, angle of attack and dihedral angle. Total 71 design variables are used to wing geometry definition. 

 

  

 
 

Figure 18 Typical flight sequence for TSTO fly-back booster 

 

According to the trajectory analysis, the separation of the booster and orbiter takes places around Mach 3 and the 

booster turns over, slows down, cruise at transonic speed and lands at subsonic speed as shown in Fig. 18. In order 

to maintain good aerodynamic performances in wide flight range, the following 4 objective functions are considered 

in this design.  

1. Minimization of the difference between supersonic pitching moment and transonic pitching moment. 

 
TRANSONIC
M

SUPERSONIC
M pp

CCF −=1   (38) 

2. Minimization of the pitching moment at the transonic flight conditions 

 
TRANSONIC
M p

CF =2    (39) 

3. Minimization of the drag at the transonic flight conditions 

 
TRANSONIC
DCF =3  (40) 

4. Maximization of the lift at the subsonic flight conditions 

 
SUBSONIC
LCF =4   (41) 

As the optimizer, ARMOGA is used without a surrogate model. The population size of the present ARMOGA is 

8 and 40 generations are performed. Figure 19 shows 102 non-dominated solutions obtained by ARMOGA. 

        
 

(a) Overview                                      (b) Definition of wing planform 

 
Figure 17 Geometry of fly-back booster 
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However, it is difficult to understand the feature of design space from the Fig. 19. For the better understand of the 

design space, ANOVA and SOM are performed with 102 non-dominated solutions.  

 
Figure 19 Non-dominated solutions projected onto three-dimensional objective function space  

 

1. ANOVA 

ANOVA is performed for four objective functions to analyze the non-dominated front. Variance of design 

variables and their interactions whose proportion to the total variance is over than 1.0% are shown in Fig. 20. 

 

                  

                  

Figure 20 ANOVA results 
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 According to the results, dv7 (x coordinate of relative wing position to fuselage) gives the largest effect on the 

objective functions F1 and F2. About F3 and F4, dv18 (rearward camber height at kink) gives the largest effect. dv7 

and dv18 are illustrated in the Fig. 21. These findings correspond to the aerodynamic knowledge. 

 

     
 

(a) x coordinate of relative wing position to fuselage (dv7)   (b) rearward camber height at kink (dv18) 

 
Figure 21 Illustrations of dv7 and dv18 

 

2. SOM 

SOM is also applied to the non-dominated front. Figure 22 show the resulting SOM colored by respective 

objective functions. The plots for F1 and F2 show similar color patterns. Roughly speaking, F1 and F2 can be 

minimized simultaneously, and thus they are not in the trade-off relation. On the other hand, although the plots for 

F3 and F4 show the similar color distribution, F3 and F4 are in a severe trade-off relation because F3 should be 

minimized but F4 should be maximized.  

 

 
Figure 23 shows SOM colored by three design variables (dv7, dv18 and dv15). In Fig. 23(a), colored by dv7, 

large dv7 values can be found at the lower left corner. This area corresponds to large F1 and F2 values as shown in 

Figs. 22(a) and 22(b). This means that large dv7 values lead to poor performances of F1 and F2. In Fig 23(b), colored 

by dv18, large dv18 values can be found in the left-hand side. This color pattern is very similar to those for F3 and 

F4 as shown in Figs. 22(c) and 22(d). This means that large dv18 values lead to large F3 and F4 values. These results 

suggest that dv7 has a large effect on the objective functions F1 and F2 and that dv18 has a large effect on the 

               
(a) F1                                                       (b) F2 

               
(c) F3                                                     (d) F4 

 

Figure 22 SOM colored by respective objective functions  
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objective functions F3 and F4. In Fig. 23(c), colored by dv15 (x coordinate of forward at kink), there is no noticeable 

trend of color distribution. This means that dv15 has little influence on the objective functions. These results are 

coincident with the results of ANOVA. The results indicate that ANOVA shows the effect of each design variables 

on objective functions quantitatively while SOM shows the information qualitatively. 

 

 

B. MDO for Regional-Jet Wing
17

 

Data mining for a large-scale, real-world MDO problem is shown here. Because high fidelity CFD solvers are 

desired for transonic wing design, the computational cost for MDO will be enormous. In this example, instead of 

searching for the optimal solution, we have applied ARMOGA to explore the design space briefly. The optimization 

process was stopped when improvements were observed in all objectives. Then, SOM was applied to visualize the 

design space by using all the solutions computed so far. Based on the observation, a new wing design has been 

suggested and the resulting wing has been confirmed to outperform the other computed solutions. This illustrates the 

importance of the present approach because design knowledge can produce a better design even from the brief 

exploration of the design space. 

 

1. Multidisciplinary Wing Design  

• Objective Functions 

In this optimization, minimization of the block fuel at a required target range derived from aerodynamics and 

structures is considered as the primary objective function. In addition, two more objective functions are considered: 

minimization of the maximum takeoff weight and minimization of the drag divergence between transonic and 

subsonic conditions. 

• Geometry Definition 

The design variables describe airfoil, twist, and wing dihedral. The airfoil was defined at three spanwise cross-

sections using the modified PARSEC with nine design variables (xup, zup, zxxup, xlo, zlo, zxxlo, TEα , TEβ , and rLElo/rLEup) 

for each cross-section as shown in Fig. 24. The twists were defined at six spanwise locations, and then wing 

dihedrals are defined at kink and tip locations. The entire wing shape was thus defined using 35 design variables. 

 

 
 

Figure 24 Illustration of the modified PARSEC airfoil definition 

 

      
(a) dv7                                       b) dv18                                      (c) dv15                   

 

Figure 23 SOM colored by three design variables 



AIAA-2005-4666 
Revised Aug. 22, 2007 

 

American Institute of Aeronautics and Astronautics 

 

20

• Evaluation Method 

The present ARMOGA generates eight individuals per generation, and evaluates aerodynamic and structural 

properties of each design candidate as follows: 

1. Structural optimization is performed to jig shape to realize minimum wing weight with constraints of 

strength and flutter requirements using NASTRAN. And then, weights of wing box and carried fuel are 

calculated.  

2. Static aeroelastic analysis is performed at thee flight conditions to determine the aeroelastic deformed shapes 

(1G shape) using Euler solver and NASTRAN. 

3. Aerodynamic evaluations are performed for the 1G shapes using a N-S solver. 

4. Flight envelope analysis is performed using the properties obtained as above to evaluate the objective 

functions. Using the objective functions, the optimizer generates new individuals for the next generation via 

genetic operations, such as selection, crossover, and mutation. 

 

2. Optimization Results 

The population size was set to eight, and then roughly 70 Euler and 90 N-S computations were performed in one 

generation. It took roughly one and nine hours of CPU time on NEC SX-5 and SX-7 per PE for single Euler and N-S 

computations, respectively. The population was re-initialized every five generations for the range adaptation. A total 

evolutionary computation of 19 generations was carried out. The evolution did not converge yet. However, the 

results are satisfactory because several non-dominated solutions have achieved significant improvements over the 

initial design. Furthermore, a sufficient number of solutions are searched so that the sensitivity of the design space 

around the initial design can be analyzed. 

  Figure 25 shows all solutions projected on a two-dimensional plane between two objectives, the block fuel and 

the drag divergence. The non-dominated front is formed, indicating the trade-off between the block fuel and the drag 

divergence. All solutions projected on two-dimensional planes between other combinations are shown in Figs. 26, 

and 27. As the non-dominated solutions did not comprise a front, these figures indicate that there are no global 

trade-offs between these combinations of the objective functions. 

The comparison between initial and optimized geometries is investigated. Although the wing box weight tends to 

increase as compared with that of the initial geometry, the block fuel can be reduced. Thus, the aerodynamic 

performance can redeem the penalty due to the structural weight. An individual on the non-dominated front shown 

in Fig. 25 is selected, indicated as ‘optimized’, and then the optimized geometry is compared with the initial 

geometry. 

  Although the drag minimization is not considered here, CD is reduced. By comparison of the polar curves at 

constant CL for the cruising condition, CD of the optimized geometry is found to be reduced by 5.5 counts. Due to the 

improvement of the drag, the block fuel of the optimized geometry is decreased by over one percent even with its 

structural weight penalty. 

 
Figure 25 All solutions on two-dimensional plane between block fuel and drag divergence 
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Figure 26 All solutions on two-dimensional plane between block fuel and maximum takeoff weight 

 
Figure 27 All solutions on two-dimensional plane between maximum takeoff weight and drag divergence 

 

3. Data Mining by SOM 

Detailed flow visualization for the optimized geometry indicates that the main drag reduction is achieved at the 

kink location. However, the optimized geometry has inverted gull at the kink. Figure 28(a) shows the SOM colored 

by the angle between inboard and outboard on the upper wing surface for the gull-wing at the kink location. Angles 

greater and less than 180 deg correspond to gull and inverted gull-wing, respectively. Higher values of this angle as 

shown in Fig. 28(a) correspond to higher CD at the transonic cruising flight condition as shown in Fig. 28(b). 

However, at angles less than 180 deg, there is little correlation between Fig. 28(a) and 28(b). The inverted gull did 

not affect aerodynamic performance very much. Furthermore, SOM also shows that higher angles shown in Fig. 

28(a) correspond to higher maximum takeoff weights as shown in Fig. 28(c). The inverted gull-wing is known to 

have a structural weight increase, which is also observed in the present results. From the visualization of the design 

space by SOM, it is suggested that non-gull wings should be designed even though the optimized geometry has 

inverted gull. 
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                                  (a)                                                               (b)                (c) 

Figure 28  SOM; (a) colored by the angle on upper surface expressing the gull-wing at the kink location, (b) colored by CD 

under transonic cruising flight condition, (c) colored by the maximum takeoff weight. 

 

4. Evaluation of the Non-Gull Geometry 

The optimized wing shape has been modified to examine the non-gull wing shape (called as ‘optimized_mod’) 

can achieve better performance and to verify the design knowledge obtained by the previous data mining. 

The result is shown in Figs. 29 to 31. These figures show that optimized_mod improves both block fuel and 

maximum takeoff weight. Moreover, by comparison of the polar curves at constant CL for cruising condition shown 

in Fig. 32, CD of optimized_mod is found to be reduced by 10.6 counts over the initial geometry. Due to the 

improvement of drag, the block fuel of optimized_mod is reduced by 3.6 percent. 

The present optimization is probably incomplete because only the small number of the generations has been 

performed. In addition, the automatic mesh generator may clip the design space severely. In the present MDO 

system, surface spline function of the geometry deviation is used for the modification of the wing surface mesh, and 

then the volume mesh is modified accordingly by the unstructured dynamic mesh method. However, this process 

made the surface mesh distorted around the leading edge. This mesh generation might be the primary reason for the 

difficulty in finding the non-gull geometry. However, the present result demonstrates that data mining can produce a 

good design even from the results of the incomplete optimization.  

 

 
                                      Figure 29                                                                                   Figure 30 

Comparison of optimized_mod and all solutions on two-

dimensional plane between block fuel and CD divergence 

 

Comparison of optimized_mod and all solutions on two-

dimensional plane between block fuel and maximum takeoff 

weight 
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                                  Figure 31                                                                           Figure 32 

Comparison of optimized_mod and all solutions on two-

dimensional plane between maximum takeoff weight 

and CD divergence 

Comparison of the CL-CD curves among three 

geometries as initial, optimized, and optimized_mod 

under transonic flight condition 
 

VI. Concluding Remarks 

A new approach, MODE, has been presented to address MDO problems. MODE is not intended to give an 

optimal solution. MODE reveals the structure of the design space from the trade-off information and visualizes it as 

a panorama for DM. DM will know the reason for trade-offs from non-dominated designs, instead of receiving an 

optimal design without trade-off information. The present components of MODE are described, although the 

concept of MODE can be coupled with other RSM and optimization algorithms.  

The main emphasis of this approach is visual data mining. Two data mining examples are presented. The first 

example considers the four-objective aerodynamic optimization for the fly-back booster using high fidelity CFD 

code. The resulting non-dominated front reveals trade-offs in the design space. Two different data mining techniques 

were confirmed to produce consistent results. Although it is difficult to validate data mining results in general, this 

example gives a verification of the present approach. The results indicate that ANOVA shows the effect of each 

design variables on objective functions quantitatively while SOM shows the information qualitatively.  

The second example considers the high fidelity MDO problem for a regional-jet wing. It optimizes aerodynamic 

performance and structural weight under aeroelastic constraints. Because the design space was large and high 

fidelity simulation codes were time-consuming, ARMOGA was used to explore the design space briefly. The 

optimization was stopped after improvements were obtained. Then, SOM was applied to visualize the design space. 

Based on the observation, a new, better wing design has been suggested. This illustrates the importance of MODE 

because design knowledge can produce a better design even from the brief exploration of the design space.  

Although it is not discussed in this paper, the flowchart of MODE shown in Fig. 4 has feedback loops. The 

design space can be redefined by analyzing the surrogate model.35 Moreover, from data mining, competing 

objectives and active constraints can be identified. This will lead to the re-definition of the MDO problem itself (Fig. 

33). MDO often uses conceptual performance equations as design objectives. However, sensitivities of those 

equations to high fidelity simulation codes are not well understood. As more and more high fidelity simulation codes 

become available to MDO, selection of objective functions will become more crucial. The outermost feedback loop 

in Fig. 33 will be essential to address this issue. 
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Figure33 Future direction of Multi-Objective Design Exploration (MODE) 
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